
Freescale Semiconductor
Application Note

© Freescale Semiconductor, Inc., 2006. All rights reserved.

This application note covers code examples for
programming the MSC711x Fast Ethernet Controller (FEC)
in the MII mode. The MSC711x devices that support
Ethernet are the MSC7113, the MSC7116, and the
MSC7119. A brief introduction of the MSC711x Ethernet
Controller is given first. Then code examples are presented
for each of three different MII modes.

1 MSC711x Ethernet Controller
Introduction

The FEC supports 10/100 Mbps Ethernet as defined by
IEEE Std. 802.3™. It has two MAC-PHY interfaces: the
media independent interface (MII) and the reduced MII
(RMII), which provides MII functionality on a reduced pin
count (10 instead of 18), and a 7-wire interface mode. A
media access controller (MAC) handles the MII interface
FIFOs and DMA functionality and an MII gasket (MIIGSK)
module supports the RMII interface. An FEC RISC
microcontroller manages DMA buffer descriptors (BDs),
minimizing processor usage. Also, a management
information base (MIB) module tracks network activity on
the MAC-PHY interface.

Document Number: AN3099
Rev. 0, 11/2006

Contents
1. MSC711x Ethernet Controller Introduction 1
2. Description of the Ethernet Modes 4
3. MII Internal Loop with Polling 4
4. MII Internal Loop with Interrupts 13
5. MII External Loop with Interrupts 21
6. Revision History . 27

MSC711x Ethernet Quick Start
by Dejan Minic

NCSG
Freescale Semiconductor, Inc.
Austin, TX

MSC711x Ethernet Quick Start, Rev. 0

2 Freescale Semiconductor

MSC711x Ethernet Controller Introduction

1.1 Features
FEC features are as follows:

• Designed to comply with IEEE Stds. 802.3™, 802.3u™, 802.3x™, and 802.3ac™.

• Internal receive and transmit FIFOs and a FIFO controller.

• Direct access to internal MSC7119 memories via its own DMA controller.

• Support for the 10/100 Mbps media independent interface (MII)

• Support for the 10/100 Mbps reduced media independent interface (RMII).

• Support for the 10 Mbps 7-wire interface.

• Full duplex (200 Mbps throughput with a minimum system clock rate of 25 MHz) and half duplex
operation (100 Mbps throughput).

• Programmable maximum frame length supports IEEE Std. 802.1™ VLAN tags and priority.

• Retransmission from transmit FIFO following a collision.

• CRC generation and verification for inbound and outbound packets.

• Automatic internal flushing of the receive FIFO for runt receive frames and receive frames rejected
by address recognition.

• IEEE Std. 802.3 full duplex flow control.

• Address recognition including promiscuous, broadcast, individual address. hash/exact match, and
multicast hash match:

— Frames with broadcast address can be always accepted or always rejected

— Exact match for single 48-bit individual (unicast) address

— 64-bit hash check of individual (unicast) addresses.

— 64-bit hash check of group (multicast) addresses.

1.2 FEC Architecture
Figure 1 shows the FEC block diagram with the network depicted at the bottom of the diagram. The IPBus
and interrupt interfaces comply with V2 of the IPBus specification, and the AHB master interface
connected to the AMENT bus complies with Rev. 2.0 of the AHB-Lite specification. The external Ethernet
interfaces are designed to comply with industry and IEEE 802.3 standards.

The RISC-based descriptor controller, shown in Figure 1, performs the following functions:

• Initializes the internal registers not initialized by the user or hardware.

• Controls the DMA channels at a high level, initiating DMA data transfers.

• Interprets buffer descriptors (BDs).

• Provides address recognition for receive frames.

• Generates random numbers for the transmit collision back-off timer.

The RAM is the focal point of all FEC data flow. The RAM is divided into transmit and receive FIFOs
with a boundary that is programmed in the FIFO receive start register (FRST). User data flows to/from the
DMA unit from/to the receive/transmit FIFOs. Transmit data flows from the transmit FIFO into the
transmit block, and receive data flows from the receive block into the receive FIFO.

MSC711x Ethernet Quick Start, Rev. 0

Freescale Semiconductor 3

MSC711x Ethernet Controller Introduction

The bus controller selects the TBus master on each clock. All modules receive their control information
and provide status information over the TBus.

The user controls the FEC by writing through the slave interface (SIF) module into control registers in each
block. The control and status registers provide global control, such as Ethernet reset and enable and
interrupt handling.

The MII block provides a serial channel for control/status communication with the external physical layer
device (transceiver). This serial channel consists of the MDC (clock) and MDIO bidirectional data lines of
the MII interface.

The multiple-channel DMA unit allows transmit data, transmit descriptor, receive data, and receive
descriptor accesses to run independently.

Figure 1. MSC7119 Fast Ethernet Controller Architecture

SIF

Control/Status
RAM Interface

FIFO

DMA
Descriptor
Controller

MII

ReceiveTransmit

Bus

AHB (Master)

Controller

Controller

TBus

IPBus (Slave)

MIB

RAM

MIIGSK

MIB RAM

FIFO

Interrupts

Ethernet

Transceiver (PHY)

Fast Ethernet

Controller

MII/RMII/7-wire PHY Configuration
MSC7119 Device

Registers

MSC711x Ethernet Quick Start, Rev. 0

4 Freescale Semiconductor

Description of the Ethernet Modes

The transmit and receive blocks provide the Ethernet MAC functionality. Internal to these blocks are clock
domain boundaries between the system clock and the network clocks.

The management information base (MIB) maintains counters for a variety of network events and statistics.
It is not necessary for FEC operation but provides valuable counters for network management. The
counters are remote monitoring (RMON) RFC 1757 Ethernet Statistics group and some IEEE Std. 802.3
counters.

The MIIGSK converts the data path portion of the MII interface to the RMII interface, reducing the MII
data path pin count from 16 to 8 pins.

2 Description of the Ethernet Modes
This application note covers three MII Ethernet examples. Start with the first example, because each
example builds on knowledge from the previous example. The three Ethernet mode examples are as
follows:

1. MII internal loop with polling

2. MII internal loop with interrupts

3. MII external loop with interrupts

3 MII Internal Loop with Polling
All three examples use the predefined data packet, which is used for Tx and Rx Ethernet transmission.
Consider code in the data.c file.

#pragma data_seg_name ".enetdata"
/*---*/
/* Receive and Transmit Buffer Descriptors */
/*---*/
NBUF EnetRxBDs[NUM_RXBDS];
#pragma align EnetRxBDs 8
NBUF EnetTxBDs[NUM_TXBDS];
#pragma align EnetTxBDs 8
/*---*/
/* Receive and Transmit Buffers */
/*---*/
UByte EnetRxBuffer[RX_BUFFER_SIZE * NUM_RXBDS];
#pragma align EnetRxBuffer 32
UByte EnetTxBuffer[TX_BUFFER_SIZE * NUM_TXBDS];
#pragma align EnetTxBuffer 32

The previous code defines a .enetdata section for the linker file memory configuration. In addition, receive
and transmit buffer descriptors and buffers are declared. Note that the buffer descriptors are 8-byte aligned
and buffers are 32-byte aligned in memory using the pragma align statements.

MSC711x Ethernet Quick Start, Rev. 0

Freescale Semiconductor 5

MII Internal Loop with Polling

The actual packet data payload for transmission is defined in the ethernet.c file.

/*---*/
/* Data to be transmitted */
/*---*/
const UByte packet[] =
{

0x00, 0xCF, 0x52, 0x82, 0xC3, 0x01, 0x00, 0xCF,
0x52, 0x82, 0xC3, 0x01, 0x08, 0x00, 0x45, 0x00,
0x00, 0x3C, 0x2B, 0xE8, 0x00, 0x00, 0x20, 0x01,
0xA6, 0x1B, 0xA3, 0x0A, 0x41, 0x55, 0xA3, 0x0A,
0x41, 0x54, 0x08, 0x00, 0x0C, 0x5C, 0x01, 0x00,
0x40, 0x00, 0x61, 0x62, 0x63, 0x64, 0x65, 0x66,
0x67, 0x68, 0x69, 0x6A, 0x6B, 0x6C, 0x6D, 0x6E,
0x6F, 0x70, 0x71, 0x72, 0x73, 0x74, 0x75, 0x76

};

The main() function is located in ethernet.c file.

*((UWord32 *)(0x10000)) = PASS;

The memory address 0x10000 is used throughout the exercise to store PASS or FAIL flags. At the
beginning of any exercise the PASS flag is set, and then changed only at the first occurrence of any type
of failure. In case of failure, the flag is set to FAIL.

for (i = 0; i < NUM_RXBDS; i++)
{

EnetRxBDs[i].status = RX_BD_E;
EnetRxBDs[i].length = 0;
EnetRxBDs[i].data = &EnetRxBuffer[i * RX_BUFFER_SIZE];

}

Next, the receive descriptor ring is initialized (Bit 15, or the E bit, is set, indicating that the receive BD is
empty; length is changed to 0 and the receive data buffer pointer is initialized).

EnetRxBDs[NUM_RXBDS - 1].status |= RX_BD_W;

The wrap bit is set, indicating that the BD is the final one in the receive BD ring, thus completing the ring.

for (i = 0; i < NUM_TXBDS; i++)
{

EnetTxBDs[i].status = TX_BD_L | TX_BD_TC;
EnetTxBDs[i].length = 0;
EnetTxBDs[i].data = &EnetTxBuffer[i * TX_BUFFER_SIZE];

}

Similarly, the transmit descriptor ring is initialized (Bits 11 and 10, or the L and TC bits, are set, indicating
that transmit BD is last in the transmit frame and enabling the transmission of the CRC sequence after the
last data byte and transmit data buffer pointer is initialized).

EnetTxBDs[NUM_TXBDS - 1].status |= TX_BD_W;

Set the wrap bit, to indicate that BD is the final one in the transmit BD ring, thus completing the ring.

The next block of code configures the FEC controller registers.

Ethernet->PADDR1 = 0x00CF5282;
Ethernet->PADDR2 = 0xC3018808;

MSC711x Ethernet Quick Start, Rev. 0

6 Freescale Semiconductor

MII Internal Loop with Polling

PADDRL (PADDR1) contains the lower 32 bits and PADDRH (PADDR2) contains the upper 16 bits of
the 48 bit address used in the address recognition process to compare with the destination address. These
bits are set to an arbitrary source address value.

Ethernet->IADDR[1] = 0x00000000;
Ethernet->IADDR[0] = 0x00000000;

Both IADDR1 and IADDR0 contain the upper and lower 32 bits of the 64 bit individual address hash table.
This address is used in the address recognition process to check for a match. These registers are not used
in this demo, so both are set to 0x0000_0000.

Ethernet->GADDR[1] = 0x00000000;
Ethernet->GADDR[0] = 0x00000000;

Both GADDR1 and GADDR2 contain the upper and lower 32 bits of the 64 bit hash table, used in the
address recognition process for receive frames with a multicast address. These registers are not used in this
demo, so both are set to 0x0000_0000.

Ethernet->R_BUFF_SIZE = (UWord16)RX_BUFFER_SIZE;

R_BUFF_SIZE (RBSZ), receive buffer size register, specifies the maximum size of all receive buffers.
This value must be divisible by 16 and its value can be changed in nbuf.h file.

Ethernet->R_DES_START = (UWord32)EnetRxBDs;

R_DES_START (RDESST), receive descriptor ring start register, holds a pointer to the start of the circular
receive BD ring. This memory pointer must be 32-bit word aligned and points to the beginning of
EnetRxDBs.

Ethernet->X_DES_START = (UWord32)EnetTxBDs;

X_DES_START (TDESST), transmit descriptor ring start register, holds a pointer to the start of the
circular transmit BD ring. This memory pointer must be 32-bit word aligned and points to the beginning
of EnetTxDBs.

Ethernet->R_CNTRL =0x05EE0005;

R_CNTRL (RCTL), receive control register, is configured for MII mode with internal loopback.

RCTL Receive Control Register ENET_BASE + 0x084

Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

— MAXFL

TYPE R R/W

SET 0 0 0 0 0 1 0 1 1 1 1 0 1 1 1 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

— FCE BFR PROM MIIM DRT LOOP

TYPE R R/W

SET 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1

MSC711x Ethernet Quick Start, Rev. 0

Freescale Semiconductor 7

MII Internal Loop with Polling

RCTL controls the operational mode of the receive block and should be written only when
EEN = 0, that is, at initialization.

Table 1. RCTL Bit Descriptions

Name Reset Description Settings

—
31–27

0 Reserved. Write to zero for future compatibility.

MAXFL
26–16

0b101_1110_
1110
(0x5EE)

Maximum Frame Length
User-defined maximum frame length, where frame length
is measured starting at DA and including the CRC at the
end of the frame. Transmit frames longer than MAXFL
cause the BABT interrupt. Receive frames longer than
MAXFL cause the BABR interrupt to occur and set the LG
bit in the end-of-frame BD. The recommended default is
the reset value decimal 1518 or decimal 1522 if VLAN tags
are supported.

0x5EE (or 1518 decimal)

—
15–6

0 Reserved. Write to zero for future compatibility.

FCE
5

0 Flow Control Enable
Enables the receiver to detect pause frames. When a
pause frame is detected, the transmitter stops transmitting
data frames for a specified duration.

0 Normal operation.

BFR
4

0 Broadcast Frame Reject
Causes frames with a destination address (DA) =
FFFF_FFFF_FFFF to be rejected unless the PROM bit is
set. If both BFR and PROM = 1, frames with broadcast DA
are accepted and the miss (M) bit is set in the receive BD.

0 Disabled

PROM
3

0 Promiscuous Mode
All frames are accepted, regardless of address matching.

0 Disabled

MIIM
2

0 External Interface Mode
Selects between 7Wire Interface mode and MII mode,
which applies to both the transmit and receive blocks.

1 MII operating mode.

DRT
1

0 Disable Receive on Transmit
Disables reception of frames while transmitting, which is
normally used for half duplex mode.

0 Receive path operates
independently of transmit (use for
full duplex or to monitor transmit
activity in half duplex mode).

LOOP
0

1 Internal Loopback
Causes transmitted frames to be looped back internal to
the device, and the transmit output signals are not
asserted. The system clock is substituted for the TXCLK
when LOOP is asserted. DRT must be cleared when
LOOP is asserted.

1 Internal loopback.

MSC711x Ethernet Quick Start, Rev. 0

8 Freescale Semiconductor

MII Internal Loop with Polling

Ethernet->X_CNTRL = 0x0004;

X_CNTRL (TCTL), transmit control register is configured for full-duplex mode.

TCTL Transmit Control Register ENET_BASE + 0x0C4

Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

—

TYPE R

SET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

— RFCP TFCP FDEN HBC GTS

TYPE R R/W

SET 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

Table 2. Transmit Control Register Bit Descriptions

Name Reset Description Settings

—
31–5

0 Reserved. Write to zero for future compatibility.

RFCP
4

0 RFC Pause
Set when a full duplex flow control pause frame is received. The transmitter pauses
for the duration defined in the pause frame This bit automatically clears when the
pause duration is complete.

0 Normal operation.

TFCP
3

0 TFC Pause
When this bit is set, the MAC stops transmitting data frames after the current
transmission completes. The GRA interrupt in the IEVENT register is asserted. The
MAC transmits a MAC Control PAUSE frame. Next, the MAC clears the TFCP bit
and resumes transmitting data frames. If the transmitter is paused due to user
assertion of GTS or reception of a PAUSE frame, the MAC can still transmit a MAC
Control PAUSE frame.

0 Normal
operation.

FDEN
2

0 Full Duplex Enable
If set, frames are transmitted independent of carrier sense and collision inputs. This
bit should be modified only when ECTL[EEN] is cleared.

1 Enable full
duplex.

HBC
1

0 Heartbeat Control
If set, the heartbeat check is performed at the end of transmission and the HB bit in
the status register is set if the collision input does not assert within the heartbeat
window. This bit should be modified only when ECTL[EEN] is cleared.

0 Normal operation.

GTS
0

0 Graceful Transmit Stop
When this bit is set, the MAC stops transmission after the frame that is being
transmitted is complete, and the GRA interrupt in the IEVENT register is asserted.
If no frames are being transmitted, the GRA interrupt is asserted immediately.
When transmission completes, the GTS bit is cleared to initiate a restart. The next
frame in the transmit FIFO is then transmitted. If an early collision occurs during
transmission when GTS = 1, transmission stops after the collision. The frame is
transmitted again when GTS is cleared. If old frames are in the transmit FIFO, they
are transmitted when GTS is reasserted. To avoid this, clear ECTL[EEN] after the
GRA interrupt.

0 Normal operation.

MSC711x Ethernet Quick Start, Rev. 0

Freescale Semiconductor 9

MII Internal Loop with Polling

pNbuf = EnetTxBDs;
for (i = 0; i < 64; i++)
{

pNbuf->data[i] = packet[i];
}

In the code above, the packet payload is loaded into buffer through the transmit buffer descriptor.

pNbuf->length = 64;

The length of the same buffer descriptor is updated to reflect the length of the packet.

Ethernet->ECNTRL = 0x00000001; // Clear the ECR
Ethernet->ECNTRL = 0x00000002;

ECNTRL (ECTL), ethernet control register, is first cleared and bit 0 (RESET bit) is set in order to reset
the FEC. Next the ECTL is programmed to release reset and set the EEN bit to enable the FEC.

Table 3. Ethernet Control Register Bit Descriptions

ECTL Ethernet Control Register ENET_BASE + 0x024

Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

TAG3 TAG2 TAG1 TAG0 — TMD —

TYPE R/W R R/W R

SET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

— EEN RESET

TYPE R R/W

SET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

Name Reset Description Settings

TAG[3–0]
31–28

0b1111 Tags 3–0
Programs and reads the TBus tag bits. This field, which is used
for debug/test only, is composed of two separate 4-bit
registers, tags-in and tags-out. A write from the IPBus to this
field is written to tags-in. During a write cycle to any FEC
register other than ECTL, the tags-in value is driven onto the
TBus data bus tag field. During a read cycle, the TBus tag field
bits are latched and saved in the tags-out register. When the
ECTL register is read from the IPBus interface, the value from
tags-out appears in the TAG[3–0] field.

0

—
27

0 Reserved. Write to zero for future compatibility.

TMD
26

0 Test Mode 0

—
25–2

0 Reserved. Write to zero for future compatibility.

MSC711x Ethernet Quick Start, Rev. 0

10 Freescale Semiconductor

MII Internal Loop with Polling

EEN
1

0 Ethernet Enable
Enables/disables the FEC. When this bit is set, the Ethernet
can receive and transmit data. When this bit is cleared,
reception immediately stops, and transmission stops after a
bad CRC is appended to any frame being transmitted. The
BD(s) for an aborted transmit frame are not updated following
deassertion of EEN. When EEN is deasserted, the DMA
controller, BD, and FIFO control logic is reset, including BD
and FIFO pointers. When software writes a value of 1 to
ECTL[RESET] or an AHB bus error is detected, the hardware
clears EEN. The procedure for halting the FEC is described in
Section 11.4.4.3, Complete Halt of the Ethernet MAC, in the
MC711x Reference Manual.

1 Ethernet enabled.

RESET
0

0 Ethernet Controller Reset
When this bit is set, the equivalent of a hardware reset is
performed but it is local to the FEC. EEN is cleared, and all
other FEC registers take their reset values. Also, any
transmission/reception in progress is abruptly aborted.
Hardware automatically clears this bit during the reset
sequence, which requires approximately eight clock cycles
after RESET is written with a 1.

Note: Before using the RESET bit to reset the FEC, shut
down the FEC as described in Section 11.4.4.3,
Complete Halt of the Ethernet MAC, in the
MC711xReference Manual.

0 Normal operation.

Name Reset Description Settings

MSC711x Ethernet Quick Start, Rev. 0

Freescale Semiconductor 11

MII Internal Loop with Polling

for (i = 0; i < NUM_RXBDS; i++)
{

EnetRxBDs[i].status = RX_BD_E;
EnetRxBDs[i].length = 0;
EnetRxBDs[i].data = &EnetRxBuffer[i * RX_BUFFER_SIZE];

}
EnetRxBDs[NUM_RXBDS - 1].status |= RX_BD_W;

Clear and setup the receive buffers (Set the wrap bit on the last BD in the ring).

Ethernet->R_DES_ACTIVE = MSC711x_FEC_RDAR_R_DES_ACTIVE;

R_DES_ACTIVE (RDA), receive descriptor active register (RDA bit is set) to activate receive descriptor.

RDA is a programmable command register. The user writes to this register to indicate that the receive
descriptor ring has been updated; that is, the driver has produced empty receive buffers. When the register
is written, the RDA bit is set, independently of the data written by the user. When RDA is set and the
ECTL[EEN] bit is also set, the FEC polls the receive descriptor ring and processes the receive frames.
When the FEC polls a receive descriptor whose empty (E) bit is not set, the FEC clears RDA and ceases
polling the receive descriptor rings until the RDA bit is set again, indicating that the driver has produced
an empty receive buffers. This register is cleared not only at reset but also at the clearing of the
ECTL[EEN] bit.

RDA Receive Descriptor Active Register ENET_BASE + 0x010

Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

— RDA —

TYPE R R/W R

SET 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

—

TYPE R

SET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 4. RDA Bit Descriptions

Name Reset Description Settings

—
31–25

0 Reserved. Write to zero for future compatibility.

RDA
24

0 Receive Descriptor Active
Set to one when this register is written, regardless of the
value written. Cleared by the FEC device when no
additional ready descriptors remain in the receive ring.

1 - Receive Descriptor Active

—
23–0

0 Reserved. Write to zero for future compatibility.

MSC711x Ethernet Quick Start, Rev. 0

12 Freescale Semiconductor

MII Internal Loop with Polling

pNbuf->status |= TX_BD_R;

Change the R bit of transmit buffer descriptor to 1, to indicate that the packet is ready to send.

Ethernet->X_DES_ACTIVE = MSC711x_FEC_TDAR_X_DES_ACTIVE;

X_DES_ACTIVE (TDA), transmit descriptor active register (TDA bit is set) to activate transmit
descriptor.

TDA is a programmable command register. The register is written by the user to indicate that the transmit
descriptor ring has been updated; that is, the driver has produced transmit buffers. When the register is
written, the TDA bit is set, independently of the data actually written by the user. When TDA is set and
ECTL[EEN] is also set, the FEC polls the transmit descriptor ring and processes transmit frames. When
the FEC polls a transmit descriptor whose ready (R) bit is not set, the FEC clears TDA and ceases polling
transmit descriptor rings until the user sets TDA again to indicate that more descriptors are in the transmit
descriptor ring. This register is cleared not only at reset but also at the clearing of the ECTL[EEN] bit.

for (i=0; i < 5000; i++)
{

if (Ethernet->IEVENT & MSC711x_FEC_EIR_RXF)
{

break;
}

}

TDA Transmit Descriptor Active Register 0x014

Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

— TDA —

TYPE R R/W R

SET 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

—

TYPE R

SET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 5. TDA Bit Descriptions

Name Reset Description Settings

—
31–25

0 Reserved. Write to zero for future compatibility.

TDA
24

0 Transmit Descriptor Active
Set to one when this register is written, regardless of the value written.
Cleared by the FEC device when no additional ready descriptors remain in
the transmit ring.

1. Transmit Descriptor Active

—
23–0

0 Reserved. Write to zero for future compatibility.

MSC711x Ethernet Quick Start, Rev. 0

Freescale Semiconductor 13

MII Internal Loop with Interrupts

if (i == 5000)
{

// Timed-out
*((UWord32 *)(0x10000)) = FAIL;
asm(" debug");
return 0;

}

Arbitrary delay for allowing packets to propagate from transmit to receive interface. If the delay is greater
then 5000, set the FAIL flag/condition due to the time out.

for (i = 0; i < 64; i++)
{

if (EnetTxBDs[0].data[i] != EnetRxBDs[0].data[i])
{

*((UWord32 *)(0x10000)) = FAIL;
asm(" debug");
return 0;

}
}

// Ethernet Test passed
asm(" debug");

Check and ensure that the data in receive buffers is the same as in transmitted buffers. If the data is not the
same set the FAIL flag.

4 MII Internal Loop with Interrupts
In this second example, the interrupts are introduced as a means of interacting with the FEC. This example
builds on the knowledge and code in the first example. The changes in the ethernet.c file are presented first,
focusing mostly on main() and then the functions used in the msc711x_int.c file, which has interrupt
related functionality, are given.

4.1 ethernet.c and main() differences
#include <prototype.h>
#include "include\msc711x_int.h"

Two new files are included:

volatile int interrupted=0;
volatile int interruptedNoOfTimes_RX=0;
volatile int interruptedNoOfTimes_TX=0;
volatile int interruptedNoOfTimes_EIR_HBERR=0;
volatile int interruptedNoOfTimes_EIR_BABR=0;
volatile int interruptedNoOfTimes_EIR_BABT=0;
volatile int interruptedNoOfTimes_EIR_GRA=0;
volatile int interruptedNoOfTimes_EIR_TXB=0;
volatile int interruptedNoOfTimes_EIR_RXB=0;
volatile int interruptedNoOfTimes_EIR_MII=0;
volatile int interruptedNoOfTimes_EIR_EBERR=0;
volatile int interruptedNoOfTimes_EIR_LC=0;
volatile int interruptedNoOfTimes_EIR_RL=0;
volatile int interruptedNoOfTimes_EIR_UN=0;

MSC711x Ethernet Quick Start, Rev. 0

14 Freescale Semiconductor

MII Internal Loop with Interrupts

After packet definition these variables are defined and initialized to 0. These variables can be used to track
different counters associated with receive and transmit operations of FEC.

Right before main(), interrupt handing functions are defined. The first function, EnetTxFRxFIntHandler()
detects and counts how many times receive and transmit interrupts are called. This proves very useful for
debugging.

void EnetTxFRxFIntHandler(void)
{

enet_map_t* Ethernet= (enet_map_t*)ENET_BASE;

Set the memory map address and base for accessing the FEC registers.

asm(" di");

Disable interrupts.

if(Ethernet->IEVENT & MSC711x_FEC_EIR_RXF)
{

interruptedNoOfTimes_RX++;
interrupted=1;

}

Use the IEVENT[RFINT] bit, to detect if the receive frame interrupt has occurred.

IEVENT Interrupt Event Register ENET_BASE + 0x004

Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

HBERR BABR BABT GRA TFINT TXB RFINT RXB MII — LC CRL TFU ROV —

TYPE R/W R R/W R R

RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

—

TYPE R

RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 6. IEVENT Bit Descriptions

Name Reset Description Settings

HBERR
31

0 Heartbeat Error
If the CTL[HBC] bit is set and the FEC does not detect a
collision within the heartbeat window, a heartbeat error
occurs. The FEC closes the buffer and generates the
HBERR interrupt if it is enabled. The heartbeat condition
is checked only in Half Duplex mode.

0 Heartbeat error disabled.
1 Heartbeat error enabled.

BABR
30

0 Babbling Receive Error
Indicates a frame received with a length in excess of
RCTL[MAXFL], which specifies the maximum frame
length, in bytes.

0 No interrupt.

1 Babbling receive error interrupt.

MSC711x Ethernet Quick Start, Rev. 0

Freescale Semiconductor 15

MII Internal Loop with Interrupts

BABT
29

0 Babbling Transmit Error
Indicates a frame transmitted with a length in excess of
RCTL[MAXFL]. This condition is usually caused when a
frame that is too long is placed into the transmit data
buffer(s). Truncation does not occur.

0 No interrupt.

1 Babbling transmit error interrupt.

GRA
28

0 Graceful Stop Complete
Graceful stop means that the transmitter is put into a
pause state after completion of the frame being
transmitted.This interrupt is asserted for one of three
reasons.

1. A graceful stop initiated by setting the
TCTL[GTS] bit is now complete.

2. A graceful stop initiated by setting the
TCTL[FCP] bit is now complete.

3. A graceful stop initiated by the reception of a
valid full duplex flow control pause frame is now
complete. Refer to Section 18.4.7, Full Duplex
Flow Control, in the MSC711x Reference
Manual.

0 No interrupt.

1 Graceful stop complete interrupt.

TFINT
27

0 Transmit Frame Interrupt
Indicates that a frame has been transmitted and that the
last corresponding buffer descriptor (BD) has been
updated. This interrupt is generated when the transmit
block generates status for the just completed frame.

0 No interrupt.

1 Transmit frame completed
interrupt.

TXB
26

0 Transmit Buffer Interrupt
Indicates that a transmit BD has been updated. This
interrupt is generated when a DMA transfer of a transmit
buffer is complete.

0 No interrupt.

1 Transmit buffer interrupt.

RFINT
25

0 Receive Frame Interrupt
Indicates that a frame has been received and that the
last corresponding BD has been updated.
This bit is set after the last receive buffer in a frame has
been transferred via DMA.

0 No interrupt.

1 Receive frame interrupt.

RXB
24

0 Receive Buffer Interrupt
Indicates that a receive BD has been updated that was
not the last in the frame. This bit is set upon completion
of a DMA transfer of a receive buffer that is not the last in
the frame.

0 No interrupt.

1 Receive buffer interrupt.

MII
23

0 MII Interrupt
Indicates that the MII has completed the requested data
transfer. This bit is set if the transceiver register
read/write operation controlled by the MIIDATA and
MIISPEED registers is complete.

0 No interrupt.

1 MII interrupt.

—
22

0 Reserved. Write to zero for future compatibility.

Table 6. IEVENT Bit Descriptions (continued)

Name Reset Description Settings

MSC711x Ethernet Quick Start, Rev. 0

16 Freescale Semiconductor

MII Internal Loop with Interrupts

if(Ethernet->IEVENT & MSC711x_FEC_EIR_TXF)
{

interruptedNoOfTimes_TX++;
}

Similarly, as for the receive side, the IEVENT register is used to determine if the transmit frame interrupt
occurred by examining the IEVENT[TFINT] bit.

Ethernet->IEVENT=0x0A000000;

Clear both transmit and receive frame interrupt flags by writing one.

asm(" ei");

Enable interrupts

return;
}

Function EnetTxFRxFVector() is used as a interrupt vector, which calls the EnetTxFRxFIntHandler()
function, which handles the interrupt.

void EnetTxFRxFVector(void)
{

#pragma interrupt EnetTxFRxFVector
EnetTxFRxFIntHandler();

}

LC
21

0 Late Collision
Indicates a collision beyond the collision window (slot
time) in half duplex mode. The frame is truncated with a
bad CRC. and the remainder of the frame is discarded.
In Full Duplex mode, the collision input is ignored.

0 No interrupt.

1 Late collision interrupt.

CRL
20

0 Collision Retry Limit
Indicates a collision on each of 16 successive attempts
to transmit the frame. The frame is discarded without
being transmitted, and transmission of the next frame
commences. This interrupt can occur only in Half Duplex
mode.

0 No interrupt.

1 Collision retry limit interrupt.

TFU
19

0 Transmit FIFO Underrun
Indicates that the transmit FIFO emptied before the
complete frame was transmitted. A bad CRC is
appended to the frame fragment, and the remainder of
the frame is discarded.

0 No interrupt.

1 Transmit FIFO underrun interrupt.

ROV
18

0 Receiver Overrun
Indicates that the receiver is full and has dropped frame
data during reception. The OV bit in the corresponding
RxBD is set, indicating that the frame should be
discarded.

0 No interrupt.

1 Receiver overrun interrupt.

—
17–0

0 Reserved. Write to zero for future compatibility.

Table 6. IEVENT Bit Descriptions (continued)

Name Reset Description Settings

MSC711x Ethernet Quick Start, Rev. 0

Freescale Semiconductor 17

MII Internal Loop with Interrupts

Function EnetSummaryIntHandler is used to keep count of different FEC errors and/or conditions which
could occur during receive and transmit operations.

void EnetSummaryIntHandler(void)
{

#pragma interrupt EnetSummaryIntHandler
enet_map_t* Ethernet= (enet_map_t*)ENET_BASE;
asm(" di");

Disable interrupts.

if (Ethernet->IEVENT & MSC711x_FEC_EIR_HBERR) interruptedNoOfTimes_EIR_HBERR++;
if (Ethernet->IEVENT & MSC711x_FEC_EIR_BABR) interruptedNoOfTimes_EIR_BABR++;
if (Ethernet->IEVENT & MSC711x_FEC_EIR_BABT) interruptedNoOfTimes_EIR_BABT++;
if (Ethernet->IEVENT & MSC711x_FEC_EIR_GRA) interruptedNoOfTimes_EIR_GRA++;
if (Ethernet->IEVENT & MSC711x_FEC_EIR_TXB) interruptedNoOfTimes_EIR_TXB++;
if (Ethernet->IEVENT & MSC711x_FEC_EIR_RXB) interruptedNoOfTimes_EIR_RXB++;
if (Ethernet->IEVENT & MSC711x_FEC_EIR_MII) interruptedNoOfTimes_EIR_MII++;
if (Ethernet->IEVENT & MSC711x_FEC_EIR_EBERR) interruptedNoOfTimes_EIR_EBERR++;
if (Ethernet->IEVENT & MSC711x_FEC_EIR_LC) interruptedNoOfTimes_EIR_LC++;
if (Ethernet->IEVENT & MSC711x_FEC_EIR_RL) interruptedNoOfTimes_EIR_RL++;
if (Ethernet->IEVENT & MSC711x_FEC_EIR_UN) interruptedNoOfTimes_EIR_UN++;

IEVENT register bits are checked for the following events:

1. HBEER—Heartbeat Error is set if CTL[HBC] bit is set and FEC does not detects a collision within
the heartbeat window.

2. BABR—Babbling Receive Error indicates that maximum frame length has been exceeded.

3. BABT—Babbling Transmit Error indicates that the frame which is too long has been placed into
the transmit data buffers.

4. GRA—Graceful Stop Complete indicates that the transmitter is put into a pause state after
completion of the frame being transmitted.

5. TXB—Transmit Buffer Interrupt is set when a DMA transfer of a transmit buffer is complete.

6. RXB—Receive Buffer Interrupt is set when a DMA transfer of a receive buffer is complete.

7. MII—MII Interrupt indicates that the MII has completed the requested data transfer.

8. EBERR—is currently reserved.

9. LC—Late Collision indicates that a collision beyond the collision window in half duplex mode
has occurred.

10. RL—Collision Retry Limit indicates that a collision on each of 16 successive attempts to transmit
the frame has occurred.

11. UN—Transmit FIFO Underrun indicates that the transmit FIFO emptied before the complete
frame was transmitted.

Ethernet->IEVENT=0xf5ffffff;

Clear all interrupt events in the IEVENT register by writing one to each bit. Note that IEVENT[TFINT]
and IEVENT[RFINT] are not cleared as these two events are handled in the EnetTxFRxFIntHandler()
function.

MSC711x Ethernet Quick Start, Rev. 0

18 Freescale Semiconductor

MII Internal Loop with Interrupts

asm(" ei");

Enable interrupts.

return;

Function EnetSummaryVector() is used as an interrupt vector to call the EnetSummaryIntHandler() function,
which handles the interrupt.

void EnetSummaryVector(void)

{
#pragma interrupt EnetSummaryVector
EnetSummaryIntHandler();

}

Function InitInterrupts() is used to initialize interrupts and is called in the beginning of the main(). This
function enables all interrupt priority levels in the status registers first, sets up the VBA vector table, and
installs the NMI Branch and Auto-Vector Branch table handler. Once these operations are complete the
IntEnetInterrput() configures two interrupt vectors, which were defined above: EnetTxFRxFVector()
(pointing to the EnetTxFRxFVectorHandler()) and EnetSummaryVector() (pointing to the
EnetSummaryIntHandler()). The interrupt priority levels are also set for each interrupt that is going to be
handled by the EnetTxFRxFVectorHandler()and the EnetSummaryIntHandler().

void InitEnetInterrupt(void)
{

InitInterrupts();

CopyChInt(INT_ENTRXF, EnetTxFRxFVector);
SetInterruptPriorityLevel(INT_ENTRXF, 5);
SetInterruptPriorityLevel(INT_ENTTXF, 5);

CopyChInt(INT_ENTSMRY, EnetSummaryVector);
SetInterruptPriorityLevel(INT_ENTSMRY, 5);
ei();

}

Now that the interrupt functions are introduced, their usage in the main() and new application code flow
is covered. Since this exercise builds on the first one and is very similar, only the differences are pointed
out.

The exercises starts with the variable initialization followed by the InitEnetInterrput() function, which
initializes the interrupts. Following interrupts initialization, the receive and transmit buffers and buffer
descriptors are initialized and FEC configuration registers are set up. All the data initialization and FEC
configuration are the same as in the previous exercise, up to this point.

Ethernet->ECNTRL = 0x00000001; // Clear the ECR
Ethernet->IMASK = 0x0f000000;
Ethernet->IEVENT = 0xffffffff;
Ethernet->ECNTRL = 0x00000002;

As in previous exercise, the FEC is prepared for operation by first being reset with the FCNTRL[RESET]
bit and then enabled with FCNTRL[EEN] bit. The new addition is between FEC reset and FEC enable
where the IMASK is configured to 0x0F00_0000 which enables the following interrupts:

1. Transmit Frame Interrupt (TFIEN)

MSC711x Ethernet Quick Start, Rev. 0

Freescale Semiconductor 19

MII Internal Loop with Interrupts

2. Transmit Buffer Interrupt (TBIEN)

3. Receive Frame Interrupt (RFIEN)

4. Receive Buffer Interrupt (RBIEN)

IMASK Interrupt Enable Register ENET_BASE + 0x008

Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

HBEEN BREN BTEN GRAEN TFIEN TBIEN RFIEN RBIEN MIIEN — LCEN CRLEN TFUEN ROVEN —

TYPE R/W R R/W R

SET 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

— TFAC — RFAC —

TYPE R R/W R R/W R

SET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 7. IMASK Bit Descriptions

Name Reset Description Settings

HBEEN
31

0 Heartbeat Error Enable
.

0 Not enabled.

BREN
30

0 Babbling Receive Interrupt Enable
.

0 Not enabled.

BTEN
29

0 Babbling Transmitter Interrupt Enable 0 Not enabled.

GRAEN
28

0 Graceful Stop Interrupt Enable 0 Not enabled.

TFIEN
27

0 Transmit Frame Interrupt Enable 1 Transmit frame interrupt enabled.

TBIEN
26

0 Transmit Buffer Interrupt Enable 1 Transmit buffer interrupt enabled.

RFIEN
25

0 Receive Frame Interrupt Enable 1 Receive frame interrupt enabled.

RBIEN
24

0 Receive Buffer Interrupt Enable 1 Receive buffer interrupt enabled.

MIIEN
23

0 MII Interrupt Enable 0 Not enabled.

—
22

0 Reserved. Write to zero for future compatibility.

LCEN
21

0 Late Collision Enable 0 Not enabled.

CRLEN
20

0 Collision Retry Limit Enable 0 Not enabled.

MSC711x Ethernet Quick Start, Rev. 0

20 Freescale Semiconductor

MII Internal Loop with Interrupts

0

For completeness, IEVENT is set to pair with the IMASK register. The value of 0xFFFF_FFFF is written
to complete the interrupt enable functionality. Write one to each of the interrupt bits to clear the interrupt
event condition for each bit-interrupt pair.

Once the FEC is enabled the data is sent from the transmit to receive side. As before, wait for the data to
propagate.Since interrupts are used, the compare method is different, the old method of polling the
IEVENT register in main(), is replaced by simply checking the interrupted flag. This flag is set in the
Ethernet receive interrupt handler function.

for (i=0; i < 5000; i++)
{

if (interrupted)
{

break;
}

}

Once the data is received, the context of the receive packets is checked and if everything is correct, the
exercise ends with the PASS flag.

TFUEN
19

0 Transmit FIFO Underrun Enable 0 Not enabled.

ROVEN
18

Receiver Overrun Enable 0 Not enabled.

—
17–12

0 Reserved. Write to zero for future compatibility.

TFAC
11

0 Transmit Frame Interrupt Automatic Clear
Enables automatic clearing of the transmit
frame interrupt after one cycle of assertion.
TFAC allows an interrupt to be generated for
several transmit frames using the event port
and a timer configured to detect TFINT rising
edges.

0 No automatic clear of TFINT.

—
10

0 Reserved. Write to zero for future compatibility.

RFAC
9

0 Receive Frame Interrupt Automatic Clear
Enables automatic clearing of the receive
frame interrupt after one cycle of assertion.
RFAC allows an interrupt to be generated for
several receive frames using the event port
and a timer configured to detect RFINT rising
edges.

0 No automatic clear of RFINT.

—
8–0

0 Reserved. Write to zero for future compatibility.

Table 7. IMASK Bit Descriptions (continued)

Name Reset Description Settings

MSC711x Ethernet Quick Start, Rev. 0

Freescale Semiconductor 21

MII External Loop with Interrupts

4.2 msc711x_int.c
The msc711x_int.c file contains all interrupt related code which is added to this exercise. This is a brief
summary of each function used:

1. SetVBA —Sets the location of the VBA table.

2. CopyChInt and CopyCoreInt —Used for installing core and application interrupt vector location
and parameters.

3. DisableAllMaskableInterrputs —Disables all 16 maskable interrupts

4. SetInterrputPriorityLevel —Set particular interrupts priority level, by using the IPLR register.

5. Auto_handler, InstallAutoHandler and AutoIsr —Not used in this exercise but included for
completeness of the msc711x_int.c compilation of routines.

6. UnhandledNMI - Sets up debug() trap just in case unhandled NMI occurs.

7. InstallNmiHandler, NmiIsr and ClearNMI — Handle the installation and operation of the
Non-Makable-Interrupts (NMI).

8. IntInterrputs —Called at the beginning of the main() for initialization of the interrupts used in
this exercise.

5 MII External Loop with Interrupts
In this third example, the date is sent externally from transmit to receive circuitry through PHY and
Ethernet loopback cable. This exercise uses the MSC711xADS with Davicom (DM9161E) PHY.
Depending on the 711x board and/or PHY combination, some PHY initialization changes might be
necessary. This example builds on the knowledge and code of the first and second example. All additional
code changes in ethernet.c, which are necessary to get the FEC to send the Ethernet packets externally
through PHY, are reviewed.

5.1 Ethernet Loopback Cable
For this example, the internal software loopback capability is not used to exercise the Ethernet PHYs. An
Ethernet loopback cable is necessary to loopback the data. To create an Ethernet loopback cable, first start
with a standard twisted-pair Ethernet cable with RJ45 connectors.

MSC711x Ethernet Quick Start, Rev. 0

22 Freescale Semiconductor

MII External Loop with Interrupts

The pin-out for the RJ45 connector is as shown in Table 5-8:

Ethernet loopback cable assembly:

1. Cut the end off the Ethernet cable approximately 6 inches from the RJ45 connector.

2. Strip wires 1 (white-orange), 2 (orange), 3(white-green) and 6 (green).

3. Twist and solder wires 1 and 3 together (white-orange to white-green).

4. Twist and solder wires 2 and 6 together (orange to green).

5. To protect from shorting the exposed wires, insulate them with electrical tape.

6. Leave all other wires as they are.

5.2 Implementation
As in the second example, this example starts with variable initialization, but one variable is added, which
is used to keep track of MIIDATA and MIISPEED register status.

volatile int interrupted_EIR_MII=0;

This variable is set to 1 in the EnetSummaryIntHandler() function, along with the old
interruptedNoOfTimes_EIR_MII counter.

if (Ethernet->IEVENT & MSC711x_FEC_EIR_MII)
{

interruptedNoOfTimes_EIR_MII++;
interrupted_EIR_MII = 1;

}

The following functions are added for handling the PHY interface.

void my_delay(int n)
{

volatile int nn = n;
while (nn > 0) {

nn -= 1;
}

}

Table 5-8. Pin-out to Wire Color for RJ45 Connector

Pin Wire Color

1 White-Orange

2 Orange

3 White-Green

4 Blue

5 White-Blue

6 Green

7 White-Brown

8 Brown

MSC711x Ethernet Quick Start, Rev. 0

Freescale Semiconductor 23

MII External Loop with Interrupts

Function my_delay() was introduced because of the need to make variable delays for different PHYs. A
PHY might require differed delay values during PHY initialization.

unsigned short ReadPhy(long reg_addr)
{

unsigned short temp;
enet_map_t* Ethernet= (enet_map_t*)ENET_BASE;

Ethernet->MII_SPEED = 0x50;
Ethernet->MII_DATA = 0x60020000 | (reg_addr<<18);

while(!interrupted_EIR_MII);
interrupted_EIR_MII=0;

temp = (unsigned short)(0x0000FFFF & Ethernet->MII_DATA);

Ethernet->MII_SPEED = 0;
Ethernet->MII_DATA = 0;

return temp;
}

ReadPhy function is called from the InitPhy function during PHY initialization for polling PHY.

void WritePhy(long reg_addr,unsigned long data)
{

enet_map_t* Ethernet= (enet_map_t*)ENET_BASE;

Ethernet->MII_SPEED = 0x50;
Ethernet->MII_DATA = 0x50020000 | (reg_addr<<18) | data;

while(!interrupted_EIR_MII);
interrupted_EIR_MII=0;

Ethernet->MII_SPEED = 0;
Ethernet->MII_DATA = 0;

return;
}

Similar to ReadPhy, the WritePhy function is called from InitPhy during PHY initialization. This function
writes configuration commands, such as reset and mode setup, to the PHY.

void InitPhy()
{

unsigned short i=0;

WritePhy(MII_CR, MII_CR_RESET);
while((ReadPhy(MII_CR) & MII_CR_RESET))
{

i++;
}
WritePhy(MII_CR,0x2100);

}

Function InitPhy is called once in the beginning of main() for PHY initialization. Upon completion of this
function PHY is initialized (MII_CR is configured to 0x2100) and after a certain delay PHY is ready.

MSC711x Ethernet Quick Start, Rev. 0

24 Freescale Semiconductor

MII External Loop with Interrupts

void InitGPIO(){
gpio_map_t *pstGPIO;
pstGPIO = (gpio_map_t *)(GPIO_BASE);

pstGPIO->gp[0].GP_CTL = 0x3FF80000;
pstGPIO->gp[0].GP_DR = 0;
pstGPIO->gp[0].GP_DDR = 0;

pstGPIO->gp[3].GP_CTL = 0x0000007F;
pstGPIO->gp[3].GP_DR = 0;
pstGPIO->gp[3].GP_DDR = 0;

}

Function initGPIO() initializes and configures the general purpose input and output pins for Ethernet
functionality. The values 0x3FF8_0000 for port A and 0x0000_007F for port D imply following GPIO
configuration:

* PHY_TXER (TXD4) PA-28
* ETH_TXD3 - PA-27
* ETH_TXD2 - PD-4
* ETH_TXD1 - PA-19
* ETH_TXD0 - PA-20
* ETH_TXEN - PA-24
* PHY_TXCLK (ISOLATE) PA-23
* ETH_RXER (RXD4/RPTR) PA-26
* ETH_RXD3 (PHYAD3) PA-29
* ETH_RXD2 (PHYAD2) PD-6
* ETH_RXD1 (PHYAD1) PA-21
* ETH_RXD0 (PHYAD0) PA-22
* ETH_RXDV (TESTMODE) PA-25
* SL_ETH_EN (RXEN) BCSR
* ETH_RXCLK (SCRM/10BTSER) PD-5
* MDC MDC PD-2
* MDIO MDIO PD-3
* nIRQ2 MDINTR 8272
* ETH_LINK CBLSTS/LINKSTS 10/100M ETH PLUG
* ETH_COL RMII PD-0
* ETH_CRS CRS/PHYAD4 PD-1
* nHRSET_SL RESET JTAG
*

void CheckData(int index)
{

int j;
for (j = 0; j < 64; j++)
{

if (EnetTxBDs[index].data[j] != EnetRxBDs[index].data[j])
{

*((UWord32 *)(0x10000)) = FAIL;
asm(" debug");

}
}

}

MSC711x Ethernet Quick Start, Rev. 0

Freescale Semiconductor 25

MII External Loop with Interrupts

Once the data is transmitted and received, the function CheckData is called to verify that the transmitted
data matches the received data. In case of a mismatch, the FAIL flag is set and execution is halted at the
debug statement.

Function main() is very similar to the previous example, with small additions for infinite Ethernet Rx and
Tx loopback mode.

Word32 statInfLoop=0;

This variable can be used to count the number of complete loop iterations.

InitGPIO();

Next initialize and configure the general purpose IO pins for Ethernet functionality.
InitPhy();

As soon as GPIO pins are configured, the Ethernet PHY can be initialized, and that is performed right after
this function:

my_delay(5000);

This delay is necessary for the PHY being used. This delay could be reduced or eliminated altogether
depending on the PHY.

for (i = 0; i < NUM_TXBDS; i++)
{

EnetTxBDs[i].status = TX_BD_L | TX_BD_TC | TX_BD_R;
EnetTxBDs[i].length = 64;
EnetTxBDs[i].data = &EnetTxBuffer[i * TX_BUFFER_SIZE];
for (j = 0; j < 64; j++)
{

EnetTxBDs[i].data[j] = packet[j];
}

EnetTxBDs[NUM_TXBDS - 1].status |= TX_BD_W;

The code above initializes the transmit buffer descriptor rings and loads the data to be transmitted.

Ethernet->R_CNTRL = (RX_BUFFER_SIZE << 16) | 0x4;
// R_CNTRL Max frame length = RX_BUFFER_SIZE
// Flow Control Enable = 0
// Broadcast frame reject = 0
// Promiscuous mode = 0
// MII mode = 1
// Disable Rx or Tx = 0
// Internal loopback = 0

Since we are no longer using the internal loopback option, the internal loopback bit is cleared to 0 in the
R_CNTRL register.

Ethernet->CFGR = 0x00;

Initialize the MIIGSK configuration register (MIIGSKCFG) with 0x00 for MII-bridge and pass thorough
mode. For debugging purposes, value 0x11 can be written to enable internal loopback at the MII-Bridge
level.

Ethernet->ENR = 0x1;

Ethernet transmission and reception of frames is enabled with ENR register.

while (Ethernet->ENR != 0x3);

MSC711x Ethernet Quick Start, Rev. 0

26 Freescale Semiconductor

MII External Loop with Interrupts

Next is the main() loop. First, prepare the receive buffer by enabling polling and transmit buffers by
indicating that they are ready to send data. Then, wait to see if the frame is received in the receive
complete/done interrupt. Next, as before, the time out condition is checked, followed by re-initialization
of the receive and transmit buffer descriptor rings.

while(1)
{

for (i = 0; i < NUM_TXBDS; i++)
{

Ethernet->R_DES_ACTIVE = MSC711x_FEC_RDAR_R_DES_ACTIVE;
Ethernet->X_DES_ACTIVE = MSC711x_FEC_TDAR_X_DES_ACTIVE;
for (d=0; d < 5000; d++)
{

if (interrupted)
{

interrupted = 0;
break;

}
}
if (d == 5000)
{

*((UWord32 *)(0x10000)) = FAIL;
asm(" debug");
return 0;

}

if (EnetRxBDs[i].status & RX_BD_E)
{

*((UWord32 *)(0x10000)) = FAIL;
asm(" debug");
return 0;

}
CheckData(i);

EnetRxBDs[i].status = RX_BD_E;
EnetRxBDs[i].length = 0;

if (i == (NUM_RXBDS - 1)) {
EnetRxBDs[NUM_RXBDS - 1].status |= RX_BD_W;

}

EnetTxBDs[i].status = TX_BD_L | TX_BD_TC | TX_BD_R;
if (i == (NUM_TXBDS - 1))
{

EnetTxBDs[NUM_TXBDS - 1].status |= TX_BD_W;
}

}
statInfLoop++;

}
}

MSC711x Ethernet Quick Start, Rev. 0

Freescale Semiconductor 27

Revision History

6 Revision History
Table 9 provides a revision history for this application note.

Table 9. Document Revision History

Rev.
Number

Date
Editor/
Writer

Substantive Change(s)

0 11/2006 DM Initial release.

Document Number: AN3099
Rev. 0
11/2006

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.
IEEE Stds. 802.3™ is a trademark of the Institute of Electrical and Electronics
Engineers, Inc., (IEEE). This product is not endosed or approved by the IEEE. All other
product or service names are the property of their respective owners.

© Freescale Semiconductor, Inc., 2006.

Information in this document is provided solely to enable system and software

implementers to use Freescale Semiconductor products. There are no express or

implied copyright licenses granted hereunder to design or fabricate any integrated

circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to

any products herein. Freescale Semiconductor makes no warranty, representation or

guarantee regarding the suitability of its products for any particular purpose, nor does

Freescale Semiconductor assume any liability arising out of the application or use of

any product or circuit, and specifically disclaims any and all liability, including without

limitation consequential or incidental damages. “Typical” parameters which may be

provided in Freescale Semiconductor data sheets and/or specifications can and do

vary in different applications and actual performance may vary over time. All operating

parameters, including “Typicals” must be validated for each customer application by

customer’s technical experts. Freescale Semiconductor does not convey any license

under its patent rights nor the rights of others. Freescale Semiconductor products are

not designed, intended, or authorized for use as components in systems intended for

surgical implant into the body, or other applications intended to support or sustain life,

or for any other application in which the failure of the Freescale Semiconductor product

could create a situation where personal injury or death may occur. Should Buyer

purchase or use Freescale Semiconductor products for any such unintended or

unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor

and its officers, employees, subsidiaries, affiliates, and distributors harmless against all

claims, costs, damages, and expenses, and reasonable attorney fees arising out of,

directly or indirectly, any claim of personal injury or death associated with such

unintended or unauthorized use, even if such claim alleges that Freescale

Semiconductor was negligent regarding the design or manufacture of the part.

How to Reach Us:

Home Page:
www.freescale.com

email:
support@freescale.com

USA/Europe or Locations Not Listed:
Freescale Semiconductor
Technical Information Center, CH370
1300 N. Alma School Road
Chandler, Arizona 85224
1-800-521-6274
480-768-2130
support@freescale.com

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
support@freescale.com

Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku
Tokyo 153-0064, Japan
0120 191014
+81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:
Freescale Semiconductor Hong Kong Ltd.
Technical Information Center
2 Dai King Street
Tai Po Industrial Estate,
Tai Po, N.T., Hong Kong
+800 2666 8080
support.asia@freescale.com

For Literature Requests Only:
Freescale Semiconductor

Literature Distribution Center
P.O. Box 5405
Denver, Colorado 80217
1-800-441-2447
303-675-2140
Fax: 303-675-2150
LDCForFreescaleSemiconductor

@hibbertgroup.com

	MSC711x Ethernet Quick Start
	1 MSC711x Ethernet Controller Introduction
	Figure 1. MSC7119 Fast Ethernet Controller Architecture

	2 Description of the Ethernet Modes
	3 MII Internal Loop with Polling
	Table 1. RCTL Bit Descriptions
	Table 2. Transmit Control Register Bit Descriptions
	Table 3. Ethernet Control Register Bit Descriptions
	Table 4. RDA Bit Descriptions
	Table 5. TDA Bit Descriptions

	4 MII Internal Loop with Interrupts
	4.1 ethernet.c and main() differences
	Table 6. IEVENT Bit Descriptions
	Table 7. IMASK Bit Descriptions

	4.2 msc711x_int.c

	5 MII External Loop with Interrupts
	5.1 Ethernet Loopback Cable
	Table 5-8. Pin-out to Wire Color for RJ45 Connector

	5.2 Implementation

	6 Revision History
	Table 9. Document Revision History

