
Freescale Semiconductor
Application Note

AN3144
Rev. 0, 10/2005

Table of Contents

Introduction . 1
The XGATE and Peripheral Handling 1
Three Steps to Use XGATE 2

3.1 Direct the Interrupt Event to the XGATE 2
3.2 Create a Thread to Handle the Interrupt 3
3.3 Initialize the XGATE Interrupt Vector Table

to Point to the Thread 4
A Simple Example. 5
Buffered Example . 7
Summary. 11

Using XGATE to Implement a
Simple Buffered SCI
by: Steve McAslan

TSPG MCD Applications Engineering

Note:
Source code for the software
examples in this application note
can be found in the file
AN3144SW.zip, available at
http://www.freescale.com.
1 Introduction
The XGATE module allows a new approach to
implementing device drivers on the S12X family. Since
the XGATE is fully programmable in C, the functionality
of the drivers may range from simple DMA activities to
complex protocol and data handling. This application
note shows how to implement a very simple
interrupt-driven buffer for the SCI module, and
illustrates the three steps required to configure the
XGATE to service the peripheral interrupts.

2 The XGATE and
Peripheral Handling

The architecture of the S12X and the interaction between
the XGATE and the CPU are discussed extensively in
several application notes, notably AN2615, AN2685 and
AN2734, and interested readers should refer to those for
a detailed description of the MCU.

In summary, the XGATE is a 16-bit RISC processor that
can execute program code when an interrupt occurs on
the MCU. For example, the serial communications

1
2
3

4
5
6

© Freescale Semiconductor, Inc., 2005. All rights reserved.

http://www.freescale.com

Three Steps to Use XGATE
interface (SCI) receiving a byte can raise an interrupt that will cause the XGATE to execute code. When
executing its code, the XGATE can read and write the contents of the RAM and peripheral registers. This
means that the XGATE can copy data to or from RAM and peripherals and, so, can implement a simple
DMA or buffer operation independently of the CPU. It is also possible to create very algorithmically
complex functions for the XGATE, as it is the MCU software designer who provides the code that the
XGATE executes. By convention, an XGATE interrupt handler is known as a thread.

As in traditional microcontroller architecture, the CPU also has the capability of handling these interrupts,
so the software designer has full control of whether the CPU or the XGATE will be the target for the
interrupt event. In addition, the XGATE can raise an interrupt and direct this to the CPU, which allows
events to be handled on two levels: first, activity by the XGATE; and second, a higher level function
performed by the CPU. An example of this behavior is illustrated in this application note.

Finally, it is worth noting that the XGATE is optimized for data-handling operations and can execute with
a bus cycle time that is one half of the CPU bus cycle time. By careful software design, use of the XGATE
can significantly improve the performance of the S12X by freeing the CPU from handling many real-time
interrupt events.

3 Three Steps to Use XGATE
Based on the description given above, there are three simple steps that the software designer must take to
allow the XGATE to handle an interrupt. The steps must be followed for each individual interrupt created
by a peripheral.

1. Direct the interrupt event to the XGATE.
2. Create a thread to handle the interrupt.
3. Initialize the XGATE interrupt vector table to point to the thread.

In fact, since the XGATE is a peripheral itself. it must also be enabled; however, this is a one-time only
operation, typically executed shortly after reset.

Let us look at each step in turn...

3.1 Direct the Interrupt Event to the XGATE
Each interrupt source has the option of having a handler executed by the CPU or the XGATE. After reset
all interrupts are directed to the CPU.

Each interrupt source (i.e., each interrupt that has a unique vector) has a configuration register associated
with it in the interrupt controller. This defines the priority of the interrupt and also contains a single bit
called RQST that determines whether the interrupt goes directly to the CPU (bit clear) or to the XGATE
(bit set). To avoid filling the memory map with lots of unique registers, the S12X interrupt controller
arranges them into multiple banks. To change the contents of a register, first select the correct bank and
then write the value into the correct register.

In most cases, this can be done simply with a macro, as shown in Figure 1.
Using XGATE to Implement a Simple Buffered SCI, Rev. 0

Freescale Semiconductor2

Three Steps to Use XGATE
Once the macro is defined, you can use it to initialize all the interrupt vectors to their designed values as
shown in Figure 2.

3.2 Create a Thread to Handle the Interrupt
Creating threads for XGATE is almost identical to creating an interrupt handler for the CPU. If the thread
is created in assembler, the assembly code for the CPU and XGATE will be completely different (since
they are two completely different processors); for portability reasons, this approach is not recommended.
If the thread is created in C, the only difference is that the function definition for the thread can contain a
parameter that is passed from the vector table to the XGATE before the thread begins to execute.

The thread for XGATE shown in Figure 3 will look very familiar to experienced embedded software
engineers. In fact, this code could be compiled and executed on the CPU without modification.

As shown in Figure 3, the thread ignores the additional parameter available from the vector table. To use
this parameter, simply declare it in the function header as shown in Figure 4.

#define ROUTE_INTERRUPT(vec_adr, cfdata) \

 INT_CFADDR= (vec_adr) & 0xF0; \

 INT_CFDATA_ARR[((vec_adr) & 0x0F) >> 1]= (cfdata)

Figure 1. Interrupt Routing Macro

#define SCI0_VEC 0xD6 /* vector address= $xxD6 */

 ROUTE_INTERRUPT(SCI0_VEC, 0x81); /* RQST=1 and PRIO=1 */

Figure 2. Interrupt Routing Macro (in Use)

interrupt void SCI_Thread(void)

{

 /* read the status register - required to clear the int flag */

 SCI0SR1;

 /* write the next byte of data */

 SCI0DRL = '*';

}

Figure 3. XGATE Thread
Using XGATE to Implement a Simple Buffered SCI, Rev. 0

Freescale Semiconductor 3

Three Steps to Use XGATE
The value of the Data parameter is initialized from the XGATE vector table. The parameter is a 16-bit
value that can be interpreted as a scalar value or a pointer, or can be completely ignored.

3.3 Initialize the XGATE Interrupt Vector Table to Point to
the Thread

It is important to note that the XGATE vector table is completely independent from the CPU vector table.

An XGATE vector table has two entries for each unique vector. The first entry is a 16-bit pointer to the
thread and the second entry is the value of the parameter that is passed when the interrupt occurs. A typical
vector table definition is shown in Figure 5.

The XGATE vector table can be placed anywhere in the XGATE memory map, but the XGVBR register
must point to the correct start address of the table.

interrupt void SCI_Thread(tBuffer* Data)

{

 if (Data->size > 0)

 {

 /* read the status register - required to clear the int flag */

 SCI0SR1;

 /* write the next byte of data */

 SCI0DRL = Data->character[Data->size-1];

 Data->size--;

 if (Data->size == 0)

 {

 SCI0CR2_SCTIE = 0; //Disable SCI interrupt

 _sif(); //Send interrupt to CPU

 }

 }

}

Figure 4. XGATE Thread with Parameter
Using XGATE to Implement a Simple Buffered SCI, Rev. 0

Freescale Semiconductor4

A Simple Example
As seen in Figure 5, many of the vectors may be unused. In this case it is good practice to define a thread
that will allow a graceful recovery. For the SCI0 entry, we can see a pointer to our thread (SCI_Thread)
and the value of our parameter (in this case the address of our data buffer).

4 A Simple Example
The remainder of this application note introduces an example to demonstrate a simple SCI implementation
for the XGATE.

The example project is named Simple SCI.mcp and contains two user source files: one for the CPU
(main.c) and one for XGATE (xgate.cxgate). Within the xgate.cxgate file there is a compile switch that
allows us to build a very simple example or a more complex buffered example. We will first consider the
simple example.

In the main.c file we can see there are three functions: SetupXGATE, main, and SCI_Handler. The latter
function is applicable only in the buffered case and will be discussed later.

SetupXGATE initializes the XGATE module and directs the SCI interrupt to the XGATE (which is step 1
in our sequence).

Figure 6 shows the contents of SetupXGATE(). The first step is to tell XGATE where its vectors are —
that is, we initialize XGVBR to point to the vector table that we will create. This is typically a lower
address than the defined start address of the C structure, since in most cases XGATE has fewer vectors
than its maximum, and so the unused vector space can be used for other purposes. Following this, we
change the SCI interrupt configuration so that it goes to the XGATE instead of the CPU — we use the
macro previously defined in Figure 1. In this example, we are handling a single interrupt so only one macro
call is made; in a typical application we would expect to initialize several more interrupts in this way.
Lastly, we enable the XGATE module with the configuration that we require.

const XGATE_TableEntry XGATE_VectorTable[] =

{

 {ErrorHandler, 0x09}, // Channel 09 - Reserved

 {ErrorHandler, 0x0A}, // Channel 0A - Reserved

...

 {ErrorHandler, 0x6A}, // Channel 6A - SCI1

 {(XGATE_Function)SCI_Thread, (int) &Buffer0}, // Channel 6B - SCI0

 {ErrorHandler, 0x6C}, // Channel 6C - SPI0

...

 {ErrorHandler, 0x78}, // Channel 78 - Real Time Interrupt

 {ErrorHandler, 0x79}, // Channel 79 - IRQ

};

Figure 5. XGATE Vector Table
Using XGATE to Implement a Simple Buffered SCI, Rev. 0

Freescale Semiconductor 5

A Simple Example
The main() routine contains the various calls to initialize the application and the main loop for the CPU.
It firstly enables interrupts on the CPU, although this is required for the buffered example only. Next it
calls SetupXGATE.

The following step is to initialize the buffer for our buffered example. Finally, it initializes the SCI and
enables the SCI interrupt. From then on, the CPU will sit in an endless loop while XGATE services the
SCI interrupt. The XGATE will receive the first SCI interrupt, informing it that the SCI transmit buffer is
empty, and queue the next character.

We turn to the xgate.cxgate file to see the remaining two steps in our sequence. Step 2 was to create a
thread, and the code for the simple example is shown in Figure 3. The code simply clears the interrupt flag
and sends a ‘*’ character out on the SCI. When this character has been sent, the SCI will raise another
buffer empty interrupt, which the XGATE will service in the same way, and so on.

The final step in the sequence is to initialize the XGATE vector; this was shown in Figure 5. The SCI
vector location in the table contains a pointer to our thread named SCI_Thread. The second parameter in
the table is ignored in the simple example.

The output from the SCI in this case is a string of ‘*’ characters, as shown in Figure 7.

Figure 7. Example SCI Output on CodeWarrior Simulator

static void SetupXGATE(void)

{

 /* initialize the XGATE vector block and

 set the XGVBR register to its start address */

 XGVBR= (unsigned int)(void*__far)(XGATE_VectorTable - XGATE_VECTOR_OFFSET);

 /* switch SCI0 interrupt to XGATE */

 ROUTE_INTERRUPT(SCI0_VEC, 0x81); /* RQST=1 and PRIO=1 */

 /* enable XGATE, its interrupts and the debug's freeze mode */

 XGMCTL= 0xFBC1; /* XGE | XGFRZ | XGIE */

}

Figure 6. SetupXGATE
Using XGATE to Implement a Simple Buffered SCI, Rev. 0

Freescale Semiconductor6

Buffered Example
5 Buffered Example
The Simple SCI.mcp project contains a more complex example that implements a buffered SCI. In this
configuration, the CPU initializes a small buffer that the XGATE transmits. On completion, the XGATE
sends an interrupt to the CPU to allow it to configure the next buffer content. This is shown
diagrammatically in Figure 8.

Figure 8. Structure of Buffered Example

The definition of the buffer is in the xgate.h file and is shown in Figure 9.

The buffer is a structure containing an array of up to eight characters and a size parameter indicating how
many entries in the array are used. Returning to main(), we can see in Figure 10 the buffer being initialized.

typedef struct

{

 unsigned char size;

 unsigned char character[8];

} tBuffer;

Figure 9. Definition of Buffer

CPU initializes
buffer and SCI

in main()

XGATE writes
next char to SCI.

When buffer is
empty, send

interrupt to CPU

SCI
transmits

and sends
interrupt to

XGATE

CPU initializes
new buffer
contents in

SCI_Handler

Initialize SCI

Write char to SCI
Using XGATE to Implement a Simple Buffered SCI, Rev. 0

Freescale Semiconductor 7

Buffered Example
Figure 4 contains the thread that the XGATE uses to transmit the buffer. Note that the buffer itself is passed
as a parameter from the XGATE vector table. Each interrupt will cause the XGATE to write the next
character into the SCI and then terminate — when XGATE is not executing a thread, it is completely
stopped.

When the final character has been written to the SCI, the XGATE sends an interrupt to the CPU using its
SIF opcode. The final task for the XGATE is to disable the SCI interrupt since there is no more data to
transmit.

In this case, the interrupt to the CPU is received on the same channel as the original interrupt was on; in
other words, the CPU fetches the SCI vector and begins to execute code from its SCI_Handler function.
The XGATE has the capability to direct any channel interrupt to the CPU using another form of the SIF
opcode, but this is not discussed here. Note also that there is no requirement to use the SIF opcode at all,
as in the case of the simple example.

The SCI_Handler function is in the main.c file and is shown in Figure 11.

 //Initial first SCI Buffer

 Buffer0.size = 4;

 Buffer0.character[0]='1';

 Buffer0.character[1]='2';

 Buffer0.character[2]='3';

 Buffer0.character[3]=' ';

Figure 10. Buffer Initialization
Using XGATE to Implement a Simple Buffered SCI, Rev. 0

Freescale Semiconductor8

Buffered Example
The first task of any interrupt handler is normally to clear the flag that caused the interrupt. Although the
CPU fetched the SCI interrupt vector, the interrupt did not actually come from the SCI module so it does
not clear an SCI flag; instead, it clears the channel flag in the XGATE. This system of associating the
XGATE interrupt with a peripheral channel allows a close correlation between the application behavior
and the software. From the perspective of the CPU, the interrupt function appears to be servicing a buffered
SCI rather than a simple SCI.

All of the XGATE channel flags are located in a block within its registers, and flags are cleared by writing
a ‘1’ to them. Care should be taken to avoid accidentally clearing more than one flag.

Once the flag is cleared, the CPU performs a simple rotate procedure on the buffer contents — this will
allow us to see its effect on the transmitted output. The number of characters in the buffer is set to four
once again, then the handler re-enables the SCI interrupt.

Note that there is an opportunity for a configuration conflict to occur here as, on the one hand, the XGATE
is disabling the interrupt, and on the other, the CPU is enabling it. The order in which these occur must be
carefully considered. In this case, the example is so simple that the XGATE will always disable the
interrupt before the CPU re-enables it, so there is no difficulty. In more complex systems, extra care should
taken if using this approach — the XGATE provides hardware semaphores for this type of situation.

To build this buffered example, remove the #define SIMPLE macro in the xgate.cxgate file. The output
from the SCI is a string of ‘123’ characters in various orders as shown in Figure 12.

interrupt void SCI_Handler()

{

 unsigned char temp;

 //Clear XGATE interrupt flag - SCI0 is channel $6B

 XGIF1 = 0x0800;

 //Initialize buffer with new values

 Buffer0.size = 4;

 temp = Buffer0.character[0];

 Buffer0.character[0] = Buffer0.character[1];

 Buffer0.character[1] = Buffer0.character[2];

 Buffer0.character[2] = temp;

 /* Enable the SCI Tx interrupt to start the transfer */

 SCI0CR2_SCTIE = 1;

}

Figure 11. CPU Interrupt Handler
Using XGATE to Implement a Simple Buffered SCI, Rev. 0

Freescale Semiconductor 9

Buffered Example
Figure 12. Example SCI Output on CodeWarrior Simulator

As a final note, consider the fact that the buffer was passed as a parameter into the XGATE interrupt
handler. It is possible to exploit this approach to build a universal handler for all SCIs by simply extending
the content of the buffer structure. Adding a pointer to the SCI within the buffer structure allows us to write
a single handler that will implement a buffer scheme on all SCIs. Figure 13 introduces an example
structure and a modified thread that takes advantage of this approach.

typedef struct

{

 tSCI *pPort; /* pointer to an SCI */

 unsigned char size;

 unsigned char character[8];

} tBuffer;

interrupt void SCI_Handler(tBuffer* Data)

{

 if (Data->size > 0)

 {

 /* read the status register - required to clear the int flag */

 Data->pPort->SCISR1;

 /* write the next byte of data */

 Data->pPort->SCIDRL= Data->character[Data->size-1];

 Data->size--;

 if (Data->size == 0)

 _sif(); //Send interrupt to CPU

 }

 else dATA->pPort->SCICR2.bit.tie = 0; //Disable interrupt

Figure 13. A Universal SCI Handler
Using XGATE to Implement a Simple Buffered SCI, Rev. 0

Freescale Semiconductor10

Summary
6 Summary
By following the three steps described it is possible to direct any peripheral interrupt on the S12X to the
XGATE module. In turn, the XGATE can either completely process the interrupt or, optionally, send a
further interrupt to the CPU when it has completed the task.

Using this simple approach allows the CPU to off-load many or all interrupt servicing functions to the
XGATE, thus freeing up processing power for use elsewhere in the application. It is this dual-core
approach to real-time applications that allows S12X to have significantly higher performance than
previous 16-bit solutions.
Using XGATE to Implement a Simple Buffered SCI, Rev. 0

Freescale Semiconductor 11

AN3144
Rev. 0, 10/2005

How to Reach Us:

Home Page:
www.freescale.com

E-mail:
support@freescale.com

USA/Europe or Locations Not Listed:
Freescale Semiconductor
Technical Information Center, CH370
1300 N. Alma School Road
Chandler, Arizona 85224
+1-800-521-6274 or +1-480-768-2130
support@freescale.com

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
support@freescale.com

Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064
Japan
0120 191014 or +81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:
Freescale Semiconductor Hong Kong Ltd.
Technical Information Center
2 Dai King Street
Tai Po Industrial Estate
Tai Po, N.T., Hong Kong
+800 2666 8080
support.asia@freescale.com

For Literature Requests Only:
Freescale Semiconductor Literature Distribution Center
P.O. Box 5405
Denver, Colorado 80217
1-800-441-2447 or 303-675-2140
Fax: 303-675-2150
LDCForFreescaleSemiconductor@hibbertgroup.com

Information in this document is provided solely to enable system and software
implementers to use Freescale Semiconductor products. There are no express or
implied copyright licenses granted hereunder to design or fabricate any integrated
circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to
any products herein. Freescale Semiconductor makes no warranty, representation or
guarantee regarding the suitability of its products for any particular purpose, nor does
Freescale Semiconductor assume any liability arising out of the application or use of any
product or circuit, and specifically disclaims any and all liability, including without
limitation consequential or incidental damages. “Typical” parameters that may be
provided in Freescale Semiconductor data sheets and/or specifications can and do vary
in different applications and actual performance may vary over time. All operating
parameters, including “Typicals”, must be validated for each customer application by
customer’s technical experts. Freescale Semiconductor does not convey any license
under its patent rights nor the rights of others. Freescale Semiconductor products are
not designed, intended, or authorized for use as components in systems intended for
surgical implant into the body, or other applications intended to support or sustain life,
or for any other application in which the failure of the Freescale Semiconductor product
could create a situation where personal injury or death may occur. Should Buyer
purchase or use Freescale Semiconductor products for any such unintended or
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and
its officers, employees, subsidiaries, affiliates, and distributors harmless against all
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,
directly or indirectly, any claim of personal injury or death associated with such
unintended or unauthorized use, even if such claim alleges that Freescale
Semiconductor was negligent regarding the design or manufacture of the part.

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.
All other product or service names are the property of their respective owners.

© Freescale Semiconductor, Inc. 2005. All rights reserved.

	1 Introduction
	2 The XGATE and Peripheral Handling
	3 Three Steps to Use XGATE
	3.1 Direct the Interrupt Event to the XGATE
	3.2 Create a Thread to Handle the Interrupt
	3.3 Initialize the XGATE Interrupt Vector Table to Point to the Thread

	4 A Simple Example
	5 Buffered Example
	6 Summary
	Using XGATE to Implement a Simple Buffered SCI

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

