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1 Introduction
With the introduction of the IEC 60730, household 
appliance manufacturers must now consider introducing 
new design enhancements to their automatic electronic 
controls that ensure safe and reliable operation of their 
component. 

IEC 60730 discusses mechanical, electrical, electronic, 
environmental, endurance, EMC, abnormal operation of 
AC appliances. Most specifically for MCUs, Annex H: 
Requirements for Electronic Controls details new test 
and diagnostic methods to ensure the safe operation of 
embedded control hardware and software for appliances.

Today, the majority of automatic electronic controls for 
appliance products utilize single-chip microcontrollers 
with embedded memory and input/output peripherals, 
known as MCUs. Manufacturers develop real-time 
embedded software that executes in the MCU and 
provides the hidden intelligence to control the home 
appliance.

1

2

3

4

5

6

7

8

9

1

1

1

1

1

1

© Freescale Semiconductor, Inc., 2007. All rights reserved.



Class B Requirements
Annex H. of IEC 60730 has three software classifications for automatic electronic controls:
1. Class A Control functions, which are not intended to be relied upon for the safety of the equipment. 

Examples are: room thermostats, humidity controls, lighting controls, timers, and switches.
2. Class B Control functions, which are intended to prevent unsafe operation of the controlled 

equipment. Examples are: thermal cut-offs and door locks for laundry equipment.
3. Class C Control functions, which are intended to prevent special hazards (e.g., explosion of the 

controlled equipment). Examples are: automatic burner controls and thermal cut-outs for closed, 
un-vented water heater systems.

Large appliance products, such as washing machines, dishwashers, dryers, refrigerators, freezers, and 
cookers/stoves will tend to fall under the classification of Class B. An exception is an appliance that could 
cause an explosion, such as a gas-fired controlled dryer, which would fall under class C.

This paper discusses the key components to be tested on a Class B electronic control with respect to a 
single-chip microcontroller implementation.   Examples of how to implement these new tests/checks for 
these components is described using an 8-bit MC9S08AW60 MCU from Freescale Semiconductor.

2 Class B Requirements
IEC 60730 specifies that the manufacturer of the automatic electronic control must design its software 
using one of the following structures:

• Single channel with functional test   
• Single channel with periodic self test 
• Dual channel without comparison

In a single channel with functional test structure, software is designed using a single CPU to execute 
functions as required. Prior to shipment, a functional test is performed to ensure that all critical features 
are functioning reliably. 

In a single channel with periodic self-test structure, software is designed using a single CPU to execute 
functions as required, but periodic self tests occur while the electronic control is executing in its 
application. The CPU is expected to regularly check the various critical functions of the electronic control 
without conflicting with the end application’s operation.

In a dual channel without comparison structure, software is designed using two CPUs to execute on critical 
functions. Before executing a critical function, both CPUs are required to share that they have completed 
their corresponding task. For example, when a laundry door lock is released, one CPU stops the motor 
spinning the drum, and the other CPU checks the drum speed to verify it had stopped. See Figure 1.

Figure 1. Dual Channel without Comparison Structure
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Class B Requirements
Meeting IEC 60730 Class B Compliance with the MC9S08AW60, Rev. 1, Draft A

Dual channel structure implementations will be more costly because two CPUs (or two MCUs) are 
required. Also, the need for two devices to regularly communicate with each other adds complexity. Single 
channel with functional test is the most popular structure implemented today, and most appliance 
manufacturers are moving to single channel with periodic self test implementations.

Annex H. Table H.11.12.7 details the components that must be tested, depending on the software 
classification. Generally, each component offers optional measures to verify/test the corresponding 
components, providing the manufacturer flexibility. Throughout this paper, the intention is to employ the 
most cost efficient measure by using, where possible, on-board features of a single-chip microcontroller.

To fulfill Class B IEC 60730 compliance, manufacturers of electronic controls are required to the test 14 
components listed in Table 1. Only the eight components relevant to single-chip microcontroller 
implementations are discussed.

Table 1. Electronic Controls for Testing

Class B IEC 60730 Components Required
to be Tested on Electronic Control (see Table H.11.12.7 in Annex H)

Fault/Error

1 1.1 CPU registers Stuck at

2 1.3 CPU program counter Stuck at

3 2. Interrupt handling and execution No interrupt or too frequent interrupt

4 3. Clock Wrong frequency

5 4.1 Invariable memory All single bit faults

6 4.2 Variable memory DC fault

71

1 7 and 8 are for expanded MCU and are covered by tests 5 and 6 on single-chip MCU systems

4.3 Addressing (relevant to variable/invariable memory) Stuck at

81 Internal data path Stuck at

92

2 9 is for expanded memory MCU systems only

Addressing Wrong address

10 External communications Hamming distance 3

11 Timing Wrong point in time/sequence

123

3 12, 13, and 14 are production plausibility checks

I/O Periphery Fault conditions specified in H.27

133 7.2.1 Analog A/D and D/A converters Fault conditions specified in H.27

143 7.2.2 Analog multiplexor Wrong addressing
Freescale Semiconductor 3



CPU Registers Stuck At Faults
3 CPU Registers Stuck At Faults
The CPU is the main component of an automatic electronic control and IEC 60730 requires that the 
registers be checked for stuck at faults, insuring that bits in the registers are not stuck at a value.

Two possible measurements are provided to meet IEC 60730 Class B:
• Functional test H.2.16.5 — A single-channel structure which introduces test data to the functional 

unit prior to its operation.   
• Periodic self-test H.2.16.6 — A single-channel structure which periodically tests components of 

the control during operation using either:
— Static memory test H.2.19.6 — a fault/error control technique which detects only static errors.
— Word protection with single-bit parity H.2.19.8.2 — a fault/error control technique which 

adds a single bit to each word in the memory area under test and saves it, creating either even 
or odd parity. A parity check is conducted as each word is read.

Word protection with single-bit redundancy requires additional hardware to monitor the CPU and 
additional memory to store the parity of each memory location. This type of circuit adds significant cost 
to a MCU product so it is not an appliance manufacturer’s first choice. The alternatives, using functional 
tests prior to shipment or in-line periodic self-tests that cost less to implement, are viewed more favorably 
by appliance manufacturers.

The MC9S08AW60 MCU utilizes the 8-bit HCS08 CPU. The HCS08 CPU comprises an 8-bit 
accumulator, a 16-bit index register (H:X), a 16-bit stack pointer, a 16-bit program counter (PC), and a 
6-bit condition code register (CCR).

With the HCS08 CPU’s von-Neuman architecture, it is very easy to implement small routines to test the 
CPU registers for stuck at faults. Example assembly routines follow. These small routines can be called on 
power-up and periodically, take only tens of microseconds to execute, and will verify that the CPU 
registers are not stuck.

Example -1. Accumulator Stuck At Test Code

/* 8bit Accumulator check for static error

LDA #$55
STA PortA ; optional output of ACC to external world
CMP #$55
BEQ next1
BRA Error
Next1: COMA
STA PortA ; optional output of ACC to external world
CMP #$AA
BEQ next2
BRA Error
Next2
Meeting IEC 60730 Class B Compliance with the MC9S08AW60, Rev. 1, Draft A
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CPU Registers Stuck At Faults
Example -2. Index Register Stuck At Test Code

Example -3. Stack Pointer Stuck At Test Code

/* Index Register
LDHX #$5555
STNX temp1 ; stores H in temp1 and X in temp 1+1
LDA temp1+1

STA PortA ; optional output of ACC to external world
CMP #$55

BEQ next3
BRA Error
Next3: STX PortA

CPX #$55
BEQ next4
BRA Error
Next4: LDHX #$AAAA

STHX temp1 ; stores H in temp1 and X in temp1+1
LDA temp1+1

STA PortA ; optional output of ACC to external world
CMP #$AA

BEQ next5
BRA Error
Next5 STX PortA

CPX #$AA
BEQ next6
BRA Error

/* Stack pointer check
Next6 RSP

LDA $FF
STA temp1 ; store reset stack pointer data to temp
PULA
CMP temp1
BEQ next7
BRA error

Next7 LDA $AAAA
STA temp1
LDHX #$AAAA
TXS ; transfer AAAA -1 into SP
PULA ; contents of $AAAA into ACC
CMP temp1
BEQ next8
BRA error

Next8 LDA $5555
STA temp1
LDHX #$5555
TXS ; transfer 5555 -1 into SP
PULA ; contents of $5555 into ACC
CMP temp1
BEQ next9
BRA error

Next9
Meeting IEC 60730 Class B Compliance with the MC9S08AW60, Rev. 1, Draft A
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CPU Registers Stuck At Faults
Example -4. Program Counter Stuck At Test Code

NextA: .................................

/* Program Counter Check

/* Pre load in Flash address $5555 CD AA AA 81 (jsr $AAAA, rts)
/* $AAAA CD $abcd 81 (jsr $abcd, rts)

ORG $abcd
LDA $FF ; examine PC pushes onto stack.
CMP #$55
BEQ Here 1
JMP error

Here1: LDA $FE
CMP #$55
BEQ Here2
JMP error

Here2: LDA $FD
CMP #$AA
BEQ Here3
JMP error

Here 3: LDA $FC
CMP #$AA
BEQ Here4
JMP Error

Here 4: LDA #$DC ; send alternative pass value
RTS

Next 9: RSP ; reset SP
LDA #$FF ; clear 1st 4 locations on stack
STA $FF
STA $FE
STA $FD
STA $FC
JSR $5555
CMP #$DC ; if Pushes of PC were confirmed then PC has been checked.
BEQ NextA
BRA error
Meeting IEC 60730 Class B Compliance with the MC9S08AW60, Rev. 1, Draft A
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CPU Registers Stuck At Faults
Example -5. Condition Code Register Stuck At Test Code

NextM: .................................

/* CCR condition code register.

NextA LDA $55
TAP ; transfer setting C, N, & H flags
BCS nextB ; Carry is set
BRA error

nextB BNE nextC ; Z is clear
BRA error

nextC BMI nextD ; N is set
BRA error

nextD BMC nextE ; I = =0 ?
BRA error

nextE BHCS nextF ; H==1 ?
BRA error

nextF BLT nextG ; V == 0,N==1
BRA error

nextG COMA
TAP ; transfer $AA in CCR setting V, I Z flags 
BCC nextH ; Carry is clr
BRA error

nextH BEQ nextI ; Z is set
BRA error

nextI BPL nextJ ; N is zero
BRA error

nextJ BMS nextK ; I ==1 ?
BRA error

nextK BHCC nextL ; H==0 ?
BRA error

nextL BLT nextM ; V == 1,N==0
BRA error
Meeting IEC 60730 Class B Compliance with the MC9S08AW60, Rev. 1, Draft A
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Program Counter Stuck At Faults
4 Program Counter Stuck At Faults
By supplying the address, the CPU’s program counter allows access to all memory and peripherals. If the 
program counter has a stuck at fault, the MCU would not function correctly. 

Four possible measurements are given to test the main CPU’s program counter:
• Functional test H2.16.5 
• Periodic self-test H2.16.6
• Independent time-slot monitoring or H.2.18.10.4 — a fault/error control technique which 

monitors the programming function and sequence by periodically triggering timing devices with 
an independent time base. An example is a watchdog timer.

• Logical monitoring of the program sequence. H.2.18.10.2 — a fault/error control technique 
which monitors the logical execution of the programming sequence. Examples are the use of 
counting routines or selected data in the program itself or by independent monitoring devices.

The assembly routine supplied to check the program counter has no stuck at fault by either a functional 
test or periodic self test. 

Alternatively, the 9S08AW60 has a real-time interrupt (RTI) feature that can be configured to be clocked 
by an internal 1 kHz RC oscillator, providing interrupts to the CPU every 8 ms/32 ms/64 ms/128 ms/ 
256 ms/512 ms/1.024 seconds. The internal RC oscillator is independent from the CPU clock source. The 
CPU can be clocked from another internal RC oscillator or external clock with options to multiply either 
source with an on-chip frequency lock loop.

To check program function and sequence, the interrupt service routine (ISR) can create code using the RTI 
function (clocked by a 1 kHz source) to check program function and sequence. For example, ISR for the 
RTI could examine the stack to determine where the PC counter was prior to an interrupt and compare with 
the address saved from the last ISR. If the address is the same for three or more RTIs, an indication that 
the PC is stuck would trigger a check to see if the PC is caught in a software loop.

Additionally, the 9S08AW60 has a watchdog feature that is clocked from the CPU bus clock to provide a 
divide of 218 or 213 bus cycles. If the PC was permanently stuck to one value, then a refresh of the 
watchdog would not occur, resulting in a timeout and an internal reset. The internal reset would force all 
inputs/outputs to tri-state or a default safe starting condition. If the PC remained stuck on one address, no 
further CPU execution would occur.

The independently clocked RTI feature of the 9S08AW60 is intended to be used as logical monitoring of 
the program sequence. Normal tasks would update tokens, such as counts, and within the RTI ISR, the 
tokens would be analyzed, and a check on the correct logical execution would be verified. If the program 
sequence did not follow expected logical execution flow, preventive measures could be taken by forcing 
the MCU into a safe condition.
Meeting IEC 60730 Class B Compliance with the MC9S08AW60, Rev. 1, Draft A
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Interrupt Handling and Execution – No Interrupt or too Frequent Interrupts
Meeting IEC 60730 Class B Compliance with the MC9S08AW60, Rev. 1, Draft A

Figure 2. Block Diagram of MC9S08AW60 Real-Time Interrupt

5 Interrupt Handling and Execution – No Interrupt or too 
Frequent Interrupts

In a real-time embedded application, an MCU will almost always use interrupts to help react to real-time 
events, and to help prioritize the CPU on critical tasks or functions. IEC 60730 requires verification that 
the interrupt functionality for a critical function occurs as predicted. If no interrupt occurs, or too many 
occur, the electronic control functions safely. Two possible measures to meet IEC 60730 Class B are:

• Functional test H.2.16.5 — a single-channel structure which introduces test data to the functional 
unit prior to its operation.   

• Independent time-slot monitoring or H.2.18.10.4 — a fault/error control technique which 
monitors the programming function and sequence by periodically triggering timing devices with 
an independent time base. An example is a watchdog timer.

RTIF RTIACK RTICLK RTIE 0 RTIS2 RTIS1 RTIS0

Wakeup Delay

1 kHz RC

CPU Interrupt

Counter

RTIS2.1.0 1 kHz Clock External Clock

0.0.0 Disabled Disabled

0.0.1 8 ms Disabled/256

0.1.0 32 ms Disabled/1,024

0.1.1 64 ms Disabled/2,048

1.0.0 128 ms Disabled/4,096

1.0.1 256 ms Disabled/8,192

1.1.0 512 ms Disabled/16,384

1.1.1 1.04 s Disabled/32,768
Freescale Semiconductor 9



Interrupt Handling and Execution – No Interrupt or too Frequent Interrupts
Using the time-slot monitoring method, the MC9S08AW60 has the following possible interrupts:
• Software interrupt instruction (SWI) 
• IRQ pin
• Low voltage detection 
• Timer/PWM module 1
• Timer/PWM module 2
• SPI
• SCI 1
• SCI 2
• IIC 
• Keyboard
• ADC
• Real-time interrupt (RTI)

Each interrupt function can deploy a count byte that is incremented within each of the corresponding ISR 
routines. Count bytes can be created using the 9S08AW60s RTI function code they can be created to verify 
the number of interrupts that have occurred and decide if the control system is executing in the correct 
manner. For example, if the RTI is set to interrupt every 8 ms, there might be two to three SCI interrupts 
within this time period, one timer overflow interrupt every 16 RTIs, and a timer capture interrupt every 
300 RTIs. Code can be written to track and compare the number of RTIs with the number of occurrences 
of other interrupts.

Alternatively, functional tests can independently validate each interrupt function prior to the control unit’s 
operation. Using the S908AW60’s background debug mode, the user can download routines to RAM and 
test each available interrupt in turn. Some interrupts may require external stimulus to occur (e.g., receive 
an SCI or IIC byte, or timer capture input) and can be created by using other features of the MCU prior to 
testing. For example, the IIC interrupts can be tested by writing a software routine to emulate a IIC 
transmission and feeding the appropriate pins to the IIC pins.

Or, the control unit may be set up in a pseudo end application environment featuring application of forced 
stimuli applied and monitoring of the application’s functions. The background debug mode (BDM) feature 
allows set up and monitoring of interrupt watch points to ensure interrupts have occurred without 
influencing operation of the user application.
Meeting IEC 60730 Class B Compliance with the MC9S08AW60, Rev. 1, Draft A
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Clock — Wrong Frequency
Figure 3. Using a Count Token in ISR Routines

6 Clock — Wrong Frequency
The following options can ascertain that the main system clock (the CPU bus clock is functioning reliably 
at the correct frequency (neither too slow nor too fast): 

• Frequency monitoring H.2.18.10.1 — a fault/error control technique which compares the clock 
frequency with an independent fixed frequency. An example is comparison with the line frequency.

• Independent time-slot monitoring or H.2.18.10.4 — a fault/error control technique which 
monitors the programming function and sequence by periodically triggering timing devices, with 
an independent time base. An example is a watchdog timer.

The 9S08AW60’s RTI function is clocked from an independent 1 kHz internal RC oscillator. On each RTI 
interrupt, the ISR can ensure the CPU clock frequency is running as intended by reading one of the 
timer/PWM modules, taking a time stamp, and comparing with the last RTI reading. The timer/PWM 
modules are clocked from a multiple of the CPU bus clock.

RTI

N

Y

N

N

N

N

Y

Y

Y

Y

INC RTI_count

Head 2–3 SCI ints?

Clear SCI_count

RTI==%16?

Received > 1 Timer1 int?

Clear Timer1_count

RTI==300?

Received => 1 TCAP2 int?

Clear TCAP2_count
Clear RTI_count

RTI ISR

RTI

INC tmr1_count

Timer1 ISR RTI

INC SCI_count

SCI ISR

RTI

INC TCAP2_count

TCAP2 ISR
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Clock — Wrong Frequency
Figure 4. Detailed Frequency-Locked Loop Block Diagram

A monitor of the external clock’s (crystal or external clock input) frequency, known as loss of clock detect 
(LOCD), is located in the MC9S08AW60’s internal clock generator (ICG).

Loss of clock detection is enabled by clearing LOCD = 0 on the ICG control 1 register (ICGC1). A reset 
will be forced if the clock frequency falls below a minimum value (less than 500 kHz or 25 kHz, 
depending on range setting) by setting LOCRE = 1 (loss of clock reset enable) on the ICG control 2 
register (ICGC2).

If the MC9S08AW60 is configured to utilize the FLL to multiply an external input clock (FEE or FEI 
mode) and the input clock is too fast, the FLL will loose lock, which is detected within the ICG via the loss 
of lock status (LOCS) bit the ICGC1 register. A reset will occur if the loss of lock reset enable (LOLRE) 
is set. 
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Invariable Memory — All Single-Bit Faults
7 Invariable Memory — All Single-Bit Faults
Invariable memory is generally seen as the program memory using either NVM technology, such as 
EEPROM, EPROM, or FLASH and masked ROM. 

Three optional measures can verify that the invariable memory has no single bit faults:
1. Periodic modified checksum H.2.19.3.1 — a fault/error control technique which generates and 

saves a single word representing the contents of all words in memory. During self test, a checksum 
is formed from the same algorithm and compared with the saved checksum. This technique 
recognizes all odd errors and some of the even errors.

2. Multiple checksum H.2.19.3.2 — a fault/error control technique which generates and tests 
separate words representing the contents of the memory areas to be tested. During self test, a 
checksum is formed from the same algorithm and compared with the saved checksum for that area. 
This technique recognizes all odd errors and some of the even errors.

3. Word protection with single-bit redundancy H.2.19.8.2

Periodic checksum can be created very easily with software. Some examples of byte checksum routines 
written in assembler and C are provided in Table 2 and Table 3, respectively. A checksum for the full Flash 
array of the 9S08AW60 will take ~ 108 ms at 20 Mhz bus speed (when the routine is in assembler).

Checksum routines are basically the result of exclusive-ORing all of the Flash locations together. 

Table 2. One-Byte Checksum Execution Time
(Routine in Assembler)

Number
of Bytes

Cycles 8 MHz Bus 20 MHz Bus

1024 33,873 0.004234125 0.00169365

16,384 541,968 0.067746 0.0270984

32,768 1,083,936 0.135492 0.0541968

65,536 2,167,872 0.270984 0.1083936

Table 3. One-Byte Checksum Execution Time
(Routine in C)

Number
of Bytes

Cycles 8 MHz Bus 20 MHz Bus

1024 56,376 0.007047 0.0028188

16,384 902,016 0.112752 0.0451008

32,768 1,804,032 0.225504 0.0902016

65,536 3,608,064 0.451008 0.1804032
Meeting IEC 60730 Class B Compliance with the MC9S08AW60, Rev. 1, Draft A
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Invariable Memory — All Single-Bit Faults
Example -6. Memory Checksum Routine in Assembler

/*********************************************************/
//
//
//
//    Single byte Checksum Routine
//
//    Date: 16 May 2005       Copyright: Freescale Ltd
//
//    Author: Dugald Campbell
//
//    Title:  checkasmsum_sb()
//
//    Entry: 0       Exit: single byte checksum
//
/*********************************************************/

char checkasmsum_sb(void)
{ 
    // Local Variables
     
    char chksum;         // returned one byte checksum  
 
    // Memory Array to be examined co-ordinates.
    
    // set initial value of chksum
    chksum = 0;  
    
    asm {
    LDA #0xC8        // EOR (ext) instruction
    STA RAM_subr
    LDA #(MEMORY_START/0x100)
    STA RAM_Maddr
    LDA #MEMORY_START
    STA RAM_Laddr
    LDA #0x81
    STA RAM_RTS
NEXT_EOR:
    LDA chksum
    JSR RAM_subr
    STA chksum
    
    INC RAM_Laddr
    BNE NEXT_EOR     // continue until we get to $xx00
    
    INC RAM_Maddr
    LDA RAM_Maddr
    CMP #(MEMORY_END/0x100)
    BNE NEXT_EOR
LAST_CHKS:
    LDA RAM_Laddr
    CMP #MEMORY_END
    BEQ  NO_MORE
FURTHER_EOR:
    LDA chksum
    JSR RAM_subr
    STA chksum
    INC RAM_Laddr
    BRA LAST_CHKS
NO_MORE:
    LDA chksum
     
        }   
    
     return chksum;  

 }  /* end of checksum_sb function */
Meeting IEC 60730 Class B Compliance with the MC9S08AW60, Rev. 1, Draft A

Freescale Semiconductor14



Invariable Memory — All Single-Bit Faults
Example -7. Memory Checksum Routine in C

/*********************************************************/
//
//
//
//    Single byte Checksum Routine
//
//    Date: 16 May 2005       Copyright: Freescale Ltd
//
//    Author: Dugald Campbell
//
//    Title:  checksum_sb()
//
//    Entry: 0       Exit: single byte checksum
//
/*********************************************************/

char checksum_sb(void)
{ 
    // Local Variables
    char *memory_start;  //16bit pointer to array start
    char *memory_end;    //16bit pointer to array end
    short memory_range;  //resultant memory range
    char chksum;         //returned one byte checksum  
    

    // Memory Array to be examined co-ordinates.
    memory_start = (char *)MEMORY_START;  
    memory_end   = (char *)MEMORY_END;
    memory_range = (memory_end - memory_start);
    
    // set initial value of chksum
    chksum = 0;  
    
    // for loop to step through memory array 
    
    for ( ; memory_range != 0; memory_range-- ) 
    
    {
       // EOR chksum with data at addr mem_start+mem_range
        chksum = chksum ^ *(memory_start+memory_range);
      
       }
    
    // memory start not EOR'd within "for" loop so complete by
    // EOR with 1st byte of memory
    chksum = chksum ^ *(memory_start); 
    
    
    return chksum;  

 }  /* end of checksum_sb function */
Meeting IEC 60730 Class B Compliance with the MC9S08AW60, Rev. 1, Draft A
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Variable Memory — DC Fault
8 Variable Memory — DC Fault
Variable memory is generally seen as the data memory normally implemented in volatile RAM. Two 
optional measures can verify that the invariable memory has no single-bit faults:

1. Periodic static memory test H.2.19.6 — a fault/error control technique which is intended to detect 
only static errors

2. Word protection with single-bit redundancy H.2.19.8.2 — a periodic static memory test can be 
developed in software (assembler will help reduce code size and execution time) to clear all RAM 
to $00, verify, set all RAM to $FF, verify and a checkerboard of $AA, verify, $55 & verify. This 
routine will test for any static errors within the RAM. 

There are many periodic static memory algorithms for checking for DC faults. The March C algorithm 
(van de Goor,1991) is commonly used and shown in Figure 5.

Figure 5. A Commonly Used Periodic Static Memory Algorithm

It is necessary to develop specific custom tests on each register for input/output registers which are also 
variable memory. When setting a value, ensure that no unwanted condition occurs from the function. 
Writing a value to an SPI control register may enable the SPI and initialize the send of a byte; the 
application may not support this action and may require another approach to test this register.

0 0 0 0 0
0 0 0 0 0
..............
0 0 0 0 0

1 1 1 1 1
0 0 0 0 0
..............
0 0 0 0 0

1 1 1 1 1
0 0 0 0 0
..............
0 0 0 0 0

1 1 1 1 1
1 1 1 1 1
..............
0 0 0 0 0

Read zeros Write ones
inc. address

Read zeros Write ones
inc. address

0 0 0 0 0
0 0 0 0 0
..............
0 0 0 0 0

Write all zeros 1 1 1 1 1
1 1 1 1 1
..............
1 1 1 1 1

0 0 0 0 0
1 1 1 1 1
..............
1 1 1 1 1

0 0 0 0 0
1 1 1 1 1
..............
1 1 1 1 1

0 0 0 0 0
0 0 0 0 0
..............
1 1 1 1 1

Read ones Write zeros
inc. address

Read ones Write zeros
inc. address

0 0 0 0 0
..............
0 0 0 0 0
1 1 1 1 1

0 0 0 0 0
..............
1 1 1 1 1
1 1 1 1 1
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Write ones
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1 1 1 1 1
..............
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0 0 0 0 0
..............
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STEP1 STEP2 STEP3

STEP4 STEP5 STEP6

STEP1 — Write all zeros to array

STEP2 — Starting at lowest address, read zeros, write ones, increment up array.

STEP3 — Starting at lowest address, read ones, write zeros, increment up array.

STEP4 — Starting at highest address, read zeros, write ones, decrement down array.

STEP5 — Starting at highest address, read ones, write zeros, decrement down array.

STEP6 — Read all zeros from array.

 address
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9 Addressing Stuck At Fault in Variable and Memory
This component is the addressing mechanism for accessing the memory and other functions. For Class B 
products, only one measure is available to test this component:

• Word protection with single-bit parity H.2.19.8.2 — a fault/error control technique which adds 
a single bit to each word in the memory area under test and saves it, creating either even or odd 
parity. A parity check is conducted as each word is read.

The addressing component 4.3 was specified for electronic control systems that utilize microcontrollers 
with external memory devices or for multiple microcontrollers sharing external memory devices. 

With a single-chip microcontroller, such as the MC9S08AW60, all addressing to memory is internal. 
Measures such as the periodic static memory test on variable memory (RAM) and the periodic checksum 
on invariable memory (Flash) would highlight a stuck at fault on the internal address bus. For example, if 
the address bus had a stuck at fault, both of these tests would produce an error. 

10 Internal Data Path Stuck At Fault
Similar to the previous component, Class B specifies a component internal data path for electronic control 
systems that utilize microcontrollers with external memory devices or for multiple microcontrollers 
sharing external memory devices.   On a single-chip microcontroller, such as the MC9S08AW60, 
implementing the periodic static memory test on variable memory (RAM) and the periodic checksum on 
invariable memory (Flash) would highlight a stuck at fault on the internal data bus. 

11 Addressing — Wrong Address
Class B specifies Component 5.2 Addressing – wrong address to test the addressing mechanisms for 
microcontrollers using external memory; it is not required for single-chip microcontrollers. 

12 External Communications – Hamming Distance 3
This component checks the reliability of communications to other external modules, such as external 
sensors and actuators that are not placed on the electronic control PCB.

Four possible measures are available to test this component: 
• Word protection with multi-bit redundancy including address H.2.19.8.1
• CRC-single word, H.2.19.4.1 — a fault/error control technique which generates a single word to 

represent the contents of memory. During self test, the same algorithm generates another signature 
word, which is compared with the saved word. The technique recognizes all one-bit errors and a 
high percentage of multi-bit errors.

• Transfer redundancy H.2.18.2.2 — a form of code safety which transfers data at least twice in 
succession and then compares the data. This technique will recognize intermittent errors.

• Protocol test H.2.18.14 — a fault/error control technique which transfers data to and from 
computer components to detect errors in the internal communications protocol. 
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External Communications – Hamming Distance 3
Transfer redundancy is probably the most cost-efficient and easiest measure to deploy to ensure reliable 
and safe external communications. It can be implemented easily in the software used in the 
communications protocol to send and receive data twice before executing on commands or results 
received. 

CRC single word check is also easily implemented by appending a 16-bit signature of the data to the 
message being communicated. For communication protocols that exchange small data/message packets 
and have no time-constraints, CRC can be deployed in software as the following example shows.

Using C code, a CRC-CCITT 16-bit routine requires 120 bytes of program memory and takes 
approximately 650 instructions cycles to rotate one byte through the CRC signature generator (for a 
20 MHz HCS08 CPU, approximately 31 μs).
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External Communications – Hamming Distance 3
Meeting IEC 60730 Class B Compliance with the MC9S08AW60, Rev. 1, Draft A

Example -8. 16-Bit CRC Routine in C

/*********************************************************/
//
//    Initialise CRC CCITT Routine
//
//    Entry: 0       Exit: crc_16=$FFFF
//
/*********************************************************/

void init_crcCCITT(void)
{

crc_16 =0xFFFF;
}

/*********************************************************/
//
//
//
//    Update CRC CCITT Routine
//
//    Date: 18 May 2005       Copyright: Freescale Ltd
//
//    Author: Dugald Campbell
//
//    Title:  update_crcCCITT()
//
//    Entry: byte to rotate into CRC engine  Exit: 16bit CRC
//
/*********************************************************/

void update_crcCCITT(char f)
{ 
    // Local Variables
    //char f;         // entry for function  
    char i;            // for loop purposes
    char c;    // carry from shift left

    // Rotate Left
    for (i=8 ; i>0 ; i--)
    {
       
        
        if (crc_16&0x8000) c = 1; // MSB is 0 as crc_16 is signed
        else c=0;
        
           // set c with MS bit
    crc_16=crc_16<<1; // rotate left all by one bit  
    
    // Now carry out EOR with root bits
    switch (c) // based on Carry
    {
    case 0x0: if (f&0x01) crc_16=crc_16|0x0001; // if LS bit of f 
Set B0=1
            break;                          // else crc16 no change on EOR
    case 0x1: if (f&0x01) crc_16=crc_16^0x1020; // need EOR if 
Carry 1 
    else crc_16=crc_16^0x1021;
    break;       
    }
     
    f=f>>1; // shift the supplied byte by 1 
    
    }
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13 External Communications Time — Wrong 
Point/Wrong Sequence in Time

Four possible measures are given to test this component.
• Time-slot monitoring H.2.18.10.4 
• Scheduled transmission H.2.18.18 — a communication procedure which allows information 

from a particular transmitter to be sent only at a predefined point in time and in sequence; 
otherwise, the receiver will treat it as a communication error.

• Logical monitoring H.2.18.10.2 — a fault/error control technique which monitors the logical 
execution of the program sequence.

• Comparison of redundant communication channels by either:
— Reciprocal comparison H.2.18.15 — reciprocal comparison — a fault/error control technique 

used in dual channel (homogeneous) structures which compares data reciprocally exchanged 
between the two processing units. Reciprocal refers to an exchange of similar data. 

— Independent hardware comparator H.2.18.3 — a device used for fault/error control in dual 
channel structures. The device compares data from the two channels and initiates a declared 
response if a difference is detected.

The MC9S08AW60 has several dedicated communications interfaces: SCIs, SPI, and IIC functions. Using 
these modules for communication for Class B requires time slot monitoring to ensure that communication 
occurs at the correct point in time. For example, if the SCI is configured as master node, the software will 
deploy code that ensures reception of the slave transmission within a specified time, or a fault condition 
will be initiated. 

The RTI function can be used with its independent time base to operate as a scheduler. Working in 
conjunction with the timer/PWM module, the RTI function can check how external communications occur 
and take a time stamp using one of the timer/PWM modules. Using either the output compare function or 
a semaphore system (as used in real-time operating systems/kernels), the RTI function can monitor the 
timing of external communications to ensure they occur correctly and recognizably.

14 Plausibility Check
Plausibility check H.2.18.13 — a fault/error control technique which checks program execution, inputs 
or outputs for inadmissible program sequence, timing or data. Examples include the introduction of an 
additional interrupt after the completion of a certain number of cycles or checks for division by zero.

For Class B controls, a plausibility check is the only measure required to test the following components: 
7.    I/O Periphery — fault conditions specified in H.27
7.2.1 A/D & D/A converters — fault conditions specified in H.27
7.2.2 Analog Multiplexer — wrong addressing

Plausibility checks on I/O periphery may consist of checking for known and unknown conditions on port 
pins, e.g. if 2 out of 4 inputs are always zero, then reading of 3 zeroes is faulty condition. For output pins, 
additional inputs are deployed to monitor that their condition is correct.
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Freescale Semiconductor20



Summary and Conclusions
Plausibility check on A/D converters requires the user to force known calibrated dc voltage levels (usually 
a voltage reference is available) and comparing these with other known signals. Also, boundary conditions 
placed around the expected analogue values temperature are monitored, i.e. a temperature sensor will 
provide a value of 2.2V to 4.3V for operating temperatures of -40 to 180’C, and a value outside of this 
would indicate a faulty condition.

On D/A systems deploying an A/D channel to check on the various values, the D/A is set to provide a 
satisfactory check. 

For analog multiplexor, a mechanism to force a known condition on all selectable channels is required, e.g. 
on a 3-channel A/D the application can place the applied signals to known and different values to allow 
testing of the multiplexor (a circuit could switch in various potential divider circuits on each A/D channel). 

15 Summary and Conclusions
This application note demonstrates how using the MC9S08AW60 allows manufacturers of automatic 
electronic controls for household AC appliances to easily meet Class B IEC 60703 requirements by:

• Deploying diagnostic software routines which test reliability of CPU operation and both variable 
and invariable memory

• Designing deterministic software which uses the real-time interrupt module’s independent RC 
oscillator to test interrupts and CPU clock frequency

• Monitoring the ICS module’s loss of clock and loss of lock features, as well as monitoring 
additional CPU clock frequency 
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