
Freescale Semiconductor
Application Note

Document Number: AN3496
Rev.0, 07/2007

Contents

Non-Nested Interrupts . 2
1.1 Interrupts . 2
1.2 Interrupt Stack Frame . 3
1.3 Inhibiting Interrupts . 3
Nested Interrupt Mechanism . 4

2.1 Requirements Of Nested Interrupts. 5
2.2 Software Nested Interrupt Scheduler 5
2.3 Implementation . 10
Port User Program with the Scheduler 11

3.1 Variable and Macro Definitions 11
3.2 Interrupt Service Routine Definitions 12
3.3 Initialization . 13
Performance . 13

4.1 Flash Memory Consumption 13
4.2 RAM Consumption . 14
4.3 Time Consumption . 14
Miscellaneous Topics . 15

5.1 Use ISR Not Supporting Scheduler 15
5.2 Use Scheduler in the Main Loop 15

ppendix AScheduler Code Lists . 16

A Software Approach to Using
Nested Interrupts in HCS08

by: Kenny Ji
Asia & Pacific Operation Microcontroller Division
In the HCS08 family of microcontrollers, interrupts
provide a way to save the current CPU status and
registers, execute an interrupt service routine (ISR), and
then restore the CPU status so processing resumes where
it left off before the interrupt.

Before an ISR is completed, the global interrupt mask
(I bit) in the condition code register (CCR) is set to mask
further interrupts. This mechanism ensures that the ISR
is not interrupted during execution. However, the
disadvantage of this mechanism is that a high-priority
interrupt cannot interrupt a low-priority ISR execution.

This document provides a solution to yield a prioritized
interrupt mechanism in software. This benefits anyone
who wants more powerful and flexible applications
without a task-based real-time operation system (RTOS)
support.

1

2

3

4

5

A

© Freescale Semiconductor, Inc., 2007. All rights reserved.

Non-Nested Interrupts
1 Non-Nested Interrupts

1.1 Interrupts
If an event occurs in an interrupt enabled source, an associated read-only status flag is set, but the CPU
does not respond unless these two conditions are both met.

• Local interrupt mask is a logic 1 to enable the interrupt
• The I bit in the condition code register (CCR) is logic 0 to allow interrupts

The global interrupt mask (I bit) in the CCR is initially set after reset. It screens all maskable interrupt
sources. This allows the user program to initialize the stack pointer and perform other system setup before
clearing the I bit to allow the CPU to respond to interrupts. Figure 1 shows the I bit in CCR.

Figure 1. Condition Code Register

When the CPU receives a qualified interrupt request, it completes the current instruction before responding
to the interrupt. The interrupt processing process is:

1. Saves the CPU registers to the stack.
2. Sets the I bit in the CCR to mask new interrupts.
3. Fetches the interrupt vector for the highest priority interrupt that is currently pending.
4. Fills the instruction queue with the first three bytes of program information starting from the

address fetched from the interrupt vector locations.

While the CPU responds to the interrupt, the I bit is automatically set to avoid another interrupt from
interrupting the ISR (this is called nesting of interrupts). Normally, the I bit is restored to 0 when the CCR
is restored from the value that was stacked on entry to the ISR.

In rare cases, the I bit may be cleared in an ISR (after clearing the status flag that generated the interrupt)
so other interrupts can be serviced before the first service routine is finished. This practice is not
recommended because it leads to subtle program errors that are difficult to debug.

V 1 1 H I N Z CCondition Code Register CCR

Carry

Zero

Negative

Interrupt Mask

Half-Carry (From Bit 3)

Two’s Complement Overflow
A Software Approach to Using Nested Interrupts in HCS08, Rev.0

Freescale Semiconductor2

Non-Nested Interrupts
1.2 Interrupt Stack Frame
Figure 2 shows the contents and organization of a stack frame. Before the interrupt occurs, the stack
pointer (SP) points at the location of the next available byte on the stack. The current values of CPU
registers are stored on the stack starting with the low-order byte of the program counter (PCL) and ending
with the condition code register (CCR). After stacking, the SP points at the next available location on the
stack. This location is the address that is one less than the address where the CCR was saved. The stacked
PC value is the address of the instruction in the main program that will be executed next if the interrupt
does not occur.

Figure 2. Interrupt Stack Frame

When an RTI instruction is executed, these values are recovered from the stack in reverse order. As part
of the RTI sequence, the CPU fills the instruction pipeline by reading three bytes of program information,
which start from the PC address that is just recovered from the stack.

1.3 Inhibiting Interrupts
The restriction of the current interrupt mechanism is that nested interrupts are not allowed. This means a
high-priority ISR must be executed after a low-priority ISR completes if a low-priority interrupt occurs
before a high-priority interrupt. For example, there is a timer has higher priority than keyboard interrupt.
If a timer overflow interrupt occurs when the keyboard ISR is in execution, though it is more emergent, it
is pended until the keyboard ISR returns. In some cases, this latency is too long and causes problems.
Figure 3 shows a typical non-nested interrupt schedule.

CCR

A

X

PC HIGH

PC LOW

SP After Interrupt Stacking

SP Before The Interrupt

1

2

3

4

5

5

4

3

2

1

Unstacking Order

Stacking Order

* H register is not stacked

Toward Lower Address

Toward Higher Address
A Software Approach to Using Nested Interrupts in HCS08, Rev.0

Freescale Semiconductor 3

Nested Interrupt Mechanism
Figure 3. Non-Nested Interrupt Schedule

Therefore, nested interrupts can be available in applications.

One solution is to open the interrupt enabled function during ISR. As mentioned, this practice is not
recommended because it can lead to subtle program errors that are difficult to debug. Moreover, a
significant disadvantage of this solution is that high-priority ISR can be interrupted by low-priority ISR,
which is not allowed in most applications.

An advanced approach is to use RTOS in applications. However, this solution requires large memories and
huge CPU consumption. Most RTOS, especially open source RTOS, is task based or thread based. They
need special memory allocation mechanism to manage a certain task’s or thread’s memory when a task or
thread switching occurs. For example, uC/OS II, the most popular open source RTOS, needs
approximately 384 bytes of RAM to support a four-task system in MC68HC908GP32. Another
consideration is the time performance. Most interrupt-based systems have much better performance than
tasked-based systems. The interrupt mechanism still has the best performance to deal with real-time works.

2 Nested Interrupt Mechanism
This section introduces a software approach that provides a nested interrupt mechanism in the S08 family
of microcontrollers. It extends the capability and flexibility of an interrupt mechanism efficiently. It also
keeps low time and space consumptions in the application system.

Time

Main Loop

Low-Priority ISR

High-Priority ISR A high-priority interrupt occurs here

The high-priority ISR is pended until
low-priority ISR is completed
A Software Approach to Using Nested Interrupts in HCS08, Rev.0

Freescale Semiconductor4

Nested Interrupt Mechanism
2.1 Requirements Of Nested Interrupts
In a nested interrupt system, an interrupt is allowed to anytime and anywhere even an ISR is being
executed. But, only the highest priority ISR will be executed immediately. The second highest priority ISR
will be executed after the highest one is completed.

The rules of a nested interrupt system are:
• All interrupts must be prioritized.
• After initialization, any interrupt is allowed to occur anytime and anywhere.
• If a low-priority ISR is interrupted by a high-priority interrupt, the high-priority ISR is executed.
• If a high-priority ISR is interrupted by a low-priority interrupt, the high-priority ISR continues

executing.
• The same priority ISRs must be executed by time order.

Figure 4 shows a typical nested interrupt schedule.

Figure 4. Nested Interrupt Schedule

2.2 Software Nested Interrupt Scheduler

2.2.1 Scheduler Model

In this section, a software nested interrupt scheduler is introduced. As shown in Figure 5, this scheduler
includes a preemptive scheduler, a priority arbiter, and a series of priority queues. These queues are
prioritized.

When an interrupt occurs, the priority arbiter will put the interrupt in queue according to its priority. This
operation is called entering queue. Then the preemptive scheduler goes to work. It scans the queues to find
out the highest priority queue available and bring the highest one to work.

Time

Main Loop

Low-Priority ISR

High-Priority ISR

A high-priority interrupt occurs and

The low-priority ISR is pended until
high-priority ISR is completed

its ISR is executed immediately
A Software Approach to Using Nested Interrupts in HCS08, Rev.0

Freescale Semiconductor 5

Nested Interrupt Mechanism
In Figure 5, a series of interrupts occurs by order 2, 1, 4, 1, 3, and 2. These interrupts are sorted by the
scheduler and executed in the order of 1, 1, 2, 2, 3, and 4 via the scheduler.

Figure 5. Software Nested Interrupt Scheduler

If a high-priority interrupt occurs when a low-priority ISR is in execution, the scheduler lets the
high-priority ISR preempt the CPU resource except a higher priority interrupt occurs during scheduling.
The low-priority ISR will be executed after the high-priority ISR is completed. This action ensures that
more emergent interrupt is executed prior to the lesser one and allows the preemption operation; therefore,
this is called preemption system. If an OS has this mechanism, it is called preemption OS.

If a low-priority interrupt occurs when a high-priority ISR is in execution, the scheduler will continue
executing the high-priority ISR. The low-priority interrupt will be pended and kept in the queue until the
high-priority ISR is completed. This mechanism ensures that high-priority ISR will be executed earlier
than the low-priority interrupt.

2.2.2 Data Structure

2.2.2.1 Interrupt Object

Every interrupt has its own interrupt objects in the scheduler. Each object is implemented by a structure in
C programming. it comprises of link, lock, mask, and func. Figure 6 shows the structure of interrupt object.

Figure 6. Interrupt Object

The member link is a pointer pointing to the next interrupt object. Because this is a queue system, a single
link list is used to make queue accessible. In the single link list, every node has a pointer pointing to the

2 1 4 1 3 2

Priority 1 Queue

Priority 2 Queue

Priority 3 Queue

Priority 4 Queue

Preemptive Scheduler

P
riority A

rbiter

Software nested interrupt scheduler

1 1 2 2 3 4

Prioritized interrupt queueRandom interrupt sequence

link

lock

mask

func

Interrupt Object Structure
A Software Approach to Using Nested Interrupts in HCS08, Rev.0

Freescale Semiconductor6

Nested Interrupt Mechanism
next object, by which the scheduler can use a first-in-first-out (FIFO) system easily. Furthermore, the
pointer points to the interrupt object with the same priority.

The member lock is a flag to identify if the interrupt object is put in the queue or not. After initialization,
this flag is set as 0xff. When this object is put into the queue, the flag is set as 0x00. When the object leaves
the queue, the flag is set as 0xff again.

The member mask is a variable to identify the priority of the interrupt object. It equals to priority powers
of number two. This means the mask will be set by 1 if the priority is 0. It is used to make a comparison
in scheduling.

The member func is function pointer to the dispatch function. If an interrupt object is selected to be
executed, the scheduler brings the program to a certain address by this function pointer. This function has
no input parameters or return value.

2.2.2.2 FIFO Queues

The software nested interrupt scheduler has a set of FIFO queues, which contain all available pending
interrupts. Every queue has a queue head. As shown in Figure 7, the head set is an array of structures. The
quantity of FIFO queues is equal to that of total priorities levels. Each head of FIFO queue is an element
that controls a certain priority queue and contains two pointers, one points to the first pending interrupt in
the FIFO queue and the other points to the last pending interrupt in the same FIFO queue.

For example, in Figure 7, the priority X queue has N pending interrupts. The first is pointed by the head.
The second is pointed by the first. The last is pointed by both the N-1 and the head. This constructs a small
FIFO system. You can get the first object from the queue by inquiring the pending interrupt table and add
new coming objects in.

Figure 7. Pended Interrupt Table

A FIFO operation can be divided into a set of simple operations.
• To add a new object at the end of queue, this new object is pointed by both the last object and the

tail pointer of head.
• To remove a object, the first object will be skipped by the link pointer of head and its pointer will

be set to NULL as a safe operation at the same time.

The FIFO operation also meets the requirement to make a choice when two interrupts with the same
priority occurs. In this condition, the second ISR is pended until the first one is completed.

link

lock

mask

func

link

lock

mask

func

link

tail

Priority X Head

N Pended Interrupts

link

lock

mask

func

link

lock

mask

func

1st Interrupt 2nd Interrupt (N-1)th Interrupt Nth Interrupt
Queue 0

Queue 1

Queue X

Queue N
A Software Approach to Using Nested Interrupts in HCS08, Rev.0

Freescale Semiconductor 7

Nested Interrupt Mechanism
2.2.2.3 Other Schedule Data

The FIFO queues provide an excellent solution to sort the interrupt objects with the same priority. The
first-in interrupt object is executed prior to others of the same priority. But to the interrupt objects with
different priorities, a series of prioritized queues must be compared to decide which level will be executed
prior to others.

The queue head sets help to make a choice. As shown in Figure 8, the head sets are contained in
INT_rdytab. During execution, the scheduler checks the queue head one by one. If the highest priority head
is not empty, the corresponding queue is selected to execute immediately. To accelerate the seeking, a date
INT_sets is used to indicate if the queue is empty or not. The head of the high-priority queue is mapped in
MSB and that of the low one is mapped in LSB. After an interrupt object is put in a certain FIFO queue,
the corresponding bit in INT_sets are set. After the last interrupt is removed from the FIFO queue, the
corresponding bit in INT_set is cleared.

INT_mask is the data that used to store the interrupt object priority level being executed. If the ISR in
execution is interrupted by an interrupt, the scheduler will compare the priorities between the new interrupt
object in queues and the one in execution after the new interrupt object is put in a queue. This helps to find
out which interrupt service routine will be executed after scheduling.

INT_lock is the data that used to solve the scheduler nested scheduling
.

Figure 8. Queue Head Set

Queue 0

Queue 1

Queue 3

Queue 5

Low Priority

High Priority

X

Queue 2

Queue 4

Queue 7

Queue 6

X X X X X X X

INT_sets

INT_rdytab

X X X X X X X X

INT_mask

X X X X X X X X

INT_lock
A Software Approach to Using Nested Interrupts in HCS08, Rev.0

Freescale Semiconductor8

Nested Interrupt Mechanism
2.2.3 FIFO Operation

There are two FIFO operations, i.e. input operation and output operation. The input operation is a typical
addition operation at the end of link list. The output operation is a typical remove operation at the
beginning of link list.

As shown in Figure 9, in adding operation the new interrupt object is added to the end of the FIFO queue.
If there is at least one interrupt object in the queue, the new interrupt object is pointed by the link pointer
of last interrupt object. Otherwise, if there is no existing interrupt object in the FIFO queue, it is pointed
by the link pointer of the queue head. The tail pointer of head will be set to the new interrupt object. The
link pointer of the new interrupt object is set to NULL.

Figure 9. FIFO Queue Addition Operation

As shown in Figure 10, in removing operation, the first interrupt object is removed from the link list. The
link pointer of head is set to the link of the removed interrupt object. If the removed interrupt object is the
last interrupt object in the FIFO queue, the head will be set to initialization state, in which the link pointer
will point to NULL and the tail pointer will point to link.

link

lock

mask

func

link

tail

Priority X Head

First Pended Interrupt Addition Operation

link

lock

mask

func

link

lock

mask

func

link

tail

Priority X Head

Non-First Pended Interrupt Addition Operation

New Object

(N-1)th Object N Object

link

lock

mask

func

New Object
A Software Approach to Using Nested Interrupts in HCS08, Rev.0

Freescale Semiconductor 9

Nested Interrupt Mechanism
.

Figure 10. FIFO Queue Remove Operation

2.3 Implementation
The scheduler implementation code is divided into two parts, interrupt post code and interrupt execution
code. The former implements the First-In operation of FIFO queue and the latter implements the first-out
operation of FIFO queue. Figure 11 shows the scheduler work flow. The left is post procedure work flow
and the right is execution procedure work flow.

link

lock

mask

func

link

tail

Priority X Head

Last Pended Interrupt Remove Operation

link

lock

mask

func

link

lock

mask

func

link

tail

Priority X Head

Non-First Pended Interrupt Remove Operation

New Object

1st Object 2nd Object

link

lock

mask

func

Nth Object
A Software Approach to Using Nested Interrupts in HCS08, Rev.0

Freescale Semiconductor10

Port User Program with the Scheduler
Figure 11. Scheduler Work Flow

Please see Appendix A, “Scheduler Code Lists” for more detailed code implementation.

3 Port User Program with the Scheduler

3.1 Variable and Macro Definitions
Customers must define some variables and macros in program before using this scheduler. These variables
and macros include all information used in this scheduler.

The macro MAX_INT_TAB defines the maximum interrupt object quantity used in the program. For
example, if there are five interrupt objects used, the macro must be defined equal to or bigger than 5. The
following is one of the examples.

Example 1. Define MAX_INT_TAB

MAX_INT_TAB EQU 5

The variable INT_objtab is a structure table containing all interrupt objects’ information. It must be
defined in short addressing mode scope for quick access. The defined macro INT_OBJ supports a shortcut
to define the table. The following code defines five interrupt objects.

Start

End

Interrupt Posted?

Post Interrupt
Object

Set INT_sets

Disable Interrupt

Enable Interrupt

Scheduler

To Execution

NoYes

No

Yes

NoYes

Interrupted?

Higher ISR
Interrupted?

From Post

All Queue Empty?

Get Highest
Posted Queue

Remove The First
Posted Interrupt

Execute ISR

The Queue Empty?

Reset Queue

End

Yes

No

Post Procedure Work Flow Execution Procedure Work Flow

Yes

No
A Software Approach to Using Nested Interrupts in HCS08, Rev.0

Freescale Semiconductor 11

Port User Program with the Scheduler
Example 2. Define Interrupt Objects

_DATA_ZEROPAGE: SECTION

...

INT_objtab:

INT_OBJ KBI_obj

INT_OBJ TPM_obj

INT_OBJ ADC_obj

INT_OBJ TIM_obj

INT_OBJ SCI_obj

INT_OBJEND:

The constant INT_inittab is a structure table that contains the initial map of interrupt objects. It must be
defined in flash memory because the initialization routine copies this information to interrupt objects in
RAM. The macro INT_INI supports a shortcut to define this table. This macro needs these three
parameters:

• The interrupt object name
• The priority of interrupt object
• The service routine of interrupt object

Regarding to this example, the following code presents an approach to define the table,

Example 3. Define Interrupt Object Initial Information

CONST: SECTION
INT_inittab:

INT_INI KBI_obj,2,KBI_isr ; KBI object

INT_INI TPM_obj,1,TPM_isr ; TPM object

INT_INI ADC_obj,1,ADC_isr ; ADC object

INT_INI TIM_obj,1,TIM_isr ; MTIM object

INT_INI SCI_obj,1,SCI_isr ; SCI object

INTTABEND:

3.2 Interrupt Service Routine Definitions
If a scheduler is used, the interrupt service routine needs to be modified as follows:

• Writing all jobs in a routine pointed by the member func in interrupt object
• Writing a short interrupt service routine only containing the function INT_post
A Software Approach to Using Nested Interrupts in HCS08, Rev.0

Freescale Semiconductor12

Performance
Example 4 shows a simple way to use the interrupt service routine for a KBI interrupt job.

Example 4. Interrupt Service Routine Definition

; The real interrupt routine, but only INT_dispatch called to trigger the scheduler
KBI_int:

INT_dispatch KBI_obj
RTI ; use return interrupt here

; All jobs are written here, this routine will be called by the scheduler
; after FIFO operations

KBI_isr:
; write the indeed jobs here
...
; return
RTS ; use return subroutine here

3.3 Initialization
All variables used in the scheduler must be initialized before use. The software package supports a function
named INT_init to complete initialization. This function has no parameters or return value. Example 5
shows how to use this function in the program.

Example 5. Scheduler Initialization

_Startup:
JSR INT_init ; Interrupt Scheduler Initialized

4 Performance
The performance is the most important point to the scheduler. Three points restricts the real-time
performance of a tiny system, flash memory, RAM, and time.

4.1 Flash Memory Consumption
The flash memory consumption in the schedule are:

• The real scheduler takes 327 bytes flash memory, which is very low even to a tiny system
• Calling the initialization routine takes 3 bytes
• The initial information takes 5 bytes for every interrupt object
• Calling the post function takes 8 bytes for every interrupt object

Totally, 330 + 13 × N bytes flash memory will be used in the scheduler. N is the number of interrupt objects
used. Table 1 shows the flash memory consumption for typical cases. The flash memory consumption is
less than 0.5K bytes to a system constructed with eight interrupt objects.
A Software Approach to Using Nested Interrupts in HCS08, Rev.0

Freescale Semiconductor 13

Performance
4.2 RAM Consumption
The scheduler needs 18 bytes at least and every interrupt object takes 5 bytes. Therefore, the RAM
consumption is 18 + 5 × N bytes. N is the interrupt object number. As shown in Table 2, an 8 interrupt
object system uses 58 bytes. This is a small consumption to most applications.

4.3 Time Consumption
The time consumptions in a scheduler are:

• If you attempt to post a posted interrupt object, the scheduler denies it. This action takes 6 CPU
cycles.

• If you post a non-higher priority interrupt object, the scheduler puts the object in queue and then
continues the interrupted higher priority interrupt object. This action takes 90 CPU cycles.

• If you post an interrupt object interrupting another scheduler operation, the scheduler puts the
object in queue and returns to the previous scheduler. This action takes 95 CPU cycles.

• If you post a top-priority interrupt object, the scheduler puts the interrupt object in the queue and
removes it from the queue immediately to execute. This action takes 205 CPU cycles.

Table 1. Flash Memory Consumptions

Interrupt Object
Number

Interrupt Object Flash Memory
Consumptions (Bytes)

Scheduler Flash Memory
Consumptions (Bytes)

Total Flash Memory
Consumptions (Bytes)

1 13 330 343

2 26 330 356

3 39 330 369

4 52 330 382

5 65 330 395

6 78 330 408

7 91 330 421

8 104 330 434

Table 2. RAM Consumptions

Interrupt Object
Number

Interrupt Object RAM
Consumptions (Bytes)

Scheduler RAM
Consumptions (Bytes)

Total RAM Consumptions
(Bytes)

1 5 18 23

2 10 18 28

3 15 18 33

4 25 18 38

5 30 18 43

6 35 18 48

7 40 18 53

8 45 18 58
A Software Approach to Using Nested Interrupts in HCS08, Rev.0

Freescale Semiconductor14

Miscellaneous Topics
The longest latency of the scheduling is 205 CPU cycles. As a 20 MHz CPU clock system, it produces
about 10 μs latency. This is short enough for a real-time system. However, what we can get is to reduce
the high-priority interrupt latency when a low-priority interrupt routine is being executed. This is a big
improvement in many real-time based systems.

5 Miscellaneous Topics

5.1 Use ISR Not Supporting Scheduler
Programmers can still use pure ISRs that do not support the scheduler in their program. But the pure ISRs
are executed prior to the routines controlled by the scheduler. It is not recommended to enable the interrupt
in the pure ISRs, because it causes trouble.

5.2 Use Scheduler in the Main Loop
The interrupt object can also be posted in the main loop and the scheduler executes the interrupt according
to the schedule. This means you can post the scheduler as a software interrupt.

Table 3. Time Consumption

Action CPU Cycles Time at 20 MHz CPU Clock (μs)

Post a posted interrupt object 6 0.3

Post a non-highest priority interrupt object 90 4.5

Interrupt another scheduler operation 95 4.75

Post a top priority interrupt object 205 10.25
A Software Approach to Using Nested Interrupts in HCS08, Rev.0

Freescale Semiconductor 15

Miscellaneous Topics
Appendix A Scheduler Code Lists
The following code implements a code with five interrupt objects.

;***
;* This stationery serves as the framework for a user application. *
;* For a more comprehensive program that demonstrates the more *
;* advanced functionality of this processor, please see the *
;* demonstration applications, located in the examples *
;* subdirectory of the "Freescale CodeWarrior for HC08" program *
;* directory. *
;***

; **
; * THIS CODE IS ONLY INTENDED AS AN EXAMPLE OF CODE FOR THE *
; * CODEWARRIOR COMPILER AND HAS ONLY BEEN GIVEN A MIMIMUM *
; * LEVEL OF TEST. IT IS PROVIDED 'AS SEEN' WITH NO GUARANTEES *
; * AND NO PROMISE OF SUPPORT. *
; **

;***
;*
;* Freescale reserves the right to make changes without further notice to any
;* product herein to improve reliability, function, or design. Freescale does
;* not assume any liability arising out of the application or use of any
;* product, circuit, or software described herein; neither does it convey
;* any license under its patent rights nor the rights of others. Freescale
;* products are not designed, intended, or authorized for use as components
;* in systems intended for surgical implant into the body, or other
;* applications intended to support life, or for any other application in
;* which the failure of the Freescale product could create a situation where
;* personal injury or death may occur. Should Buyer purchase or use Freescale
;* products for any such intended or unauthorized application, Buyer shall
;* indemnify and hold Freescale and its officers, employees, subsidiaries,
;* affiliates, and distributors harmless against all claims costs, damages,
;* and expenses, and reasonable attorney fees arising out of, directly or
;* indirectly, any claim of personal injury or death associated with such
;* unintended or unauthorized use, even if such claim alleges that Freescale
;* was negligent regarding the design or manufacture of the part. Freescale
;* and the Freescale logo* are registered trademarks of Freescale Ltd.
;*
;***

; Include derivative-specific definitions
INCLUDE 'derivative.inc'

; export symbols
XDEF _Startup, main
; we export both '_Startup' and 'main' as symbols. Either can
; be referenced in the linker .prm file or from C/C++ later on

XREF __SEG_END_SSTACK ; symbol defined by the linker for the end of the stack

;***
;*
A Software Approach to Using Nested Interrupts in HCS08, Rev.0

Freescale Semiconductor16

Miscellaneous Topics
;* Macro Definition
;*
;***

MAX_INT_TAB EQU 5

INT_OBJ_SIZE EQU 5 ; 5 bytes for one object

MAX_RDY_TAB EQU 7 ; for there are 7 bit available in mask

RDY_OBJ_SIZE EQU 2 ; 2 bytes ready objects

IDLE EQU $01 ; default priority = 1

READY EQU $FF ; -1 : not post
POST EQU $00 ; 0 : post

; interrupt object member offset

LINK EQU 0 ; link : offset 0
LOCK EQU 1 ; lock : offset 1
MASK EQU 2 ; mask : offset 2
FUNC EQU 3 ; func : offset 3

; ready object member offset

HEAD EQU 0 ; head : offset 0
TAIL EQU 1 ; head : offset 1

;
; INT_OBJ
; Usage:
; INT_OBJ name,priority,function
; For example:
; INT_OBJ KBI_OBJ,3,KBI_isr
;

INT_OBJ MACRO
; XDEF \1 ; able to be accessed externally
\1:

DS.B INT_OBJ_SIZE
ENDM

INT_INI MACRO
; XREF \3 ; use function externally
\1_:

DCB.B 1,0 ; NULL -> link
DCB.B 1,-1 ; -1 -> lock
DCB.B 1,1 << \2 ; -1 -> mask
DCB.W 1,\3 ; function -> func
ENDM

;
; INT_DISPATCH
; Usage:
; INT_DISPATCH object
A Software Approach to Using Nested Interrupts in HCS08, Rev.0

Freescale Semiconductor 17

Miscellaneous Topics
;

INT_dispatch MACRO
PSHH ; H -> stack
PSHX ; X -> stack

LDHX #\1 ; object -> H:X
JSR INT_post ; goto INT_post

PULX ; stack -> X
PULH ; stack -> H

ENDM

;
; Left Most Bit Detection , 20 cycles for every calling
; 1xxxxxxx -> 7
; 01xxxxxx -> 6
; 001xxxxx -> 5
; 0001xxxx -> 4
; 00001xxx -> 3
; 000001xx -> 2
; 0000001x -> 1
; 00000001 -> 0
;

LMBD MACRO
\@LMBD:

CMPA #$10 ; #2 , a ?>= 16
BGE \@LMBD_7654 ; #3 , goto 7654

\@LMBD_3210: ; x x x x 3 2 1 0
CMPA #$04 ; #2 , a ?>= 4
BGE \@LMBD_32 ; #3 , goto 32

\@LMBD_10: ; x x x x x x 1 0
CMPA #$02 ; #2 , a ?>= 2
BGE \@LMBD_1 ; #3 , goto 1

\@LMBD_0: ; x x x x x x x 0
CLRA ; #1 , 0 -> A
BRA \@LMBD_exit ; #3 , exit

\@LMBD_1: ; x x x x x x 1 x
LDA #$01 ; #2 , 1 -> A
BRA \@LMBD_exit ; #3 , exit

\@LMBD_32: ; x x x x 3 2 x x
CMPA #$08 ; #2 , a ?>= 8
BGE \@LMBD_3 ; #3 , goto 3

\@LMBD_2: ; x x x x x 2 x x
LDA #$02 ; #2 , 2 -> A
BRA \@LMBD_exit ; #3 , exit

\@LMBD_3: ; x x x x 3 x x x
LDA #$03 ; #2 , 3 -> A
BRA \@LMBD_exit ; #3 , exit

\@LMBD_7654: ; 7 6 5 4 x x x x
CMPA #$40 ; #2 , a ?>= 64
BGE \@LMBD_76 ; #3 , goto 76

\@LMBD_54: ; x x 5 4 x x x x
CMPA #$20 ; #2 , a ?>= 32
BGE \@LMBD_5 ; #3 , goto 5
A Software Approach to Using Nested Interrupts in HCS08, Rev.0

Freescale Semiconductor18

Miscellaneous Topics
\@LMBD_4: ; x x x 4 x x x x
LDA #$04 ; #2 , 4 -> A
BRA \@LMBD_exit ; #3 , exit

\@LMBD_5: ; x x 5 x x x x x
LDA #$05 ; #2 , 5 -> A
BRA \@LMBD_exit ; #3 , exit

\@LMBD_76: ; 7 6 x x x x x x
CMPA #$80 ; #2 , a ?>= 128
BGE \@LMBD_7 ; #3 , goto 7

\@LMBD_6: ; x 6 x x x x x x
LDA #$06 ; #2 , 6 -> A
BRA \@LMBD_exit ; #3 , exit

\@LMBD_7: ; 7 x x x x x x x
LDA #$07 ; #2 , 7 -> A
\@LMBD_exit:
ENDM

;***
;*
;* Variable Definition
;*
;***

_DATA_ZEROPAGE: SECTION SHORT

; Global Control Data

INT_lock: DS.B 1 ; global lock; -1 : unlock ; others : lock
INT_sets: DS.B 1 ; global running sets
INT_mask: DS.B 1 ; global mask;
INT_resv: DS.B 1 ; global reserved

; Global Ready Data

INT_RDYBEG:

INT_rdytab: DS.B RDY_OBJ_SIZE * MAX_RDY_TAB

INT_RDYEND:

INT_OBJBEG:

INT_objtab:

INT_OBJ KBI_obj

INT_OBJ TPM_obj

INT_OBJ ADC_obj

INT_OBJ TIM_obj

INT_OBJ SCI_obj

INT_OBJEND:

;***
A Software Approach to Using Nested Interrupts in HCS08, Rev.0

Freescale Semiconductor 19

Miscellaneous Topics
;*
;* Constant Definition
;*
;***

CONST: SECTION

INTTABBEG:

INT_inittab:

INT_INI KBI_obj,2,KBI_isr ; KBI object

INT_INI TPM_obj,1,TPM_isr ; TPM object

INT_INI ADC_obj,1,ADC_isr ; ADC object

INT_INI TIM_obj,1,TIM_isr ; MTIM object

INT_INI SCI_obj,1,SCI_isr ; SCI object

INTTABEND:

;***
;*
;* Hardware Interrupt Entry Definition
;*
;***

ENTRANCE:

KBI_int:
INT_dispatch KBI_obj
RTI

TPM_int:
INT_dispatch TPM_obj
RTI

ADC_int:
INT_dispatch ADC_obj
RTI

TIM_int:
INT_dispatch TIM_obj
RTI

SCI_int:
INT_dispatch SCI_obj
RTI

;***
;*
;* Vector Table Definition
;*
A Software Approach to Using Nested Interrupts in HCS08, Rev.0

Freescale Semiconductor20

Miscellaneous Topics
;***

VECTOR_ROM: SECTION

ORG $FFD8

DCB.W 1,ADC_int ; Vector 19

ORG $FFDA

DCB.W 1,KBI_int ; Vector 18

ORG $FFE0

DCB.W 1,SCI_int ; Vector 15

ORG $FFE6

DCB.W 1,TIM_int ; Vector 12

ORG $FFF0

DCB.W 1,TPM_int ; Vector 07

;***
;*
;* Main Entry
;*
;***

; variable/data section
MY_ZEROPAGE: SECTION SHORT ; Insert here your data definition

; code section
MyCode: SECTION
main:
_Startup:

LDHX #__SEG_END_SSTACK ; initialize the stack pointer
TXS
CLI ; enable interrupts

JSR INT_init ; Interrupt Scheduler Initialized

mainLoop:
; Insert your code here
NOP

feed_watchdog
BRA mainLoop

;***
;*
;* ISR definitions
;*
;***

CODE: SECTION
A Software Approach to Using Nested Interrupts in HCS08, Rev.0

Freescale Semiconductor 21

Miscellaneous Topics
KBI_isr:
; input KBI jobs here
RTS

; TPM interrupt service routine

TPM_isr:
; input TPM jobs here
RTS

; ADC interrupt service routine

ADC_isr:
; input ADC jobs here
RTS

; TIM interrupt service routine

TIM_isr:
; input TIM jobs here
RTS

; SCI interrupt service routine

SCI_isr:
; input SCI jobs here
RTS

;***
;*
;* void INT_init(void)
;*
;***

CODE: SECTION

INT_init:
JSR Global_init ; Gloabal Initialize

JSR Ready_init ; Ready List Initialize

JSR Object_init ; Object Initialize

RTS ; return

Global_init:

; INT_mask = 1;

MOV #IDLE, INT_mask ; 1 -> INT_mask

; INT_sets = 0;

CLR INT_sets ; 0 -> INT_sets

; INT_lock = -1;
A Software Approach to Using Nested Interrupts in HCS08, Rev.0

Freescale Semiconductor22

Miscellaneous Topics
MOV #READY, INT_lock ; -1 -> INT_lock

RTS ; return;

Ready_init:

;
; for (i = 0 ; i < MAX_RDY_TAB ; i++)
; {
; INT_rdytab[i].link = 0;
; INT_rdytab[i].tail = INT_rdytab[i];
; }
;

LDHX #INT_rdytab ; @INT_rdytab -> H:X

Ready_loop:

; INT_rdytab[i].link = 0;

TXA ; INT_rdytab[i] -> A

CLR LINK,X ; INT_rdytab[i].link = 0;

STA TAIL,X ; @INT_rdytab[i] -> INT_rdytab[i].tail

INCX ; @INT_rdytab[i].tail -> X

INCX ; @INT_rdytab[i + 1].link -> X

CPHX #INT_RDYEND ; i ?> MAX_RDY_TAB

BNE Ready_loop ; next loop

RTS ; return;

; End of Loop

Object_init:

; for (i = 0 ; i < MAX_INT_TAB ; i++)
; {
; INT_objtab[i] = INT_inittab[i];
; }

; initialize stack
;
; high address
; INT_objtab low 4
; INT_objtab high 3
; INT_inittab low 2
; INT_inittab high 1
; low address
;

AIS #-4 ; SP - 4 -> SP
A Software Approach to Using Nested Interrupts in HCS08, Rev.0

Freescale Semiconductor 23

Miscellaneous Topics
LDHX #INT_objtab ; INT_objtab -> H:X

STHX 3,SP ; INT_objtab -> stack

LDHX #INT_inittab ; INT_inittab -> H:X

STHX 1,SP ; INT_inittab -> stack

; INT_inittab

Object_loop:

; INT_inittab[i] -> A

LDHX 1,SP ; @INT_inittab[i] -> H:X

LDA ,X ; INT_inittab[i] -> H:X

AIX #1 ; i++

STHX 1,SP ; i++

; A -> INT_inittab[i]

LDHX 3,SP ; @INT_objtab[i] -> H:X

STA ,X ; INT_inittab[i] -> INT_objtab[i]

AIX #1 ; i++

STHX 3,SP ; i++

; next loop

CPHX #INT_OBJEND ; i ?> MAX_INT_TAB

BNE Object_loop ; next loop

; uninitialize stack

AIS #4 ; pop stack

; return;

RTS ; return;

;***
;*
;* void INT_post(swi)
;* {
;* if (swi->lock == 0)
;* {
;* return;
;* }
;*
;* swi->lock = 0;
A Software Approach to Using Nested Interrupts in HCS08, Rev.0

Freescale Semiconductor24

Miscellaneous Topics
;*
;* INT_lock++;
;*
;* INT_mask |= swi->mask;
;*
;* ready->tail.link = swi;
;*
;* ready->tail = swi;
;*
;* if ((INT_mask > INT_sets) || INT_lock)
;* {
;* INT_lock--;
;*
;* return;
;* }
;*
;* INT_exec();
;*
;* return;
;* }
;*
;***

;***
;
; If swi posted, 6 cycles
; If swi not posted but not executed, 95 cycles
; If swi not posted and executed, 233 cycles
;
;***

CODE: SECTION

INT_post:

; if (swi->lock == 0)
; 9 cycles

LDA LOCK,X ; swi->lock -> X #3
BNE post ; if (swi->lock != 0) post #3

; {
; return;
; }
; 6 cycles

RTS ; interrupt return #6 , total 6 cycles

post:

; swi->lock == 0;
; 5 cycles

CLR LOCK,X ; 0 -> swi->lock #5

; INT_lock++;
; 5 cycles
A Software Approach to Using Nested Interrupts in HCS08, Rev.0

Freescale Semiconductor 25

Miscellaneous Topics
INC INT_lock ; INT_lock++ #5

; Disable Interrupts
; 1 cycle

SEI ; disable interrupt #1

; INT_sets |= swi->mask;
; 9 cycles

LDA MASK,X ; swi->mask -> A #3
ORA INT_sets ; INT_sets | mask -> A #3
STA INT_sets ; INT_sets | mask -> INT_sets #3

; priority = lmbd(mask);
; 23 cycles

LDA MASK,X ; swi->mask -> A #3
LMBD ; lmbd(swi->mask) -> A #20

; ready = INT_rdytab[priority];
; 3 cycles

ASLA ; sizeof(INT_Obj) * priority -> A #1
ADD #INT_rdytab ; ready-> A #2

; push(swi);
; 2 cycles

PSHX ; swi -> stack #2

; push(ready);
; 2 cycles

PSHA ; ready -> stack #2

; ready->tail->link = swi;
; ready->tail = swi;
; 18 cycles

TAX ; ready -> X #1
LDA 2,SP ; swi -> A #4
LDX TAIL,X ; ready->tail -> X #3
STA ,X ; swi -> ready->tail->link #2
PULX ; ready -> X , SP -> swi #3
STA TAIL,X ; swi -> ready->tail #3
AIS #1 ; SP + 1 -> SP , SP -> xx #2

; Enable Interrupts
; 1 cycle

CLI ; enable interrupt #1

; if ((INT_mask > INT_sets) || INT_lock)
; 12 cycles
A Software Approach to Using Nested Interrupts in HCS08, Rev.0

Freescale Semiconductor26

Miscellaneous Topics
LDA INT_mask ; INT_mask -> A #3
CMP INT_sets ; INT_mask ?> INT_sets -> A #3
BGT unlock ; if (INT_mask > INT_sets) unlock #3
LDA INT_lock ; INT_lock -> A #3

; INT_exec();
; 3 cycles

BEQ INT_exec ; if (INT_mask > INT_sets) goto unlock; #3 , total 90cycles
unlock:
; {
; INT_lock--;
; return;
; }
; 11 cycles

DEC INT_lock ; INT_lock-- #5
RTS ; interrupt return #6 , total 95 cycles

;***
;*
;* void INT_exec(void)
;* {
;* for (;;)
;* {
;*
;* Push(INT_mask);
;*
;* priority = lmbd(1,INT_sets);
;*
;* rdytab = &SWI_D_rdytab[priority];
;*
;* swi = (INT_Obj *)ready->link;
;*
;* swi->lock = -1;
;*
;* rdytab->link = swi->link;
;*
;* if(swi->link == NULL)
;* {
;* SWI_D_curset ^= swi->mask;
;*
;* rdytab->tail = (PUINT)rdytab;
;*
;* rdytab->link = (PUINT)NULL;
;*
;* }
;* else
;* {
;* swi->link = NULL;
;* }
;*
;* INT_mask <<= 1;
;*
;* INT_lock = -1;
;*
;* (*func)();
A Software Approach to Using Nested Interrupts in HCS08, Rev.0

Freescale Semiconductor 27

Miscellaneous Topics
;*
;* INT_lock = 0;
;*
;* INT_mask = Pop();
;*
;* if (INT_mask > INT_sets)
;* {
;* break;
;* }
;* }
;*
;* return;
;* }
;*
;***

; INT_exec();

INT_exec:

; INT_lock++;
; 5

INC INT_lock ; INT_lock + 1 -> INT_lock #5

; INT_run();

INT_run:

; push(INT_mask);
; 5 cycles

LDA INT_mask ; INT_mask -> A #3
PSHA ; INT_mask -> stack #2

; priority = lmbd(INT_sets);
; 23 cycles

LDA INT_sets ; INT_sets -> A #3
LMBD ; lmbd(INT_sets) -> A #20

; swi = (INT_Obj *)ready->link;
; 5 cycles

ASLA ; sizeof(INT_Obj) * priority -> A #1
ADD #INT_rdytab ; INT_rdytab[priority] -> A #2
PSHA ; ready -> stack #2

; swi = (INT_Obj *)ready->link;
; 8 cycles

TAX ; ready -> X #1
LDX LINK,X ; swi -> X #5
PSHX ; swi -> stack #2

; swi->lock = -1;
; 5 cycles
A Software Approach to Using Nested Interrupts in HCS08, Rev.0

Freescale Semiconductor28

Miscellaneous Topics
DEC LOCK,X ; -1 -> swi->lock #5

; ready->link = swi->link;
; 9 cycles

LDA LINK,X ; swi->link -> A #3
LDX 2,SP ; ready -> X #3
STA LINK,X ; swi->link -> ready->link #3

; if (ready->link == 0)
; {
; ready->tail = (PUCHAR)ready;
; ready->link = (PUCHAR)0;
; INT_sets ^= swi->mask;
; }
; 26 cycles

BNE not_empty ; if (ready->head != 0) goto L4 #3
STX TAIL,X ; ready -> ready->tail #3
CLR LINK,X ; 0 -> ready->link #5
PULX ; swi -> X #3
LDA MASK,X ; swi->mask -> A #3
EOR INT_sets ; INT_sets ^ mask -> A #3
STA INT_sets ; INT_sets ^ mask -> INT_sets #3
BRA dispatch ; goto dispatch #3

; else
; {
; swi->link = 0;
; }
; 8 cycles

not_empty:

PULX ; swi -> X #3
CLR LINK,X ; 0 -> swi->link #5

dispatch:

; pop();
; 2 cycles

AIS #1 ; clear stack #2

; INT_mask = swi->mask << 1;
; 7 cycles

LDA MASK,X ; swi->mask -> A #3
ASLA ; swi->mask << 1 -> A #1
STA INT_mask ; swi->mask << 1 -> INT_mask #3

; INT_lock = -1;
; 4 cycles

MOV #READY,INT_lock ; -1 -> INT_lock #4
A Software Approach to Using Nested Interrupts in HCS08, Rev.0

Freescale Semiconductor 29

Miscellaneous Topics
; (* func)();
; 20 cycles

PSHH ; push(H) #2
PSHX ; push(X) #2
LDHX FUNC,X ; swi->func -> H:X #5
JSR ,X ; (* func)(); #5
PULX ; X = pop(); #3
PULH ; H = pop(); #3

; INT_lock = 0;
; 4 cycles

MOV #POST,INT_lock ; 0 -> INT_lock #4

; if (INT_mask > INT_sets)
; 9 cycles

PULA ; INT_mask -> A , SP -> xx #3
STA INT_mask ; INT_mask -> INT_mask #3
CMP INT_sets ; INT_mask ?> INT_sets #3

; {
; break;
; }
; 3 cycles

BLE INT_run ; if (INT_mask > INT_sets) break; #3

; INT_lock--;
; 5 cycles

DEC INT_lock ; INT_lock - 1 -> INT_lock; #5

; return;
; 6 cycles

INT_post_exit:
RTS ; interrupt return #6 , total 143 cycles

;***
;* End Of File
;***
A Software Approach to Using Nested Interrupts in HCS08, Rev.0

Freescale Semiconductor30

THIS PAGE IS INTENTIONALLY BLANK
A Software Approach to Using Nested Interrupts in HCS08, Rev.0

Freescale Semiconductor 31

Document Number: AN3496
Rev.0
07/2007

How to Reach Us:

Home Page:
www.freescale.com

Web Support:
http://www.freescale.com/support

USA/Europe or Locations Not Listed:
Freescale Semiconductor, Inc.
Technical Information Center, EL516
2100 East Elliot Road
Tempe, Arizona 85284
+1-800-521-6274 or +1-480-768-2130
www.freescale.com/support

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
www.freescale.com/support

Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064
Japan
0120 191014 or +81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:
Freescale Semiconductor Hong Kong Ltd.
Technical Information Center
2 Dai King Street
Tai Po Industrial Estate
Tai Po, N.T., Hong Kong
+800 2666 8080
support.asia@freescale.com

For Literature Requests Only:
Freescale Semiconductor Literature Distribution Center
P.O. Box 5405
Denver, Colorado 80217
1-800-441-2447 or 303-675-2140
Fax: 303-675-2150
LDCForFreescaleSemiconductor@hibbertgroup.com

Information in this document is provided solely to enable system and software
implementers to use Freescale Semiconductor products. There are no express or
implied copyright licenses granted hereunder to design or fabricate any integrated
circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to
any products herein. Freescale Semiconductor makes no warranty, representation or
guarantee regarding the suitability of its products for any particular purpose, nor does
Freescale Semiconductor assume any liability arising out of the application or use of any
product or circuit, and specifically disclaims any and all liability, including without
limitation consequential or incidental damages. “Typical” parameters that may be
provided in Freescale Semiconductor data sheets and/or specifications can and do vary
in different applications and actual performance may vary over time. All operating
parameters, including “Typicals”, must be validated for each customer application by
customer’s technical experts. Freescale Semiconductor does not convey any license
under its patent rights nor the rights of others. Freescale Semiconductor products are
not designed, intended, or authorized for use as components in systems intended for
surgical implant into the body, or other applications intended to support or sustain life,
or for any other application in which the failure of the Freescale Semiconductor product
could create a situation where personal injury or death may occur. Should Buyer
purchase or use Freescale Semiconductor products for any such unintended or
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and
its officers, employees, subsidiaries, affiliates, and distributors harmless against all
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,
directly or indirectly, any claim of personal injury or death associated with such
unintended or unauthorized use, even if such claim alleges that Freescale
Semiconductor was negligent regarding the design or manufacture of the part.

RoHS-compliant and/or Pb-free versions of Freescale products have the functionality
and electrical characteristics as their non-RoHS-compliant and/or non-Pb-free
counterparts. For further information, see http://www.freescale.com or contact your
Freescale sales representative.

For information on Freescale’s Environmental Products program, go to
http://www.freescale.com/epp.

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.
All other product or service names are the property of their respective owners.
© Freescale Semiconductor, Inc. 2007. All rights reserved.

http://www.freescale.com
http://www.freescale.com/epp

	1 Non-Nested Interrupts
	1.1 Interrupts
	1.2 Interrupt Stack Frame
	1.3 Inhibiting Interrupts

	2 Nested Interrupt Mechanism
	2.1 Requirements Of Nested Interrupts
	2.2 Software Nested Interrupt Scheduler
	2.2.1 Scheduler Model
	2.2.2 Data Structure
	2.2.2.1 Interrupt Object
	2.2.2.2 FIFO Queues
	2.2.2.3 Other Schedule Data

	2.2.3 FIFO Operation

	2.3 Implementation

	3 Port User Program with the Scheduler
	3.1 Variable and Macro Definitions
	3.2 Interrupt Service Routine Definitions
	3.3 Initialization

	4 Performance
	4.1 Flash Memory Consumption
	4.2 RAM Consumption
	4.3 Time Consumption

	5 Miscellaneous Topics
	5.1 Use ISR Not Supporting Scheduler
	5.2 Use Scheduler in the Main Loop

