
Freescale Semiconductor
Application Note

Document Number: AN3582
Rev. 0, 02/2008

Contents
 Introduction. 1
Data Logger Main Features. 2
Work Scheme of the USB Data Logger. 4

3.1 Data Transfer between Host and Device. 4
3.2 Customized Protocol . 5
3.3 USB Data Logger Communication Pipes 6
Hardware of the USB Data Logger 6
Firmware Design . 7

5.1 System Framework . 7
5.2 Porting of the USB Stack. 10
5.3 Firmware for Different Functional Modules 13
PC Software of the Data Logger 15
Summary . 16
Acronyms. 16

ppendix AApplication Protocol of the Data Logger 17
A.1 ADC (Peripheral 0x02) . 17
A.2 General Use IO (Peripheral 0x06) 20
A.3 TPM (Peripheral 0x07) . 21

ppendix Bthe USB Data Logger Software. 22

The USB Data Logger Based on
the MC9S08JM60
by: Derek Liu, Daniel Uribe

Systems and Applications Engineering
1 Introduction
A data logger is an attractive alternative to a recorder or
data acquisition system in many applications. Data
loggers have the ability to accept a greater number of
input channels with better accurate resolution, and record
large amounts of data. The data logger also has
intelligence that provides the user with diverse
capabilities. For example, raw data can be analyzed to
give voltage, differential temperatures, and an alarm if
the analysis result is beyond the normal range.

USB has been used in many applications. It is not limited
to the field of consumer electronics. It is widely used in
industrial control, test and measurement, and embedded
systems. The MC9S08JM60 is an 8-bit MCU with a USB
interface. It has many peripherals, such as ADC, SPI,
SCI, IIC, ACMP, TPM that make it easy to be integrated
into different applications.

This document demonstrates the development of a USB
data logger with an MC9S08JM60. This data logger
makes use of peripherals from the MC9S08JM60 that are

1
2
3

4
5

6
7
8
A

A

© Freescale Semiconductor, Inc., 2008. All rights reserved.

Data Logger Main Features
easy to implement without more external components. Based on the Freescale USB stack the hardware and
firmware are also easy to design. This data logger is simple, economic, and useful.

2 Data Logger Main Features

Figure 1. Data Logger System

Figure 1 is the USB data logger system based on the MC9S08JM60 demonstration board. The data logger
is composed of a PC and a demonstration board. It consists of three parts from the software point of view:

• PC GUI
• PC driver
• Firmware

The data logger is designed to support the following features based on the demo board resource:
• Data acquisition (14 channels)

The MC9S08JM60 provides 12 external ADC channels. ADPC0, ADPC1, ADPC2... ADPC10,
and ADPC11 are all in the data logger. It also provides an on-chip temperature sensor and reference
voltage band gap. The ADC channels are:
— ADPC0–11
— Temperature
— Bandgap
All ADC channels can be enabled or disabled. Any of them can be used.
The data logger supports 3 resolutions:
— 8-bit,
— 10-bit
— 12-bit (MC9S08JM60 feature)
The USB Data Logger Based on the MC9S08JM60, Rev. 0

Freescale Semiconductor2

Data Logger Main Features
The data logger is designed to support three kinds of trigger modes:
— Software (SW) trigger mode: The ADC can be started by command from the USB host.
— Delay trigger mode: The ADC can be triggered after a time delay of 0–256 seconds. The host

sends the start command to a device with a time delay parameter and the ADC starts to work
after the delay time has elapsed.

— Voltage level trigger mode: The voltage level and trigger logic can be set. The ADC is triggered
if the voltage of a channel is greater or less than the set voltage. The command has four
parameters: trigger channel, voltage level, and trigger logic.

In this application the channels ADPC0, ADPC1, and ADPC3 are connected to the X, Y, and Z
output of the 3-axis accelerometer sensor on the demonstration board. The ADPC2 is connected to
the output of the potentiometer. The other channels can be connected to the external analog input
signal.

• GPIO status control and reading
The data logger can control seven LEDs on demonstration boards and read the status of four
buttons.

• Pulse width modulation (PWM) signal output
The data logger controls the TPM and generates the PWM signal that drives the buzzer on the
demonstration board. The buzzer can be used to show when the status or data exceeds its normal
range in the data logger system.

• Data recording
The software running on the PC can read the data and status from the device, display them on the
GUI, and record them into a data file. With this method the data can be visualized in real time. The
USB data logger uses the data storage space of the computer system and achieves mass data
recording.

NOTE
The data logger in this application has up to 14 ADC channels input. For a
phase difference between two different channels. All ADC inputs must be
converted one by one, not in parallel. The phase difference between channel
0 and channel 1 is illustrated in Figure 2.

Figure 2. ADC Work Scheme

… … … …… ……
Ch0 Ch1 Chn Ch0 Ch1 Chn Ch0 Ch1 Chn

…
Ch0 Ch1 Chn

1st Sample 2nd Sample 3rd Sample Nth Sample

1 Period 1 Period

Conversion
time of 1
Channel

……
Phase

difference
between
Ch0 and

Ch1
The USB Data Logger Based on the MC9S08JM60, Rev. 0

Freescale Semiconductor 3

Work Scheme of the USB Data Logger
3 Work Scheme of the USB Data Logger

3.1 Data Transfer between Host and Device
All communication starts from the USB host because the data logger is based on the USB system. The host
sends the command and request to the device. The USB device then executes the command, responds to
the request, and feeds back the necessary data to the host. Figure 3 illustrates the communication scheme
of a typical USB system and adopted in the data logger system.

Figure 3. USB Communication Scheme

As shown in Figure 3, the host sends the command and data to the device through the USB driver. The
device then executes the command, saves the data, and replies to the host with status or data. The USB
driver is transparent between the GUI software and the firmware of the device.

After the USB is enumerated and configured successfully, a communication pipe is created between the
USB host and the device. All commands and data are transferred into the pipes. According to the USB
features of the MC9S08JM60 five pipes are built in the data logger system.

• Default pipe (control pipe):
The default pipe is used to enumerate and configure the USB device and is essential for all USB
devices. The default pipe is built on endpoint 0.

• Command pipe
The command pipe is used by the host to send the commands to USB device. It is built on endpoint
1 of the USB device.

• Status pipe
The USB device sends the response to the host via the status pipe after it receives and executes the
command.

• Data out pipe
This pipe is used by the host to transfer data to the device.

• Data in pipe
The device sends the data to the host via the data in pipe.

GUI Driver Firmware

Command, Data…
Command, Data,…

Response
Response
The USB Data Logger Based on the MC9S08JM60, Rev. 0

Freescale Semiconductor4

Work Scheme of the USB Data Logger
3.2 Customized Protocol
The control pipe and status pipe are designed to transfer a packet of up to16 bytes.

The data out and data in pipe can accommodate 32 bytes in one packet. They are designed to transfer mass
data because the sessions for control and status information are not too much. They are designed to use
smaller packet sizes.

The commands, data, and response in Figure 3 are transferred in the application layer of the USB system
and located above the USB standard protocol. Refer to AN3560-- The USB Device Development with the
MC9S08JM60 for the description of the USB protocol layer. They are defined in a customized protocol
according to different applications. The data logger applies a simple protocol made by the developer.

Table 1 and Table 2 are the command format and response format transferred between the USB host and
the device adopted by the data logger. The first byte indicates the module that accepts the command. For
example, the 0x02 means the command belongs to the ADC module. The second byte is the command for
the module specified in the first byte. For example, for the ADC module 0x01 is a configuration command
and 0x02 is the command for reading the configuration. The following bytes are parameters for the
command. The parameter is flexible and optional. It can be neglected for some commands. For example:

The start ADC conversion command is:

The response for starting the ADC conversion from the device is:

Parameter 0xFF means that the ADC conversion has started successfully. If the ADC fails to start it reads
0x00.

The detailed protocol is attached in Appendix A, “Application Protocol of the Data Logger”.

Table 1. Command Format from Host

Byte 1 2 3 4 ……

Description Module Command Para1 Para2 Para……

Table 2. Response from Device

Byte 1 2 3 ……

Description Module Command Para1 Para……

0x02 0x03

0x02 0x03 0xFF
The USB Data Logger Based on the MC9S08JM60, Rev. 0

Freescale Semiconductor 5

Hardware of the USB Data Logger
3.3 USB Data Logger Communication Pipes

Figure 4. Communication Pipes for USB Data Logger

Figure 4 is the connection between host and device. The pipes are built after the device is enumerated and
configured successfully. The data transfer direction is illustrated in Figure 4. The bulk transfer type is
applied to the command pipe, status pipe, and data out pipe. To make sure the application can get the
guaranteed bandwidth the interrupt transfer type is adopted for the data in pipe. The data sample results
are transferred in this pipe and helps to get a stable sample rate.

The customized protocol before mentioned is applied to the data transferred in these pipes.

4 Hardware of the USB Data Logger
The USB data logger is based on the MC9S08JM60 demonstration board. A different power supply is built
on the 3-axis accelerometer, potentiometer, buzzer, LEDs, buttons, and P&E multi-link circuit.

The outputs of the accelerometer and potentiometer are attached to the ADC input channels. The buzzer
can be connected to the output of the TPM2 module. The LEDs and buttons are connected to the input and
output module of the MCU. The on-board P&E multi-link can be used to download and debug the
firmware. The power supply circuit enables the system in several different power modes:

• Bus powered
• Self-powered
• Powered by multi-link
• External power supply
• External 5 V power

Command Pipe

Control Pipe

Status Pipe

Data out Pipe

EP0

EP1

EP2

EP3

Data in Pipe
EP5

PC
Software

USB
Module
The USB Data Logger Based on the MC9S08JM60, Rev. 0

Freescale Semiconductor6

Firmware Design
The data logger can be debugged and works only with the demo board and CodeWarrior installed on a
computer.

The detailed schematic of the demonstration board is not discussed here. For details go to
www.freescale.com.

5 Firmware Design

5.1 System Framework

5.1.1 Firmware Architecture

Figure 5. USB Data Logger Firmware Architecture

Figure 5 illustrates the USB data logger firmware architecture.

The USB stack is used for the USB device enumeration and configuration. While the USB device is
attached to the host it starts the enumeration process. The enumeration process is done on endpoint 0. It is
the same for all USB devices. The USB device is configured in the enumeration process. During this
process the address of the USB device is assigned and all USB device descriptors are transferred to the
host.

In the USB data logger application one USB stack designed for JM60 MCU is ported. It is easy and flex-
ible. For detailed information refer to AN3560 —The USB Device Development with the MC9S08JM60,
and AN3564 — Customize the USB Application Using the MC9S08JM.
The API is the interface for the application to access the USB port. It is based on the USB stack and
provides the communication functions for endpoint 1–6 of the USB module. The high layer application
calls the API function to send or receive data.

The driver for other peripherals provide the API functions to access the ADC, TPM, and GPIO modules.
The application in high layer calls these API functions to implement for certain purposes.

 Application – Data Logger

USB Stack

USB User API
ADC, TPM,
GPIO Driver
The USB Data Logger Based on the MC9S08JM60, Rev. 0

Freescale Semiconductor 7

Firmware Design
5.1.2 Main Function

Figure 6. Flow Chart of the Main Function

The main function flow chart is illustrated in Figure 6. At first the firmware initializes the system. The
MCG, ADC, TPM, GPIO, and other modules are set to system default. The USB is enabled in this process.
Then the main function enters into an infinite loop. The Check_USB_Status function controls the transfer
of the USB states between attached and suspend. The Usr_Task is called in the main loop after the device
succeeds to enumerate.

The enumeration process is not expressed in the main function because it is based on the USB interrupt.
For more details on enumeration, please refer to AN3560—The USB Device Development with the
MC9S08JM60.

System Initialization

System Start

Check_USB_Status

Usr_Task
The USB Data Logger Based on the MC9S08JM60, Rev. 0

Freescale Semiconductor8

Firmware Design
5.1.3 User Task

Figure 7. Usr_Task Flow Chart

Figure 7 is the Usr_Task function flow chart.

At first, the Usr_Task checks whether the data acquisition has started. While the data acquisition is
working according to the status of the ADC conversion it copies the data to the endpoint buffer of endpoint
5. If the data acquisition is not started or the data has been filled into the buffer of endpoint 5, the program
checks whether there is a command received from the host via endpoint 2. The program analyzes the
command and processes them according to the protocol mentioned in the above section. Afterwards the
program begins to check whether there is response data needed that needs to be transferred to the host via

Start

Data Acquisition
Working?

Data Buffer
Semaphore = 1?

Copy the data to
even buffer of EP5

Copy the data to
odd buffer of EP5

Deliver the data
 To the host

Has command
received?

Parse the
command

Process ADC
command

Process TPM
command

Send status
response and

clear pending flag

Is status
pipe available?

Pending the
response

Return

Is status
response not null?

N Y

Y

N

……

N

Y

Y

N

Y

N
The USB Data Logger Based on the MC9S08JM60, Rev. 0

Freescale Semiconductor 9

Firmware Design
status pipe. If there is a response data it is delivered. If there is no response the program suspends and then
exits from the function.

The following section discusses the firmware of the USB data logger in detail.

5.2 Porting of the USB Stack
Freescale provides the optimized USB stack with good performance, small code size and RAM usage. The
following steps are the porting process.

1. The clock generation
The USB module of the MC9S08JM60 needs a 24 MHz bus clock. The MCG initialization
function needs to be modified in terms of the external clock source. The USB data logger
application uses a 12 MHz external crystal clock source.

2. Power mode
The USB device has bus-powered and self-powered modes. The USB data logger adopts the
bus-powered mode. The MCU is in attached mode after the MCU begins to work. The MCU needs
to detect the status of the USB connection if the self-powered mode is selected and one GPIO port
can be used to sense the connection. The function of Check_USBBus_Status() in Usb_drv.c file
can be modified to match the detection requirement.

3. USB configuration
The regulator pullup resistor of the USB module must be configured according to the application.
The result in the USB initialization needs to be adjusted.

4. USB descriptors modification
All descriptors must be modified according to the application that includes the device descriptor,
configuration descriptor, interface descriptor, and string descriptor.
The related file is Usb_descriptor.c and Usb_descriptor.h

5. USB standard class support
The process for a class standard request can be placed in the call-back function if the device
matches the USB standard class. Place the entrance of this call-back function into the
Class_Req_Handler array in the Usb_Descriptor.c.
The USB data logger is not a standard class device. No call-back function is needed for the array
of Class_Req_Handler.

6. Support for suspend mode
The firmware has a different configuration between self-powered and a bus-powered USB device.
For more details refer to AN3560 -- USB Device Development with MC9S08JM60.
The device supports remote wakeup from suspend mode. This feature is declared in the USB
configuration descriptor. The interrupt source for wake up must be set correctly. The un-expected
interrupt can be disabled in the Clear_Int() function before entering suspend mode, and recovered
in Recover_Int() function after wakeup.
The USB Data Logger Based on the MC9S08JM60, Rev. 0

Freescale Semiconductor10

Firmware Design
7. Other modifications
The transaction for stall interrupt can be processed in the USB_Stall_Handler function (Usb_Drv.c)
if the stall is used for endpoint 1-6.

5.2.1 USB Resource Assignment
The USB data logger uses four endpoints besides endpoint 0. The packet size and endpoint buffer assigned
to them are listed in the following table.

The declaration of the variant for these endpoints are placed in the file Usr_Ep_Handler.h. The
initialization and events process for the endpoints are placed in the file Usr_Ep.Handler.c.

The MC9S08JM60 start address of the USB endpoint buffer must be 16-byte aligned. Therefore the
allocated endpoint buffer in Table 3 starts from 0x20, 0x30, 0x40 and are the multiples of 16.

5.2.2 Data Transfer for the USB Application Layer

5.2.2.1 Call-Back Function for Endpoint 1-6
The USB interrupt is generated when a transaction finishes at an endpoint. The USB interrupt service (ISR)
calls the USB_Transaction_Handler function and makes the program jump to the call-back functions of
endpoints 1–6 according to the information in STAT register.

Table 3. USB Resource Assignment

Pipe Name Endpoin
t Direction Transfer

Type
Buffer
Length

Related
Address

Absolute
Address

Control pipe 0 In Control 8 0x20 0x1880

Out 8 0x30 0x1890

Command pipe 1 Out Bulk 16 0x40 0x18A0

Status pipe 2 In Bulk 16 0x50 0x18B0

Data out pipe 3 Out Bulk 32 0x60 0x18C0

4

Data in pipe 5 In Interrupt 32 0x80 0x18E0

6

The USB Data Logger Based on the MC9S08JM60, Rev. 0

Freescale Semiconductor 11

Firmware Design
Figure 8. Jump to Call-Back Function

The array of the Usr_Ep_Handler[6] keeps the call-back functions for endpoints 1–6. The entrance of the
call-back function is copied to the Usr_Ep_Handler array if the interrupt for endpoint (1–6) is enabled
otherwise NULL is set to the associated element in the array.

The processing function for the USB data logger is saved in the Usr_Ep_Handler array.
pFunc Usr_Ep_Handler[6] = { &Ep1_Handler, &Ep2_Handler, &Ep3_Handler, NULL, &Ep5_Handler, NULL
};

The code above is the declaration and initialization of Usr_Rp_Handler array. The unused endpoint 4 and
6 have no call-back function, therefore the elements of Usr_Ep_handler (3 and 5) are set to NULL.

5.2.2.2 Endpoint State
The variable Usr_Ep_Buf_State is used to save the state of endpoints1–6. Bit [3..0] of this variable is used
to save the state of the endpoints 1–4, and bit [7..5] keeps the state of endpoints 5 and 6. Endpoints 5 and
6 are a ping-pong buffer and each take two bits.

Logic 1 means that the endpoint receives data from the host and controlled by the CPU if the endpoint is
set to out direction. Logic 0 means the SIE controls the endpoint.

Logic 1 means that the data has filled into endpoint buffer and SIE controls the endpoint buffer if the
endpoint is set to in direction. The bit is logic 0 if the CPU has the control of the endpoint buffer.

Table 4. State of the Endpoint Buffer

EP6
Odd

EP6
Even

EP5
Odd

EP5
Even

EP4 EP3 EP2 EP1

T ra n sa c tio n o n th e
E P x

is fin ish ed

E P 0 o r E P 1 –6 ?

Th e tra n sac tio n fo r
co n tro l tra n s fe r

Ju m p to ca ll-b ack
ro u tine o f th e E P 1 – 6

R e tu rn
(R E T I)

E P 0 E P 1 – 6
The USB Data Logger Based on the MC9S08JM60, Rev. 0

Freescale Semiconductor12

Firmware Design
5.2.2.3 Call-Back Function
The call-back function for the endpoint in out direction sets the associated bit to logic 1. This is because
the SIE gives up control of the buffer descriptor (BD) and endpoint buffer to the CPU while an interrupt
occurs. The data in the endpoint buffer is then copied to the user buffer that is assigned to keep the data
temporary while the endpoint is busy. Finally the call-back function gives up control of the BD and
endpoint buffer to the SIE for the next taction. This is the process for Ep1_Handler function.

The call-back function for the endpoint in in direction clears the associated bit to logic 0. The CPU then
controls the BD and endpoint buffer after the data has been fetched by the host. The main loop of the
firmware polls the state of in direction endpoint, fills the data into the endpoint buffer, and delivers to the
host.

5.2.2.4 Function for Sending Data
Two functions are used for delivering the data to the host: Send_Data_Ep() and Send_Data_PpEp().

Send_Data_Ep is used to send the data to endpoint 1–4 and Send_Data_PpEp is used to send data to the
ping-pong buffer. The caller must pass one parameter to point out the even or odd buffer for the
Send_Data_PpEp function.

At first both functions receive the source address and endpoint buffer address. Copy the data to the USB
RAM (endpoint buffer) and hand over the control of the BD and endpoint buffer to the SIE.

5.3 Firmware for Different Functional Modules

5.3.1 Driver for the ADC Module
The ADC module driver is located in ADC.c. A few API functions are provided for the Usr_Task to call.

The ADC must be configured before starting conversion. Several variables are provided to keep the ADC
configuration. Three functions are provided to configure the ADC module and receive the current ADC
configurations. They are ADC_Config(), Set_Trigger_Type (), and Get_ADC_Configuration().

After the ADC is configured the selected channels and their conversion commands are saved in the array
Work_Channel. The total number of enabled channels are kept in the variable of Total_Channels. The
firmware fetches the conversion command from Work_Channel array and enables the conversion while
the ADC is working.

Functions Get_ADC_Result () and Get_ADC_Ch_Result() are used to receive the result of one or all ADC
channels.

5.3.1.1 Data Buffer for the ADC Conversion Results
The firmware adopts two buffers to keep the ADC conversion results for all channels. The working scheme
is the same as the MC9S08JM60 USB ping-pong buffer.
The USB Data Logger Based on the MC9S08JM60, Rev. 0

Freescale Semiconductor 13

Firmware Design
Figure 9. Working Scheme of ADC Buffers

The Working_Buf variable is used to keep the activity buffer for the ADC module. The ADC conversion
result is written to buffer 0 when the Working_Buf is 0. The result is written to buffer 1 when the
Working_Buf is 1.

In case the data in the buffer is modified before delivering to the host a buffer is controlled by the ADC
module and data from the other buffer can be copied to one of the ping-pong buffers of endpoint 5.

The data in buffer 0 is copied to the even buffer of endpoint 5, and the data in buffer 1 is copied to the odd
buffer. The data in buffer 0 and 1 are then copied to the ping-pong buffer of endpoint 5.

The even buffer is used to transfer the DATA0 packet. The odd buffer for the DATA1 packet and the
DATA0/1 synchronization (DTS) does not need to be set in the BD of the ping-pong buffer.

5.3.1.2 Control of Sample Rate
Figure 2 illustrates the ADC sample sequence. All ADC channels are sampled and converted one by one
in a sample period. The sample period is controlled by a timer. The ADC conversion starts when the timer
expires and the conversion channels saved in the array of Work_Channel are converted one by one.

The ADC module adopts 6 MHz (24 MHz / 4) as the input clock. The conversion time for one channel
with a 12 bit resolution is about 4 μs (23 × ADCK + 5 × Bus_Clk). The total time for 14 channels is about
56 ms. The firmware can set the total conversion time to 100 ms because the time for switching channels
must be taken into consideration. The USB data logger sets the maximum sample rate to 1 kHz. The ADC
can perform the requirement without any problems.

The RTC module is adopted to the timer for the ADC sample. The RTC module of the MC9S08JM60 can
use an on-chip 1 kHz clock source. The RTC module is enabled after the ADC is started and the ADC
sample re-starts in the RTC interrupt service function.

ADC

Buffer 0

Buffer 1

USB
(Even
buffer)

Transferring Sampling to
Buffer 0 Host

ADC

Buffer 0

Buffer 1

USB
(Odd
buffer)

Transferring Sampling to
Buffer 1 Host

Buffer Switching
The USB Data Logger Based on the MC9S08JM60, Rev. 0

Freescale Semiconductor14

PC Software of the Data Logger
The RTC supports a long sample period (low sample period), but can not meet the requirements for high
sample frequency (more than 100 Hz). In this condition, the TPM1 is adopted to receive a high sample
frequency for the data logger.

5.3.2 Input/Output Module
The GPIO.c file provides the initialization function for the input/output module, the API for LED control,
and the function for returning the button status.

5.3.3 TPM Module
Channel 1 of the TPM2 is used to drive the buzzer on the demonstration board.

The tpm.c provides the API functions for the TPM2 module. It includes TPM initialization, configuration,
and start and stop. The configuration function is used to set the TPM2 for outputting the PWM signal. The
frequency and duty of the PWM signal can also be configured.

The TPM_Start and TPM_Stop are used to start or stop the output of the PWM signal.

6 PC Software of the Data Logger
The PC software of the USB data logger comprises the USB DLL driver and a friendly GUI.

The USB DLL driver provides the API functions for the GUI. These functions can be loaded automatically
according to the vendor ID and product ID reported in the USB device enumeration process.

Figure 10 is the USB data logger GUI.

Figure 10. Data Logger GUI
The USB Data Logger Based on the MC9S08JM60, Rev. 0

Freescale Semiconductor 15

Summary
The data logger GUI can perform the following actions:
1. Refresh the status button
2. Set the buzzer to different frequencies
3. Set the PWM signal to a determined duty
4. Configure ADC channels, resolution, and trigger modes
5. Start/stop ADC conversion
6. Save the real-time data

7 Summary
In this document the USB data logger development is discussed. The following topics are involved:

• Features of the USB data logger
• Working scheme for USB data logger
• Firmware design of the USB data logger

— Firmware architecture
— Porting the USB stack
— API functions for the user application layer
— The ADC, TPM, and GPIO driver

The USB data logger firmware provides a clear USB application framework. The work scheme of the USB
data logger and the development process is clear and porting the USB stack to a new application is easy.

8 Acronyms
USB Universal Serial Bus

TPM Time/Pulse-Width Modulator

RTC Real-Time Counter

BD Buffer Descriptor

SIE Serial Interface Engine

GUI Graphic User Interface
The USB Data Logger Based on the MC9S08JM60, Rev. 0

Freescale Semiconductor16

Acronyms
Appendix A Application Protocol of the Data Logger

A.1 ADC (Peripheral 0x02)

A.1.1 Host to Device

Command Description Data

0x00 Request ADC
data

Byte 1 – Channel number:
0 – 11: ADCH 0 – 11
12: Temperature channel
13: Band gap channel
The USB Data Logger Based on the MC9S08JM60, Rev. 0

Freescale Semiconductor 17

Acronyms
0x01 Config_ADC() Byte 1 – Channel High
bit7..6: Reserved
bit5: Temperature
bit4: Band Gap
bit3..0: Ch11..Ch8
Byte 2 – Channel Low
Ch7..Ch0
Byte 3 – Precision
0: 8 bit
1: 10 bit
2: 12 bit
Byte 4 – Sample
frequency
0: 0.01 Hz
1: 0.02 Hz
2: 0.05 Hz
3: 0.1 Hz
4: 0.2 Hz
5: 0.5 Hz
6: 1 Hz
7: 2 Hz
8: 5 Hz
9: 10 Hz
10: 20 Hz
11: 50 Hz
12: 100 Hz
13: 200 Hz
14: 500 Hz
15: 1 kHz
16: 2 kHz
17: 5 kHz
18: 10 kHz
Byte 5 – Sample mode
0: SW trigger
1: Delay trigger
2: Level trigger
Byte 6 – Para1
Delay trigger: Delay
time(0–256s)
Level trigger: trigger
channel
SW trigger: NA
Byte 7 – Para 2
Level trigger: trigger logic,
0 greater than
1 less than
Byte 8 – Para 3
Trigger level: 0-100%

0x02 Return_ADC_
Configuration()
– Send the
ADC
configuration to
the host

Command Description Data
The USB Data Logger Based on the MC9S08JM60, Rev. 0

Freescale Semiconductor18

Acronyms
A.1.2 Device to Host

0x03 Start_ADC()

0x04 Stop_ADC()

0x05 Return_ADC_
State()

Command Description Data

0x00 Return ADC data Byte 1 – ADC Channel
Byte 2 – Channel data high
Byte 3 – Channel data low

0x01 Config_ADC() ACK 0xFF – Configuration accepted
0x00 – Configuration not accepted

0x02 Return_ADC_Configu
ration()

Byte 1 – Channel High
bit7..6: Reserved
bit5: Temperature
bit4: Band Gap
bit3..0: Ch11..Ch8
Byte 2 – Channel low
Ch7..Ch0
Byte 3 – Precision
0: 8 bit
1: 10 bit
2: 12 bit
Byte 4 – Sample frequency
0: 1 Hz
1: 10 Hz
2: 100 Hz
…..
5: 100 kHz
Byte 5 – Sample mode
0: SW trigger
1: Delay trigger
2: Level trigger
Byte 6 – Para1
Delay trigger: Delay time(0-256s)
Level trigger: Trigger channel
SW trigger: NA
Byte 7 – Para 2
Level trigger: trigger logic, 0
greater than
1 less than
Byte 8 – Para 3
Trigger level: 0-100%

0x03 Start_ADC() ACK 0xFF – Configuration accepted
0x00 – Configuration not accepted

0x04 Stop_ADC() ACK 0xFF – Configuration accepted
0x00 – Configuration not accepted

Command Description Data
The USB Data Logger Based on the MC9S08JM60, Rev. 0

Freescale Semiconductor 19

Acronyms
A.2 General Use IO (Peripheral 0x06)

A.2.1 Host to Device

A.2.2 Device to Host

A.3 TPM (Peripheral 0x07)

A.3.1 Host to Device

A.3.2 Device to host

0x05 Return_ADC_State() Byte 1 – bit 7: Configured
bit 6..2: Reserved
bit 1: Data available

Command Description Data

0x00 Set LED status 1 byte – Data to be transferred to 8 bit output port (PTE2,
PTE3, PTF0, PTF1, PTC2, PTC4, PTF5, PTD2). Binary
encoded.

0x01 Read the buttons’ status

Command Description Data

0x00 Set LED status 0xFF – configuration accepted
0x00 – configuration not accepted

0x01 Read the buttons’ status Bit3..Bit0 Led4..Led1

Command Description Data

0x00 Start PWM Byte 1 – Frequency high
Byte 2 – Frequency low
(Range: 0 - 1000)
Byte 3 – Duty cycle (0 – 100)

0x01 Stop PWM

Command Description Data

0x00 Start PWM 0xFF – Configuration accepted
0x00 – Configuration not accepted

0x01 Stop PWM 0xFF – Configuration accepted
0x00 – Configuration not accepted

Command Description Data
The USB Data Logger Based on the MC9S08JM60, Rev. 0

Freescale Semiconductor20

Acronyms
Appendix B the USB Data Logger Software
The USB data logger software is provided for reference. The software includes the firmware, PC driver
(Win-Driver), and GUI. For more details go to www.freescale.com.

The USB data logger firmware project is developed under CodeWarrior for the HC(S)08 V6.0 with the
MC9S08JM60 service pack installed. It can be downloaded to the demonstration board MC9S08JM60.

If the data logger demonstration board is connected to a PC with Windows XP the system then prompts a
dialog box to show that a new device is detected and the Win-Driver can be installed.

The GUI is included in the installation package and can be installed in the system.
The USB Data Logger Based on the MC9S08JM60, Rev. 0

Freescale Semiconductor 21

Document Number: AN3582
Rev. 0
02/2008

How to Reach Us:

Home Page:
www.freescale.com

Web Support:
http://www.freescale.com/support

USA/Europe or Locations Not Listed:
Freescale Semiconductor, Inc.
Technical Information Center, EL516
2100 East Elliot Road
Tempe, Arizona 85284
+1-800-521-6274 or +1-480-768-2130
www.freescale.com/support

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
www.freescale.com/support

Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064
Japan
0120 191014 or +81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:
Freescale Semiconductor Hong Kong Ltd.
Technical Information Center
2 Dai King Street
Tai Po Industrial Estate
Tai Po, N.T., Hong Kong
+800 2666 8080
support.asia@freescale.com

For Literature Requests Only:
Freescale Semiconductor Literature Distribution Center
P.O. Box 5405
Denver, Colorado 80217
1-800-441-2447 or 303-675-2140
Fax: 303-675-2150
LDCForFreescaleSemiconductor@hibbertgroup.com

Information in this document is provided solely to enable system and software
implementers to use Freescale Semiconductor products. There are no express or
implied copyright licenses granted hereunder to design or fabricate any integrated
circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to
any products herein. Freescale Semiconductor makes no warranty, representation or
guarantee regarding the suitability of its products for any particular purpose, nor does
Freescale Semiconductor assume any liability arising out of the application or use of any
product or circuit, and specifically disclaims any and all liability, including without
limitation consequential or incidental damages. “Typical” parameters that may be
provided in Freescale Semiconductor data sheets and/or specifications can and do vary
in different applications and actual performance may vary over time. All operating
parameters, including “Typicals”, must be validated for each customer application by
customer’s technical experts. Freescale Semiconductor does not convey any license
under its patent rights nor the rights of others. Freescale Semiconductor products are
not designed, intended, or authorized for use as components in systems intended for
surgical implant into the body, or other applications intended to support or sustain life,
or for any other application in which the failure of the Freescale Semiconductor product
could create a situation where personal injury or death may occur. Should Buyer
purchase or use Freescale Semiconductor products for any such unintended or
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and
its officers, employees, subsidiaries, affiliates, and distributors harmless against all
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,
directly or indirectly, any claim of personal injury or death associated with such
unintended or unauthorized use, even if such claim alleges that Freescale
Semiconductor was negligent regarding the design or manufacture of the part.

RoHS-compliant and/or Pb-free versions of Freescale products have the functionality
and electrical characteristics as their non-RoHS-compliant and/or non-Pb-free
counterparts. For further information, see http://www.freescale.com or contact your
Freescale sales representative.

For information on Freescale’s Environmental Products program, go to
http://www.freescale.com/epp.

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.
All other product or service names are the property of their respective owners.
© Freescale Semiconductor, Inc. 2008. All rights reserved.

http://www.freescale.com
http://www.freescale.com/epp

	1 Introduction
	2 Data Logger Main Features
	3 Work Scheme of the USB Data Logger
	3.1 Data Transfer between Host and Device
	3.2 Customized Protocol
	3.3 USB Data Logger Communication Pipes

	4 Hardware of the USB Data Logger
	5 Firmware Design
	5.1 System Framework
	5.1.1 Firmware Architecture
	5.1.2 Main Function
	5.1.3 User Task

	5.2 Porting of the USB Stack
	5.2.1 USB Resource Assignment
	5.2.2 Data Transfer for the USB Application Layer
	5.2.2.1 Call-Back Function for Endpoint 1-6
	5.2.2.2 Endpoint State
	5.2.2.3 Call-Back Function
	5.2.2.4 Function for Sending Data

	5.3 Firmware for Different Functional Modules
	5.3.1 Driver for the ADC Module
	5.3.1.1 Data Buffer for the ADC Conversion Results
	5.3.1.2 Control of Sample Rate

	5.3.2 Input/Output Module
	5.3.3 TPM Module

	6 PC Software of the Data Logger
	7 Summary
	8 Acronyms
	A.1 ADC (Peripheral 0x02)
	A.1.1 Host to Device
	A.1.2 Device to Host

	A.2 General Use IO (Peripheral 0x06)
	A.2.1 Host to Device
	A.2.2 Device to Host

	A.3 TPM (Peripheral 0x07)
	A.3.1 Host to Device
	A.3.2 Device to host

