
Freescale Semiconductor
Application Note

Document Number: AN3586
Rev. 0, 01/2008

Contents

Introduction . 2
1.1 About Freescale ColdFire Core. 2
1.2 Freescale ColdFire V1 Architecture. 2
Introduction of μC/OS-II. 3

2.1 Features . 3
2.2 Licensing . 4

3 Tool Chain . 4
4 Kernel Files Porting on ColdFire V1 5

4.1 OS_CPU.H . 5
4.2 OS_CPU_C.C and OS_CPU_A.ASM 6
4.3 Time Tick. 8
4.4 Interrupt . 10

Run uC/OS-II on MCF51QE128
Porting μC/OS-II Kernel to Freescale ColdFire V1 Core
by: Xu Wei

Systems and Applications Engineering
MCF51QE128 is a new Freescale MCU with a 32-bit
ColdFire version 1 (V1) core, which is a reduced
programming model of ColdFire core (V2–V5).The
μC/OS-II is a real-time operating system (RTOS) for
microcontrollers and microprocessors. It is widely used
in the systems of many fields. The mC/OS-II runs on a
large number of processor architectures such as ARM
and MIPS. It can also run on Freescale ColdFire
version 2 and version 3. AN1052 is available on
Micrium website to help the users port uC/OS-II to
ColdFire version 2 (V2).

This application note shows how to port uC/OS kernel on
ColdFire version 1 and make it run on the silicon of
MCF51QE128. The ColdFire V1 architecture and the
uC/OS-II kernel are not detailed in this application note.
However, it is beneficial to have some information on
Freescale ColdFire V1 architecture and uC/OS-II kernel.
All the code in this application note has been tested and
debugged on MCF51QE128.

1

2

© Freescale Semiconductor, Inc., 2008. All rights reserved.

www.Micrium.com

Introduction
1 Introduction
The MCF51QE128 is a member of the low-cost, low-power, high-performance version 1 (V1) ColdFire
family of 32-bit microcontroller units (MCUs). All MCUs in the family use the enhanced V1 ColdFire core
and are available with a variety of modules, memory sizes, memory types, and package types. CPU clock
rates on these devices can reach 50.33 MHz. Peripherals operate up to 25.165 MHz.

The MCF51QE128 is compatable with MC9S08QE128 whose core is 8-bit HC(S)08 in terms of peripheral
setting and pin to pin. Using MCF51QE128, you could have the performance and flexibility of a 32-bit
deivce with the simplicity of an 8-bit device.

For more information on MCF51QE128, visit www.freescale.com.

1.1 About Freescale ColdFire Core
The M68000 microprocessor family introduced in 1978 is one of the most popular architectures available.
This architecture provides solutions to various markets including automotive, consumer, and
communications. Because of its popularity, Freescale Semiconductor decided to continue the M68000
legacy by offering customers the same architecture but with greater performance and other functional
enhancements.

The M68000 family is based on a complex instruction set computing (CISC) architecture that is easy to
use, but there were needs for higher performance devices based on the same architecture. The solution is
to offer customers a reduced instruction set computing (RISC) version based on the M68000. The ColdFire
core was introduced to address issues needed by today’s demanding complex applications.

The ColdFire family combines the benefits of CISCs and RISCs by keeping the same architecture that
most customers are familiar and comfortable with, along with a much higher performance than CISC.

The ColdFire core is based on the concept of variable-length reduced instruction set (RISC) architecture.
By utilizing variable-length instruction set, system designers can realize a significant system-level
advantage over conventional RISC fixed-length instruction set. The ColdFire instruction set architecture
supports variable-length RISC machines today. Although many ColdFire operations involve
efficient 16-bit opcodes, the instruction length can be one, two, or three 16-bit words depending on the
addressing modes used by the instruction.

For more information on ColdFire, visit www.freescale.com.

1.2 Freescale ColdFire V1 Architecture
The MCF51QE128 devices contain version 1 (V1) ColdFire core optimized for areas and low power. This
CPU implements ColdFire instruction set architecture revision C (ISA_C) with a reduced programming
model:

• No hardware support for MAC/EMAC and DIV instructions
• Upward compatible to all other ColdFire cores (V2–V5)
Run uC/OS-II on MCF51QE128, Rev. 0

Freescale Semiconductor2

Introduction of μC/OS-II
2 Introduction of μC/OS-II
The μC/OS-II is derived from μC/OS, the real-time kernel published in 1992. It is widely used in many
applications, such as cameras, medical instruments, musical instruments, engine controls, network
adapters, highway telephone call boxes, ATM machines, industrial robots, etc. Numerous colleges and
universities use μC/OS to teach students about real-time systems.

The μC/OS-II is upward compatible with μC/OS (V1.11) and provides many improvements such as the
addition of a fixed-sized memory manager, user definable callouts on task creation, task deletion, task
switch and system tick, support of TCB extensions, stack checking, and much more.

2.1 Features
The μC/OS-II, the real time kernel is a portable, ROMable, preemptive real-time, multitasking kernel for
microcontrollers and microprocessors. It can manage up to 64 tasks.

• Portable
Most of μC/OS-II is written in highly portable ANSI C, with target microprocessor specific code
written in assembly language. Assembly language is kept to a minimum to make μC/OS-II easy to
be ported to other processors. The μC/OS-II can be ported to a large number of microprocessors as
long as the microprocessor provides a stack pointer and the CPU registers can be pushed onto and
popped from the stack. Also, the C compiler must provide in-line assembly or language extensions
to enable and disable interrupts from C. The μC/OS-II can run on most 8-bit, 16-bit, 32-bit, or even
64-bit microprocessors or micro-controllers and DSPs. Please check for the availability of ports at
www.Micrium.com.

• Scalable
The μC/OS-II is designed scalably so that customers can only use the features needed in the
applications. This means that a product can have a few of μC/OS-II’s features while another
product can have the full set of features. It reduces the amount of memory (RAM and ROM)
needed by μC/OS-II on a product-per-product basis. Scalability is accomplished with the use of
conditional compilation. Users only specify (through #define constants) which features are needed
for the application.

• Preemptive
The μC/OS-II is a fully-preemptive real-time kernel. It always runs the task with highest priority
ready. Most commercial kernels are preemptive and μC/OS-II is comparable in performance with
many of them.

• Multi-tasking
The μC/OS-II can manage up to 64 tasks. However, the current version of the software reserves
eight of these tasks for system use. This leaves the application with up to 56 tasks. The μC/OS-II
cannot do round-robin scheduling because each task has a unique priority assigned. There are thus
64 priority levels.

• Deterministic
Execution time of all μC/OS-II functions and services are deterministic. You can calculate how
much time it takes μC/OS-II to execute a function or a service. Execution time of all μC/OS-II
services do not depend on the number of tasks running in the application.
Run uC/OS-II on MCF51QE128, Rev. 0

Freescale Semiconductor 3

Tool Chain
• Task stacks
Each task requires its own stack. However, μC/OS-II allows each task to have a different stack size.
This allows it to reduce the amount of RAM needed in the application. With μC/OS-II’s
stack-checking feature, the stack space each task actually requires can be calculated.

• Services
The μC/OS-II provides a number of system services as follows:
— Semaphores
— Event flags
— Mutual exclusion semaphores
— Message mailboxes
— Message queues
— Task management
— Fixed-sized memory block management
— Time management

• Interrupt Management
Interrupts can suspend the execution of a task. If a higher priority task is awakened as a result of
the interrupt, the task with the highest priority runs as soon as all the nested interrupts complete.
Interrupts can be nested up to 255 levels.

• Robust and reliable
The μC/OS-II is based on μC/OS, which has been used in hundreds of commercial applications
since 1992. μC/OS-II uses the same core and most of the same functions as widely used μC/OS yet
offers more features.

2.2 Licensing
No licensing is required for μC/OS-II in educational use.

Contact Micriìm for proper license to use μC/OS-II in commercial products.

3 Tool Chain
This application uses Freescale CodeWarrior Development Studio for Microcontroller V6.0, which
supports ColdFire V1 architecture to build, test, and debug the porting. Assembler, compiler, and linker
are integrated into one toolchain. Please refer to the www.Freescale.com for more information on the
Freescale MCU development tools.

The compiler and its configuration is also critical to the port. The following configuration of the compiler
must be noticed.

• Parameter passing
Parameter passing can be configured as standard, compact, and register. The port in this application
can work with any of the three configurations. Register is recommended.

• Global Optimizations
Run uC/OS-II on MCF51QE128, Rev. 0

Freescale Semiconductor4

Kernel Files Porting on ColdFire V1
There are a couple of optimization levels for TIMING or SIZE. The port in this application can
work with any level of optimization for TIMING or SIZE.

4 Kernel Files Porting on ColdFire V1

4.1 OS_CPU.H

4.1.1 Compiler Independent Data Type

Different microprocessors have different word length. The port of μC/OS-II includes a series of type
definitions in the file of OS_CPU.H that ensures portability.

• Floating-point is included but not used
• A stack entry is 32-bit wide for ColdFire V1 processor
• The status register is 16-bit wide for CFV1

typedef unsigned char BOOLEAN;
typedef unsigned char INT8U; /* Unsigned 8 bit quantity */
typedef signed char INT8S; /* Signed 8 bit quantity */
typedef unsigned short INT16U; /* Unsigned 16 bit quantity */
typedef signed short INT16S; /* Signed 16 bit quantity */
typedef unsigned long INT32U; /* Unsigned 32 bit quantity */
typedef signed long INT32S; /* Signed 32 bit quantity */
typedef float FP32; /* Single precision floating point */
typedef double FP64; /* Double precision floating point */

typedef unsigned long OS_STK; /* Each stack entry is 32-bit wide */
typedef unsigned short OS_CPU_SR; /* Define size of CPU status register */

4.1.2 Critical Section

The μC/OS-II, as all other real-time kernels, needs to disable interrupts to access critical sections of code
and re-enable interrupts when done. Two macros, OS_ENTER_CRITICAL() and
OS_EXIT_CRITICAL(), are used to disable and enable the interrupt respectively in the μC/OS-II. There
are three ways to enter and exit the critical sections, but only one of them needs to be followed and it
depends on the processor and the compiler. Here, the third way is followed.
#define OS_CRITICAL_METHOD 3

#if OS_CRITICAL_METHOD == 3
#define OS_ENTER_CRITICAL() __asm{\

MOVE.L D0, -(A7)\
MOVE.W SR, D0\
MOVE.W D0, cpu_sr\
ORI.L #0x0700,D0\
MOVE.W D0, SR\
MOVE.L (A7)+, D0\

} /* Disable interrupts */
#define OS_EXIT_CRITICAL() __asm{\

MOVE.L D0, -(A7)\
MOVE.W cpu_sr, D0\
MOVE.W D0, SR\
Run uC/OS-II on MCF51QE128, Rev. 0

Freescale Semiconductor 5

Kernel Files Porting on ColdFire V1
MOVE.L (A7)+, D0\
} /* Enable interrupts */
#endif

4.1.3 Task Level Context Switch

The Macro OS_TASK_SW() is invoked when task level context switch needs to be performed. Context
switch is processor specific so assembly instructions need to be executed. In this case, an execption is
generated by the software. There are 16 execptions that can be generated by software (#0 – #15). The
corresponding vector numbers are from No. 32 – No. 47. For more detailed information of ColdFire V1
software exceptions, please refer to ColdFire Core Reference Manual, which can be downloaded at
www.freescale.com. Here, the software exception (#14) is used for task level context switch.
#define uCOS #14 /* Interrupt vector # used for context switch */
#define OS_TASK_SW() __asm{\

TRAP uCOS\
}

4.1.4 Stack Growth

On ColdFire V1 processor, the stack grows from the high memory to low memory, so
OS_STK_GROWTH is set to 1 to indicate this stack growing direction.
#define OS_STK_GROWTH 1 /* Stack grows from HIGH to LOW memory on CF */

4.1.5 ColdFire V1 Specific

The macro OS_INITIAL_SR specifies the initial value of status register when a task is created. It assumes
that a task runs in the superviser mode and all interrupts are enabled.
#define OS_INITIAL_SR 0x2000 /* Supervisor mode, interrupts enabled */

4.2 OS_CPU_C.C and OS_CPU_A.ASM
Two processor specific files, OS_CPU_C.C and OS_CPU_A.ASM, are required for porting. For the sake
of easy maintenance, a file is put together by embeding assembly and has a new OS_CPU_C.C.

4.2.1 The Stack Frame Initialization Function
OS_STK *OSTaskStkInit (void (*task)(void *pd), void *p_arg, OS_STK *ptos, INT16U opt)
{

OS_STK *pstk32;
INT32U init_A5 = 0x00A500A5L;

opt = opt; /* 'opt' is not used, for preventing compiler warning */

__asm{

MOVE.L A5, init_A5
}

pstk32 = (OS_STK *)((INT32U)ptos & 0xFFFFFFFC);

pstk32 = 0; / SIMULATE CALL TO FUNCTION WITH ARGUMENT */
Run uC/OS-II on MCF51QE128, Rev. 0

Freescale Semiconductor6

Kernel Files Porting on ColdFire V1
--pstk32 = (INT32U)p_arg; / p_arg */
--pstk32 = (INT32U)task; / Task returns address */

/* SIMULATE INTERRUPT STACK FRAME */
--pstk32 = (INT32U)task; / Task returns address */
--pstk32 = (INT32U)(0x40000000 | OS_INITIAL_SR); / format and status register */

/* SAVE ALL PROCESSOR REGISTERS */
--pstk32 = (INT32U)0x00A600A6L; / Register A6 */
--pstk32 = (INT32U)init_A5; / Register A5 */
--pstk32 = (INT32U)0x00A400A4L; / Register A4 */
--pstk32 = (INT32U)0x00A300A3L; / Register A3 */
--pstk32 = (INT32U)0x00A200A2L; / Register A2 */
--pstk32 = (INT32U)0x00A100A1L; / Register A1 */
--pstk32 = (INT32U)p_arg; / Register A0 */
--pstk32 = (INT32U)0x00D700D7L; / Register D7 */
--pstk32 = (INT32U)0x00D600D6L; / Register D6 */
--pstk32 = (INT32U)0x00D500D5L; / Register D5 */
--pstk32 = (INT32U)0x00D400D4L; / Register D4 */
--pstk32 = (INT32U)0x00D300D3L; / Register D3 */
--pstk32 = (INT32U)0x00D200D2L; / Register D2 */
--pstk32 = (INT32U)0x00D100D1L; / Register D1 */
--pstk32 = (INT32U)p_arg; / Register D0 */
return ((OS_STK *)pstk32); /* Return pointer to new top-of-stack */

}

4.2.2 OSStartHighRdy()

OSStartHighRdy() is invoked by OSStart() to start running the highest priority task created before the
OSStart().
asm void OSStartHighRdy(void)
{

JSR OSTaskSwHook /* Invoke user defined context switch hook */

MOVEQ.L #1, D4 /* OSRunning = TRUE; */
MOVE.B D4,OSRunning /* Indicates that we are multitasking */

MOVE.L OSTCBHighRdy,A1 /* Point to TCB of highest prio task ready to run*/
MOVE.L (A1),A7 /* Get the stack pointer of the task to resume */

MOVEM.L (A7),D0-D7/A0-A6 /* Store all the regs */
LEA 60(A7),A7 /* Advance the stack pointer */

RTE /* Return to task */
}

4.2.3 OSCtxSw()

A task level context switch occurs when a task is no longer able to run. Because a task cannot continue to
run (the next most important task) in its ready status, it needs to resume execution. OSCtxSw() consists of
saving CPU registers on the stack of the task and restoring the register from the stack of a new task. The
vector of #14 software execption must be the entry of OSCtxSw().
asm void OSCtxSw(void)
{

Run uC/OS-II on MCF51QE128, Rev. 0

Freescale Semiconductor 7

Kernel Files Porting on ColdFire V1
LEA -60(A7),A7
MOVEM.L D0-D7/A0-A6,(A7) /* Save the registers of the current task */

JSR OSTaskSwHook /* Invoke user defined context switch hook */

MOVE.L OSTCBCur,A1 /* Save stack pointer in the suspended task TCB */
MOVE.L A7,(A1)

MOVE.L OSTCBHighRdy,A1 /* OSTCBCur = OSTCBHighRdy */
MOVE.L A1,OSTCBCur
MOVE.L (A1),A7 /* Get the stack pointer of the task to resume */

MOVE.B OSPrioHighRdy,D0 /* OSPrioCur = OSPrioHighRdy */
MOVE.B D0,OSPrioCur

MOVEM.L (A7),D0-D7/A0-A6 /* Restore the CPU registers */
LEA 60(A7),A7

RTE /* Run task */
}

4.2.4 OSIntCtxSw():

When an interrupt service rutine (ISR) completes, it needs to check whether there is a more important task
than the interrupted task. If that is the case, OSIntCtxSw() is invoked. At that moment, the ISR had already
saved the CPU register of interrupted task. Therefore, the CPU register of a new task only needs to be
restored.
asm void OSIntCtxSw(void)
{

JSR OSTaskSwHook /* Invoke user defined context switch hook */

MOVE.B OSPrioHighRdy,D0 /* OSPrioCur = OSPrioHighRdy */
MOVE.B D0,OSPrioCur

MOVE.L OSTCBHighRdy,A1 /* OSTCBCur = OSTCBHighRdy */
MOVE.L A1,OSTCBCur
MOVE.L (A1),A7 /* SP = OSTCBHighRdy->OSTCBStkPtr */

MOVEM.L (A7),D0-D7/A0-A6 /* Restore ALL CPU registers from new task stack */
LEA 60(A7),A7

RTE /* Run task */
}

4.3 Time Tick

The μC/OS-II, as the other real-time operating system kernel, requires a time tick, which is a periodic
interrupt to keep track of time delay and timeout. The frequency of time tick depends on the time
resolution of the application and must be betewen 10 Hz and 100 Hz. The higher frequency of the tick,
the higher overhead of the application.
In this case, real time counter (RTC) module is used as time tick generator. OSTickInit() is used to initialize
the RTC and starts the counter for time tick. TickISR() is the RTC interrupt service routine to implement
Run uC/OS-II on MCF51QE128, Rev. 0

Freescale Semiconductor8

Kernel Files Porting on ColdFire V1
time tick function of μC/OS-II. It must be installed to the vector of RTC interrupt, which is in the vector
table of MCF51QE128. TickISR() consists of two parts. One is the general routine of interrupt while the
other, OSTickISR(), impliments the specific function of time tick.
void OSTickInit(void)
{

SET_RTC_CLKSRC_LPO;

SET_RTC_PRESCALER(11);

SET_RTC_MOD_VALUE(9);

ENABLE_RTC_INT;

}

asm void TickISR(void)
{

MOVE.W #0x2700,SR /* Disable interrupts */

LEA -60(A7),A7 /* Save processor registers onto stack */
MOVEM.L D0-D7/A0-A6,(A7)

MOVEQ.L #0,D0 /* OSIntNesting++ */
MOVE.B OSIntNesting,D0
ADDQ.L #1,D0
MOVE.B D0,OSIntNesting

CMPI.L #1, D0 /* if (OSIntNesting == 1) */
BNE _OS_My_ISR_1
MOVE.L OSTCBCur, A1 /* OSTCBCur-<OSTCBStkPtr = SP */
MOVE.L A7,(A1)

_OS_My_ISR_1:

JSR OSTickISR /* OS_My_ISR_Handler() */

JSR OSIntExit /* Exit the ISR */

MOVEM.L (A7),D0-D7/A0-A6 /* Restore processor registers from stack */
LEA 60(A7),A7

RTE /* Return to task or nested ISR */
}

void OSTickISR(void)
{

CLEAR_RTC_FLAG;

OSTimeTick();

OSIntExit();

}

Run uC/OS-II on MCF51QE128, Rev. 0

Freescale Semiconductor 9

Kernel Files Porting on ColdFire V1
4.4 Interrupt
Interrupt controller of ColdFire version 1 (CF1_INTC) is intended for low-cost microcontrollers. It
maintains a vector table that can accommodate 256 exceptions. The first 64 are reserved for internal
processor exceptions, and the remaining are for user-defined interrupt vectors. When an interrupt occurs,
the CPU saves the SR and the PC onto the stack and executes the appropriate ISR from the vector table.
Usually, the interrupt service routine must be written in assembly because the context of the interrupted
task needs to be saved at the beginning of the ISR and to be restored at the end of ISR. Refer to the
MCF51QE128 Reference Manual avaiable at www.freescale.com for more details on ColdFire V1
interrupt architecture.

The steps of each ISR under μC/OS-II is as follows:
1. Save the context of the interrupted task.
2. Call OSIntEnter() or increment OSIntnesting directly
3. If it is the first nested ISR, OS saves the task’s stack onto the TCB.
4. Execute the C-level user code to service the interrupt
5. Call OSIntExit()
6. Restore the context
7. Return from the interrupt

TickISR() is a template of ISR under μC/OS-II. It only needs to change its name, invoke the function to
service the specific interrupt, such as OSTickISR(), and locate it in the vector table according to its
interrupt source.
Run uC/OS-II on MCF51QE128, Rev. 0

Freescale Semiconductor10

THIS PAGE IS INTENTIONALLY BLANK
Run uC/OS-II on MCF51QE128, Rev. 0

Freescale Semiconductor 11

Document Number: AN3586
Rev. 0
01/2008

How to Reach Us:

Home Page:
www.freescale.com

Web Support:
http://www.freescale.com/support

USA/Europe or Locations Not Listed:
Freescale Semiconductor, Inc.
Technical Information Center, EL516
2100 East Elliot Road
Tempe, Arizona 85284
+1-800-521-6274 or +1-480-768-2130
www.freescale.com/support

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
www.freescale.com/support

Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064
Japan
0120 191014 or +81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:
Freescale Semiconductor Hong Kong Ltd.
Technical Information Center
2 Dai King Street
Tai Po Industrial Estate
Tai Po, N.T., Hong Kong
+800 2666 8080
support.asia@freescale.com

For Literature Requests Only:
Freescale Semiconductor Literature Distribution Center
P.O. Box 5405
Denver, Colorado 80217
1-800-441-2447 or 303-675-2140
Fax: 303-675-2150
LDCForFreescaleSemiconductor@hibbertgroup.com

Information in this document is provided solely to enable system and software
implementers to use Freescale Semiconductor products. There are no express or
implied copyright licenses granted hereunder to design or fabricate any integrated
circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to
any products herein. Freescale Semiconductor makes no warranty, representation or
guarantee regarding the suitability of its products for any particular purpose, nor does
Freescale Semiconductor assume any liability arising out of the application or use of any
product or circuit, and specifically disclaims any and all liability, including without
limitation consequential or incidental damages. “Typical” parameters that may be
provided in Freescale Semiconductor data sheets and/or specifications can and do vary
in different applications and actual performance may vary over time. All operating
parameters, including “Typicals”, must be validated for each customer application by
customer’s technical experts. Freescale Semiconductor does not convey any license
under its patent rights nor the rights of others. Freescale Semiconductor products are
not designed, intended, or authorized for use as components in systems intended for
surgical implant into the body, or other applications intended to support or sustain life,
or for any other application in which the failure of the Freescale Semiconductor product
could create a situation where personal injury or death may occur. Should Buyer
purchase or use Freescale Semiconductor products for any such unintended or
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and
its officers, employees, subsidiaries, affiliates, and distributors harmless against all
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,
directly or indirectly, any claim of personal injury or death associated with such
unintended or unauthorized use, even if such claim alleges that Freescale
Semiconductor was negligent regarding the design or manufacture of the part.

RoHS-compliant and/or Pb-free versions of Freescale products have the functionality
and electrical characteristics as their non-RoHS-compliant and/or non-Pb-free
counterparts. For further information, see http://www.freescale.com or contact your
Freescale sales representative.

For information on Freescale’s Environmental Products program, go to
http://www.freescale.com/epp.

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.
All other product or service names are the property of their respective owners.
© Freescale Semiconductor, Inc. 2008. All rights reserved.

http://www.freescale.com
http://www.freescale.com/epp

	1 Introduction
	1.1 About Freescale ColdFire Core
	1.2 Freescale ColdFire V1 Architecture

	2 Introduction of mC/OS-II
	2.1 Features
	2.2 Licensing

	3 Tool Chain
	4 Kernel Files Porting on ColdFire V1
	4.1 OS_CPU.H
	4.1.1 Compiler Independent Data Type
	4.1.2 Critical Section
	4.1.3 Task Level Context Switch
	4.1.4 Stack Growth
	4.1.5 ColdFire V1 Specific

	4.2 OS_CPU_C.C and OS_CPU_A.ASM
	4.2.1 The Stack Frame Initialization Function
	4.2.2 OSStartHighRdy()
	4.2.3 OSCtxSw()
	4.2.4 OSIntCtxSw():

	4.3 Time Tick
	4.4 Interrupt

