
Freescale Semiconductor
Application Note

Document Number: AN3615
Rev. 0, 03/2008

Contents

Background and Overview . 1
1.1 New S08 Technology . 2
1.2 EEPROM Uses and Applications 2
1.3 Types of EEPROM Devices 3
1.4 EEPROM Arrangement . 5
Applications and Usage of EEPROM 8

2.1 Determining Application Requirements 8
2.2 Extending EEPROM Life . 9
Simple Programming Through the Command Interface 13

3.1 State Machine Command Interface. 13
3.2 State Machine Commands 14
Additional Strategies for Protecting EEPROM Data
Integrity . 17

4.1 Loss of Power . 17
4.2 MCU Bus Clock . 18
4.3 Software Runaway . 19
Conclusion/Summary . 19

Design Considerations for
Implementing EEPROM using the
MC9S08DZ60
by: Jesse Beeker

Lydia Ziegler
Field Applications Engineering
Detroit Automotive Technical Center
1 Background and
Overview

This document is intended to serve as an additional
reference for the EEPROM on the MC9S08DZ and
MC9S08DN family of microcontrollers. Much of what is
contained is applicable to most of Freescale’s HCS08
microcontrollers that contain embedded EEPROM.
Various applications and implementations of EEPROM,
with regard to automotive applications, will be
discussed. Application and usage of EEPROM as well as
strategies specific to the MC9S08DZ microcontroller
will be presented at a hardware and software level.

1

2

3

4

5

© Freescale Semiconductor, Inc., 2008. All rights reserved.

Background and Overview
1.1 New S08 Technology
To address the competitive demands of the automotive industry, the MC9S08DZ60 and its derivatives
offer flexibility through scalability. Migration among family members is easy with pin-compatible devices
ranging from 16 K to 128 K of flash. Employing third generation 0.25 micron flash technology, Freescale
is making flash devices more affordable, as the smaller geometry closes the price gap between flash and
ROM technologies. In addition to the flash’s smaller size and higher performance, this new flash memory
technology allows read operations at device voltages as low as 1.8 volts and a typical data retention period
of 100 years (15 years minimum over voltage and temperature). Additional features include a greatly
simplified self-timed programming interface, flexible block protection, security, and on-chip EEPROM,
making the MC9S08DZ family an excellent choice for mid- to high-end 8-bit applications.

1.2 EEPROM Uses and Applications
The requirements for nonvolatile data storage are very common in automotive applications. While
program flash can be used to contain data that will not change during the life of a module, EEPROM has
traditionally been used to contain data that may change over the life of a module or data that is specific to
a particular module. This data might be as simple as an electronic serial number or as extensive as motor
positioning data. Data that might potentially be stored in EEPROM would include:

• Odometer
• Serial number
• Test history and date of manufacture
• Calibration information
• Default application tables
• User configurable data
• Position data
• Encryption keys
• Dynamic network address
• Error code information
• Diagnostic test codes
• Black box recording
• Software feature activation

The inclusion of on-chip EEPROM in the MC9S08DZ family has a number of advantages related to both
software and hardware design. Some of these advantages include:

• Fast access to data
• Reduction of printed circuit board components
• Lower microcontroller pin count requirement
• Simplified software handler
• Continued application execution during programming and erase procedures
• Fast programming time
Design Considerations for Implementing EEPROM using the MC9S08DZ60, Rev. 0

Freescale Semiconductor2

Background and Overview
• Small sector size
• Automated program and erase timing

1.3 Types of EEPROM Devices
During the conceptual phase of a design, several approaches can be considered when implementing
EEPROM memory storage for data. The use of external EEPROM, emulation of EEPROM with program
flash, and on-chip EEPROM are approaches that each have advantages and disadvantages in cost and
reliability. In addition, each approach will have an impact on the software used to manage the data. The
following sections explore the advantages and disadvantages of each approach in terms of cost, software,
and hardware.

1.3.1 External EEPROM

External EEPROM devices are available from a number of manufacturers in a wide variety of sizes and
configurations. While these devices can be very inexpensive, they add an additional level of complexity
to a design in a number of ways. In addition to the actual cost of the component, an external EEPROM will
require some minimum number of support components, such as bypass capacitors. Furthermore, an
external EEPROM device is usually connected to the microcontroller via an SPI or IIC interface. This may
result in the forced selection of a more costly microcontroller containing additional pins and one or both
of the serial interfaces.

Using a serial interface to communicate with an external EEPROM device will also add considerable
overhead to the firmware design. Having to communicate over a serial bus each time a byte is read or
written can result in additional latencies in the system and degrade overall performance, as application
tasks must wait for data to be available. Such driver firmware can further contribute to the total amount of
flash memory required by the application.

One often-overlooked cost of an external EEPROM is the additional printed circuit board space required
by the device. While the cost of additional board space may not be great, many automotive module designs
are space-constrained and simply may not have room for an additional component on the board. In
addition, the board layout can become more complex as device placement and routing of high-speed clock
and data lines can lead to problems with radiated emissions or susceptibility issues. This in turn can lead
to the addition of filter and/or termination components to assure proper operation of the external
EEPROM.

1.3.2 EEPROM Emulation

Many low-cost microcontrollers containing flash program memory do not contain a separate array of
EEPROM memory. Applications using these devices will often resort to using an external EEPROM.
However, another strategy is to use a portion of the flash program memory to emulate EEPROM. Initially
this approach seems attractive, because no additional components are required. However, any approach
used to emulate EEPROM using program flash has drawbacks that can lead to a potential loss of data and
to additional system costs.

In general, there are two common approaches when using program flash to emulate EEPROM. The first
approach is to keep a copy of the EEPROM data in a RAM buffer and periodically write the entire contents
Design Considerations for Implementing EEPROM using the MC9S08DZ60, Rev. 0

Freescale Semiconductor 3

Background and Overview
of the buffer to the program flash. This approach is relatively simple to implement, permits the data to be
read from the RAM buffer at any time, and allows control of the number of program/erase cycles. The
obvious drawback to this approach is the amount of RAM that must be dedicated to the emulated
EEPROM buffer. In addition, there is a risk of losing data if a reset occurs after updating a RAM buffer,
but before the data is programmed into flash.

A second approach uses multiple sectors of program flash to store nonvolatile data using a flash file
system. Depending on the implementation, this method will usually require less RAM than the first
approach. The major disadvantage to this approach is the size and complexity of the firmware required to
implement a robust flash file system, such that it minimizes the risk of losing data when an unexpected
reset or loss of power occurs.

Both of these approaches can require multiple program and erase operations when changing a single piece
of data. This can lead to a significant increase of the amount of bulk capacitance required on the
microcontroller’s power supply lines to guarantee completion of all program and erase operations in the
event of loss of power.

Another disadvantage of EEPROM emulation is the fact that, in general, code cannot be executed from a
flash array while it is being programmed or erased. This restriction has two implications. First, this requires
that the program and erase routines be located in RAM, decreasing the amount of on-chip RAM available
for an application’s variables. Second, because an application’s interrupt vectors are located in flash, all
interrupts must be masked during emulated EEPROM operations. Depending on an application’s interrupt
latency requirements, this may impose some severe limitations on the system.

1.3.3 On-Chip EEPROM

On-chip EEPROM, like the kind that is present on the MC9S08DZ microcontroller family, has significant
system-level advantages over emulated or externally connected EEPROM. It can significantly reduce
software complexity and has the least impact on the hardware design.

An often overlooked advantage that on-chip EEPROM offers is direct access to the memory itself in
development and production environments. Accessing the EEPROM of the MC9S08DZ does not require
a secondary tool or special test code, because the EEPROM is directly mapped into the memory map of
the MCU. Development tools and production test equipment can quickly and easily program and read data
through the background debug controller (BDC) interface.

In addition to programming convenience, on-chip EEPROM requires no hardware provisions, which gives
it distinct advantages when it comes to hardware design. This saves on system cost and increases reliability
through reduced component count and PCB board space. Having the EEPROM structure completely
internal also improves performance. Communication to the memory is not regulated by external bus delays
associated with common interfaces, such as IIC or SPI. Furthermore, placing an application’s nonvolatile
data in a separate yet on-chip array has the advantage of allowing independent write protection schemes
that are best suited for the type of information stored in program flash and EEPROM.
Design Considerations for Implementing EEPROM using the MC9S08DZ60, Rev. 0

Freescale Semiconductor4

Background and Overview
1.4 EEPROM Arrangement
The size of the EEPROM on each MC9S08DZ device varies among family members. On all devices, the
EEPROM array is divided into 8-byte sectors. Each byte within a sector may be individually programmed
— however, all eight bytes within the sector must be erased at the same time.

As shown in Figure 1, the EEPROM in the MC9S08DZ family is accessed through a page window within
the 64 K address space. The size of the page window is equal to one half of the total amount of EEPROM
contained on a device.

Figure 1. MC9S08DZ Family Memory Map

The paging mechanism allowing access to both halves of the EEPROM array is controlled by the EPGSEL
bit in the FCNFG register. At reset, the value of EPGSEL is zero, placing EEPROM page zero in the
foreground and page one in the background. This bit may be read or written at any time, thus providing
application software the ability to switch pages or determine which page is currently in the foreground.

0x0000
Direct Page Registers

0x007F 128 bytes

0x0000
Direct Page Registers

0x007F 128 bytes

0x0000
Direct Page Registers

0x007F 128 bytes

0x0000
Direct Page Registers

0x007F 128 bytes
0x0080 0x0080 0x0080 0x0080

0x047F

RAM
1024 Bytes

RAM
2048 Bytes

RAM
3072 Bytes

RAM
4096 Bytes

0x087F
0x0C7F

0x107F
0x1080

0x0C80
0x0880

0x0480

0x14FF
0x1500

0x17FF
0x1800

0x18FF
0x1900

0xFFFF 0xFFFF 0xFFFF 0xFFFF

High Page Registers
256 Bytes

0x17FF
0x1800

0x18FF
0x1900

High Page Registers
256 Bytes

0x17FF
0x1800

0x18FF
0x1900

High Page Registers
256 Bytes

0x17FF
0x1800

0x18FF
0x1900

High Page Registers
256 Bytes

Flash
896 Bytes

EEPROM
2 x 1024 Bytes

Flash
59136 Bytes

Flash
49152 Bytes

Flash
33792 Bytes

Flash
16896 Bytes

EEPROM
2 x 768 Bytes

EEPROM
2 x 512 Bytes EEPROM

2 x 256 Bytes

0x13FF
0x1400

0x15FF
0x1600 0x16FF

0x1700

0x7BFF
0x7C00

0x3FFF
0x4000

0xBDFF
0xBE00

Unimplemented
2176 Bytes

Unimplemented
3456 Bytes

Unimplemented
4736 Bytes

Unimplemented
9984 Bytes

Unimplemented
25,344 Bytes

Unimplemented
42,240 Bytes

MC9S08DZ60 MC9S08DZ48 MC9S08DZ32 MC9S08DZ16
Design Considerations for Implementing EEPROM using the MC9S08DZ60, Rev. 0

Freescale Semiconductor 5

Background and Overview
An additional level of flexibility is provided for applications by allowing a choice of how many bytes of
each sector will appear at consecutive addresses within a page. In the so-called 4-byte sector mode, access
to each 8-byte sector is split, placing four consecutive bytes at the same address on each page, as shown
in Figure 2. As the figure shows, access to the four bytes of EEPROM on each page begins at an address
that is an even multiple of four. Note that when performing a sector erase operation, four bytes beginning
at the same address in each page will be erased.

Figure 2. EEPROM Configured for 4-Byte Mode

The so-called 8-byte sector mode places each 8-byte sector at eight consecutive addresses in the same
page, as shown in Figure 3. This arrangement allows all eight bytes of the sector to be accessed when
performing program or erase operations without performing a page switch.

4-Byte Mode

0x1400 FF FF FF FF FF FF FF FF

0x1408 FF FF FF FF FF FF FF FF

0x1410 FF FF FF FF FF FF FF FF

0x1418 FF FF FF FF FF FF FF FF

0x1420 FF FF FF FF FF FF FF FF

0x1428 FF FF FF FF FF FF FF FF

0x1430 FF FF FF FF FF FF FF FF

0x1438 FF FF FF FF FF FF FF FF

0x1400 FF FF FF FF FF FF FF FF

0x1408 FF FF FF FF FF FF FF FF

0x1410 FF FF FF FF FF FF FF FF

0x1418 FF FF FF FF FF FF FF FF

0x1420 FF FF FF FF FF FF FF FF

0x1428 FF FF FF FF FF FF FF FF

0x1430 FF FF FF FF FF FF FF FF

0x1438 FF FF FF FF FF FF FF FF

Page 1

Page 0

Sector 1

Sector 2
Design Considerations for Implementing EEPROM using the MC9S08DZ60, Rev. 0

Freescale Semiconductor6

Background and Overview
Figure 3. EEPROM Configured for 8-Byte Mode

Setting of the 4-byte or 8-byte sector mode is controlled by the EPGMOD bit in the FOPT register. Because
the value of the EPGMOD bit is loaded from program flash location NVOPT (0xFFBF) during reset, the
sector operating mode cannot be changed without erasing and reprogramming location NVOPT and then
forcing an MCU reset. For the vast majority of applications, one of the two modes would be chosen during
the firmware design, based on application need. This is important to consider during the generation of the
S-record as well as when configuring the programming tool.

The decision of whether to use so-called 4-byte or 8-byte sector mode will be based on the size
characteristics of the data being stored in EEPROM. If small individual pieces of data need to be stored,
the 4-byte sector mode would likely be the best choice, because it would result in the most efficient use of
the EEPROM by placing a larger number of sectors within the EEPROM page window. Remember,
however, that erasing four bytes on one page also erases the four bytes of EEPROM at the corresponding

8-Byte Mode

0x1400 FF FF FF FF FF FF FF FF

0x1408 FF FF FF FF FF FF FF FF

0x1410 FF FF FF FF FF FF FF FF

0x1418 FF FF FF FF FF FF FF FF

0x1420 FF FF FF FF FF FF FF FF

0x1428 FF FF FF FF FF FF FF FF

0x1430 FF FF FF FF FF FF FF FF

0x1438 FF FF FF FF FF FF FF FF

0x1400 FF FF FF FF FF FF FF FF

0x1408 FF FF FF FF FF FF FF FF

0x1410 FF FF FF FF FF FF FF FF

0x1418 FF FF FF FF FF FF FF FF

0x1420 FF FF FF FF FF FF FF FF

0x1428 FF FF FF FF FF FF FF FF

0x1430 FF FF FF FF FF FF FF FF

0x1438 FF FF FF FF FF FF FF FF

Page 1

Page 0

Sector 2

Sector 1
Design Considerations for Implementing EEPROM using the MC9S08DZ60, Rev. 0

Freescale Semiconductor 7

Applications and Usage of EEPROM
address on the other page. Therefore, the 4-byte sector mode may not work well if the number of 4-byte
sectors required by the application exceeds the number visible in a single page window. Instead, the 8-byte
sector mode would have to be used, packing multiple pieces of data into a single 8-byte sector. On the other
hand, if most of the data elements stored in EEPROM are greater than four bytes, the 8-byte sector mode
would likely be more efficient, because it would allow the data to be contained in fewer sectors with
contiguous addresses.

2 Applications and Usage of EEPROM
The presence of dedicated on-chip EEPROM on the MC9S12DZ family of microcontrollers provides a
valuable addition for embedded applications that require the storage of nonvolatile data that is updated
frequently. Like flash program memory, EEPROM has a limited number of erase/write cycles. Therefore,
careful consideration must be given to an application’s nonvolatile data storage requirements. The
remainder of this section will discuss application EEPROM requirements and methods that can be used to
effectively extend EEPROM endurance for nonvolatile data whose contents will change more often over
the life of an application than the guaranteed minimum number of erase/write cycles.

2.1 Determining Application Requirements
Determining the actual number of update cycles required for each piece of data stored in EEPROM
involves the consideration of a significant number of factors. Each piece of data and its relationship to the
application must be carefully examined to establish how often new values must be written to EEPROM.
Writing values more often than necessary could result in EEPROM locations exceeding the guaranteed
minimum specification before the end of a product’s life. Writing values too infrequently could result in
less than optimum application performance, if the most recent data is lost due to a system failure. In
addition, factors such as product life cycle and warranty length must be considered. As an application’s
requirements for nonvolatile data storage increases, determining the requirements becomes increasingly
important because each EEPROM location has a guaranteed minimum number of erase/write cycles in
which data retention is guaranteed for a period of time.

For applications having relatively simple nonvolatile data storage requirements, determining the total
number of update cycles is relatively easy. Such applications might include the storage of calibration data,
serial numbers, test history, date of manufacturer, encryption keys, or software feature activation codes in
EEPROM. Such data, likely to be written at end-of-line testing, may be written to the EEPROM only once
in the product’s life, or perhaps rewritten if the product’s firmware is updated at the end customer. Any
usage of the on-chip EEPROM is comparatively simple if the number of nonvolatile data updates does not
exceed the guaranteed minimum number of erase/write cycles over a product’s expected life cycle.

There are application requirements, however, such as the storing of odometer data, user configuration data,
error code information, or diagnostic test codes, where the number of nonvolatile data updates will easily
exceed the guaranteed minimum 10,000 erase/write cycle specification of the MC9S08DZ family. One
example of such an application would be an odometer application where mileage must be recorded to
1,000,000 miles with a one-mile accuracy. Clearly, such an application will require a nonvolatile data
storage strategy to address such a high endurance application requirement.
Design Considerations for Implementing EEPROM using the MC9S08DZ60, Rev. 0

Freescale Semiconductor8

Applications and Usage of EEPROM
2.2 Extending EEPROM Life
As mentioned in the previous section, some applications can require the updating of nonvolatile data that
exceeds the guaranteed minimum number of erase/write cycles of the MC9S08DZ family. Fortunately,
several simple strategies can be used to extend the effective number of erase/write cycles for such data.
Providing a robust solution requires careful examination of the nonvolatile data storage requirements of
an application.

As previously discussed, the EEPROM contained on the MC9S08DZ family is arranged in 8-byte sectors.
While each byte within a sector can be individually programmed, all eight bytes of the sector must be
erased at the same time. Therefore, in terms of guaranteed minimum erase/write cycles, even if only one
byte within a sector is programmed before the sector is erased, the erase operation counts as an erase/write
cycle for all eight bytes within the sector. This characteristic of the EEPROM must be carefully considered
when developing a strategy to effectively extend the number of erase/write cycles.

One of the least complicated strategies to use for nonvolatile data exceeding the guaranteed minimum
erase/write cycles is to simply use multiple sectors to contain the data over a product’s life cycle. For
example, a product that may need to write a single byte of nonvolatile data 30,000 times over a product’s
life could simply use three sectors to contain the data. This strategy essentially involves moving the data
to a new, unused sector each time the guaranteed minimum erase/write cycles of a sector is reached. In
addition, a method must be devised to determine which sector contains the most current data. Also, when
moving data from one sector to another, careful consideration must be given to protecting the integrity of
the data as it is moved.

2.2.1 Organization of Data

To provide the most efficient use of the on-chip EEPROM when moving data among sectors, you should
group together data that is updated at similar rates, under the same conditions, and requiring the same
number of cycles. Grouping data in this manner can allow the use of a single cycle count variable (in
addition to any other required data management information) that will be shared by the entire group. This
helps to reduce the overhead associated with the use of such a strategy.

Because each EEPROM sector consists of eight bytes and resides on an 8-byte boundary, it is unlikely that
an application’s nonvolatile data structures will conform to an exact multiple of the sector size. Therefore,
even when you are grouping data that has similar characteristics, it is unlikely that 100 percent of a group
of allocated sectors can be used. Locations that are not used for data storage can be allocated to cycle count
or other data management variables that are required by a specific nonvolatile data storage strategy.
Alternately, any unused locations within a group could be used for future expansion.

When defining groups of data, care should be taken to ensure that the data structure containing the
variables begins at the start of a sector and contains a number of bytes that is an even multiple of the sector
size. Allowing data structures to cross sector boundaries can greatly increase the likelihood of data
corruption, and significantly complicate the software required to manage nonvolatile data. When
programming in C, this may require the addition of some number of padding bytes to a data structure.
Figure 4 provides a simple example of how data can be grouped together based on usage.
Design Considerations for Implementing EEPROM using the MC9S08DZ60, Rev. 0

Freescale Semiconductor 9

Applications and Usage of EEPROM
2.2.2 Data Integrity

When writing data to or erasing a sector of the EEPROM on the MC9S08DZ family, there is always the
possibility of an unintended reset interrupting the operation. When this occurs the integrity of the stored
data can be compromised, unless a strategy is developed to detect and recover from such possibilities.
Detecting corrupt data in an EEPROM block or record is usually as simple as adding a checksum or CRC
value to each record. Each time a record is updated, a checksum or CRC is computed and stored in the
EEPROM as part of the record. At each MCU reset, a check of each data record can be made to ensure that
a computed checksum or CRC matches the one stored as part of each record. If the data integrity check
fails, the application or nonvolatile memory software will need to take the proper steps to correct the
invalid record. This may involve setting the elements of the record to default values from flash program
memory, or using values from the last known valid record.

The use of a checksum or CRC to ensure data integrity generally works best for data that remains constant,
or data that seldom changes over the life of a product. For data that constantly changes or data that is
moved to effectively extend the EEPROM’s erase/write cycle endurance, other methods must be used.
When saving multiple pieces of data within a sector or even data spanning multiple sectors, there is always
a chance that the erase or program operations can be interrupted at any point in the process.

For example, if a single 32-bit value were stored in an 8-byte sector, updating the value would require a
sector erase operation, followed by four byte-programming operations. If this process were interrupted by
a system reset just after the erase operation, all record of the value would be lost. To prevent the loss of
data in a case such as this, it would be prudent to keep a minimum of two copies of the data in two separate
sectors. If a system reset occurred just after the erase of one of the sectors, a valid copy of the previous
value would always exist in the second sector.

Keeping multiple copies of data in separate sectors solves the problem of an unintended reset after a sector
erase operation. However, it does not solve the problem of a reset occurring before all four bytes of the
32-bit data are programmed into the sector. In this case, depending on the number of bytes programmed
before a reset occurred, an application may not be able to distinguish between valid and invalid data. To
solve this issue, an additional validation flag can be added to each record, allowing software to confirm
that all writes of the data record were properly completed. This validation flag would be the last byte
written to a record and generally consist of a pattern of alternating ones and zeros, i.e. 0x55 or 0xAA.

Sector 1 Sector 2 Sector 3 Sector 4

Sector 5 Sector 6 Sector 7 Sector 8

Sector 9 Sector 10 Sector 11 Sector 12

Sector 13 Sector 14 Sector 15 Sector 16

Fixed Data

Changing Data

Empty Sector

Figure 4. Grouping Similar Data
Design Considerations for Implementing EEPROM using the MC9S08DZ60, Rev. 0

Freescale Semiconductor10

Applications and Usage of EEPROM
Combining these two techniques with additional software can allow an application to not only detect, but
also recover from, an untended interruption of updating a block of data in EEPROM.

2.2.2.1 EEPROM Protection

In addition to software strategies that can be used to protect the integrity of on-chip EEPROM data, the
MC9S08DZ family includes a hardware protection mechanism that can be used to prevent the accidental
erasure or programming of a portion of the EEPROM. This mechanism is controlled by the two most
significant bits of the FPROT register, EPS1:0.

At reset, the contents of the FPROT register are loaded from program flash location NVPROT (0xFFBD).
As shown in Table 1, the erased state of the EPS bits allows the entire EEPROM array to be erased or
programmed. The remaining combinations of the two EPS bits allow a maximum of 128 bytes to be
protected. Note that for each combination, half of the protected bytes are in EEPROM page 0 and half in
page 1. The EPS bits may be read at any time; however, these bits can be written only to a value that
increases the number of sectors protected. This feature allows all of the EEPROM to remain in an
unprotected state immediately out of reset and in a protected state at a later point. While this feature might
seem to negate the benefit of automatic protection of EEPROM data immediately out of reset, it can be
useful if a bootloader requires the ability to reprogram the data in the protected memory range.

In general, the hardware EEPROM protection mechanism is used to prevent the accidental erasure or
programming of data that is considered critical to the operation of a product. This might include data such
as calibration constants or serial numbers.

2.2.3 A Simple Example

Consider an application with a requirement to record a 32-bit value one million times over the life of the
product. Because a 32-bit value will easily fit within a single sector and each sector can be erased and
written a minimum of 10,000 times, one hundred sectors are required to record the data without exceeding
the MC9S08DZ EEPROM specifications for any single sector. As shown in Figure 5, each of the 8-byte
sectors reserves room not only for the 32-bit data, but also contains a data validation flag. As discussed in
the previous section, this data byte is written with a value other than the erased state only after all four
bytes of the data are successfully programmed into the sector. After the data validation flag for a new
record has been programmed and verified, the software could erase the sector containing the previous data.
This is analogous to a make-before-break mechanical switch.

Table 1. EEPROM Protection Control Bits

EPS1:0 Protected Address Range
Protected Memory Size

(Bytes)
Number of Protected

Sectors

11 N/A 0 0

10 0x17F0 – 0x17FF 32 4

01 0x17E0 – 0x17FF 64 8

00 0x17C0 – 0x17FF 128 16
Design Considerations for Implementing EEPROM using the MC9S08DZ60, Rev. 0

Freescale Semiconductor 11

Applications and Usage of EEPROM
Figure 5. Moving Data Example

As discussed in Section 2.2.2, “Data Integrity,” the possibility of an unintended system reset always exists.
This may lead to an interruption of the data storage process. In the context of the current example, this
would allow for two distinct scenarios — the first would be where two full data records exist in an array,
and the second would be where a full record and a partial record exist. To account for this possibility, the
application software would have to scan the EEPROM data array after each reset to determine if any two
adjacent sectors are in a non-erased state.

If the sector at the logically higher address does not have the data validation byte programmed, it indicates
that the writing of the new record was interrupted, as shown in Figure 6. This record should be erased and
the data in the previous sector used as the most current valid data.

Figure 6. Interruption of Programming — Scenario 1

0x1400 FF FF FF FF FF FF FF FF

0x1408 AA 12 34 56 78 FF FF FF

0x1410 FF FF FF FF FF FF FF FF

0x1418 FF FF FF FF FF FF FF FF

0x1420 FF FF FF FF FF FF FF FF

0x1428 FF FF FF FF FF FF FF FF

0x1430 FF FF FF FF FF FF FF FF

0x1438 FF FF FF FF FF FF FF FF

Data Valid Flag Data Bytes Unused Data Bytes

Current Record

Previous Record (erased)

Future Records

0x1400 AA 12 34 56 78 FF FF FF

0x1408 FF 11 22 33 44 FF FF FF

0x1410 FF FF FF FF FF FF FF FF

0x1418 FF FF FF FF FF FF FF FF

0x1420 FF FF FF FF FF FF FF FF

0x1428 FF FF FF FF FF FF FF FF

0x1430 FF FF FF FF FF FF FF FF

0x1438 FF FF FF FF FF FF FF FF

After a reset it can be seen that data is not valid.
Previous data must be used.
Design Considerations for Implementing EEPROM using the MC9S08DZ60, Rev. 0

Freescale Semiconductor12

Simple Programming Through the Command Interface
When scanning the array, if two adjacent sectors are in a non-erased state and both contain programmed
data validation flags, then the update process was interrupted before the old record could be erased. In this
case, the sector at the lower logical address should be erased. This is illustrated in Figure 7.

Figure 7. Interruption of Programming — Scenario 2

In general, where two full records or a full and a partial record exist in the data array, the older record
would reside at the lower address. The exception to this rule is if the newest record resides in the first sector
of the array and the older record resides in the last sector of the array. When software needs to retrieve the
current value, it can search the array until the single valid record is found.

3 Simple Programming Through the Command
Interface

The erasure and programming of flash and EEPROM requires the application of precisely timed and
sequenced high voltage pulses to each bit cell, to obtain the maximum number of erase/write cycles and
long-term reliability. Therefore the MC9S08DZ family contains dedicated state machine logic for the
programming and erasure of the on-chip flash and EEPROM. The state machine logic not only provides a
layer of abstraction for the application software, it allows the software to perform other tasks during the
EEPROM program and erase operations.

3.1 State Machine Command Interface
The interface to the flash and EEPROM state machine consists of six 8-bit registers, as shown in Figure 8.

0x1400 AA 12 34 56 78 FF FF FF

0x1408 AA 11 22 33 44 FF FF FF

0x1410 FF FF FF FF FF FF FF FF

0x1418 FF FF FF FF FF FF FF FF

0x1420 FF FF FF FF FF FF FF FF

0x1428 FF FF FF FF FF FF FF FF

0x1430 FF FF FF FF FF FF FF FF

0x1438 FF FF FF FF FF FF FF FF

Both sets of data are valid.
Older data can be erased.
Design Considerations for Implementing EEPROM using the MC9S08DZ60, Rev. 0

Freescale Semiconductor 13

Simple Programming Through the Command Interface

Before performing any EEPROM erase or program operations, the FCDIV register must be initialized to
provide a timing clock to the flash state machine. Because the input clock to the flash and EEPROM
module is the MCU bus clock, a divider chain controlled by the contents of the FCDIV register must be
configured to provide the required 150 kHz – 200 kHz clock. The lower six bits of the FCDIV register
directly control a modulus down-counter allowing the bus clock to be divided by a maximum of
64 (DIV[5:0] + 1). Using only these six bits would limit the bus clock to a maximum of 12.8 MHz
(200 kHz * 64). However, writing a one to the PRDIV8 control bit inserts an additional three bit binary
counter (÷8) into the divider chain, allowing the use of higher bus frequencies. The formulas for
determining the correct value of the lower seven bits of the FCDIV register are shown in Figure 9.

Figure 9. Formulas for Determining the Correct FCDIV Value

The most significant bit of the FCDIV register, DIVLD, is a read-only status bit indicating that the FCDIV
register has been written since the last time the device was reset. This bit can be used by application
software, before performing any flash or EEPROM operations, to validate that the FCDIV register has
been written. Note that even if the DIVLD bit is set, it does not indicate that a valid divider value has been
written to the lower seven bits of the FCDIV register. Finally, the FCDIV register may only be written once
after reset. Any additional writes are ignored.

3.2 State Machine Commands
The MC9S08DZ nonvolatile memory state machine supports six unique commands as shown in Table 2.

0x1820 FCDIV DIVLD PRDIV8 DIV

0x1821 FOPT KEYEN FNORED EPGMOD 0 0 0 SEC

0x1822 Reserved — — — — — — — —

0x1823 FCNFG 0 EPGSEL KEYACC Reserved 0 0 0 1

0x1824 FPROT EPS FPS

0x1825 FSTAT FCBEF FCCF FPVIOL FACCERR 0 FBLANK 0 0

0x1826 FCMD FCMD

Figure 8. Flash and EEPROM Control and Status Registers

if (BusClock <= 12800000)
 {

FCDIV = BusClock / FCLK;
if ((BusClock % FCLK) == 0)

FCDIV -= 1;
 }
else
 {

FCDIV + ((BusClock / FCLK) / 8) + 0x40;
if ((BusClock % (FCLK * 8)) == 0)

FCDIV -= 1;
 }

Design Considerations for Implementing EEPROM using the MC9S08DZ60, Rev. 0

Freescale Semiconductor14

Simple Programming Through the Command Interface
Each of the six commands initiates an operation performed independently by the hardware state machine.
This allows the application software to perform other operations, while the state machine performs the
critically timed operations required to program or erase the EEPROM. After a command is initiated, it will
run to completion unless an error occurs. Note that for programming operations, the location(s) being
programmed must be in the erased state (0xFF), prior to launching a program command. Failure to observe
this restriction can result in values at other locations of the EEPROM array being changed. This
phenomenon is known as program disturb.

Executing a command requires the six steps shown in Figure 10. Program code implementing these steps
must be followed rigorously. Reads or writes of any other memory locations after the write to the flash or
EEPROM (step 2) and before launching the command (step 4) will cause the command to be aborted and
the FACCERR bit to be set. Because of this restriction, the code implementing steps two through four
should have all interrupts disabled, to prevent the unintended termination of a program or erase command.
This constraint during a program or erase operation is intended to prevent accidental erasure or
programming of the flash or EEPROM due to runaway code.

Figure 10. Flash/EEPROM Command Execution

Note that because a single hardware state machine and interface registers are used to perform operations
on both the on-chip flash and EEPROM, the state machine distinguishes between flash and EEPROM
operations solely by the address latched in the command buffer in step two.

The following sections contain a brief description of each command.

Table 2. MC9S08DZ Nonvolatile Memory State Machine Commands

Command FCMD Equate File Label

Blank check 0x05 mBlank

Byte program 0x20 mByteProg

Burst program 0x25 mBurstProg

Sector erase 0x40 mSectorErase

Mass erase 0x41 mMassErase

Sector erase abort 0x47 mEraseAbort

1. Write 0x30 to the FSTAT to clear possible error conditions from any previous commands.

2. Write a data value to a valid address in the EEPROM array. (For a sector or mass erase command, the data
written is unimportant.)

3. Write the command code for the desired command to the FCMD register.

4. Write a 1 to the FCBEF bit in FSTAT to clear FCBEF and launch the command.
5. After launching the command, check the state of the FPIVOL and FACCERR for errors.

6. Wait until the FCCF bit in FSTAT is set. As soon as FCCF = 1, the operation has completed successfully. (When
executing the Burst Program Command, wait until FCBEF bit is set and continue at step two.)
Design Considerations for Implementing EEPROM using the MC9S08DZ60, Rev. 0

Freescale Semiconductor 15

Simple Programming Through the Command Interface
3.2.1 Blank Check Command

The blank check command can be used to check the entire flash or EEPROM for the erased state. If the
command completes successfully and the entire array is blank, the FBLANK bit in the FSTAT register will
be set. Note that for the EEPROM, both pages are checked and must be in the erased state for the FBLANK
bit to be set.

3.2.2 Byte Program Command

The byte program command can be used to program a single byte of the flash or EEPROM. As with all
erase and program commands, the byte program command will provide the correct timing sequence and
application of the internal programming voltages to the EEPROM to program a single byte. The command
requires nine state machine clock cycles (FCLK) to complete. Using a 200 kHz FCLK frequency, the byte
program command executes in 45 µs.

3.2.3 Burst Program Command

The burst program command is similar to the byte program command, but with an important difference.

When a byte program command is executed, an internal high voltage charge pump associated with the
flash memory must be enabled to supply the programming voltage to the EEPROM array. Upon
completion of the command, the charge pump is turned off. These operations account for much of the time
required for the execution of the byte program command.

The burst program command operates in much the same manner as the byte program command, except
that at the completion of the command the high voltage charge pump remains enabled if two conditions
are met. First, the next burst program command sequence begins before the FCCF bit is set in the FSTAT
register. Second, the address of the next burst program command must reside within the same burst block.
A burst block in this flash memory consists of thirty-two bytes, with a new burst block beginning at each
32-byte address boundary.

Note that the first byte of a burst program command will take the same amount of time as a byte program
command. However, subsequent bytes will program at the burst program rate of four state machine clock
cycles (FCLK) or 20 µs at a 200 kHz FCLK frequency.

3.2.4 Sector Erase Command

The smallest amount of EEPROM that can be erased is a single sector, which is eight bytes. This is true
whether the so-called 4-byte or 8-byte sector mode is selected. Executing the sector erase command when
the 4-byte sector mode is selected will erase four sequential bytes beginning at the same address on each
of the two EEPROM pages. If 8-byte sector mode is selected, eight sequential bytes on the selected page
will be erased. The sector erase command requires 4000 state machine clock cycles (FCLK) or 20 ms at a
200 kHz FCLK frequency.
Design Considerations for Implementing EEPROM using the MC9S08DZ60, Rev. 0

Freescale Semiconductor16

Additional Strategies for Protecting EEPROM Data Integrity
3.2.5 Mass Erase Command

The mass erase command can be used to initialize all locations in the EEPROM array to the erased state.
Note that it will erase both pages of the EEPROM array, regardless of the state of the EPGSEL bit in the
FCNFG register. After the mass erase command has been launched, it cannot be terminated. If a range of
EEPROM has been write protected, execution of the mass erase command will be immediately terminated,
and the FPVIOL bit in the FSTAT register will be set. Execution of the command requires 20,000 state
machine clock cycles (FCLK) or 100 ms at a 200 kHz FCLK frequency.

3.2.6 Sector Erase Abort Command

In the event a sector erase command is executing and an unexpected event occurs requiring the application
to have immediate access to data in the EEPROM array, the sector erase abort command can be used to
prematurely terminate a sector erase command. If the sector erase abort command successfully completes
and the sector is not completely erased, the FACCERR bit in the FSTAT register will be set. However, if
the sector erase abort command is launched near the end of a sector erase command, the sector erase
command may complete normally. In this case, the FACCERR bit will be cleared.

To ensure EEPROM data integrity, if a sector erase is terminated prematurely, the affected sector must be
erased again before any byte within the sector can be programmed. Note that the sector erase abort
command should be used sparingly, because a sector erase operation that is aborted counts as a complete
program/erase cycle.

4 Additional Strategies for Protecting EEPROM Data
Integrity

As discussed in Section 2.2.2, “Data Integrity,” when writing data to or erasing a sector of EEPROM on
the MC9S08DZ family, there is always the possibility of an unintended reset interrupting the operation.
When this occurs, the integrity of the stored data can be compromised, unless a strategy is developed to
detect and recover from such possibilities. In addition to unintended resets, several other system failure
modes can lead to potential EEPROM corruption unless strategies are developed to protect the data. The
remainder of this section will discuss three areas in automotive systems that require specific attention to
prevent EEPROM data corruption.

4.1 Loss of Power
Analysis of a system’s power source and power supply design is critical to many aspects of a design.
Factors such as power source stability, power up/power down characteristics, active device decoupling,
and bulk charge storage are key areas of consideration in a robust design. Because of hardware protection
mechanisms designed into the MC9S08DZ family, such as the power-on reset (POR) and low voltage reset
(LVR) circuitry, there is no potential for EEPROM data corruption if there are no program or erase
operations in process if power is unexpectedly lost. However, if program or erase operations are in process
when system power is unexpectedly removed, EEPROM data corruption can occur unless proper
precautions are taken.
Design Considerations for Implementing EEPROM using the MC9S08DZ60, Rev. 0

Freescale Semiconductor 17

Additional Strategies for Protecting EEPROM Data Integrity
The unexpected removal of power from a module can be the result of manual battery disconnect or power
connection problems due to an intermittent mechanical connector. In either case precautions must be taken,
using a combination of hardware and software to allow EEPROM operations to complete before power to
the MCU drops below its minimum operating levels. From a hardware design standpoint, the main
considerations are: providing an early indication to the software that power has been lost, and providing
enough reserve power to complete any pending EEPROM operations.

Providing an early indication of power loss can be achieved by monitoring the battery input voltage to the
module and notifying the software via an interrupt when the battery voltage drops below a predetermined
level. This can be achieved using the MC9S08DZ’s internal analog comparator, or by using the
analog-to-digital converter to perform periodic measurements. Choosing the battery voltage level at which
to notify the software of a loss of power will involve careful design and characterization of the power
supply, analysis of maximum loads, and determination of the time required to perform any EEPROM
operations.

Providing a power reserve for a module after a loss of power is typically supplied by bulk capacitance on
both the input and output of the module’s voltage regulator. While adding additional bulk capacitance to
extend the amount of time that software has to complete EEPROM writes is relatively simple, it will add
additional hardware costs to a design. In addition, space constraints and in-rush current requirements may
not allow the addition of extra bulk capacitance. To keep the amount of required bulk capacitance to a
minimum, additional strategies may have to be employed that will reduce module current consumption
after a loss of power is detected. One such strategy might include selectively removing power from any
circuitry within the module that is unnecessary for MCU operation.

From a software perspective, the main determinant in the time required to complete EEPROM operations
after a loss of power will be the number of byte write and sector erase operations that must be performed.
With the sector erase command requiring a minimum of 20 ms and the burst program command requiring
a minimum of 20 µs, it is clear that the number of sector erase operations required at loss of power will
dominate the time requirements.

4.2 MCU Bus Clock
As discussed in Section 3.1, “State Machine Command Interface,” the EEPROM hardware state machine
requires an input clock between 150 kHz and 200 kHz. Because the state machine clock is derived from
the MCU’s bus clock, a basic understanding of the clock sources within MC9S08DZ’s multi-purpose clock
generator (MCG) module is essential.

The MCG module provides several clock source choices for the MC9S08DZ devices. The module contains
a frequency-locked loop (FLL) and a phase-locked loop (PLL) that are controlled by either an internal or
an external reference clock. The output of the FLL, PLL, and internal or external reference clocks can be
selected as a source for the MCU bus clock. Any of the four clock sources may optionally be divided by
two, four, or eight, to reduce the bus frequency and consequently the MCU’s power consumption.

As described in Section 3.1, “State Machine Command Interface,” the value written to the FCDIV register
controls a modulus down-counter, allowing the bus clock to be divided until it is within the 150 kHz to
200 kHz range required by the EEPROM hardware state machine. Because the FCDIV register can only
be written once after reset, the bus frequency must remain within a range that will provide the proper clock
frequency to the hardware state machine during EEPROM program and erase operations. If an application
Design Considerations for Implementing EEPROM using the MC9S08DZ60, Rev. 0

Freescale Semiconductor18

Conclusion/Summary
needs to reduce the MCU’s bus frequency to reduce current consumption, proper logic must be added to
the EEPROM software to prevent program or erase operations when the bus frequency would produce a
state machine clock outside the part’s specified range.

When using either the FLL or PLL in an application, noise conditions in the system can cause these clock
sources to lose their lock condition. This can cause the FLL or PLL, and hence the bus frequency, to
temporarily operate outside the nominal frequency setting. Because the FLL and PLL can operate up to
nearly ±6% of the nominal frequency without indicating an unlock condition, it would be good design
practice to set the EEPROM hardware state machine frequency 6% below the specified maximum of
200 kHz.

In addition to the LOCK status bit in the MCGSC register, the loss of lock status (LOLS) bit is an
additional bit used to indicate that the FLL or PLL output frequency has fallen outside the lock exit
frequency tolerance. When this sticky bit (in other words, when set, this bit must be written with a value
of 1 to clear the bit) is set, it can optionally generate an interrupt, if the loss of lock interrupt enable
(LOLIE) bit in the MCGC3 register is set. This can be used to indicate to application software that the FLL
or PLL is operating at more than ±6% of the nominal frequency, and take appropriate action with respect
to EEPROM operations.

4.3 Software Runaway
Software runaway or errant code execution can occur for a variety of reasons, but the main cause is usually
faulty software. For applications that perform EEPROM erase and program operations, the software that
executes these functions must necessarily be a part of the application. Therefore, the possibility exists that
those portions of code that erase and program EEPROM could be unintentionally executed in a software
runaway situation, resulting in EEPROM data corruption. Care should be exercised when designing the
EEPROM management routines so that EEPROM contents cannot be corrupted if the code is executed
because of software runaway. Information on how to protect the software from runaway conditions can be
found in EB398, Techniques to Protect MCU Applications Against Malfunction Due to Code Run-Away.

5 Conclusion/Summary
While EEPROM technology is often overshadowed by flash memory technology, it still provides essential
functionality to automotive applications. Using EEPROM in a design requires the consideration of
numerous aspects, involving both hardware and software. The architecture of the MC9S08DZ family
minimizes these complications by incorporating the EEPROM on-chip. Applications requiring EEPROM
can further benefit from the MC9S08DZ family’s internal NVM hardware state machine for program and
erase operations, flexible sector sizes, and optional hardware protection settings. Through proper
organization and data management, the toughest automotive demands for EEPROM usage can be met by
the MC9S08DZ family.
Design Considerations for Implementing EEPROM using the MC9S08DZ60, Rev. 0

Freescale Semiconductor 19

Document Number: AN3615
Rev. 0
03/2008

How to Reach Us:

Home Page:
www.freescale.com

Web Support:
http://www.freescale.com/support

USA/Europe or Locations Not Listed:
Freescale Semiconductor, Inc.
Technical Information Center, EL516
2100 East Elliot Road
Tempe, Arizona 85284
+1-800-521-6274 or +1-480-768-2130
www.freescale.com/support

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
www.freescale.com/support

Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064
Japan
0120 191014 or +81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:
Freescale Semiconductor Hong Kong Ltd.
Technical Information Center
2 Dai King Street
Tai Po Industrial Estate
Tai Po, N.T., Hong Kong
+800 2666 8080
support.asia@freescale.com

For Literature Requests Only:
Freescale Semiconductor Literature Distribution Center
P.O. Box 5405
Denver, Colorado 80217
1-800-441-2447 or 303-675-2140
Fax: 303-675-2150
LDCForFreescaleSemiconductor@hibbertgroup.com

Information in this document is provided solely to enable system and software
implementers to use Freescale Semiconductor products. There are no express or
implied copyright licenses granted hereunder to design or fabricate any integrated
circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to
any products herein. Freescale Semiconductor makes no warranty, representation or
guarantee regarding the suitability of its products for any particular purpose, nor does
Freescale Semiconductor assume any liability arising out of the application or use of any
product or circuit, and specifically disclaims any and all liability, including without
limitation consequential or incidental damages. “Typical” parameters that may be
provided in Freescale Semiconductor data sheets and/or specifications can and do vary
in different applications and actual performance may vary over time. All operating
parameters, including “Typicals”, must be validated for each customer application by
customer’s technical experts. Freescale Semiconductor does not convey any license
under its patent rights nor the rights of others. Freescale Semiconductor products are
not designed, intended, or authorized for use as components in systems intended for
surgical implant into the body, or other applications intended to support or sustain life,
or for any other application in which the failure of the Freescale Semiconductor product
could create a situation where personal injury or death may occur. Should Buyer
purchase or use Freescale Semiconductor products for any such unintended or
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and
its officers, employees, subsidiaries, affiliates, and distributors harmless against all
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,
directly or indirectly, any claim of personal injury or death associated with such
unintended or unauthorized use, even if such claim alleges that Freescale
Semiconductor was negligent regarding the design or manufacture of the part.

RoHS-compliant and/or Pb-free versions of Freescale products have the functionality
and electrical characteristics as their non-RoHS-compliant and/or non-Pb-free
counterparts. For further information, see http://www.freescale.com or contact your
Freescale sales representative.

For information on Freescale’s Environmental Products program, go to
http://www.freescale.com/epp.

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.
All other product or service names are the property of their respective owners.
© Freescale Semiconductor, Inc. 2008. All rights reserved.

http://www.freescale.com
http://www.freescale.com/epp

	1 Background and Overview
	1.1 New S08 Technology
	1.2 EEPROM Uses and Applications
	1.3 Types of EEPROM Devices
	1.3.1 External EEPROM
	1.3.2 EEPROM Emulation
	1.3.3 On-Chip EEPROM

	1.4 EEPROM Arrangement

	2 Applications and Usage of EEPROM
	2.1 Determining Application Requirements
	2.2 Extending EEPROM Life
	2.2.1 Organization of Data
	2.2.2 Data Integrity
	2.2.3 A Simple Example

	3 Simple Programming Through the Command Interface
	3.1 State Machine Command Interface
	3.2 State Machine Commands
	3.2.1 Blank Check Command
	3.2.2 Byte Program Command
	3.2.3 Burst Program Command
	3.2.4 Sector Erase Command
	3.2.5 Mass Erase Command
	3.2.6 Sector Erase Abort Command

	4 Additional Strategies for Protecting EEPROM Data Integrity
	4.1 Loss of Power
	4.2 MCU Bus Clock
	4.3 Software Runaway

	5 Conclusion/Summary

