
Freescale Semiconductor
Application Note

© 2012 Freescale Semiconductor, Inc. All rights reserved.

This document describes on-chip ROM booting from an
SD card/MMC or from an EEPROM under a Linux
operating system on the following devices:

• MPC8536E

• MPC8569E

• P2020

• P1011

• P1012

• P1013

• P1020

• P1021

• P1022

NOTE
The term ‘EEPROM’ refers to a serial flash or
an EEPROM memory device with an SPI
interface in this document.

Document Number: AN3659
Rev. 2, 06/2012

Contents
1. What does the on-chip ROM do? 2
2. Building a Cconfiguration file . 2
3. Building a RAM-based U-Boot under Linux 15
4. Preparing the image using boot_format 18
5. Required POR configurations for booting from on-chip ROM

20
6. Booting from on-chip ROM on an MPC8536DS 21
7. Booting to Linux from an SD card/MMC 25
8. Revision history . 28

Booting from On-Chip ROM (eSDHC or eSPI)

Booting from On-Chip ROM (eSDHC or eSPI), Rev. 2

2 Freescale Semiconductor

What does the on-chip ROM do?

1 What does the on-chip ROM do?
The on-chip ROM includes both an eSDHC device driver and an eSPI driver. The driver code copies data
from either an SD card/MMC or from an EEPROM with an SPI interface to a temporary memory location
(see Section 2.4, “Choosing the temporary memory location”).

The on-chip ROM is internally mapped to 0xFFFF_E000 when booting from either an SD card/MMC or
from an EEPROM.The on-chip boot ROM code uses the information from the SD card/MMC or the
EEPROM to configure a temporary memory, such as the L2 cache or a DDR, before it copies a U-Boot
image to this temporary memory. After SD card/MMC- or EEPROM-specific configurations are set up and
all the image code is copied, the e500 core jumps to the address specified at offset 0x60 in the
configurations and starts to execute the code from the temporary memory.

1.1 Avoiding on-chip ROM configuration issues using TLB1
The on-chip ROM code configures the first entry of the table lookaside buffer 1 (TLB1) to access up to
4 Gbytes starting from address 0x0000. Although the user configuration easily copies the image to any
specified temporary memory location, it may conflict with the U-Boot configuration. This table shows
how the MAS0–3 registers are set.

2 Building a Cconfiguration file

2.1 Boot location-specific data structures
A special data structure specific to each booting location provides the configurations and other information
related to the booting image (see Section 2.5.1, “SD Card/MMC data structure,” and Section 2.6.1,
“EEPROM data structure”). A configuration file must be created to implement everything in the data
structure except the user code (which is most often a U-Boot image under Linux).

2.2 Requirements for configuration files
CAUTION

Improperly using configuration files may overwrite the content of the
configuration, control, and status base address register (CCSRBAR),
causing the boot process to hang.

Table 1. TLB1 MAS0–3 register values

Register Value

MAS0 0x1000_0000

MAS1 0xC000_0B00

MAS2 0x0000_000E

MAS3 0x0000_0015

Note: MAS4–7 and TLB1CFG are at their reset values.

Booting from On-Chip ROM (eSDHC or eSPI), Rev. 2

Freescale Semiconductor 3

Building a Cconfiguration file

The data format of a configuration file is offset/address: data-based, which means that the first data value
is the offset/address, and the second data is the actual data value. Note the following requirements for
creating configuration files:

• The colon must be used between the offset address and the data value at every line.

• The value for the offset is a hex-based number.

• The 32-bit data must be in hexadecimal format.

• The configuration data must be put on the first 24 blocks of an SD card/MMC.

• The configuration data must be put on the first block of an EEPROM.

NOTE
For the eSDHC interface, the address may be an offset.

2.3 Definition of an address/data pair
An address/data pair consists of a configuration offset/address and configuration data. Table 3, “SD
Card/MMC data structure definition and address/data pairs,” and Table 5, “eSPI EEPROM data structure
definition,” group the data into pairs using shading.

The configuration words section consists of address/data pairs of adjacent 32-bit fields. These address/data
pairs are typically used to configure the local access windows (LAWs) and the temporary memory’s
configuration registers.

NOTE
For a DDR memory, these register values may be system-dependent,
because a different DDR memory requires a different set of configuration
parameters in a particular system.

2.4 Choosing the temporary memory location
Use either DDR or L2 cache as the temporary memory location. Using L2 cache is ideal because it is more
reliable and easier to configure and to debug than DDR.

However, if the size of the U-Boot exceeds the size of the L2 cache, DDR must be used. Use this table to
determine whether DDR or L2 cache should be used as the temporary memory for your device.

2.5 Building an SD Card/MMC configuration file
NOTE

Keep in mind that only 1-bit mode is used for booting from an
SD card/MMC (to support booting from different types of cards).

Table 2. Temporary memory location

Device’s L2 Cache Size U-Boot Size Temporary Memory Devices

256 Kbytes 512 Kbytes DDR P1xxx

512 Kbytes 512 Kbytes L2 cache MPC8536E, MPC8569E, P2020

Booting from On-Chip ROM (eSDHC or eSPI), Rev. 2

4 Freescale Semiconductor

Building a Cconfiguration file

2.5.1 SD Card/MMC data structure

An SD card/MMC used for booting contains a specific data structure that consists of control words, device
configuration information, and a boot loader, such as a U-Boot image. This figure shows the SD
card/MMC boot data structure’s sections.

Figure 1. SD Card/MMC data structure

Figure 1 NOTES:
1 The length of the control words is fixed.
2 The maximum length of configuration words is 40 pairs due to the FAT16/FAT32 file system support if the data is copied to the

first block of an SD card/MMC.
3 The length of the user code is limited by the length of the 32-bit address or the size of the SD card/MMC memory. Normally,

the length of the user code is the size of the U-Boot (512 Kbytes).

This table describes the SD card/MMC data structure. Note that address/data pairs are delineated by
shading.

Table 3. SD Card/MMC data structure definition and address/data pairs

Address Data bits [0:31]

0x00–0x3F Reserved

0x40–0x43 BOOT signature
This location should contain the value 0x424f_4f54, which is the ascii code for BOOT. The boot loader code
searches for this signature.
If the value in this location does not match the BOOT signature, the SD card/MMC does not contain a valid user
code. The boot loader code disables the eSDHC and issues a hardware reset request of the SoC by setting
RSTCR[HRESET_REQ].

— Reserved

0x48–0x4B User’s code length <= 2 Gbytes
Number of bytes in the user’s code to be copied, which must be a multiple of the SD card/MMC’s block size (and
the user’s code zero-padded if necessary to achieve that length).

0x4C–0x4F Reserved

Source address

Reserved

Control words

•
•
•

User’s code

0x00

Reserved

Configuration words

0x3F
0x40

0x63
0x64

0x7F
0x80

Booting from On-Chip ROM (eSDHC or eSPI), Rev. 2

Freescale Semiconductor 5

Building a Cconfiguration file

See Section “eSDHC Boot,” in the applicable chip reference manual for more information.

0x50–0x53 Source address
Contains the starting address of the user’s code as an offset from the SD card/MMC starting address.
 • In standard capacity (SD) cards/MMCs, the 32-bit source address specifies the memory address in byte

address format, which must be a multiple of the SD card/MMC’s block size.
 • In high capacity SD (SDHC) cards (>2 Gbytes), the 32-bit source address specifies the memory address in

byte address format. However, it must be a multiple of block length, which is fixed to 512 bytes as per the
SDHC specification.

0x54–0x57 Reserved

0x58–0x5B Target address
Contains the target address in the system’s local memory address space in which the user’s code is copied to.1

0x5C–0x5F Reserved

0x60–0x63 Execution starting address
Contains the jump address in the system’s local memory address space into the user’s code first instruction to
be executed.1

0x64–0x67 Reserved

0x68–0x6B N
Number of configuration data pairs
Must be 1<=N<=1024, but is recommended to be as small as possible.

0x6C–0x7F Reserved

0x80–0x83 Configuration address 1

0x84–0x87 Configuration data 1

0x88–0x8B Configuration address 2

0x8C–0x8F Configuration data 2

…

0x80
+ 8*(N – 1)

Configuration address N

0x80
+ 8*(N– 1)+4

Configuration Data N

…
…
…

— User code

Note:

1 This is a 32-bit effective address. The e500 core is configured in such a way that the 36-bit real address is equal to this (with
the 4 msbs = 0).

Table 3. SD Card/MMC data structure definition and address/data pairs (continued)

Address Data bits [0:31]

Booting from On-Chip ROM (eSDHC or eSPI), Rev. 2

6 Freescale Semiconductor

Building a Cconfiguration file

2.5.2 Building an SD card/MMC configuration file
Control words and configuration words must be included in the SD card/MMC configuration file, but other
sections of the data structure can also be included.

The initial six address/data pairs in the configuration file are control words of a fixed length. The number
of configuration words can be varied depending on the system. However, it must be 1<=N<=1024, and is
recommended to be as small as possible, because rest of the configurations can be accomplished by a boot
loader such as the U-Boot.

This example shows an annotated SD card/MMC configuration file using DDR as the temporary memory,
and Example 2 shows the configuration file using L2 cache.

Example 1. Configuration file for SD card/MMC using DDR

40:424f4f54

44:00000000

48:00080000

4c:00000000

50:00001000

54:00000000

58:11000000

5c:00000000

60:1107f000

64:00000000

68:00000010 16 address/data pairs of configuration words

80:ff702110 DDR configuration parameters

84:42000000 DDR configuration parameters

88:ff702000 DDR configuration parameters

8c:0000001f DDR configuration parameters

90:ff702080 DDR configuration parameters

94:80010202 DDR configuration parameters

98:ff702104 DDR configuration parameters

9c:00260802 DDR configuration parameters

a0:ff702108 DDR configuration parameters

a4:3935d322 DDR configuration parameters

a8:ff70210c DDR configuration parameters

ac:05105408 DDR configuration parameters

Booting from On-Chip ROM (eSDHC or eSPI), Rev. 2

Freescale Semiconductor 7

Building a Cconfiguration file

b0:ff702114 DDR configuration parameters

b4:24401000 DDR configuration parameters

b8:ff702118 DDR configuration parameters

bc:00400432 DDR configuration parameters

c0:ff702124 DDR configuration parameters

c4:06db03e8 DDR configuration parameters

c8:ff702128 DDR configuration parameters

cc:deadbeef DDR configuration parameters

d0:ff702130 DDR configuration parameters

d4:03800000 DDR configuration parameters

d8:40000001 Delay

dc:00000100 0x100 = 256 of 8 CCB clocks delay

e0:ff702110 DDR configuration parameters

e4:c3008000 DDR configuration parameters

e8:ff700C08 Configuration parameters of LAW 0

ec:00000000 Configuration parameters of LAW 0

f0:ff700C10 Configuration parameters of LAW 0

f4:80F0001D Configuration parameters of LAW 0

f8:efefefef End of configuration words

Booting from On-Chip ROM (eSDHC or eSPI), Rev. 2

8 Freescale Semiconductor

Building a Cconfiguration file

This example shows an SD card/MMC configuration file using L2 cache.

Example 2. Configuration file for SD card/MMC using L2 cache

40:424f4f54

44:00000000

48:00080000

4c:00000000

50:00001000

54:00000000

58:f8f80000

5c:00000000

60:f8fff000

64:00000000

68:00000006 6 address/data pairs of configuration words

80:ff720100 L2/SRAM configuration parameters

84:f8f80000 L2/SRAM configuration parameters

88:ff720e44 L2/SRAM configuration parameters

8c:0000000c L2/SRAM configuration parameters

90:ff720000 L2/SRAM configuration parameters

94:80010000 L2/SRAM configuration parameters

98:ff72e40c eSDHC configuration parameters

9c:00000040 eSDHC configuration parameters

a0:40000001 Delay

a4:00000100 0x100 = 256 of 8 CCB clocks delay

a8:80000001End of configuration words

Booting from On-Chip ROM (eSDHC or eSPI), Rev. 2

Freescale Semiconductor 9

Building a Cconfiguration file

This table shows additional details on how to define the configurations shown in Example 1 and
Example 2.

Table 4. SD card/MMC configuration file details

Value at
offset(s):

Description Comments/Requirements

 0x40
0x240
0x440

...
0x2E40

Booting signature This value should be the first data and must be an offset of 0x40 from the
start address of the first 24 blocks (each block being 512 bytes).

0x48 Booting image code length in bytes The length of RAM-based U-Boot image. A value of 0x0008_0000 means
that the U-Boot has at most 524288 bytes.
This value must be a multiple of the SD card/MMC’s block’s size (512 bytes).
It should be zero-padded, if necessary.

0x50 Source address This value indicates the starting address of the special U-Boot code as an
offset from the SD card/MMC starting address. For all SD card/MMCs, the
32-bit source address specifies the memory address in byte address format.
This value must be a multiple of the SD card/MMC’s block’s size (512 bytes).

0x58 Address in DDR memory where a
booting image and the RAM-based
U-Boot code are copied to.

If using the default Freescale LTIB or BSP package, keep this value
unchanged in the configuration file.
This value should match the U-Boot configuration, and is the first
data/instruction location of the U-Boot.

0x60 Execution starting address This value is the first instruction of the U-Boot to be executed.

0x68 Number of configuration data pairs
in the subsequent data structure
section

—

Note:

Booting from On-Chip ROM (eSDHC or eSPI), Rev. 2

10 Freescale Semiconductor

Building a Cconfiguration file

2.6 Building an EEPROM configuration file

2.6.1 EEPROM data structure

The basic eSPI driver code on the on-chip ROM performs reads from an EEPROM. An EEPROM used
for booting contains a specific data structure that consists of control words, device configuration
information, and a boot image. This figure shows the EEPROM boot data structure’s sections.

Figure 2. eSPI EEPROM data structure

Figure 2 NOTES:
1 The length of the control words is fixed.
2 The maximum length of configuration words is limited by the 16- or 24-bit address.
3 The length of the user code is limited by the length of the 32-bit address or the size of the EEPROM.

This table describes the EEPROM data structure’s bits [0:31]. Note that address/data pairs are delineated
by shading.

Table 5. eSPI EEPROM data structure definition

Address Data Bits [0:31]

0x00–0x3F Reserved

0x40–0x43 BOOT signature
This location should contain the value 0x424f_4f54, which is the ascii code for BOOT. The eSPI loader code
searches for this signature, initially in 24-bit addressable mode. If the value in this location doesn't match the
BOOT signature, then the EEPROM is accessed again, but in 16-bit mode. If the value in this location still does
not match the BOOT signature, it means that the eSPI device doesn't contain a valid user code. In such case the
eSPI loader code disables the eSPI and issues a hardware reset request of the SoC by setting
RSTCR[HRESET_REQ].

0x44–0x47 Reserved

Source address

Reserved

Control words

•
•
•

User’s code

0x00

Reserved

Configuration words

0x3F
0x40

0x63
0x64

0x7F
0x80

Booting from On-Chip ROM (eSDHC or eSPI), Rev. 2

Freescale Semiconductor 11

Building a Cconfiguration file

See Section “eSPI Boot,” in the applicable device reference manual for more information.

0x48–0x4B User’s code length
Number of bytes in the user’s code to be copied.
Must be a multiple of 4. (4 <= User’s code length <= 2 Gbytes)

0x4C–0x4F Reserved

0x50–0x53 Source address
Contains the starting address of the user’s code as an offset from the EEPROM starting address. In 24-bit
addressing mode, the 8 most significant bits of this should be written to as zero, because the EEPROM is
accessed with a 3-byte (24-bit) address. In 16-bit addressing mode, the 16 most significant bits of this should be
written to as zero.

0x54–0x57 Reserved

0x58–0x5B Target address
Contains the target address in the system’s local memory address space in which the user’s code is copied to.
This is a 32-bit effective address. The core is configured in such a way that the 36-bit real address is equal to this
(with 4 most significant bits zero).

0x5C–0x5F Reserved

0x60–0x63 Execution starting address
Contains the jump address in the system’s local memory address space into the user’s code first instruction to
be executed. This is a 32-bit effective address. The core is configured in such a way that the 36-bit real address
is equal to this (with the 4 msbs = zero).

0x64–0x67 Reserved

0x68–0x6B N
Number of configuration data pairs
Must be <=1024 (but is recommended to be as small as possible).

0x6C–0x7F Reserved

0x80–0x83 Configuration address 1

0x84–0x87 Configuration data 1

0x88–0x8B Configuration address 2

0x8C–0x8F Configuration data 2

…

0x80 +
8*(N–1)

Configuration address N

0x80 +
8*(N–1)+4

Config data N (final configuration data N optional)

…
…
…

— User code

Table 5. eSPI EEPROM data structure definition (continued)

Address Data Bits [0:31]

Booting from On-Chip ROM (eSDHC or eSPI), Rev. 2

12 Freescale Semiconductor

Building a Cconfiguration file

2.6.2 Building an EEPROM eSPI configuration file
The configuration address field has two modes that are selected by the lsb in the field (CNT). If the CNT
bit is clear, then the 30 most significant bits are used to form the address pointer and the Configuration
Data contains the data to be written to this address. If the CNT bit is set then the 30 most significant bits
are used for control instruction. This flexible structure allows the user to configure any 4-byte-aligned
memory mapped register, perform control instructions, and specify the end of the configuration stage.

The value of 424f4f54 is the booting signature, which must be the first data at the offset 0x40 from the start
address.

This example shows an EEPROM configuration file using DDR, and Example 4 shows the configuration
file using L2 cache. Note that Example 1 is identical to Example 3 except for the differences shown in red.

Example 3. Configuration file for EEPROM using DDR

40:424f4f54

44:00000000

48:00080000

4c:00000000

50:00000400 <= Source address is 0x400 instead of 0x1000 for SD/MMC

54:00000000

58:11000000

5c:00000000

60:1107f000

64:00000000

68:00000012 <= Total of 18 pairs of configuration words

80:ff702110 DDR configuration parameters

84:42000000 DDR configuration parameters

88:ff702000 DDR configuration parameters

8c:0000001f DDR configuration parameters

90:ff702080 DDR configuration parameters

94:80010202 DDR configuration parameters

98:ff702104 DDR configuration parameters

9c:00260802 DDR configuration parameters

a0:ff702108 DDR configuration parameters

a4:3935d322 DDR configuration parameters

a8:ff70210c DDR configuration parameters

Booting from On-Chip ROM (eSDHC or eSPI), Rev. 2

Freescale Semiconductor 13

Building a Cconfiguration file

ac:05105408 DDR configuration parameters

b0:ff702114 DDR configuration parameters

b4:24401000 DDR configuration parameters

b8:ff702118 DDR configuration parameters

bc:00400432 DDR configuration parameters

c0:ff702124 DDR configuration parameters

c4:06db03e8 DDR configuration parameters

c8:ff702128 DDR configuration parameters

cc:deadbeef DDR configuration parameters

d0:ff702130 DDR configuration parameters

d4:03800000 DDR configuration parameters

d8:40000001 Delay

dc:00000100 0x100 = 256 of 8 CCB clocks delay

e0:ff702110 DDR configuration parameters

e4:c3008000 DDR configuration parameters

e8:ff700C08 Configuration parameters of LAW 0

ec:00000000 Configuration parameters of LAW 0

f0:ff700C10 Configuration parameters of LAW 0

f4:80F0001D Configuration parameters of LAW 0

f8:20000001 <= Change the SPI interface frequency

fc:21172210

100:40000001 <= Delay

104:00000001

108:efefefef

This example shows an EEPROM configuration file using L2 cache. Note that Example 2 is identical to
Example 4 except for the differences shown in red.

Example 4. Configuration file for booting using the L2 cache

40:424f4f54

44:00000000

48:00080000

4c:00000000

50:00000400 <= Source address is 0x400 instead of 0x1000 for SD/MMC

Booting from On-Chip ROM (eSDHC or eSPI), Rev. 2

14 Freescale Semiconductor

Building a Cconfiguration file

54:00000000

58:f8f80000

5c:00000000

60:f8fff000

64:00000000

68:00000008 <= Total of 8 pairs of configuration words

80:ff720100 L2/SRAM configuration parameters

84:f8f80000 L2/SRAM configuration parameters

88:ff720e44 L2/SRAM configuration parameters

8c:0000000c L2/SRAM configuration parameters

90:ff720000 L2/SRAM configuration parameters

94:80010000 L2/SRAM configuration parameters

98:ff72e40c eSDHC configuration parameters

9c:00000040 eSDHC configuration parameters

a0:40000001 Delay

a4:00000100 0x100 = 256 of 8 CCB clocks delay

a8:20000001 <= Change the SPI interface frequency

ac:21172210

b0:40000001 <= Delay

b4:00000001

b8:80000001

This table shows additional details on how to define the configurations shown in Example 3 and
Example 4.

Table 6. EEPROM configuration file details

Value at
address:

Description Comments/Requirements

 0x40 Booting signature This value should be the first data and must be an offset of 0x40 from the
start address of an EEPROM.

0x48 Booting image code length in bytes The length of RAM-based special U-Boot image. A value of (0x0008_0000)
means that the U-Boot has at most 524288 bytes.
This value must be a multiple of 4 bytes.

0x50 Source address This value indicates the starting address of the special U-Boot code as an
offset from the EEPROM starting address.
This value must be a multiple of 4 bytes.

Booting from On-Chip ROM (eSDHC or eSPI), Rev. 2

Freescale Semiconductor 15

Building a RAM-based U-Boot under Linux

3 Building a RAM-based U-Boot under Linux
Both SD card/MMC and EEPROM booting use the same RAM-based U-Boot image. A RAM-based
U-Boot is different from a NOR Flash-based U-Boot in the following ways:

• A NOR Flash can perform random accesses, but an SD card/MMC or EEPROM cannot be
accessed directly.

• The starting address of the RAM-based U-Boot is different than a NOR Flash-based U-Boot.After
copying the U-Boot image to offset 0x58 in the control words section of the data structure, the
on-chip ROM jumps to the location specified at offset 0x60.

The requirements for building a RAM-based U-Boot under Linux are as follows:

• Use a compile time header file to assign the starting location for a U-Boot. For example, in the
MPC8536E BSP, file u-boot.lds ensures that the U-Boot starts running from the location at
0xF8FF_F000; in this case, the value 0xF8FF_F000 must therefore be stored at offset 0x60 in an
SD card/MMC or EEPROM.

• The initialization code for the U-Boot must be changed to fit the different U-Boot options. Due to
the first entry of TLB1 configuration already in the boot ROM code, the RAM-based U-Boot may
need to manage different TLBs or need to change the first entry of the TLB1, if necessary.

• The U-Boot environment variables must be saved to an SD card/MMC or an EEPROM, and the
corresponding code dealing with the environment must be changed to save the variables Note that
in the Freescale BSP, cmd_nvedit.c and env_common.c are changed, and env_sdcard.c is added to
handle the environment variables.

0x58 Address in DDR memory where a
booting image and the RAM-based
U-Boot code are copied to.

If using the default Freescale LTIB or BSP package, keep this value
unchanged in the configuration file.
This value should match the U-Boot configuration, and is the first
data/instruction location of the U-Boot.

0x60 Execution starting address This value is the first instruction of the U-Boot to be executed.

0x68 Number of configuration data pairs
in the subsequent data structure
section

—

Note:

Table 6. EEPROM configuration file details (continued)

Value at
address:

Description Comments/Requirements

Booting from On-Chip ROM (eSDHC or eSPI), Rev. 2

16 Freescale Semiconductor

Building a RAM-based U-Boot under Linux

This example shows the procedure for building a RAM-based U-Boot using the MPC8536E BSP already
installed on a Linux system.

Example 5. Building a RAM-based U-Boot on the MPC8536E BSP

1. Go to the ltib directory.

2. Type ./ltib -c to bring up the “Freescale MPC8536DS PowerPC Developement Board
Configuration” window.

3. Select the “u-boot target board type” menu (shown in Figure 3).

Figure 3. Finding “u-boot target board type”

4. Select “Booting from SD card” or “Booting from SPI Flash.”

5. Exit the window.

6. The U-Boot image file (u-boot.bin) is under the directory ./rootfs/boot after completing the build
process properly.

Booting from On-Chip ROM (eSDHC or eSPI), Rev. 2

Freescale Semiconductor 17

Building a RAM-based U-Boot under Linux

Perform the following sequence of tasks to generate a RAM-based U-Boot to boot from an SD card
without a BSP:

Example 6. Building a RAM-based U-Boot from an SD card

1. Add MPC8536DS_SDCARD_config \ after the MPC8536DS_NAND_config \ to the Makefile.

2. Include #define CONFIG_MK_SDCARD 1 before #include <configs/MPC8536DS.h> in file
./include/config.h.

3. Add the following to file ./include/configs/mpc8536ds.h:

#ifdef CONFIG_MK_SDCARD

#define CONFIG_RAMBOOT_SDCARD 1

#define CONFIG_RAMBOOT_TEXT_BASE 0xf8f8000

#endif

4. Append the following to the line #if defined (CONFIG_sysy_spl) || defined
(CONFIG_RAMBOOT_NAND) in file ./include/configs/mpc8536ds.h:

|| defined (CONFIG_RAMBOOT_SDCARD) and before line #define CONFIG_SYS_RAMBOOT
5. Add the following to file ./board/freescale/mpc8536ds/config.mk before ifndef TEXT_BASE

ifeq ($(CONFIG_MK_SDCARD), y)

TEXT_BASE = $(CONFIG_RAMBOOT_TEXT_BASE)

RESET_VECTOR_ADDRESS = 0xf8fffffc

endif

6. An alias of the following is used to make the build process easier:

alias 85xxmake='make CROSS_COMPILE=powerpc-linux-gnuspe- ARCH=ppc'

7. Type the following commands:

85xxmake distclean

85xxmake MPC8536DS_SDCARD_config

85xxmake

8. Use the U-Boot image in the current directory to boot from an SD card/MMC.

Example 7. Manually building a RAM-based U-Boot from an EEPROM

To manually build a RAM-base U-Boot to boot from an EEPROM, use the procedure in Example 6, but
replace “SDCARD” with “SPIFLASH”.

TIP
Check the mkconfig file under the ltib directory to find out more about the
make process.

Example 8. Building a regular U-Boot

To build a regular U-Boot, use the procedure in Example 6, but replace “MPC8536DS_SDCARD_config” with
“85xxmake MPC8536DS_config”.

Booting from On-Chip ROM (eSDHC or eSPI), Rev. 2

18 Freescale Semiconductor

Preparing the image using boot_format

4 Preparing the image using boot_format
boot_format is a booting utility application.

• When booting from an SD card/MMC, boot_format puts the configuration file and the RAM-based
U-Boot image on the card (Section 4.3, “Putting a boot image on an SD card/MMC”).

• When booting from an EEPROM, boot_format generates a binary image that is used to boot from
this EEPROM(Section 4.4, “Generating a binary file for eSPI booting,” and Section 4.5, “Putting
a boot image on an EEPROM”).

boot_format runs under a regular Linux machine and requires a super user mode to run. After typing
boot_format, the following information displays:

[root@b08938-02 new_tool]# ./boot_format

 Usage: ./boot_format config_file image -sd dev [-o out_config] | -spi out_image

Where:

config_file: includes boot signature and configuration words

image: the U-Boot image for booting from eSDHC/eSPI

dev: SDCard’s device node (e.g. /dev/sdb, /dev/mmcblk0)

out_image: boot image in SPI mode

out_config: modified configure file for SD mode

There are two available revisions of boot_format:

• boot_format Rev. 1.0 (see Section 4.1, “boot_format rev. 1.0 considerations”)

• boot_format Rev. 1.1 (see Section 4.2, “boot_format rev. 1.1 considerations”)

NOTE
The source address value is changed by boot_format. Its programmed value
on an SD card/MMC is usually not the same value as in the configuration
file. boot_format Rev. 1.1 may give a different source address value from
Rev 1.0.

NOTE

boot_format adjusts the starting address of the space based on the size of the
boot loader image and the size of the first partition. As such, boot_format
changes the source address value to be larger than the first partition size.

4.1 boot_format rev. 1.0 considerations
TROUBLE

boot_format Rev 1.0 has a known bug that usually prevents the generated
binary image from working when booting from the EEPROM.

Booting from On-Chip ROM (eSDHC or eSPI), Rev. 2

Freescale Semiconductor 19

Preparing the image using boot_format

The requirements for using boot_format Rev. 1.0 when booting from an SD card/MMC are as follows:

• Two partitions should be created for an SD card/MMC before using boot_format Rev. 1.0 to put a
boot image on the card. Of these partitions, the first must be a FAT16 or FAT32 file system with a
size less than 2 Gbytes. The most common use case is to have two partitions, as follows:

— One FAT16 or FAT32 file system with a size of approximately 300 Mbytes

— One Ext2 or Ext3 file system of a much larger size than the FAT file system’s size

The different images are usually partitioned as follows:

• The boot loader image (which includes the configuration information) is stored in the address space
between the first partition and the second partition, or appended right after the first partition.

• The Linux kernel image and the flat device tree file are on the first partition.

• The Linux root file system image is on the second partition.

4.2 boot_format rev. 1.1 considerations
The requirements for using boot_format Rev. 1.1 when booting from an SD card/MMC are as follows:

• Two partitions must be created for an extended capacity SD card (SDXC), because boot_format
Rev. 1.1 does not work with the exFAT file system.

• The first partition must be a FAT16 or a FAT32 file system.

• If the size of the first partition is smaller than 2 Gbytes, partition the different images the same way
as Rev. 10.

• If the size of the first partition is larger than 2 Gbytes and less than 32 Gbytes, boot_format changes
the source address value to 4608. This is a reserved area based on SD Specifications Part 2, File
System Version 3.0.

4.3 Putting a boot image on an SD card/MMC
NOTE

boot_format can only run on a regular Linux machine or a Linux based
board that has either an SD card/MMC interface or a USB interface with an
SD card/MMC-to-USB converter.

Perform the following sequence of tasks to put a boot image on an SD card/MMC using boot_format:

1. Insert an SD card/MMC to the Linux machine.

2. Check whether it is in /dev/sdx (x should be a character of a, b, c,...) or /dev/mmcblk0 if using a
Freescale BSP.

3. Copy the application boot_format to a directory on the Linux machine.

4. Copy the SD card/MMC configuration file and the U-Boot image to the same directory as
boot_format.

5. If not logged in as a super user, switch to super user mode using su.

6. Type ./boot_format config_file image -sd /dev/sdx
or
/dev/mmcblk0 (depending on where the card found in step 2).

Booting from On-Chip ROM (eSDHC or eSPI), Rev. 2

20 Freescale Semiconductor

Required POR configurations for booting from on-chip ROM

NOTE
This utility may change the source address value at offset 0x50.

4.4 Generating a binary file for eSPI booting
Perform the following sequence of tasks to generate a binary file using boot_format:

1. Copy the application boot_format to a directory on a Linux machine.

2. Copy the EEPROM configuration file and the U-Boot image to the same directory as
boot_format.

3. If not logged in as a super user, switch to super user mode using su.

4. Type ./boot_format config_file image -spi out_image.

5. Generate the booting image “out_image” that is put on the EEPROM in one of the following
ways:

— Use the EEPROM writer, which is supplied from EEPROM manufacture or a tool supplier.

— Write the booting image to an EEPROM under the Linux environment after booting from
another method first.

4.5 Putting a boot image on an EEPROM
Section 6.2, “EEPROM booting on an MPC8536DS,” gives an example of how to enable the eSPI Linux
driver. The property for the node of the eSPI EEPROM must be changed so that it can be writeable.

Perform the following sequence of tasks to put the booting image on an EEPROM:

1. Configure the Linux image with the eSPI driver enabled.

2. Build a device tree including a node for EEPROM (an mtd device).

3. Boot to Linux prompt.

4. Check the mtd device to see the EEPROM.

5. Mount the EEPROM.

6. Copy the booting image to a directory.

7. Erase the beginning part of the EEPROM.

8. Copy the booting image to the EEPROM.

5 Required POR configurations for booting from on-chip
ROM

The on-chip ROM code does not set up any local access windows (LAWs). Access to the CCSR address
space or the L2 cache does not require a LAW. It is the user’s responsibility to set up a LAW through a
control word address/data pair for the desired target address and execution starting address (which is
typically in either DDR or local bus memory space).

As shown in Example 1 and Example 3, at least one LAW must be configured for successful booting using
DDR as the temporary memory.

Booting from On-Chip ROM (eSDHC or eSPI), Rev. 2

Freescale Semiconductor 21

Booting from on-chip ROM on an MPC8536DS

Note that any such LAW configured must have the 4 Mbits of the address due to the 512-Mbyte U-Boot.

5.1 Required configurations for SD card/MMC booting
The configuration settings required to boot from an SD card/MMC are as follows:

• Ensure that cfg_rom_loc[0:3] (Boot_Rom_Loc) are driven with a value of 0b0111.

• Only one core can be in booting mode. If your device has multiple cores, all other cores must be in
a boot hold-off mode. The CPU boot configuration input, cfg_cpux_boot, should be 0, where x is
from 1 to n (n = the number of cores).

• Booting from the eSDHC interface can occur from different SD card slots if multiple SD card slots
are designed on the board. In this case, ensure the appropriate SD card/MMC is selected.
For example, on the MPC8536DS board, bit 7 of the SW8 is used to select which SD/MMC slot is
used. If SW8[7] = 1, an SD card/MMC must be put to the external SD card/MMC slot (J1).

TIP
The polarity of the SDHC_CD signal should be active-low.

5.2 Required configurations for EEPROM booting
The configuration settings required to boot from an EEPROM are as follows:

• Ensure that cfg_rom_loc[0:3] (Boot_Rom_Loc) are driven with a value of 0b0110.

• Only one core can be in booting mode. If your device has multiple cores, all other cores must be in
a boot hold-off mode. The CPU boot configuration input, cfg_cpux_boot, should be 0, where x is
from 1 to n (n = the number of cores).

• The eSPI chip select 0 (SPI_CS[0]) must be connected to the EEPROM that is used for booting.
No other chip select can be used for booting. This is because during booting, the eSPI controller is
configured to operate in master mode. Booting from the eSPI interface only works with SPI_CS[0].

6 Booting from on-chip ROM on an MPC8536DS

6.1 SD card/MMC booting on an MPC8536DS
Perform the following sequence of tasks to boot from an SD card/MMC on an MPC8536DS:

1. Plug the SD card/MMC in the external SD slot (slot 0).

2. Change bit 5678 of SW2 to 0xB0111.

3. Change bit 1 of SW3 to 0.

4. Change bit 7 of SW8 to 1.

5. Keep the default reset of the software setting.

6. Turn on the power; the U-Boot comes up if everything is done properly.

Booting from On-Chip ROM (eSDHC or eSPI), Rev. 2

22 Freescale Semiconductor

Booting from on-chip ROM on an MPC8536DS

6.2 EEPROM booting on an MPC8536DS

6.2.1 Putting the booting image on the EEPROM

Perform the following sequence of tasks to put a booting image on an EEPROM on an MPC8536DS:

1. Configure the Linux kernel to turn on the eSPI driver as follows:

— SPI support

– CONFIG_SPI Y

– CONFIG_SPI_BITBANG Y

– CONFIG_FSL_ESPI Y

— Memory technology device (MTD) support:

– CONFIG_MTD Y

– CONFIG_MTD_PARTITIONS Y

– CONFIG_MTD_OF_PARTS Y

– CONFIG_MTD_CHAR Y

– CONFIG_MTD_BLOCK Y

— Self-contained MTD device drivers:

– CONFIG_MTD_FSL_M25P80 Y

– CONFIG_M25PXX_USE_FAST_READ Y

Use this table to ensure the required properties have the proper descriptions to achieve device tree binding.

The default node is as follows:

spi@7000 {

cell-index = <0>;

#address-cells = <1>;

#size-cells = <0>;

compatible = "fsl,espi";

reg = <0x7000 0x1000>;

interrupts = <59 0x2>;

interrupt-parent = <&mpic>;

Table 7. Required device tree binding settings

Property Type Required description

Compatible String fsl,espi

Mode (spi node) String cpu

Mode (fsl_m25p80 node) Integer 0

Modal String s25s1128b

Clock-frequency Integer Not beyond <80000000>

Booting from On-Chip ROM (eSDHC or eSPI), Rev. 2

Freescale Semiconductor 23

Booting from on-chip ROM on an MPC8536DS

espi,num-ss-bits = <4>;

mode = "cpu";

fsl_m25p80@0 {

#address-cells = <1>;

#size-cells = <1>;

compatible = "fsl,espi-flash";

reg = <0>;

linux, modalias = “fsl_m25p80”;

spi-max-frequency = <40000000>; /* input clock */

partition@u-boot-spi {

label = “u-boot-spi”;

reg = <0x00000000 0x00100000>;

};

partition@kernel {

label = "kernel-spi";

reg = <0x00100000 0x00500000>;

read-only;

};

partition@dtb {

label = "dtb-spi";

reg = <0x00600000 0x00100000>;

read-only;

};

};

fsl_m25p80@1 {

compatible = "fsl,espi-flash";

reg = <1>;

linux, modalias = “fsl_m25p80”;

spi-max-frequency = <40000000>;

};

fsl_m25p80@2 {

compatible = "fsl,espi-flash";

reg = <2>;

linux, modalias = “fsl_m25p80”;

spi-max-frequency = <40000000>;

};

fsl_m25p80@3 {

compatible = "fsl,espi-flash";

Booting from On-Chip ROM (eSDHC or eSPI), Rev. 2

24 Freescale Semiconductor

Booting from on-chip ROM on an MPC8536DS

reg = <3>;

linux, modalias = “fsl_m25p80”;

spi-max-frequency = <40000000>;

};

};

2. Remove the read-only property on the mpc8536ds.dts.

3. Boot the MPC8536DS system until login.

4. Check the mtd device:

/root # cat /proc/mtd
dev: size erasesize name
mtd0: 00100000 00010000 "u-boot-spi"
mtd1: 00500000 00010000 "kernel-spi"
mtd2: 00100000 00010000 "dtb-spi"
mtd3: 01000000 00010000 "spi32766.1"
mtd4: 01000000 00010000 "spi32766.2"
mtd5: 01000000 00010000 "spi32766.3"
/root #

5. Put the boot image to a directory:

a) Set up the Ethernet port and gateway:

/boot # ifconfig eth0 down

/boot # ifconfig eth0 xx.xxx.xxx.xxx

b) Start the TFTP server on a PC and put the image file on the TFTP root directory.

c) Start the TFTP client in the MPC8536DS system:

/jzhao # tftp yyy.yyy.yyy.yyy

/tftp> get outimage

/tftp> quit

6. Mount and write the boot image to the EEPROM:

/root # flash_eraseall /dev/mtd0

/root # cat outimage > /dev/mtd0

Use the Linux command dd to check whether the image has been written to the EEPROM, if desired:

dd if=/dev/mtd0 of=a1 bs=256 count=2; od –x a1

6.2.2 Booting from the EEPROM on an MPC8536DS

Perform the following sequence of tasks to boot from an EEPROM on an MPC8536DS:

1. Change bit 5678 of SW2 to 0xB0110.

2. Keep the default reset of the software setting.

3. Turn on the power; the U-Boot comes up if everything is done properly.

Booting from On-Chip ROM (eSDHC or eSPI), Rev. 2

Freescale Semiconductor 25

Booting to Linux from an SD card/MMC

7 Booting to Linux from an SD card/MMC
To boot to Linux from an SD card/MMC, it is assumed that all following configuration files for booting
are in the same directory under a Linux machine:

• RAM-based U-Boot image (u-boot.bin)

• Kernel image (uImage)

• Flat device tree file (mpc8536ds.dtb)

• Root file syste (rootfs.ext2.gz.uboot)

• Latest boot-format

Perform the following sequence of tasks to boot to Linux from an SD card/MMC; note that the
MPC8536DS system is used as an example:

1. Plug an empty SD card/MMC into the Linux machine.

2. Use Linux command fdisk to create two partitions: one 512-Mbyte FAT16 and one ext2/ext3 with
remainder of the available disk size.

3. Use Linux command mkfs to create the FAT file system for the first partition.

4. Use mkfs to create the ext2/ext3 file system for the second partitions

5. Follow the procedure in Section 4.3, “Putting a boot image on an SD card/MMC.”

6. Use boot_format to put the boot image on the card.

7. Put the root file system (rootfs.ext2.gz.uboot) on the second partition using the following
commands:

— dd if=rootfs.ext2.gz.uboot of=rootfs.gz bs=64 skip=1

— gunzip rootfs.gz

— dd if=rootfs of=/dev/sdc2

8. Mount the FAT system (mount /dev/sdc1 /mnt/tmp).

9. Copy the kernel file (cp uImage /mnt/tmp) and flat device tree file (cp mpc8536ds.dtb /mnt/tmp) to
the root directory of the FAT system.

10. Unmount the FAT system (umount /mnt/tmp).

TIP
After step 9 is performed properly, all the required files and information are
on the SD card/MMC.

11. If a Linux desk PC is used:

a) Unplug the SD card/MMC from this PC.

b) Plug the SD card/MMC into a system that is going to boot from this card.

12. Configure the system to boot from an SD card/MMC (see Section 6.1, “SD card/MMC booting on
an MPC8536DS”)

13. Stop the U-Boot before it loads the Linux kernel by typing any key.

14. Change the bootcmd parameter by typing the following:

Booting from On-Chip ROM (eSDHC or eSPI), Rev. 2

26 Freescale Semiconductor

Booting to Linux from an SD card/MMC

setenv sdboot ‘setenv bootargs root=/dev/mmcblk0p2 rw rootfstype=ext2 rootdelay=5
console=ttyS0,115200;mmcinfo; fatload mmc 0:1 1000000 /uImage; fatload mmc 0:1 c00000
/mpc8536ds.dtb; bootm 1000000 - c00000’

15. Save the bootcmd parameter by typing save.

16. Continue to boot the system to the Linux prompt by entering run sdboot.

If the system boots properly, the login screen shows the following information. Note that this is only some
of the information displayed:

Device: FSL_ESDHC

Manufacturer ID: 3

OEM: 5344

Name: SD02G

Tran Speed: 25000000

Rd Block Len: 512

SD version 2.0

High Capacity: No

Capacity: 2032664576

Bus Width: 4-bit

reading /uImage.8536

3173024 bytes read

reading /mpc8536ds.dtb

12433 bytes read

WARNING: adjusting available memory to 30000000

Booting kernel from Legacy Image at 01000000 ...

 Image Name: Linux-2.6.32-rc5

 Image Type: PowerPC Linux Kernel Image (gzip compressed)

 Data Size: 3172960 Bytes = 3 MB

 Load Address: 00000000

 Entry Point: 00000000

 Verifying Checksum ... OK

Flattened Device Tree blob at 00c00000

 Booting using the fdt blob at 0xc00000

 Uncompressing Kernel Image ... OK

Using MPC8536 DS machine description

Memory CAM mapping: 256/256/256 Mb, residual: 256Mb

Booting from On-Chip ROM (eSDHC or eSPI), Rev. 2

Freescale Semiconductor 27

Booting to Linux from an SD card/MMC

Linux version 2.6.32-rc5 (jzhao@xeon2) (gcc version 4.3.2 (GCC)) #8 Fri Oct 22 08:13:08
CDT 2010

bootconsole [udbg0] enabled

setup_arch: bootmem

mpc8536_ds_setup_arch()

...

sdhci: Secure Digital Host Controller Interface driver

sdhci: Copyright(c) Pierre Ossman

mmc0: SDHCI controller on ffe2e000.sdhci [ffe2e000.sdhci] using DMA

...

/bin/ntpclient: option requires an argument -- 'h'

Usage: /bin/ntpclient [-c count] [-d] [-g goodness] -h hostname [-i interval]

 [-l] [-p port] [-r] [-s]

rebuilding rpm database

PHY: mdio@ffe24520:01 - Link is Up - 1000/Full

ADDRCONF(NETDEV_CHANGE): eth0: link becomes ready

 Welcome to the LTIB Embedded Linux Environment

!!!!! WARNING !!!!!!!

The default password for the root account is: root

please change this password using the 'passwd' command

and then edit this message (/etc/issue) to remove this message

mpc8536ds login: root

Password:

Booting from On-Chip ROM (eSDHC or eSPI), Rev. 2

28 Freescale Semiconductor

Revision history

8 Revision history
This table provides a revision history for this document.

Table 8. Document revision history

Rev.
number

Date Substantive change(s)

2 06/2012 In step 7 in Section 7, “Booting to Linux from an SD card/MMC,” changed the first command to: “dd
if=rootfs.ext2.gz.uboot of=rootfs.gz bs=64 skip=1”.

1 11/2010 • Editorial changes throughout
 • Updated Freescale BSP information throughout.
 • Added additional devices that this document supports.
 • Added Section 1, “What does the on-chip ROM do?.”
 • Added Section 2, “Building a Cconfiguration file.”
 • Added Section 2.4, “Choosing the temporary memory location.”
 • In Table 3, “SD Card/MMC data structure definition and address/data pairs,” updated Source

Address description, and added a footnote.
 • Modified Example 1, “Configuration file for SD card/MMC using DDR.”
 • Added Example 2, “Configuration file for SD card/MMC using L2 cache.”
 • Modified Example 3, “Configuration file for EEPROM using DDR.”
 • Added Example 4, “Configuration file for booting using the L2 cache.”
 • Updated Section 2.6, “Building an EEPROM configuration file.”
 • Added Section 7, “Booting to Linux from an SD card/MMC.”
 • Added Section 4.1, “boot_format rev. 1.0 considerations.”
 • Added Section 4.2, “boot_format rev. 1.1 considerations.”

0 12/2008 Initial release

Document Number: AN3659
Rev. 2
06/2012

Information in this document is provided solely to enable system and software

implementers to use Freescale products. There are no express or implied copyright

licenses granted hereunder to design or fabricate any integrated circuits based on the

information in this document.

Freescale reserves the right to make changes without further notice to any products

herein. Freescale makes no warranty, representation, or guarantee regarding the

suitability of its products for any particular purpose, nor does Freescale assume any

liability arising out of the application or use of any product or circuit, and specifically

disclaims any and all liability, including without limitation consequential or incidental

damages. “Typical” parameters that may be provided in Freescale data sheets and/or

specifications can and do vary in different applications, and actual performance may

vary over time. All operating parameters, including “typicals,” must be validated for each

customer application by customer’s technical experts. Freescale does not convey any

license under its patent rights nor the rights of others. Freescale sells products pursuant

to standard terms and conditions of sale, which can be found at the following address:

http://www.reg.net/v2/webservices/Freescale/Docs/TermsandConditions.htm.

How to Reach Us:

Home Page:
freescale.com

Web Support:
freescale.com/support

Freescale, the Freescale logo, AltiVec, C-5, CodeTest, CodeWarrior, ColdFire, C-Ware,

Energy Efficient Solutions logo, Kinetis, mobileGT, PowerQUICC, Processor Expert,

QorIQ, Qorivva, StarCore, Symphony, and VortiQa are trademarks of Freescale

Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. Airfast, BeeKit, BeeStack, ColdFire+,

CoreNet, Flexis, MagniV, MXC, Platform in a Package, QorIQ Qonverge, QUICC

Engine, Ready Play, SafeAssure, SMARTMOS, TurboLink, Vybrid, and Xtrinsic are

trademarks of Freescale Semiconductor, Inc. All other product or service names are

the property of their respective owners. The Power Architecture and Power.org word

marks and the Power and Power.org logos and related marks are trademarks and

service marks licensed by Power.org.

© 2012 Freescale Semiconductor, Inc.

	Booting from On-Chip ROM (eSDHC or eSPI)
	1 What does the on-chip ROM do?
	1.1 Avoiding on-chip ROM configuration issues using TLB1
	Table 1. TLB1 MAS0-3 register values

	2 Building a Cconfiguration file
	2.1 Boot location-specific data structures
	2.2 Requirements for configuration files
	2.3 Definition of an address/data pair
	2.4 Choosing the temporary memory location
	Table 2. Temporary memory location

	2.5 Building an SD Card/MMC configuration file
	2.5.1 SD Card/MMC data structure
	Figure 1. SD Card/MMC data structure
	Table 3. SD Card/MMC data structure definition and address/data pairs

	2.5.2 Building an SD card/MMC configuration file
	Table 4. SD card/MMC configuration file details

	2.6 Building an EEPROM configuration file
	2.6.1 EEPROM data structure
	Figure 2. eSPI EEPROM data structure
	Table 5. eSPI EEPROM data structure definition

	2.6.2 Building an EEPROM eSPI configuration file
	Table 6. EEPROM configuration file details

	3 Building a RAM-based U-Boot under Linux
	Figure 3. Finding “u-boot target board type”

	4 Preparing the image using boot_format
	4.1 boot_format rev. 1.0 considerations
	4.2 boot_format rev. 1.1 considerations
	4.3 Putting a boot image on an SD card/MMC
	4.4 Generating a binary file for eSPI booting
	4.5 Putting a boot image on an EEPROM

	5 Required POR configurations for booting from on-chip ROM
	5.1 Required configurations for SD card/MMC booting
	5.2 Required configurations for EEPROM booting

	6 Booting from on-chip ROM on an MPC8536DS
	6.1 SD card/MMC booting on an MPC8536DS
	6.2 EEPROM booting on an MPC8536DS
	6.2.1 Putting the booting image on the EEPROM
	Table 7. Required device tree binding settings

	6.2.2 Booting from the EEPROM on an MPC8536DS

	7 Booting to Linux from an SD card/MMC
	8 Revision history
	Table 8. Document revision history

