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The Fast Fourier Transform (FFT) isanumericaly efficient
algorithm used to compute the Discrete Fourier Transform
(DFT). The Radix-2 and Radix-4 algorithms are used mostly
for practical applications due to their smple structures.
Compared with Radix-2 FFT, Radix-4 FFT provides a 25%
savings in multipliers. For a complex N-point Fourier
transform, the Radix-4 FFT reduces the number of complex
multiplications from N2 to 3(N/4)log,N and the number of
complex additions from N to 8(N/4)log,N, where log,N is
the number of stages and N/4 isthe number of butterfliesin
each stage. FFTs are of importance to awide variety of
applications, such as telecommunications (3GPP-LTE,
WiIMAX, and so on). For example, Orthogonal Frequency
Division Multiplexing (OFDM) signals are generated using
the FFT algorithm.

This application note describes the implementation of the
Radix-4 decimation-in-time (DIT) FFT agorithm using the
Freescale StarCore SC3850 core. The document discusses
how to use new features available in the SC3850 core, such
as dual-multiplier, to improve the performance of the FFT.
Code optimization and performance results are also
investigated in this document. Typical reference code is
included in this document to demonstrate the
implementation details.
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Introduction

1 Introduction

1.1 Overview

The discrete Fourier transform (DFT) plays an important role in the analysis, design, and implementation
of discrete-time signal processing agorithms and systems because efficient algorithms exist for the
computation of the DFT. These efficient algorithms are called Fast Fourier Transform (FFT) algorithms.
In terms of multiplications and additions, the FFT algorithms can be orders of magnitude more efficient
than competing algorithms.

It iswell known that the DFT takes N? complex multiplications and N2 complex additions for complex
N-point transform. Thus, direct computation of the DFT isinefficient. The basic ideaof the FFT algorithm
isto break up an N-point DFT transform into successive smaller and smaller transforms known as
butterflies (basic computational €lements). The small transforms used can be 2-point DFTs known as
Radix-2, 4-point DFTs known as Radix-4, or other points. A two-point butterfly requires 1 complex
multiplication and 2 complex additions, and a 4-point butterfly requires 3 complex multiplications and 8
complex additions. Therefore, the Radix-2 FFT reduces the complexity of a N-point DFT down to
(N/2)log,N complex multiplications and Nlog,N complex additions since there arelog,N stages and each
stage has N/2 2-point butterflies. For the Radix-4 FFT, there are log,N stages and each stage has N/4
4-point butterflies. Thus, the total number of complex multiplication is (3N/4)log4N = (3N/8)log,N and
the number of required complex additionsis 8(N/4)log,N = Nlog,N.

Aboveadl, theradix-4 FFT requires only 75% as many complex multiplies asthe radix-2 FFT, although it
uses the same number of complex additions. These additional savings make it awidely-used FFT
algorithm. Thus, we would like to use Radix-4 FFT if the number of pointsis power of 4. However, if the
number of pointsis power of 2 but not power of 4, the Radix-2 algorithm must be used to complete the
whole FFT process. In this application note, we will only discuss Radix-4 FFT algorithm.

Now, let’s consider an example to demonstrate how FFTs are used in real applications. In the 3GPP-LTE
(Long Term Evolution), M-point DFT and Inverse DFT (IDFT) are used to convert the signal between
frequency domain and time domain. 3GPP-LTE aimsto provide for an uplink speed of up to 50Mbps and
adownlink speed of up to 100Mbps. For this purpose, 3GPP-LTE physical layer uses Orthogonal
Frequency Division Multiple Access (OFDMA) on the downlink and Single Carrier - Frequency Division
Multiple Access (SC-FDMA) on the uplink. Figure 1 shows the transmitter and receiver structure of
OFDMA and SC-FDMA systems.

We can see from this example that DFT and IDFT are the key elements to represent changing signalsin
time and frequency domains. In real applications, FFTs are normally used to for high performance instead
of direct DFT calculation.
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Figure 1. Transmitter and Receiver Structure of SC-FDMA and OFDMA Systems

1.2  Organization

Therest of the document is organized as follows:
e Section 2, “Radix-4 FFT Algorithm” givesabrief background for DFT, and describes (decimation
in frequency) DIF and (decimation in time) DIT Radix-4 FFT algorithms.

» Section 3, “SC3850 Data Typesand Instructions’ investigates somefeaturesin SC3850, which can
be used for efficient FFT implementation.

» Section 4, “Implementation on the SC3850 Core” provides the detailed implementation on
SC3850, and discusses fixed-point implementation issues. How to fully utilize the resource in
SC3850 and optimize the implementation is al so discussed. Source code isincluded for reference.

e Section 5, “Experimental Results’ presents experimental results.

» Section 6, “Conclusions’ presents the conclusion.

» Section 7, “References’ providesalist of useful references.
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2 Radix-4 FFT Algorithm

2.1 DFT and IDFT

The Fast Fourier Transform (FFT) isa computationally efficient algorithm to calculate a Discrete Fourier
Transform (DFT). The DFT X(k), k:0,1,2,.N,_I\1|-1 of a sequence x(n), n=0,1,2,...,N-1 isdefined as

X( = 3 x(mexp( 250K
;ii Eqn. 1
= Zx(n)W{\}k
n=0
it = (2539

Eqn. 2

_ COS(Znnk) _.sm(Znnk)
N N

In Equation 1 and Equation 2, N isthe number of data, j = /-1, and wgk isthe twiddle factor. Equation 1
is caled the N-point DFT of the sequence of x(n). For each value of k, the value of X (k) represents the
Fourier transform at the frequency %k . The IDFT is defined as follows:

N-1

N 3 Xoen( 5]
k=0 Eqgn. 3

x(n)

Eqn. 4

Equation 3isessentially the sameas Equation 1. Thedifferencesarethat the exponent of thetwiddlefactor
in Equation 3isthe negative of the onein Equation 1 and the scaling factor is1/N. The IDFT can besimply
computed using the same algorithms for DFT but with conjugated twiddle factors. Alternatively, we can
use the same twiddles factors for DFT with conjugated input and output to compute IDFT. Equation 1 is
also called the analysis equation and Equation 3 the synthesis equation.
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Radix-4 FFT Algorithm

From Equation 1, itisclear that to compute X (K) for each k, it requires N complex multiplicationsand N-1
complex additions. So, for N values of k, that is, for the entire DFT, it requires N? complex multiplications
and N(N-1) = N:complex additions. Thus, the DFT is very computationally intensive. Note that a
multiplication of two complex numbers (a+jb) x (c+jd) = (ac—bd) +j(bc+ad) requiresfour rea
multiplications and two real additions. A complex addition (a+jb)+(c+jd) = (a+c)+j(b+d) requires
two real additions.

We will present two commonly used FFT agorithms: decimation in frequency (DIF) and decimation in
time (DIT). Please note that the Radix-4 algorithms work out only when the FFT length N is a power of
four.

2.2 Radix-4 DIF FFT
We will use the properties shown by Equation 5 in the derivation of the algorithm.

N
k —_
Symmetry property: WN+2 = -WK

Periodicity property: WK*N = W

Eqgn. 5

The Radix-4 DIF FFT algorithm breaksaN-point DFT cal culation into a number of 4-point DFTs (4-point
butterflies). Compared with direct computation of N-point DFT, 4-point butterfly calculation requires
much less operations. The Radix-4 DIF FFT can be derived as shown in Equation 6.

X(K) = Z X (n)WRK

n=0
N 2N 3N
27t %t %t N-1
= Zx(n)W,'\]'w Z X(N)WRk + Z X(N)WRK + Z X(n)Wgk
n=0 Y no2N Y
4 4 4
N N N N
-1 -1 -1 -1
4 4 4 4
N 2N 3N
N (n+—k 2N (n+—k 3N (n+—k
= Zx(n)WR‘k+ Zx(n+Z>WN 4) +ZX(H+T)WN 4) +ZX(I’I+T)WN 4) EqnG
n=0 n=0 n=0 n=0
N N N N
771 a7t a7t 271
Nk N Zhk 2N 2k 3N
= Zx(n)W,QK+WN4 Zx(n+Z)W,QK+WN4 Zx(n+7>wp,k+WN4 Zx(n+7)w,qk
n=0 n=0 n=0 n=0
N
Nk 2Nk 3Nk
= Z{x(n) + W, ¢ x(n+§) + W,y x(n+ ZTN) + Wy x(n+ 3TN> }W{\“k
n=0

k=0123..,N-1
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Nk 2NK 3Nk
The special factorsof wg¢ , w4 ,and wg* inabove equation can be calculated as shownin
Equation 7.
i 2rk N nk
= = . = = =] = (—)k
WN4—exp(JN 1 eXp(Jz) (1)
2Nk
1 = 2nk 2N _ _ink) = (—
Wyt = exp(—J N 4) = exp(rk) = (=1)k Eqn. 7
3Nk
4 = i2nk 3N _ _;3mky _
Wyt = exp(—J N 4) = exp(J 2) =
Then, Equation 6 can be rewritten as shown in Equation 8.
N1
X(k) = Z{x(n) +(—j)kx(n+ %) + (—1)kx(n+ %) +jkx(n+ %} }W{\“k Eqn. 8

n=0
k=0123..,N-1

Considering {x(n) + (—))*x(n+ N/4) + (=1)kx(n+ (2N)/4) + j*x(n+ (3N)/4)} asone signal, Equation 8 looks
very similar to a N/4-point FFT. However, it isnot an FFT of length N/4 because the twiddle factor wik
depends on N instead of N/4. To make this equation an N/4-point FFT, the transform X (k) can be broken
into four parts as shown in Equation 9.

Ny
X (4k) = 4Z{x(n) +x(n+%) +x(n+%) +x(n+%)}wgw,qk/4
X(4K +1) = Z{x(n)—jx(n+ %) —x(n+ %) +jx(n+ %} }w,qum
s
X (4K +2) = Z{x(n)—x(n+ %) +x(n+ ZTN) —x(n+ 37'\') }W,%nw,ql;4
X (4K +3) = Z{x(n) +jx(n+—'}) —x(n+¥) —jx(n+¥) }w,ﬁnw,qu
k = (n),_f,z,s, D1
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If we use the definitions shown in Equation 11.

y(n) = {X(n)+x(n+%) +x(n+2_N)

y(n+N/4) = {x(n)— jX n+

y(n+(3N)/4) = x(n)+Jx n+

y(n+(2N)/4) = {x(n) X\n+— +x(

2nn . 2nnk
.2n-2n  .2nnk

I N _J_N/4) = WEWRK,
21 -3n  .2nnk

_J_N _J_N/4) = WEPWRK,

Radix-4 FFT Algorithm

Eqgn. 10

Eqgn. 11

From Equation 9, we can see that X (4k), X(4k+1), X(4k+2), and X (4k+3) are N/4-point FFT of y(n),
y(n+N/4), y(n+2n/4), and y(n+3N/4), respectively. Asaresult, an N-point DFT is reduced to the

computation of four N/4-point DFTSs.

Figure 2 shows the corresponding Radix-4 butterfly calculation of Equation 11. Through further
rearrangement, it can be shown that each Radix-4 DIF butterfly requires of 3 complex multiplications and
8 complex additions (12 real multiplications and 22 real additions). The decimation of the data sequences
referred to as stage 1 of the decomposition. This process can be repeated again and again until the resulting
sequences are reduced to one-point sequences. For N=4P, this decimation can be performed p=log,N
times. An exampleis shown in Figure 4 to illustrate the whol e process. Thus the total number of complex
multiplicationsis 3(N/4)log,N since there are 3 complex multiplications each butterfly, N/4 butterflies
each stage, and log4N stages. The number of complex additionsis 8(N/4)logsN since there are 8 complex
additions each butterfly, N/4 butterflies each stage, and log,N stages.
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x(n) (1,1,1,1) v (1) I

x(n + N/4) (1,-3,-1,3) % y(n + N/4) B’

x(n + 2N/4) (1,-1,1,-1) We y(n + 2N/4) cr

x(n + 3N/4) (1,3,-1,-3) wd y(n + 3N/4) D’
\M):@(p(—j%[»n] y(n) : intermediate signal
Wc:exp(—]— Zn)

(n=0,1 ..., N/4-1)

Wd:exp(—]—3nj

Figure 2. Radix-4 DIF Butterfly

In Figure 2, each of output y(n), y(n+ N/ 4),y(n+2N/4),andy(n+ 3N/ 4) isasum of four input signals
x(n), x(n+ N/ 4),x(n+ 2N / 4), and x(n + 3N / 4), each multiplied by either +1, -1, j, or -, and then the
sum is multiplied by atwiddle factor (1, Wy", Wx2", Wy"). The process of multiplication after addition
iscaled “Decimation In Frequency (DIF)”. On the other hand, the process of addition after the
multiplication is called “Decimation In Time (DIT)”. To illustrate the algorithm clearly, asimplified
butterfly is shown in Figure 3.

x(n) 0 y (n)
x(n + N/4) n y(n + N/4)
2n
x(n + 2N/4) y(n + 2N/4)
3n
x(n + 3N/4) / y(n + 3N/4)
We -> 0
Wy ->n
y(n) : intermediate signal

We® -> 2n

WNP’n -> 3n

Figure 3. Simplified Radix-4 DIF Butterfly

The Radix-4 DIF FFT algorithm processes an array of data by successive passes over the input data
samples. On each pass, the algorithm performs Radix-4 DIF butterflies, where each butterfly picks up four
complex dataand returnsfour complex dataas shownin Figure 2 and Figure 3. Theinput data, output data,
and the twiddle factors are assumed in the following format:

Software Optimization of FFTs and IFFTs Using the SC3850 Core, Rev. 0

Freescale Semiconductor



Radix-4 FFT Algorithm

Input data:
x(n) = Ar+jxAi
NY _ . .
x(n+z) = Br+jxBi
2NN _ . . Eqgn. 12
x(n+7> = Cr+jxCi
3N _ . .
x(n+7> = Dr+jxDi
Output data:
y(n) = Ar’ +jxAi’
N oo, "
y(n+z) = Br'+) xBi
2N _ ~, . ., Eqgn. 13
y(n+7> = Cr'+jxCi
3Ny _ o, .,
y(n+7> = Dr'+jxDi

Twiddle factors:

WR = Whr +] x Wbi
WgM = Wer +j x Wi Eqn. 14
W3 = Wdr +j x Wdi

Thereal and imaginary part of output data for Radix-4 DIF butterfly is specified in Equation 15.

Ar’” = Ar+Br+Cr+Dr
= (Ar+Br)+(Cr+Dr)
Ai’ = Ai+Bi+Ci +Di

= (Ai+Ci) +(Bi +Di)
Br’ = (Ar+Bi—-Cr—-Di)xWbr—(Ai—-Br-Ci + Dr) x Whi

= ((Ar=Cr) + (Bi —=Di)) x Wbr — ((Ai —=Ci) — (Br —Dr)) x Whi
Bi’ = (Ai—Br—Ci+Dr)xWbr+ (Ar+Bi—-Cr-Di) x Whi

= ((Ai=Ci)=(Br=Dr)) x Wbr + ((Ar=Cr) + (Bi = Di)) x Whi
Cr’ = (Ar—Br+ Cr—-Dr)x Wcr—(Ai—Bi + Ci —Di) x Wci

= ((Ar+Cr)—(Br+Dr)) x Wcr —((Ai + Ci) —(Bi + Di)) x Wci
Ci’ = (Ai—Bi+Ci—-Di)xWecr + (Ar—Br+ Cr—-Dr) x Wci

= ((Ai +Ci)—=(Bi +Di)) x Wecr + ((Ar + Cr) —(Br + Dr)) x Wci
Dr’ = (Ar—Bi—Cr+Di)xWdr—(Ai +Br—Ci —Dr) x Wdi

= ((Ar=Cr)—(Bi—=Di)) x Wdr — ((Ai = Ci) + (Br—Dr)) x Wdi
Di’ = (Ai+Br—Ci—Dr)xWdr + (Ar—Bi—Cr + Di) x Wdi

= ((Ai=Ci) + (Br=Dr)) x Wdr + ((Ar —=Cr) —(Bi = Di)) x Wdi

Eqn. 15

Software Optimization of FFTs and IFFTs Using the SC3850 Core, Rev. 0
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Radix-4 FFT Algorithm

Aswe can see from Equation 15 that there are 12 real multiplications and 22 real additions (count only
once for duplicated additions and multiplications). It is equivalent to 3 complex multiplications and 8
complex additions since one complex multiplication requires four real multiplications plus two real
additions and one complex addition requires two real additions. As mentioned before, in Radix-4 DIF
butterfly algorithm, the N-point FFT consists of log,(N) stages, and each stage consists of N/4-point
Radix-4 DIF butterflies. Therefore, Radix-4 DIF butterfI%/ calculation reduces the number of complex
multiplication that are needed for a N-point DFT from N“ to 3(N/4)log4N (from AN? to 3NlogyN interms
of real multiplications). For example, the number of real multiplications needed for a 1024-point DFT is
reduced from 4N2 = 4194304t0 3Nlog,N = 15360. Theimprovement of the Radix-4 DIF butterfly algorithm
over the direct calculation of the DFT is approximately 273 times.

Anexampleof 16-point Radix-4 DIF FFT diagramisshown in Figure 4 toillustrate the picture of an entire
FFT algorithm. There are 10g,16=2 stages and each stage has 16/4=4 buitterfliesin the figure.

Digit reversed order
(quaternary system)

S o c
(
AN
N\
»;l.i;l
€

N X

N UL

)! ?%v

7298
& .. © © O.(ﬁ\

:
..
o4
I
"(\

Figure 4. An example of a 16-point Radix-4 DIF FFT
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Radix-4 FFT Algorithm

In Figure 4, the inputs are normally ordered while the outputs are presented in adigit-reversed order. In
the case of Radix-4, the digitsare 0, 1, 2, 3 (quaternary system). A direct result of digit-reversed order for
16-point Radix-4 DIF FFT issummarized in Table 1. For example, the output X(9) occupies the position
“6” as 61 = 124 and the digit reversed number is 21, = 9,, where the subscripts denote the bases used to
present the number. That is, if the input index niswritten as a base-4 number, the output index is reversed
base-4 number. In order to store the output data to the correct order, the position of output data needsto be
replaced with the digit-reversed order. An efficient method to cal cul ate the output indices will be
introduced in Section 4 based on the bit-reversed addressing mode provided by the SC3850 core.

Table 1. Digital Reversed Order of a 16-point Radix-4 FFT

Index Digital pattern Digital reversed pattern | Digital reversed index
0 00 00 0
1 01 10 4
2 02 20 8
3 03 30 12
4 10 01 1
5 11 11 5
6 12 21 9
7 13 31 13
8 20 02 2
9 21 12 6
10 22 22 10
1 23 32 14
12 30 03 3
13 31 13 7
14 32 23 1
15 33 33 15
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Radix-4 FFT Algorithm

2.3

Radix-4 DIT FFT

It is assumed that N is a power of 4, that is, N=4P. The Radix-4 DIT FFT can be derived as shown in
Equation 16.

X(k) =

=
I

N-1

Z X(N)WRK

n=0

Z X(An)Wenk + Z X(4n + L)Wn+ Dk + Z X(4n + 2)Wn+ 2k + z X(4n + 3)Win + 3k

n=0 n=0

N
4—1

Z X(4n)Wenk + WK Z X(4n + 1)WHnk + Wgk Z X(4n+ 2)WHnk + W3k Z X(4n+ 3)WHnk

n=0
N

21

Z X(4n)WRK,, + WK Z X(4n+ 1)WRK, + Wgk Z X(4n+ 2)WRk, + W3k z X(4n+ 3)WRK,

n=0

2t 2t

n=0 n=0
N
4

N

N
-1 i 4

-1

n=0 n=0 n=0
N N N
2t 2t i

n=0 n=0 n=0

P(k) + WK Q(k) + WEKR(k) + WZkS(k)

01,23 ..,N-1

Eqgn. 16

Each of the sums, P(k), Q(k), R(k), and S(k), in Equation 16 isrecognized as an N/4-point DFT. Although

the index k ranges over N values, k=0,1,2,...,N-1, each of the sums can be computed only for

k=0,1,2,...,N/4-1, sincethey are periodic with period N/4. Thetransform X (k) can be broken into four parts
as shown in Equation 17.

X (k)

o

= P(K) + W,

P(k) + WK Q(K) + WZKR(K) + WKS(k)

S

N
P(k) + Wy, Q(k)+W,i 4R(k)+wf,

(1c+ )

S(k)

P(k) WK Q(K) —WRKR(K) +jWRKS(k)

(D o + Wil ®

L2N
R(k) +W,i(k 4>S(k)

P(k) =W{Q(K) + WIKR(k) — WRKS(k)

(s ) 2+ 7)

LY
P(k) + Wy Q(k) + Wy )

R(K) + W, S(k)

P(k) + jWEQ(k) —WEKR(k) —jWRKS(k)

N
L,2,..,—--1
0’ ) ’4
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Radix-4 FFT Algorithm

Figure 5 shows the corresponding Radix-4 DIT butterfly diagram, and Figure 6 shows its simplified
version.

P k) X (k)
A (1,1,1,1) A’
Q (k) Wb (1,-3,-1,9) X (k4N/4)
B ® BI
R (k) we (1,-1,1,-1) X (k+2N/4)
c ® cl
o wd (1,3,-1,-3) * (e 3N/4)
D 8 DI
2
Wh=exp — j—Kk
p( N )
27
VVCZQ(D[—JWZKJ (k = 0,1, ...,N/4-1)

Figure 5. Radix-4 DIT Butterfly

A 0 A’

B o B
2n

C c’
3n

D DI

Figure 6. Simplified Radix-4 DIT Butterfly

We can seethat Figure 2 and Figure 5 are similar. Note that the principal difference between DIT and DIF
butterfliesis that the order of calculation has changed. In the DIF algorithm, the time domain data was
“twiddled” before the sub-transformswere performed. In DIT, however, the sub-transforms are performed
first, and the output is obtained by “twiddling” the resulting frequency domain data.

Software Optimization of FFTs and IFFTs Using the SC3850 Core, Rev. 0
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Thereal and imaginary part of output datafor Radix-4 DIT butterfly is specified in Equation 18.

Ar” = Ar+(CrxWecr—-Ci xWci) + (Brx Wbr—Bi x Whi) + (Dr x Wdr —Di x Wdi)
Ai” = Ai +(CrxWoci + Ci x Wcr) + (Br x Whbi + Bi x Wbr) + (Dr x Wdi + Di x Wdr)
Br’ = Ar—(CrxWecr—CixWoci) + (BrxWbi + Bi x Wbr) —(Dr x Wdi + Di x Wdr)
Bi’ = Ai—(CrxWoci + CixWecr)—(Brx Wbr —Bi x Whi) + (Dr x Wdr —Di x Wdi)
Cr’ = Ar+(CrxWecr—Ci xWci)—(Brx Wbr—Bi x Wbi) —(Dr x Wdr —Di x Wdi)
Ci’ = Ai +(CrxWoci + Ci xWcr) —(Brx Whi + Bi x Wbr) — (Dr x Wdi + Di x Wdr)
Dr’ = Ar—(CrxWcr—Ci xWoci)—(BrxWhbi + Bi x Wbr) + (Dr x Wdi + Di x Wdr)
Di’ = Ai —(CrxWoci + Ci x Wcr) + (Br x Wbr —Bi x Whi) — (Dr x Wdr —Di x Wdi)

Eqgn. 18

The number of multiplications and additions required by the DIT butterfly isthe same asit required by the
DIF butterfly, which can be seen from Figure 2 and Figure 5. Therefore, Radix-4 DIT butterfly calculation
also reduces the number of complex multiplication that are needed for a N-point DFT from N?to
3(N/4)logyN (from AN to 3NlogyN intermsof real multiplications). In the SC3850 core, dual MACscan
be used to implement the DIT algorithm efficiently. Thus, this application note will describe the
implementation of the DIT agorithm on the SC3850 core in Section 4.

x(0) ®. o D ; @ x(0)
x(4) @20 D @ x)
x(8) ® 2 D @ x(2)
x(12)® D @ X(3)
O
O

(\'. /))O

RARA

/)V‘?\
§68%%

G

G O x(9)
x(10) @— V @ x(10)
x(14) @ O g O x(11)
x(3) &L o ) @ %(10)
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x(11) @ o 9 @ x(14)
x(15) @ D O x(15)

Figure 7. An example of a 16-point Radix-4 DIT FFT
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An example of 16-point Radix-4 DIT FFT diagram is shown in Figure 7 to illustrate an entire DIT
agorithm. There are log,16=2 stages and each stage has 16/4=4 butterflies. In Figure 7, the inputs are
digit-reversed ordered (refer to Table 1) while the outputs are presented in anormal order. Thus,
bit-reversed addressing mode is used to load the input data samplesto improve the performance of the DIT

FFT agorithm.

3 SC3850 Data Types and Instructions

This section discusses the data types, SIMD instructions, and complex arithmetic in the SC3850
architecture, which can be used to efficiently implement the Radix-4 DIT FFT algorithm.

3.1  StarCore Data Types
Table 2. Data Types Supported by the SC3850 Core
Data Type Size Layout in 40-bit Register Context Moves
Integer Byte (8-bit) Integer instructions, for example, MOVE.B,
39 32 16 0 IADD, ISUB, IMPY. Unaffected by | MOVEU.B
| zero/sign |8 bits | saturation modes.
Word (16-bit) Integer instructions, for example, MOVE.W,
39 32 16 0 IADD, ISUB, IMPY. Unaffected by | MOVEU.W
| zero/sign | 16 bits | saturation modes.
Long (32-bit) Integer instructions, for example, MOVE.L,
39 32 16 0 IADD, ISUB. However, multipliers | MOVEU.L
| ZIs | 32 bits | are 16-bit therefore multiplication of
this type is handled differently.
Unaffected by saturation modes.
40-bit Result of an accumulation over the | N/A
39 32 16 0 32-bit boundary. Not possible to
40 bits store 40-bit word as one in memory
but is possible to save context of
40-bit register. 40-bit value must be
adjusted before save to memory.
Unaffected by saturation modes.
Software Optimization of FFTs and IFFTs Using the SC3850 Core, Rev. 0
Freescale Semiconductor 15



SC3850 Data Types and Instructions

Table 2. Data Types Supported by the SC3850 Core (continued)

Data Type

Size

Layout in 40-bit Register

Context

Moves

Fractional

Byte (8-bit)

) 16 0
| sign | 8 bits] |

Fractional instructions for example,
ADD, SUB, MPY, MAC. Affected by
saturation mode (32/40)

MOVER.BF

Word (16-bit)

39 32 16 0
| sign| 16 bits | |

Fractional instructions for example,
ADD, SUB, MPY, MAC. Affected by
saturation mode (32/40)

MOVE.F +
scaling ones

Long (32-bit)

39 3 16 0
| sign| 32 bits |

Fractional instructions for example,
ADD, SUB. However, multipliers are
16-bit therefore multiplication of this
type is handled differently. Affected
by saturation mode (32/40)

MOVE.L

40-bit

40 bits |

Result of an accumulation over the
32-bit boundary. Not possible to
store 40-bit word as one in memory
but is possible to save context of
40-bit register. 40-bit value has to
be scaled, rounded etc. on or before
save to memory. 40-bit value only
possible with saturation mode set to
40-bit otherwise value will saturate
at 32-bits.

N/A

Packed

Fractional
16-bit

SIMD instructions only. 8-bit and
16-bit values can be loaded/stored.
Applicable only with saturation
mode 2 set to 16-bit.

MOVE2.2F

Fractional
20-bit

39 32 16 0

SIMD instructions only. 8-bit and
16-bit values can be loaded/stored.
Saturation mode 2 set to 20-bit for

wide accumulation.

MOVEZ2.2F

3.2

SIMD

The SC3850 core has support for packed, or SIMD operations. The use of these instructions can improve
performance since multiple data el ements can be processed simultaneously.

Software Optimization of FFTs and IFFTs Using the SC3850 Core, Rev. 0
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3.2.1 SIMD Instruction Data Types

The SIMD support isfor two data elements of up to 20 bits per 40-bit register as shown in Figure 8. Both
byte (8-bit) and word (16-bit) data can be loaded into the 20-hit fields. The extra bits alow for increased
precision.

Wide High (WH) Portion Wide Low (WL) Portion
39 4 32 16 0
Data Register ‘ ‘ | 16 bits ‘ 16 bits ‘

Figure 8. SIMD Data Format

3.2.2 SIMD Instructions

Figure 9 shows an example SIMD instruction, MAC2, which performs two separate multiplications of
16-hit sources accumulated into two 20-bit components (WH and WL) of aregister.

39 31 16 0

Do D wee mf“s |
®_
39 31 16 T 0

o1 Il BT

39 31 16 0

02 %I <]

-

20 Bits | v l v ~ 20 Bits

pSri ey

MAC2 DO0O,D1,D2

Figure 9. Example SC3850 SIMD Instruction, MAC2
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Table 3 liststhe SIMD instructions in the SC3850 core.

Table 3. SIMD Instructions in the SC3850 Core

Instruction Description Bitwise comp_atible with legacy
architectures
ADD2 Packed addition yes
SUB2 Packed subtraction yes
NEG2 Two Words Negate yes
IMACSU2 Two integer multiply accumulate signed by unsigned yes
PACK.2W Packs two words yes
PACK.2F Packs two fractional words yes
ADD.W Add 16-bit or 20-bit value no
ABS2 Two Words Absolute Value no
ASL2 Arithmetic Shift Left by One of Two Word Operands no
ASLL2 Multiple-Bit Arithmetic Shift Left of Two Word Operands no
ASRR2 Multiple-Bit Arithmetic Shift Right of Two Word Operands no
LSLL2 Multiple-Bit Bitwise Shift Left of Two Word Operands no
LSR2 Bitwise Shift Right One Bit of Two Word Operands no
LSRR2 Multiple-Bit Bitwise Shift Right of Two Word Operands no
SOD2ffcc Sum Or Difference of Two 16-Bit Values, function & cross no
MIN2 Transfer two 16-bit minimum signed values no
MAX2 Transfer two 16-bit maximum signed values no
SUB.W Subtract 16-bit or 20-bit value no
MPY2 Multiply 2 pairs of 16-bit data. N/A
MPY2R Multiply 2 pairs of 16-bit data and round the lower 16 bits of the result. N/A
MAC2 Multiply 2 pairs of 16-bit data, clip the lower 16 bits of each result into N/A
16-bit word and accumulate it with 20-bit accumulator input
MAC2R Multiply 2 pairs of 16-bit data, round the lower 16 bits of each result into N/A
16-bit word and accumulate it with 20-bit accumulator input.
CLIP20 Clip two 20-bit operands. N/A
SATU20.B Saturate two unsigned bytes. N/A
MAC2ffggR Multiply 2 pairs of 16-bit data, add or subtract them from each portion N/A
MAC?2ffggl -specific format used for FFT calculation. N/A

3.3 Complex Arithmetic

Complex arithmetic iswidely used in signal processing algorithms. Figure 10 shows a convention to
represent a complex number using dual 20-bit packed format. For a complex addition, two additions are

needed:

; Addition of a+jb and c+jd to form e+jf

e=a+c;
f=b+d;

For acomplex multiplication, two signed addition operations and four multiplications are needed.

7

e=ac-bd;

Multiplication of a+jb and c+jd to form e+jf

f=7 (bc+ad) ;

Software Optimization of FFTs and IFFTs Using the SC3850 Core, Rev. 0
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Wide High (WH) Portion Wide Low (WL) Portion
39736 32 16 0
Data Register ‘ ‘ | 16 bits | 16 bits |
19 0
WL: | l l Imaginary Part
Complex Number Convention 19 0
WH: | | | Real Part
H/—/
Guard Fraction
Bits

Figure 10. Dual 20-Bit Packed Format and Complex Number Convention

Table 4 lists instructions used for complex arithmetic:

Table 4. Instructions for Complex Arithmetic

Syntax Description

SOD2FFCC Da,Db,Dn Sum or Difference of Two Word Values—Function and Cross

Performs two separate 16-bit additions or subtractions between the high and low portions
of two source data registers and stores the results in the two portions of the destination
data register. The value of FF and CC determine the behavior.

FF: A for addition and S for subtraction

CC: XX for crossed and Il for not crossed

This instruction enables the use of the adder for smaller precision values and therefore
increases the number of operations that can be performed simultaneously.

MPYRE Assuming the complex type is stored in the register as 16-bit real, 16-bit imaginary, this
computes the real part of the complex multiplication. (Da.H * Db.H) - (Da.L * Db.L) -> Dn

MPYIM Assuming the complex type is stored in the register as 16-bit real, 16-bit imaginary, this
computes the imaginary part of the complex multiplication. (Da.L * Db.H) + (Da.H * Db.L)
->Dn

MPYCIM Assuming the complex type is stored in the register as 16-bit real, 16-bit imaginary, this
computes the conjugate imaginary part of the complex multiplication. (Da.L * Db.H) - (Da.H
*Db.L) -> Dn

MACRE Performs MPYRE with accumulation

MACIM Performs MPYIM with accumulation

MACCIM Performs MPYCIM with accumulation

Software Optimization of FFTs and IFFTs Using the SC3850 Core, Rev. 0
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3.4

Scaling, Rounding and Limiting

When moving fractional datato memory during DSP kernels, usually it isrequireto scale, round, and limit
(saturate) the data on its way to the memory in order not to lose precision due to truncation that would
otherwise occur. The data in the register itself is not modified to prevent accuracy loss when this register
is used for subsequent operations in the core. For non-packed data types, these operations are performed
by the MOV ER instructions, which work in the following way:

Scaling is done according to the scaling mode (SCM in SR). In 20-bit packed format, the scaling
down usesthe guard bits from the appropriate extension portion. Scaling is not performed whenin
the arithmetic saturation mode (SM for MOV ER). Four scaling modes are supported:

— No scaling

— Scale down (1-bit arithmetic right shift)
— Scale up (1-bit arithmetic left shift)

— Scale down (2-bit arithmetic right shift)

The data is rounded to the appropriate length (depending on the width of the transfer). Rounding
isnot done for 32-bit values (MOVER.L and MOEVR.2L instructions). Twos complement
rounding or convergent rounding is performed according to the rounding mode bit in the SR
(SR.RM).

Limiting is done on the scaled data, looking at the value of all the MS bits that are shifted out
(including guard bits for 40-bit input).

Table 5. MOVER Instructions

Instruction Description

MOVER.L Move a fractional long from a register to memory with scaling, and saturation. Note: no rounding takes place

with this instruction.

MOVER.2L Move two fractional longs from a register pair to memory with calling and saturation. Note: no rounding takes

place with this instruction.

MOVER.F Move a fractional word from a register to memory with rounding, scaling, and saturation

MOVER.2F Move two fractional words from a register pair to memory with rounding, scaling, and saturation

MOVER.4F Move four fractional words from a register quad to memory with rounding, scaling, and saturation

MOVERH.4F | Move four fractional words from the wide high portions of a register quad with rounding, scaling, and saturation.

MOVERL.4F | Move four fractional words from the wide low portions of a register quad with rounding, scaling and saturation.

MOVER.BF Move a fractional byte from a register to memory with rounding, scaling, and saturation

MOVER.2BF | Move two fractional bytes from a register pair to memory with rounding, scaling, and saturation

MOVER.4BF | Move four fractional bytes from a register quad to memory with rounding, scaling, and saturation

Software Optimization of FFTs and IFFTs Using the SC3850 Core, Rev. 0

20

Freescale Semiconductor



Implementation on the SC3850 Core

4 Implementation on the SC3850 Core

In this section, an implementation of the Radix-4 DIT FFT algorithm is presented.

4.1  Scaling

The SC3850 core is afixed-point digital signal processor. The data needs to be handled within the
fixed-point range[-1, 1) in order to avoid overflow. For aRadix-4 FFT, the magnitude values computed in
abutterfly stage can have agrowth to 4./2~5.657 . The real and imaginary parts of the butterfly can have
agrowth to 4. Thisis the output dynamic range. The fixed-scaling method scales down by a fixed factor
at each stage to handle the bit growth. If scaling isinsufficient, a butterfly output may grow beyond the
dynamic range and causes an overflow. In the computation of the Radix-4 FFT on the SC3850 core, it is
necessary to scale down the intermediate results by afactor of 4 to avoid any overflowing, which means
that each stage of the FFT isdivided by 4. If an FFT consists of M stages, the output is scaled down by 4V
(M =log,(N)), where N isthe length of the FFT. The scaling resultsin thefina output are modified by the
factor of 1/4M. The output sequence X’ (K) (k=0, 1, 2, 3, ... , N — 1) computed by the SC3850 processor
isdefined in Equation 19.

N-1 N-1
sy - L .2nnky _ 1 _.2nnk
X'(k) = 4MZX(n)exp(J N ) = NZX(n)exp(J N )
n=0 n=0 Eqgn. 19
M = log,N
k=0123 .., ,N-1

For example, the total scaling amount for 1024-point DIF FFT is 1/4M = 1/4° = 1/1024 (M = log,(1024)
=5). Note that if a Radix-4 agorithm uses a scaling of afactor of 4, the total scaling amount is equal to
the factor of 1/N. Note that the MOV ER instructions introduced in Section 3.4 can be used to efficiently
scale the data.

4.2  Bit-Reversed Addressing

The StarCore DSP has a bit-reversed (or reverse-carry) addressing mode to support N-point FFT
addressing, where N = 2% This mode is useful for unscrambling N-point FFT data. Figure 11shows an
example of reverse-carry addressing of 1024-point FFT. Before starting the reverse-carry addressing, the
following registers need to be set:

1. Set*1” tothe corresponding fieldin MCTL (Modifier Control) register

Software Optimization of FFTs and IFFTs Using the SC3850 Core, Rev. 0
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2. Setthe offset register, Nn = N/ 2, where N isthe number of FFT points

1024 = 2V
¥
Ex: 1024 point FFT
Start Address Offset
R7 0x00002000 NO |512 (0x00000200) MCTL 0x10000000
N
512 = 210-1

move.l (r7)+n0, do 0010 0000 0000 0000 -> $2000

+) 0000 1000 0000 0000 -> $0800(= $0200 x 4) “x 4” means “long”
R7 0x00002800 0010 1000 0000 0000 -> $2800

move.l (r7)+n0, dO

R7 0x00002400 *

0010 1000 0000 0000 -> $2800
0000 1000 0000 0000 -> $0800
0010 0100 0000 0000 -> $2400

N

Note that propagating the carry bit from each
pair of added bits in the Reverse Direction.

move.l (r7)+n0, dO
0010 0100 0000 0000 -> $2400

R7 0:(00002000 +) 0000 1000 0000 0000 -> $0800

0010 1100 0000 0000 -> $2CO0

Figure 11. Bit-Reversed Addressing for 1024-Point FFT

The bit-reversed addressing mode is equivalent to the following process (as shown in Figure 11):

1. Shift the offset value in Nn to the left according to the access width. For example, if the access
width islong, 2-bit left shift is performed.

2. Add the address register (Rn) and the offset register (Nn). Note that the carry bit is propagated
from each pair of added bitsin the reverse direction.
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The range of values for offset register, Nn, is from 0 to (232 — 1), which allows reverse-carry addressing
for FFTs up to 4,294,967,296 points. The base address (start address) should be aligned to N x W, where
W isthe number of bytesin a data element. For instance, in a 1024-point FFT on a 16-bit complex array,
the base address of the array needs to be aligned to:

1,024-point x 2-byte x 21Q = 4,096 bytes
Table 6 liststhe 16-point FFT bit-reversed order supported by StarCore SC3850 core.

Table 6. Bit-Reversed Order Supported by StarCore SC3850 DSPs

Index Bit Pattern Bit Reversed Pattern Bit Reversed Index
0 0000 0000 0
1 0001 1000 8
2 0010 0100 4
3 0011 1100 12
4 0100 0010 2
5 0101 1010 10
6 0110 0110 6
7 0111 1110 14
8 1000 0001 1
9 1001 1001 9
10 1010 0101 5
11 1011 1101 13
12 1100 0011 3
13 1101 1011 11
14 1110 0111 7
15 1111 1111 15

Asmentioned in Section 2.3, the data are digit-reversed ordered in the Radix-4 DIT algorithm. A
comparison between the digit-reversed order for Radix-4 (Table 1) and the bit-reversed order supported by
the SC3850 DSP (Table 6) showsthat the two middle output indices are interchanged. This meansthat the
bit-reversed addressing mode can be used for the digit-reversed ordering in Radix-4 FFT with the
exchange of the two middle indices. For this purpose, the algorithm interchanges the order of B and C of
Radix-4 DIT butterfly as shown in Figure 12. Otherwise, the usual digital-reversed addressing is used.
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(A) Normal ordered input/output

A 0
B n
C 2n
3n
D
A 0
2
c n
n
B
3n
D

(B) Reordered input/output for
dgita-reversed addressng

Figure 12. Radix-4 DIT Butterflies: (A) Normal Ordered Input and (B) Reordered Data for Digit-Reverse

Addressing

To further improve the process of loading input data, two address registersin bit-reversed mode can be
used to load the input datain parallel. The offset between the two address registersis equal to N/2 x
complex datawidth (4 bytes). To update the registers and get next input data, +Ni/2 isused for both offset

registersinstead of +Ni.

An example to illustrate how to access 16 input data with two bit-reversed address registersisgiven in
Table 7. For comparison, digital-reversed index and bit-reversed index with one address register are also
listed in the table. In the fourth column of the table, rO and rl are used in bit-reversed addressing mode.
Register rO is used to accessindex 0, 4, 2, 6, 1, 5, 3, 7 and rl is used to access index 8, 12, 10, 14, 9, 13,
11, 15. Note that the offset between rO and r1is 8, whichis half of N (N=16 in this example).

Table 7. Two Registers in Bit-Reversed Addressing Mode

Index Digital-Reversed Bit-Reversed Index. with One Bit-Reversed Ipdex with Two
Index Address Register Address Registers RO, R1
0 0 0 0 (r0)
1 4 8 4 (r0)
2 8 4 8 (r1)
3 12 12 12 (r1)
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Table 7. Two Registers in Bit-Reversed Addressing Mode (continued)

Index Digital-Reversed Bit-Reversed Index_ with One Bit-Reversed Ir_1dex with Two
Index Address Register Address Registers RO, R1
4 1 2 2 (r0)
5 5 10 6 (10)
6 9 6 10 (r1)
7 13 14 14 (r1)
8 2 1 1 (r0)
9 6 9 5(r0)
10 10 5 9 (r1)
11 14 13 13 (r1)
12 3 3 3(r0)
13 7 11 7 (r0)
14 1 7 11 (r1)
15 15 15 15 (r1)

Theinput datais avector of N complex values represented as 16-bit two’'s complement numbersthat are

decomposed as the real and imaginary components of the data sample. The implemented Radix-4 DIT

butterfly equations are summarized in Equation 20.

Ar’
Ai’
Br’
Bi’
Cr’
Ci’
Dr’
Di’

Ar+ (CrxWecr—Ci xWci) + (Brx Wbr—Bi x Wbi) + (Dr x Wdr —Di x Wdi)
Ai+ (CrxWci + Ci x Wcr) + (Brx Whi + Bi x Wbr) + (Dr x Wdi + Di x Wdr)
Ar+ (CrxWecr—CixWeci)—(BrxWbr—BixWbi) —(DrxWdr—-Di x Wdi)

Ai+ (CrxWci + Ci x Wcr) —(Br x Wbi + Bi x Wbr) —(Dr x Wdi + Di x Wdr)

Ar—(CrxWcr—CixWci) + (Brx Whi + Bi x Wbr) —(Dr x Wdi + Di x Wdr)
Ai—(CrxWeci+ CixWecr)—(BrxWbr—-BixWhbi) + (DrxWdr—-Di xWdi)
Ar—(CrxWcr —Ci xWci)—(BrxWhbi + Bi x Wbr) + (Dr x Wdi + Di x Wdr)
Ai—(CrxWeci+CixWecr) +(BrxWbr—-Bi xWhbi)—(DrxWdr—-Di xWdi)

Eqgn. 20

Equation 20 showstheimplementation of Radix-4 DIT butterfly equations on the SC3850 core. The output
order of the implementation is different from the original order in Equation 18. Please note the

interchanging locations of B and C enables the use of StarCore supported bit-reversed addressing. This

means that instead of storing the output of Radix-4 DIT butterfly in the order of A’, B’, C’, D’, they are
stored in the order of A’, C', B’, D’, asshown in Figure 12.
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4.3 Implementation of Radix-4 DIT FFTs

Figure 13 shows the actual process of calculation for 1024-point FFT as an example.

Ex. N = 1024 Bit Reverse —1
0 | Radix-4 FFT | | Radix-4 FFT || Radix-4 FFT ” Radix-4 FFT | | Radix-4 FFT |
1 | Radix-4 FFT | | Radix-4 FFT || Radix-4 FFT ” Radix-4 FFT | | Radix-4 FFT |
2 | Radix-4 FFT | | Radix-4 FFT || Radix-4 FFT ” Radix-4 FFT | | Radix-4 FFT |
3 | Radix-4 FFT | | Radix-4 FFT || Radix-4 FFT ” Radix-4 FFT | | Radix-4 FFT |

252 | Radix-4 FFT | | Radix-4 FFT || Radix-4 FFT ” Radix-4 FFT | | Radix-4 FFT |

253 | Radix-4 FFT | | Radix-4 FFT || Radix-4 FFT || Radix-4 FFT | | Radix-4 FFT |

254 | Radix-4 FFT | | Radix-4 FFT || Radix-4 FFT ” Radix-4 FFT | | Radix-4 FFT |

K 255 | Radix-4 FFT | | Radix-4 FFT || Radix-4 FFT ” Radix-4 FFT | | Radix-4 FFT |

First stagg Middle stage Last stage

log,N = 5
Figure 13. Diagram of 1024-point FFT Calculation Using Radix-4 DIT Algorithm

In thisimplementation, the FFT is summarized as follows:

1. First stage: Theinput data are loaded in the bit-reversed addressing mode. The Radix-4 DIT
butterfly calculationisrepeated for N/4 timeson theinput data. In thefirst stage, thetwiddlefactors
areall equal to 1. Asaresult, there isno multiplication in thefirst stage. The output can be scaled
down by 0, 2, and 4 depending on the input parameter of the FFT function.

2. Middle stage: The N/4 times Radix-4 DIT butterfly calculation is repeated for (logsN - 2) times.
The twiddle factors vary with stages. In the second stage, the twiddle factors are equal to (W16k,
W12 W163) (k= 0, 1, 2, 3). Inthe third stage, the twiddle factors are (Wg,~, W, 2, W, %) (k
=0,1, 2, ..., 15). Inthefourth stage, the twiddle factors are (W256k, W2562k, Wosg I‘) (k=0,1,2,
..., 63), and so on. The output at each stage can be scaled down by 0, 2, and 4 depending on the
input parameter of the FFT function.

3. Last stage: The Radix-4 DIT butterfly calculation is repeated for N/4 times. The twiddle factors
are (WxK, Wy, W) (k=0, 1,2, ..., N/4-1) in this stage. The output can be scaled down by 0,
2, and 4 depending on the input parameter of the FFT function.

The routine uses one first stage, log4N-2 middle stages, and one last stage to perform the radix-4 FFT
algorithm, as shown in Figure 13. Aswe can see from thefigure that there are N/4 butterfliesin each stage.
The N/4 butterflies can be classified into groups depending on which stage they are at. In the first stage,
all twiddle factors are equal to one. Thus one loop is used to compute N/4 butterflies without loading the
twiddle factors. In the middle stages, the butterflies with the same twiddl e factors are grouped together to
reduce the memory access. Theradix-4 butterfliesare classified into 4 groupsfor the first middle stage, 16
groups for the second middle stage, and so on. Therefore, the middle stages are written using three loops.
The outermost loop “k” cyclesthrough the (log,N-2) middle stages. Theloop “j” cyclesthrough the groups
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of butterflies with different twiddle factors, and loop “i” reuses the twiddle factors for the different
butterflieswithin astage. In the last stage, only one butterfly exist in each group, and thus oneloop is used
to go through al the groups. Table 8 shows the grouped butterflies at different stages.

Table 8. Grouped Butterflies at Different Stages

Stage Groups with Different Twiddle Butterfl_ies with Common Groups * Butterflies
Factors Twiddle Factors
First Stage 1 N/4 N/4
Middle Stage 1 4 N/16 N/4
Middle Stage 2 16 N/64 N/4
Middle Stage log4N-2 N/16 4 N/4
Last Stage N/4 1 N/4

Input and output data are 16-bit complex array, each of length N. Input and output data buffers are cyclic
for 2*N complex inputs with the modul o addressing mode, as shown in Figure 14. Each stage uses the
input and output data buffer one after the other. Therefore, when the stage, #n, uses the input data buffer
astheinput point and the output data buffer as the output point, the next stage, #n + 1, uses the output data
buffer as the input point and the input data buffer as the output point. The final output data are stored in
input data buffer for log,(N) = even or in output data buffer for log,(N) = odd.

—
Input Data Buffer

FFT Points | Final Output Data
256 | Input Data Buffer
1024 | Output Data Buffer

N x 2-byte x 2 1Q
[bytes]

Output Data Buffer

N x 2-byte x 2 1Q
[bytes]

Figure 14. Cyclic Buffer for Input and Output Data

Cyclic Buffer
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4.4  Optimization Used in FFT Implementation

The optimization techniques improve the performance by taking special advantage of StarCore parallel
computation capability. The SC3850 cores efficiently deploy a Variable Length Execution Set (VLES)
instruction set. The SC3850 architecture has:

» Four parallel ALUSs, eachis capable of performing dual MAC and most other arithmetic operations
* Two Address Arithmetic Units (AAUS) for address arithmetic operations

A VLES can contain up to four data ALU instructions and two AAU instructions. To maximize the
computational performance, four ALUs and two AAUSs should be utilized simultaneously as much as
possible. Asthe StarCore architecture has high instruction-level parallelism, it is possible to schedule
independent blocks in parallel to increase performance.

Code optimization also considers the memory structure to improve the performance. The SC3850
architecture provides atotal sixteen 40-bit data registers, DO-D15 and sixteen 32-bit address registers,
RO-R15. The dual Harvard architecture in the SC3850 core is capable to access up to two 64-bit data per

cycle.

The following subsections present the optimization techniques which were used to increase the speed of
Radix-4 DIT FFT agorithm.

4.4.1 Basic Implementation of Radix-4 DIT Butterfly: SIMD Instructions
and Parallel Computing

The multiplication and addition operationsin the Radix-4 DIT butterfly can be calculated in parallel using
the multiple ALUsin the SC3850 DSP. The SC3850 DSP has some instructions which enable faster
implementation of the Radix-4 DIT butterfly algorithms. The instructions used for the computation are
shown in Table 9.

Table 9. SC3850 SIMD Instructions for FFT

Instruction Description

SOD2FFCC Sum Or Difference of Two 16-Bit Values, function & cross

MAC2ffggR SIMD2 Signed Fractional Multiply and Wide Accumulate - Real

MAC2ffggl SIMD2 Signed Fractional Multiply and Wide Accumulate - Imaginary

MOVE2 . 2F Transfers 2 16-bit fractional data between the memory and one data registers in packed
20-bit format, in a single 32-bit access

MOVE2.4F Transfers 4 16-bit fractional data between the memory and two data registers in packed
20-bit format, in a single 64-bit access

MOVERH. 4F Move Four Wide High Fractional Words to Memory With Scaling, Rounding, and Saturation
(AGU)

MOVERL. 4F Move Four Wide Low Fractional Words to Memory With Scaling, Rounding, and Saturation
(AGU)

The basic implementation on the SC3850 DSP is shown in Example 1. The move2.4f and move2.2f
instructions are used to load the real and imaginary parts of input samples. The mover h.4f and mover|.4f
instructions are used to store the real and imaginary parts of output samples. Single Instruction Multiple

Software Optimization of FFTs and IFFTs Using the SC3850 Core, Rev. 0

28 Freescale Semiconductor



Data (SIMD) instructions, mac2ffggr and mac2ffggi, can be used for two 16-bit multiplication or

Implementation on the SC3850 Core

accumulation between the high and low portions of two sources (real and imaginary).

Example 1. Radix-4 DIT Butterfly Implementation

; Radix-4 DIT FFT (SIMD Instruction and

____________________________________________________________

move2.2f

(r1)

,d2

move2.4F (r0)+,d0:d1l

move2.4f (r0)+,d8:d9
(r2)+n2,d10:d11

move2.4f

MAC2ASSAR

MAC2AASSI

]
[
MAC2ASSAR

MAC2AASSI

MAC2AASSI

MAC2SAASR

]
[
MAC2ASSAR

MAC2SSAAI

MAC2AASSI

MAC2ASSAR

]

[
MOVERH. 4F
MOVERL. 4F
]

[
MOVERH. 4F
MOVERL. 4F
]

di,d2,do.H,

d1,

ds,

ds,

das,

das,

ds,

do,

do,

ds,

diz
diz

:d13
:d13

dio,

dio,

dio,

dio,

dii,

dii,

dii,

dii,

d2,d0.L,

diz

; Load IAl:IC1

diz

dis

.H,d12

diz.L,

dil3.H,

di3.L,

diz

d4

dis

; OAl[re] =

bom o om

|
RO E DT C T

; OB[rel
; OCl[rel
; OD[re]
; OA[im]
; OB[im]
; OC[im]
; OD[im]

:d6:d7, (r4) +no0
:d6:d7, (r5) +no0

d4:d5:d14:d15, (r4) +nl
d4:d5:d14:d15, (r5) +nl

B1:ID1
B1:WD1

= IA[re]l +
= IA[re] -
= IA[im] +
= IA[im] -

= ML 1.
M1 1.
M1 1.
M1 1.
M1 2.
M1 2.
M1 2.
M1 2.

L | R | A | R I}
1 o+ o+ +

| o« =« ¢ Y e i o

M2 1.
M2 2.
M2 2.
M2 3.
M2 3.
M2 4

|
PEobEmEm e m
4+ 4+ 4+

; save OAl:0A2
; save OB1l:0B2

; save 0C1l:0C2
; save 0OD1:0D2

IC[rel]
IC[rel]
IC[re]
IC[rel]

IB[rel]
IB[rel]
IB[re]
IB[rel]
IB[rel]
IB[re]
IB[rel]
IB[rel]

ID[re]
ID[re]
ID[re]
ID[rel]
ID[re]
ID[re]
ID[rel]
ID[re]

* 0 F  F

* 0% F 3k kX X

L T I I

WC[rel
WC[rel
WC[im]
WC [im]

WB[re]
WB[re]
WB [im]
WB [im]
WB [im]
WB [im]
WB[re]
WB[re]

WD [re]
WD [re]
WD [1im]
WD [im]
WD [1im]
WD [1im]
WD [re]
WD [re]

o+ +

o+ +

o+ +

[

IC[im]
IC[im]
IC[im]
IC[im]

IB[im]
IB[im]
IB[im]
IB[im]
IB[im]
IB[im]
IB[im]
IB[im]

ID[im]
ID[im]
ID[im]
ID[im]
ID[im]
ID[im]
ID[im]
ID[im]

* F * X

* X X X X X X X

L . A

WC [im]
WC [im]
WC[re]
WC[rel

WB [im]
WB [im]
WB[re]
WB[re]
WB[re]
WB[re]
WB [im]
WB [im]

WD [im]
WD [im]
WD [re]
WD [re]
WD [re]
WD [re]
WD [im]
WD [im]

In the implementation, the parallel computing technique is used to maximize the usage of the StarCore
multiple ALUs for the calculation of independent output values that have an overlap input source data

values. For the Radix-4 DIT butterfly, A", C', B’, and D’ can be calculated in parallel.

In the StarCore architecture, most el ement combinations that are supported have data width up to 64-bit.
This meansthat four short words (4 x 16-bits) or two long words (2 x 32-bits) can be fetched at the same
time. For example, the move2.4f and mover h.4f instructions are used in the above codeto efficiently |oad
and store the data samples. For this purpose, the memory addresses should be aligned to the access width
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of the instructions used. For example, 8-byte (4 x short words) accessing should be aligned to the 8-byte
addresses.

4.4.2

Software Pipelining

Software pipelining is an optimization technique where a sequence of instructionsis transformed into a
pipeline of several copies of the sequence. The sequences then work in parallel to leverage more of the
available parallelism of the architecture. Software pipelined Radix-4 DIT butterfly is shown in Example 2.
Two set of Radix-4 DIT butterflies can be calculated inside one loop with the software pipelining.

Example 2. Software Pipelined Radix-4 DIT Butterfly

FALIGN
_start_loop2_ stage3:

loopstart0
[ ;o1
MAC2ASSAR

MAC2AASST
MOVERH. 4F

MOVERL. 4F
]

[ ;02
MAC2ASSAR
MAC2AASST
MAC2AASST
MAC2SAASR
MOVERH.4F
MOVERL.4F
1

[ ;03
MAC2ASSAR
MAC2SSAAT
MAC2AASST

MAC2ASSAR

MOVE2 .4F
move2.4f

dil,dz2,do0.H,d12 i
dil,d2,do0.L,d13 i

7

dl12:d13:d6:d7, (r4) +no0
d12:d13:d6:d7, (r5) +n0

ds,d10,d12.H,d12

ds,d10,d12.L,d4

ds,d10,d13.H,d13

ds,d10,d13.L,d5

d4:d5:d14:d15, (r4) +nl
d4:d5:d14:d15, (x5) +nl

d9,d11,d12 ;

do,di11,d4 i

do,di1,d13 i

d9,d11,ds i

(r0)+,d0:d1 ;
(r2)+,d10:d11 ;

1.
1.
1.

+ IC[rel
- IC[rel]
+ IC[rel
- IC[rel]

* X X X

:OA2
:0OB2

+ IB[re]
- IB[rel
+ IB[re]
- IB[re]
+ IB[rel
- IB[re]
- IB[re]
+ IB[rel

| e« =« S e e e

H
o
[a]
D

* Ok ok ok k% k¥

WC[re]l -
WC[re] +
WC[im] +
WC[im] -

* WB([re]
* WB[re]
* WB[im]
* WB[im]
* WB[im]
* WB[im]
* WB([re]
* WB[re]

[ ;04
MAC2ASSAR

MAC2AASSI

move2.4f
move2.4f

dil,d3,d0.H,d6 i

di,d3,do.L,d7 i

(r0)+,d8:d9 ;
(rl)+,d2:d3 ;

M1_1.H = IA[re]
M1 _1.L = IA[re]
M1 2.H = IA[im]
M1 2.L = IA[im]
; save OAl
; save OBl
; M2 1.H = M1_
; M2_1.L = M1_
; M2 2.H = M1_
; M2_2.L = M1 1.
; M2_3.H = M1_2.
; M2 _3.L = M1 _2.
; M2_4.H = M1_2.
; M2_4.L = M1_2.
; save OCLl:
; save OD1:
OA[re] = M2 _1.H
OB[re] = M2 1.L
OC[re] = M2_2.H
OD[re] = M2 _2.L
OA[im] = M2 _3.H
OB[im] = M2 3.L
oC[im] = M2 4.H
OD[im] = M2_4.L
Load IA2:IC2
Load WB2:WD2
M1_1.H = IA[re]
Ml_1.L = IA[re]
M1 2.H = IA[im]
M1 _2.L = IA[im]
Load IB2:ID2
Load WC1:WC2

+
H
(@]
I
D
* ok ¥k

- ID[im]

- ID[im]

IC[im]
IC[im]
IC[im]
IC[im]

* X X x

- IB[im]
+ IB[im]
+ IB[im]
- IB[im]
+ IB[im]
- IB[im]
+ IB[im]
- IB[im]

ID[im]
ID[im]
ID[im]
ID[im]
ID[im]

L I S

ID[im]

IC[im]
IC[im]
IC[im]
IC[im]

*  F  * *

WC [im]
WC[im]
WC[rel
WC[rel

* WB[im]
* WB[im]
* WB([re]
* WB([re]
* WB[re]
* WB([re]
* WB[im]
* WB[im]

WD [im]
WD [1m]
WD [re]
WD [re]
WD [re]
WD [re]
WD [im]
WD [1m]

WC [im]
WC [im]
WC [re]
WC [re]
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1

[ ;05
MAC2ASSAR
MAC2AASSI
MAC2AASSI
MAC2SAASR
MOVE2 .4F
1

[ ;06
MAC2ASSAR
MAC2SSAAT
MAC2AASSI
MAC2ASSAR
move2.4f
move2.4f

]
loopendO

(ro)+,do

ds,d1o,

ds,dio,

ds,dio,

ds,d1o,

do,di1,

do,di1,

d9,d11,

do,di1,

dé6.H,d6

de.L,dl4

d7.H,d7

d7.L,d15

:dl

de

di4

d7

dis

(r0)+,d8:d9
(r2)+,d10:d11

; M2 1
;o oM2_1.
;o M2_2.
;o M2 2.
;o M2_3.
;o M2_3.
; M2 4.
;o M2_4.
; Load

; OAlre]
; OB[rel
; OClre]
; ODl[re]
; OA[im]
; OB[im]
; OCl[im]
; OD[im] =
; Load IB1:
; Load WB1:

o m e E

H
b=l
[

M1 1.
M1 1.
M1 1.
M1 1.
MLl 2.
MLl 2.
M1 2.
M1 2.

:IC1

M2 1.
M2 1.
M2 2.
M2 2.
M2 3.
M2 3
M2 4
M2 4
ID1
WD1

pEmpomE e

| e i« i« S e e e

o+ + o+

o+ + 4+

IB[re]
IB[rel]
IB[rel]
IB[re]
IB[rel]
IB[rel]
IB[re]
IB[rel]

ID[rel]
ID[re]
ID[rel]
ID[rel]
ID[re]
ID[rel]
ID[rel]
ID[re]

L I S

L . T

WB[re]
WB[rel
WB [im]
WB [1im]
WB [im]
WB [im]
WB[re]
WB[re]

WD [re]
WD [re]
WD [im]
WD [im]
WD [im]
WD [im]
WD [re]
WD [re]

L+ + 0+ 4+

o+ + o+ 1

Implementation on the SC3850 Core

IB[im]
IB[im]
IB[im]
IB[im]
IB[im]
IB[im]
IB[im]
IB[im]

ID[im]
ID[im]
ID[im]
ID[im]
ID[im]
ID[im]
ID[im]
ID[im]

L S

L . A

WB [im]
WB [im]
WB[re]
WB[re]
WB[re]
WB[re]
WB [im]
WB [im]

WD [1m]
WD [im]
WD [re]
WD [re]
WD [re]
WD [re]
WD [1m]
WD [im]

On a Change of Flow (COF), the core has only filled one fetch buffer. If the destination VLES is within

two fetch sets, the core will have to fill another fetch buffer and that will cause astall. To avoid this

situation, ensure that the destination VLES of all COF operations are contained within one fetch set. The
falign directive will pad the previous VLES with NOP to ensure the following VLES is contained within
one fetch set. Please note that falign is used before the loop in above example code.

4.4.3

Twiddle Factors

Twiddle factors are generated with afixed scale factor; i.e., 32768 =21° for the 16-bit FFT functions. The
twiddlefactorsare pre-calculated. The arraysfor the complex input data, complex output data, and twiddle

factors must be double-word aligned.
As mentioned in Section 4.3, three loops are used to go through the grouped radix-4 butterfliesin the

middle stages. In the inner loop, the FFT algorithm accesses the three twiddle factors (W, W,, and W)
per iteration, as the butterflies that reuse twiddle factors are lumped together. As aresult, the number of
memory accessed is reduced.
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The C code in Example 3 is used to generate the twiddle factors.

Example 3. C Code to Generate Twiddle Factors

#define pi 3.1415926535897931
void twiddle_ factors_create ()

{

#if (N==256)
stream_twiddle Wc_print out
stream_twiddle Wbd_print_ out
#endif // #if (N==256)
#if (N==1024)
stream_twiddle Wc_print out
stream_twiddle Wbd print_ out
#endif // #if (N==1024)
#if (N==4096)
stream_twiddle Wc_print_out
stream_twiddle Wbd print_out
#endif // #if (N==4096)
for (i=0; i < N/4; i++)

short twiddle BI[N/2];
short twiddle CI[N/2];
short twiddle DI[N/2];
FILE *stream twiddle Wc_print out;
FILE *stream twiddle Wbd print_ out;

for (i=0;1<N/4;i++)// Wc

{

}

twiddle C[2*i+0]
twiddle C[2*i+1]

for(i=0;1<N/4;i++)// Wb

{

}

twiddle B[2*i+0]
twiddle B[2*i+1]

for (i=0;1i<N/4;i++)// Wd

{

{

fprintf (stream twiddle Wc_print_ out,
fprintf (stream twiddle Wc_print_ out,
fprintf (stream twiddle Wbd print out,
fprintf (stream twiddle Wbd print_out,
fprintf (stream twiddle Wbd print_out,
fprintf (stream twiddle Wbd print out,

}

twiddle D[2*i+0]
twiddle D[2*i+1]

(short)min
(short)min

(my_round (cos (-2*pi/N*2%i)*0x00008000), 0x7FFF) ;
(my round (sin(-2*pi/N*2%i)*0x00008000), 0x7FFF) ;

(short)min (my round(cos (-2*pi/N*1*i)*0x00008000), 0x7FFF) ;
(short)min (my round(sin(-2*pi/N*1*i)*0x00008000),0x7FFF) ;

(short)min (my_ round(cos (-2*pi/N*3+*1i)*0x00008000) ,0x7FFF) ;
(short)min (my round(sin(-2*pi/N*3*i)*0x00008000),0x7FFF) ;

= fopen/(
= fopen/(

= fopen/(
= fopen(

= fopen(
= fopen(

fclose (stream twiddle Wc_print_out) ;
fclose(stream twiddle Wbd print out) ;

return;

"256/wctwiddles 256 printed.dat",
"256/wbdtwiddles 256 printed.dat",

"1024/wctwiddles 1024 printed.dat",

"1024/wbdtwiddles_1024 printed.dat",

"4096/wctwiddles_4096_printed.dat",

"4096/wbdtwiddles_4096_printed.dat",

"%$04x\n", 0x0000FFFF& (int) twiddle C[2*1i+0
"$04x\n", 0x0000FFFF& (int) twiddle C[2*i+1
"%04x\n", 0x0000FFFF&
"$04x\n", 0x0000FFFF&
"%$04x\n", 0x0000FFFF& (int) twiddle D[2*1i+0
"$04x\n", 0x0000FFFF& (int) twiddle D[2*i+1

(
(
(
(
(
(

int) twiddle B[2*i+0
int) twiddle B[2*i+1

Ny " );
" );

" );
Wt ;

ny" );
ny" );

7

)
)i
)i
) .
)
)

7

7

7
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4.5 FFT Reference Code

In thefirst stage, the input data A and B are loaded with address register r0, and input data C and D are
loaded addressregistersr3. Asdescribed in Section 4.2, bit-reversed addressing mode is used for registers

rO and r3 to reorder the input data. The output dataA’, B’, C', and D’ are stored to memory using the

Implementation on the SC3850 Core

address registers, r4, r5, r8, and r9, respectively. The diagram of the first stage isillustrated in Figure 15.

LOOPD
INPUT: INFUTS BUFFER E: r0,
OUTPUT : OUTFUT BUFFER E: rd,

rl0: bit reverse mode. initial walues
r3: bit reverse mode. initial walus

{r0)+n0 A o 0 0——-0 4] (rd=n. rS=n+l 8}
" A4 R
. . .
v e
{r0)+n0 E Dmm e 0-—-0 B' (rB=n+i-2, rI=n+5H-8)
T RS -
# N
s S ot +
{r3)+nl [ O et 0——-0 C' {rd=n+l-4, rS=n+IN-8)
- S = oS
P S .
P St P
(r3)+n0 ) o S Lo T T, N D' (rB=n+3iH 4, r9=n+7H 8}
A' =h + C 4+ (B + D}
B' =& +C - (B + D}
C' =h - C — j(B - D}
D' =& - C + j(B — D}

data_buffer
data_buffer+H=2

. rh. 9

Figure 15. Diagram of the First Stage

Figure 16 showsthe diagram of the middle and thelast stages. Although different number of loops are used
for the middle and the last loops, the same registers are used to load and store data for the DIT butterfly.

Thus the middle stages and the last stage share the same diagram.

LOopz RADIE-4 IS USED FCOR THE MAIN AND LAST FFT LOCFES
INPUT: OUTPUT BUFFER RE: r0
OUTEUT : OUTPUT BUFFER R: rd.r5
(rl=4n) A 0 0 0——-0 A" (rd4)+4nld nl=H-8
S 4 R
N~ s ~
v £t
(rl=4n+2) B —{Ub)———0——"—=0 0——-0 B' {(r&E)4nd
R s -
A
sONS N
(rl=dn+1) C =Wz ) -0 =0 O0—=-0 C' {rdj+nl nl=1-N-8
= NS+
s s S
o At Aot
(rl=4n+3) D —{Wd)——0———————0——{=F ) =0 ——— D' (r3)4nl
A' =k 4+ CWc + (BWb + DUd)
B' =4 + ClWc - ({EWb + DUd)
C' =& — Clc - jiBWb - DWd)
D' =k — CWz + j{EWb - DWd)
Vo —» move? 2f (rl) (move?. 4f in the last loop)

Wb, Wd —: mvoe2 4f (r2)+n?

Figure 16. Diagram of the Middle and Last Stages
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The procedure of Radix-4 DIT butterfly calculation is summarized as follows:

1. Theinput data[A, B, C, D] areloaded from memory. MOV E2.4F instruction is used to load the
real and imaginary part in parallel.

2. Inthefirst stage, SOD2ffcc computes the butterfly shown in Figure 15. The SOD2ffcc instruction
performs two separate 16-bit additions or subtractions between the high and low portions of two
source data registers, and stores the results in the two portions of the destination data register.

3. Inthe middle and last stages, MAC2ffggR and MACffggl instructions are used to compute the
butterfly shown in Figure 16. The functionality of the MAC2ffggR and MACffggl are shownin
Figure 17 and Figure 18, respectively.

MACIAASSRE MACISSAAR MACIASSAR MACISAASK
pal H | L | pl 8 || t | o[ B || L | oaf # |[ L |
ool H J[ L | oo B# J[ L | ol # J[ L ] mo B J[ L |
D Ds Ds Ds

i ——— ——— ————

\J Y \

+++ - +- - -+ + - -

v
/2N A 2 A = A~

Y Y
-+

-

Dol WH | | WL | po wH | | wo | po wa | | wL | pa wa | | wr |

Figure 17. MAC2AASSR Da,Db,Ds.H/L,Dn

MAC2AASSI MAC2SSAAT MAC2ASSAI MAC2SAASI
pal B | L | ol w || vt | ool m || | o m |[ L |
> > ,
ol H | [ L | ol H |[ L |
Ds Ds
—— ——
\J Y
il AAN il L
g N 7 N
pol WH | | WL | po wH | [ wi | pd wa | [ wi | pof wr | [ wr ]

Figure 18. MAC2AASSI Da,Db,Ds.H/L,Dn
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4. MOVERH.4F and MOVERL 4F instructions are used to scale, round, and limit the output data
samples and store they into memory. The scaling down factorscan be 1, 2, 4.

The Radix-4 DIT FFT source code is shown Example 4. The arguments of this function are the pointer of
data buffer (input and output), the pointers of twiddle factors, the number of FFT points, the number of
stages, and the shift bits. As mentioned in Section 4.1, scaling can be used to avoid overflowing at each
stage. Thisiswhy we have the shift asan input parameter of the FFT function. Shift can be0, 1, and 2 for
no scaling, scaling down by 2, and scaling down by 4, respectively.

Example 4. Radix-4 FFT Source Code

OPT BE
SECTION .text
HE R BENCHMARK- - - - - - - - - - - - oo - oo oo oo oo - o-o-------
GLOBAL _sc3850_fft radix4 complex 16x16_asm
FALIGN
_sc3850_fft radix4 complex 16x16_asm begin:
_sc3850_fft radix4 complex 16x16_asm type func ;// begin to count cycles
benchmark:
init:
[
move.w (SP-14),d14 ;i N
move.l r0,do ; data_buffer

H push.21 r6:xr7
]
[
push.21 de6:4d7

move.l #$00e41008,sr ;// scaling OFF, SM=0, SM2=0, two's-complement rounding, W20-bits mode ON
; move.l #$00e41018,sr ;// scaling byl ON, SM=0, SM2=0, two's-complement rounding, W20-bits mode ON
; move.l #$00e41038,sr ;// scaling by2 ON, SM=0, SM2=0, two's-complement rounding, W20-bits mode ON
; move.l #$00e41088,sr ;// scaling OFF, SM=0, SM2=1, two's-complement rounding, W20-bits mode ON
i move.l #300e40088,sr ;// scaling OFF, SM=0, SM2=1, two's-complement rounding, W20-bits mode OFF
; move.l #$00e41018,sr ;// scaling ON, SM=0, SM2=0, two's-complement rounding, W20-bits mode ON
; move.l #$00e41098,sr ;// scaling ON, SM=0, SM2=1, two's-complement rounding, W20-bits mode ON

1

[

asl di4,d1 ; N*2

add di4,do,d4 ; ->IBl = data_ buffer+N*1

asr dl4,d15 ; N/2

push MCTL

move.l #($00001001),MCTL ; set r0, r3 in bit reverse

1

[

asr d15,d13 ; N/4

add dil4,d4,d2 ; ->ICl = data_buffer+N=*2

asl di,d3 ; N*4

move.l dl4,m0 ; load mO=N

move.w (SP-34),r2 ; r2 = Shift

1

[

asr d13,d12 ; N/8

asl d3,d3 ; N*8

add d3,do0,d4 ; ->0Al1 = data_ buffer+N+*4

move.l dl,ml ; load ml=N*2

dosetupl _start loopl stage2
]
[

add di13,d15,d13 ; N/2+N/4

add di5,d4,ds ; ->0D1 = data_buffer+N*4+N/2
add dl14,d4,dé6 ; ->0Cl = data_buffer+N+*5
move.l d2,r3 ; r3 = data_buffer+N*2
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dosetup2 _start_loop2_ stage2
]

[

asr dl2,d9

asr dl2,d11

neg dil2

add d14,de6,de

move.l d4,r4

move.l dl12,n0

]

cmpega.w #1,r2

ift move.l #$00e41018, sr ;
cmpega.w #2,r12

ift move.l #$00e41038,sr ;
[

add di5,de,d7

add #1,d12

addnc.w #-2,d11,d10

asrr #2,d14

push r4

tfra r0,b4

]

[

asl di10,d10

move.l d6,r8

move.l d5,r5

]

[

move.l d3,m2

move.l dl3,n3

move.l dll,n2
move.l d10,rl5
]

kernel:

7

7

7

N/16

N/16

-N/8

->0B1 = data_buffer+N*6
data_buffer+N*4 = r4
no=N/8

if (Shift==1), T=1

if (Shift==2), T=1

->0B_N/2 = data_buffer+N*6+N/2
1-N/8

N/16-2

N/4

data_buffer+N*4

data_buffer

(N/16-2) *2
->0B1 = data_buffer+N*6
->0A N/2 = data_buffer+N*4+N/2

load m2=N*8
n3=N/2+N/4,

N/16
(N/32-1)*4 = rl5

/0000777777777 /FIRST LOOP  (RADIX
N NNy,

; FIRST LOOP (RADIX 4)
; Wb=Wd=Wc=1

[

move.l dl2,nl

MOVE2.4F (r0)+n0,do0:d1l
1

[

sub #1,d9

MOVE2.4F (r3)+n0,d4:d5
MOVE2.4F (xr0)+n0,d2:d3
1

[

sod2aaii d4,do,do
sod2ssii d4,d0,d4
sod2aaii d5,d1,d1
sod2ssii d5,d1,ds
move.l d7,r9

MOVE2.4F (r3)+n0,d6:47
]

[

sod2aaii dé6,d2,d2
sod2ssii dé6,d2,de6
sod2aaii d7,d3,d3
sod2ssii d7,d3,d7
doen3 d9

nl=1-N/8
load IA1l:IA N/2

load IC1:IC_N/2
load IBl:IB_N/2

IA1+IC1

IA1-IC1

IA N/2+IC_N/2

IA N/2-IC N/2

->0B_N/2 = data_buffer+N*6+N/2
load ID1:ID _N/2

IB1+ID1
IB1-ID1
IB N/2+ID N/2
IB _N/2-ID_N/2

scaling byl ON, SM=0, SM2=0, two's-complement rounding, W20-bits mode ON

scaling by2 ON, SM=0, SM2=0, two's-complement rounding, W20-bits mode ON
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MOVE2 .4F
]
[

sod2aaii

(r0) +n0,d8:d9

d2,do,do
d2,do,d2
de,d4,d4
de6,d4,de
(r3)+n0,d12:d13
(r0)+n0,d10:d11

sod2ssii
sod2saxx
sod2asxx
MOVE2 .4F
MOVE2 .4F
]

[

sod2aaii
sod2ssii

diz2,ds,ds
dlz,ds,d12
dil3,d9,ds
di3,d9,d13
(r3)+n0,d14:d15
_start_loopl

sod2aaii
sod2ssii
MOVE2.4F
dosetup3
]
FALIGN
_start_loopl
loopstart3
[ ;01
sod2aaii
sod2ssii
sod2aaii

dl4,d10,d10
dl4,d10,d14
dls5,d11,d11
sod2ssii di15,d11,d15
]

[ ;02
sod2aaii
sod2ssii
sod2aaii

d3,d1,ds
d3,d1,d1o0
dio0,ds,d1l
sod2ssii d10,d8,d3
]

[ ;03
sod2saxx
sod2asxx
sod2saxx

d7,d5,d12
d7,d5,d14
di4,d12,d5
sod2asxx dl4,d12,d7
MOVER2.4F d0:d1, (r4) +no0
MOVE2.4F (r0)+n0,do0:d1l
1

[ ;04

MOVER2.4F d4:d5, (r4)+nl
MOVE2.4F (r3)+n0,d4:d5
]

[ ;05

MOVER2.4F d2:d3, (r8) +no0
MOVE2.4F (r0)+n0,d2:d3
1

[ ;06
sod2aaii
sod2ssii

dl1,d9,d9
dll,d9,d11l
sod2saxx dl15,d13,d13
sod2asxx d15,d13,d15
MOVER2.4F dé6:d7, (r8) +nl
MOVE2.4F (r3)+n0,d6:47
]

[ ;07

sod2aaii d4,do,do
sod2ssii d4,do0,d4
sod2aaii d5,d1,d1
sod2ssii d5,d1,ds
MOVER2.4F d8:d9, (r5)+n0

load IA2:IA N/2+1

IA1+IC1+(IB1+ID1) = OAl
IA1+IC1-(IB1+ID1) = OBl
IA1-IC1-j(IB1-ID1) = OC1l
IA1-IC1+j(IB1-ID1) = OD1

load IC2:IC _N/2+1
load IB2:IB_N/2+1

IA2+IC2

IA2-IC2

IA N/2+1 + IC_N/2+1
IA N/2+1 - IC N/2+1
load ID2:ID N/2+1

; IB2+ID2
; IB2-ID2
; IB_N/2+1 + ID N/2+1
; IB_N/2+1 - ID N/2+1

; IA N/2+IC_N/2+(IB_N/2+ID_N/2)
; IA N/2+IC N/2-(IB N/2+ID N/2)
; IA2+IC2+(IB2+ID2) = OA2
; IA2+IC2- (IB2+ID2) = OB2

; IA N/2-IC_N/2-j (IB_N/2-ID N/2)
; IA N/2-IC N/2+j(IB N/2-ID N/2)

; IA2-IC2-3j(IB2-ID2) =
; IA2-IC2+j(IB2-ID2) =
; save OAl:0A2

; load IA1l:IA N/2

oc2
OoD2

0C1:0C2
IC1:IC N/2

; save
; load

OB1:0B2
IB1:IB_N/2

; save
; load

; IA N/2+1 + IC_N/2+1 +
; IA N/2+1 + IC N/2+1 -

; 0C_N/2+1

; OD N/2+1

; save 0OD1:0D2

; load ID1:ID N/2

; IA1+IC1

; IAl-IC1

; IA N/2+IC N/2

; IA_N/2-IC_N/2

; save OA N/2:0A N/2+1

OA N/2
OB_N/2

Implementation on the SC3850 Core

oC_N/2

(IB_N/2+1 + ID N/2+1) =
(IB_N/2+1 + ID N/2+1) =

= OD N/2

OA N/2+1
OB _N/2+1
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MOVE2 .4F
1

[ ;08
sod2aaii dé6,d2,d2
sod2ssii dé6,d2,d6
sod2aaii d7,d3,d3
sod2ssii d7,d3,d7
MOVER2.4F d12:d13, (r5)+nl
MOVE2.4F (r3)+n0,d12:d13
1

[ ;09

sod2aaii d2,d0,do
sod2ssii d2,d0,d2
sod2saxx d6,d4,d4
sod2asxx dé6,d4,d6
MOVER2.4F d10:d11, (r9)+no0
MOVE2.4F (r0)+n0,d10:d11
]

[ ;10

sod2aaii di12,d8,ds
sod2ssii di12,ds8,d12
sod2aaii di13,d9,d9
sod2ssii di13,d9,d13
MOVER2.4F d14:d15, (r9)+nl
MOVE2.4F (r3)+n0,d14:d15
1

(r0) +n0,d8:d9

loopend3

[

01

sod2aaii d14,d10,d10 ;
sod2ssii d14,d10,d14 ;
sod2aaii di15,d11,d11 ;
sod2ssii d15,d11,d15 ;

; load IA2:IA N/2+1

7

7

7

7

IB1+ID1

IB1-ID1

IB N/2+ID N/2

IB _N/2-ID_N/2

save OC _N/2:0C N/2+1
load IC2:IC N/2+1

IA1+IC1+ (IB1+ID1) = OAl
IA1+IC1-(IB1+ID1) = OBl
IA1-IC1-j(IB1-ID1) = OC1l
IA1-IC1+j(IB1-ID1) = OD1

save OB _N/2:0B _N/2+1
load IB2:IB_N/2+1

IA2+IC2

IA2-IC2

IA N/2+1 + IC_N/2+1
IA N/2+1 - IC_N/2+1
save OD_N/2:0D N/2+1
load ID2:ID N/2+1

IB2+ID2
IB2-ID2
IB_N/2+1 + ID N/2+1
IB N/2+1 - ID N/2+1

load b2 -> wbdtwiddles

move.l (SP-36),Db2
move.l (SP-36),r2
1

[ ;02

sod2aaii d3,d1,ds
sod2ssii d3,d1,d10
sod2aaii d10,ds,d1l
sod2ssii d10,d8,d3
tfra r0,b5

move.w #4,rl4

]

[ ;03

sod2saxx d7,d5,d12
sod2asxx d7,d5,d14
sod2saxx dl4,d12,d5
sod2asxx dl4,d12,d7
MOVER2.4F d0:d1, (r4) +no0

dosetup3 _start_loop3_stage2

]

[ ;04

MOVER2.4F d4:d5, (r4)
tfra b4,r4

1

[ ;05

MOVER2.4F d2:d3, (r8) +no0
move.w (SP-40),d3

1

[ ;06

sod2aaii di11,d9,d9
sod2ssii d11,d9,d11
sub #2,d3

load b2 -> wbdtwiddles

IA N/2+IC N/2+(IB_N/2+ID N/2) = OA N/2
IA N/2+IC N/2-(IB_N/2+ID N/2) = OB_N/2
IA2+IC2+ (IB2+ID2) = OA2

IA2+IC2- (IB2+ID2) = OB2

data_buffer
IA_N/2-IC_N/2-j(IB_N/2-ID N/2) = OC_N/2
IA N/2-IC N/2+j(IB_N/2-ID N/2) = OD_N/2
IA2-IC2-j(IB2-ID2) = OC2

IA2-IC2=j (IB2-ID2) = OD2

save OAl:0A2

save 0OC1:0C2
data_buffer

save OB1:0B2
LOG_4_N

IA N/2+1 + IC_N/2+1 +
IA N/2+1 + IC_N/2+1 -
d3 = LOG 4 N - 2

(IB_N/2+1 + ID N/2+1)
(IB_N/2+1 + ID N/2+1)

OA N/2+1
OB N/2+1
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MOVER2.4F dé6:d47, (r8) ; save 0OD1:0D2

tfra r0,bo0 ; data_buffer = b0, r0
]

[

sod2saxx d15,d13,d13 ; OC_N/2+1

sod2asxx d15,d13,d15 ; OD_N/2+1

MOVER2.4F d8:d9, (r5) +n0 ; save OA N/2:0A N/2+1
pop r0 ; data_buffer+4*N

]

[

MOVER2.4F d12:d13, (r5) ; save OC_N/2:0C N/2+1
move.l #(SO0AA098A),MCTL ; load MCTL: r0,r4,r5: M2 used—Modulo addressing,

H rl: MO used—Modulo addressing.
H r2: M1 used—Modulo addressing,
; r3,r6,r7: linear addressing,

]

[

MOVER2.4F d10:d11, (r9)+no0 ; save OB N/2:0B N/2+1
tfra r3,r5 ; data_buffer+2*N

1

[

MOVER2.4F d14:d15, (r9) ; save OD_N/2:0D N/2+1
tfra rl,bl ; load bl -> wctwiddles

1
i///1////////DEBUG_START/////////////////////717/7/1/171777177171777/17/77

; pop MCTL

; pop.21 de:d7

; rtsd move.l (SP-4),d3
; move.l d3,SR

i/////1//1///DEBUG_END///////////71/11111777777111777777117777777171177/
; 2 STALLS on MCTL
i/ IIIITIP 0077777777077 777 777777777777 777777777777777777777777777777777777777777777777777717777
; ENTRY TO THE MAIN
; LOOP (RADIX-4)
;/// no=N/8, nl=1-N/8, n2=N/16, n3=3N/4, m0=N, ml=N*2, m2=N*8
N e
[
dosetup0 _start_loop2_ stage3

move2.2f (rl),d2 ; Load WC1
1
[
ill_1/
doenl d3 ; init. 1lcl
/] doenl #1 ; DEBUG
MOVE2.4F (r0)+,d0:d1 ; Load IAl:IC1
1
[
move2.4f (xr0)+,d8:d9 ; Load IB1:ID1
move2.4f (r2)+n2,d10:d11 ; Load WB1:WD1
1
FALIGN
_start_loopl_stage2:
loopstartl
[ ;01
MAC2ASSAR d1,d2,d0.H,d12 ; M1_1.H = IA[re] + IC[re] * WC[re] - IC[im] * WC[im]
; M1_1.L = IA[re] - IC[re] * WC[re]l + IC[im] * WC[im]
MAC2AASSI di1,d2,d0.L,d13 ; M1_2.H = IA[im] + IC[re] * WC[im] + IC[im] * WC[re]
; M1_2.L = IA[im] - IC[re] * WC[im] - IC[im] * WC[re]
doen2 rl4 ; init. lc2 = 4, 16, N/64, N/16
asra rl5 ; 2(N/32-1), 2(N/128-1),
]
[ ;02
MAC2ASSAR d8,d10,d12.H,d12 ; M2_1.H = M1_1.H + IB[re] * WB[re]l - IB[im] * WB[im]
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; M2_1.L = M1_1.H - IB[re] * WB[re]l + IB[im] * WB[im]
MAC2AASSI d8,d10,d12.L,d4 ; M2_2.H =M1_1.L + IB[re] * WB[im] + IB[im] * WB[re]
; M2_2.L = M1_1.L - IB[re] * WB[im] - IB[im] * WB[re]
MAC2AASSI d8,d10,d13.H,d13 ; M2 3.H = M1_2.H + IB[re] * WB[im] + IB[im] * WB[re]
; M2_3.L = M1_2.H - IB[re] * WB[im] - IB[im] * WB[re]
MAC2SAASR d8,d10,d13.L,d5 ; M2 4.H = M1 2.L - IB[re] * WB[re] + IB[im] * WBI[im]
; M2_4.L = M1_2.L + IB[re] * WB[re]l - IB[im] * WB[im]
asl2a rl4
asra rl5 ; N/32-1, N/128-1, ..., 7, 1
1
FALIGN
_start_loop2_stage2:
loopstart2
[ ;03
MAC2ASSAR d9,d11,d12 ; OA[re] = M2 1.H + ID[re] * WD[re]l - ID[im] * WD [im]
; OB[re]l] = M2 1.L - ID[re] * WD[re] + ID[im] * WD[im]
MAC2SSAAI d9,dl11,d4 ; OC[re]l] = M2 2.H - ID[re] * WD[im] - ID[im] * WD[re]
; OD[re] = M2_2.L + ID[re] * WD[im] + ID[im] * WD[re]
MAC2AASSI d9,d11,di13 ; OA[im] = M2 _3.H + ID[re] * WD[im] + ID[im] * WD[re]
; OB[im] = M2 3.L - ID[re] * WD[im] - ID[im] * WD[re]
MAC2ASSAR d9,d11,ds ; OCl[im] = M2 _4.H + ID[re] * WD[re]l - ID[im] * WD [im]
; OD[im] = M2 4.L - ID[re] * WD[re] + ID[im] * WD[im]
MOVE2.4F (r0)+,d0:d1l ; Load IA2:IC2
doen3 ril5 ; init. 1c¢3 = N/32-1, N/128-1,

]
PoOHHHHEEE R R R R

FALIGN
_start_loop3_stage2:
loopstart3
[ ;04
MAC2ASSAR d1,d2,d0.H,dé ; M1_1.H = IA[re] + IC[re] * WC[re] - IC[im] * WC[im]
; M1_1.L = IA[re] - IC[re] * WC[rel + IC[im] * WC[im]
MAC2AASSI di1,d2,d0.L,d7 ; M1_2.H = IA[im] + IC[re] * WC[im] + IC[im] * WC[re]
; M1_2.L = IA[im] - IC[re] * WC[im] - IC[im] * WC[re]
move2.4f (r0)+,d8:d9 ; Load IB2:ID2
]
[ ;05
MAC2ASSAR d8,d10,de6.H,dé ; M2_1.H = M1_1.H + IB[re] * WB[re] - IB[im] * WB[im]
; M2_1.L = M1_1.H - IB[re] * WB[re] + IB[im] * WB[im]
MAC2AASSI d8,d10,d6.L,dl14 ; M2 2.H = M1_1.L + IB[re] * WB[im] + IB[im] * WB[re]
; M2_2.L = M1_1.L - IB[re] * WB[im] - IB[im] * WB[re]
MAC2AASSI d8,d10,d7.H,d7 ; M2 3.H = M1 2.H + IB[re] * WB[im] + IB[im] * WBI[re]
; M2_3.L = M1_2.H - IB[re] * WB[im] - IB[im] * WB[re]
MAC2SAASR d8,d10,d7.L,d1l5 ; M2_4.H = M1_2.L - IB[re] * WB[re] + IB[im] * WB[im]
; M2_4.L = M1_2.L + IB[re] * WB[re] - IB[im] * WB[im]
MOVE2.4F (r0)+,d0:d1 ; Load IAl1:IC1
1
[ ;06
MAC2ASSAR d9,dl11,deé ; OA[re] = M2 _1.H + ID[re] * WD[re] - ID[im] * WD[im]
; OB[re]l] = M2 1.L - ID[re] * WD[re] + ID[im] * WD[im]
MAC2SSAAI d9,d1l1,d14 ; OCl[re] = M2 _2.H - ID[re] * WD[im] - ID[im] * WD[re]
; OD[re] = M2 _2.L + ID[re] * WD[im] + ID[im] * WD[re]
MAC2AASSI d9,d11,d7 ; OA[im] = M2 _3.H + ID[re] * WD[im] + ID[im] * WD[re]
; OB[im] = M2 _3.L - ID[re] * WD[im] - ID[im] * WD[re]
MAC2ASSAR d9,d11,d1s ; OC[im] = M2 _4.H + ID[re] * WD[re] - ID[im] * WD[im]
; OD[im] = M2 4.L - ID[re] * WD[re] + ID[im] * WD[im]
move2.4f (xr0)+,d8:d9 ; Load IB1:ID1
]
[ ;01
MAC2ASSAR dl1,d2,d0.H,d12 ; MI1_1.H = IA[re] + IC[re] * WC[re] - IC[im] * WC[im]
; M1_1.L = IA[re] - IC[re] * WC[re] + IC[im] * WC[im]
MAC2AASSI d1,d2,d0.L,d13 ; M1_2.H = IA[im] + IC[re] * WC[im] + IC[im] * WC[re]
; M1_2.L = IA[im] - IC[re] * WC[im] - IC[im] * WC[re]
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MOVERH.4F d12:d13:d6:d7, (r4) +n0 ; save OA1:0A2
MOVERL.4F d12:d13:d6:d7, (r5) +n0 ; save OB1:0B2
]
[ ;02
MAC2ASSAR d8,d10,d12.H,d1l2 ; M2_1.H = M1_1.H + IB[re] * WB[re] - IB[im] * WB[im]
; M2_1.L = M1_1.H - IB[re] * WB[re] + IB[im] * WB[im]
MAC2AASSI d8,d10,d12.L,d4 ; M2_2.H =M1 _1.L + IB[re] * WB[im] + IB[im] * WB[re]
; M2_2.L = M1_1.L - IB[re] * WB[im] - IB[im] * WB[re]
MAC2AASSI d8,d10,d13.H,d13 ; M2 3.H = M1 2.H + IB[re] * WB[im] + IB[im] * WBI[re]
; M2_3.L = M1_2.H - IB[re] * WB[im] - IB[im] * WB[re]
MAC2SAASR d8,d10,d13.L,d5 ; M2_4.H = M1_2.L - IB[re] * WB[re] + IB[im] * WB[im]
; M2_4.L = M1_2.L + IB[re] * WB[re] - IB[im] * WB[im]
MOVERH.4F d4:d5:d14:d15, (r4) +nl ; save 0C1:0C2
MOVERL.4F d4:d5:d14:d15, (r5) +nl ; save 0OD1:0D2
]
[ ;03
MAC2ASSAR d9,d11,d12 ; OA[re] = M2 _1.H + ID[re] * WD[re] - ID[im] * WD[im]
; OB[re]l] = M2_1.L ID[re] * WD[re] + ID[im] * WD[im]
MAC2SSAAI d9,d11,d4 ; OC[re]l] = M2 2.H - ID[re] * WD[im] - ID[im] * WD[re]
; OD[re] = M2 _2.L + ID[re] * WD[im] + ID[im] * WD[re]
MAC2AASSI d9,d11,d13 ; OA[im] = M2 _3.H + ID[re] * WD[im] + ID[im] * WD[re]
; OB[im] = M2 3.L - ID[re] * WD[im] - ID[im] * WD[re]
MAC2ASSAR d9,d11,ds ; OC[im] = M2 _4.H + ID[re] * WD[re] - ID[im] * WD[im]
; OD[im] = M2 _4.L - ID[re] * WD[re] + ID[im] * WD[im]
MOVE2.4F (r0)+,d0:d1 ; Load IA2:IC2
1
;OHHHHHHHEHH SRR R R R R R R R R R R R R R R R A
loopend3
[ ;04
MAC2ASSAR d1,d2,d0.H,d6 ; MI1_1.H = IA[re] + IC[re] * WC[re] - IC[im] * WC[im]
; M1_1.L = IA[re] - IC[re] * WC[re]l + IC[im] * WC[im]
MAC2AASSI di1,d2,d0.L,d7 ; M1_2.H = IA[im] + IC[re] * WC[im] + IC[im] * WC[re]
; M1_2.L = IA[im] - IC[re] * WC[im] - IC[im] * WC[re]
move2.4f (r0)+,d8:d9 ; Load IB2:ID2
addl2a n2,rl
]
[ ;05
MAC2ASSAR d8,d10,de6.H,dé ; M2_1.H = M1_1.H + IB[re] * WB[re]l - IB[im] * WB[im]
; M2_1.L = M1_1.H - IB[re] * WB[re]l + IB[im] * WB[im]
MAC2AASSI d8,d10,d6.L,d14 ; M2 2.H = M1_1.L + IB[re] * WB[im] + IB[im] * WB[re]
; M2_2.L = M1_1.L - IB[re] * WB[im] - IB[im] * WB[re]
MAC2AASSI d8,d10,d7.H,d7 ; M2 3.H = M1 2.H + IB[re] * WB[im] + IB[im] * WBI[re]
; M2_3.L = M1_2.H - IB[re] * WB[im] - IB[im] * WB[re]
MAC2SAASR d8,d10,d7.L,d1l5 ; M2_4.H = M1_2.L - IB[re] * WB[re]l + IB[im] * WB[im]
; M2_4.L = M1_2.L + IB[re] * WB[re]l - IB[im] * WB[im]
MOVE2.4F (r0)+,d0:d1 ; Load IAl1:IC1
move2.2f (rl),d2 ; Load WC1
]
[ ;06
MAC2ASSAR d9,dl11,deé ; OA[re] = M2 _1.H + ID[re] * WD[re] - ID[im] * WD[im]
; OB[re]l] = M2_1.L ID[re] * WD[re] + ID[im] * WD [im]
MAC2SSAAI d9,d11,di14 ; OC[re]l] = M2 2.H - ID[re] * WD[im] - ID[im] * WD[re]
; OD[re] = M2 _2.L + ID[re] * WD[im] + ID[im] * WD[re]
MAC2AASSI d9,d11,d7 ; OA[im] = M2_3.H + ID[re] * WD[im] + ID[im] * WD [re]
; OB[im] = M2 3.L - ID[re] * WD[im] - ID[im] * WD[re]
MAC2ASSAR d9,d11,d1s ; OC[im] = M2 _4.H + ID[re] * WD[re] - ID[im] * WD[im]
; OD[im] = M2_4.L - ID[re] * WD[re] + ID[im] * WD[im]
move2.4f (xr0)+,d8:d9 ; Load IB1:ID1
move2.4f (r2)+n2,d10:d11 ; Load WB1:WD1
]
[ ;01
MAC2ASSAR d1,d2,d0.H,d12 ; M1_1.H = IA[re] + IC[re] * WC[re] - IC[im] * WC[im]

; M1_1.L = IA[re] - IC[re] * WC[re] + IC[im] * WC[im]
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MAC2AASSI d1,d2,d0.L,d13 ; M1_2.H = IA[im] + IC[re] * WC[im] + IC[im] * WC[re]
; M1_2.L = IA[im] - IC[re] * WC[im] - IC[im] * WC[re]
MOVERH.4F d12:d13:d6:d7, (r4) +n0 ; save OAl:0A2
MOVERL.4F d12:d13:d6:d7, (r5) +n0 ; save OB1:0B2
1
[ ;02
MAC2ASSAR d8,d10,d12.H,d1l2 ; M2_1.H = M1_1.H + IB[re] * WB[re]l - IB[im] * WB[im]
; M2_1.L = M1_1.H - IB[re] * WB[re] + IB[im] * WB[im]
MAC2AASSI d8,d10,d12.L,d4 ; M2_2.H = M1_1.L + IB[re] * WB[im] + IB[im] * WB[re]
; M2_2.L = M1_1.L - IB[re] * WB[im] - IB[im] * WB[re]
MAC2AASSI d8,d10,d13.H,d13 ; M2_3.H = M1 _2.H + IB[re] * WB[im] + IB[im] * WB[re]
; M2_3.L = M1_2.H - IB[re] * WB[im] - IB[im] * WB[re]
MAC2SAASR d8,d10,d13.L,d5 ; M2_4.H = M1_2.L - IB[re] * WB[re]l + IB[im] * WB[im]
; M2 _4.L = M1_2.L + IB[re] * WB[re] - IB[im] * WB[im]
MOVERH.4F d4:d5:d14:d15, (r4) +nl ; save 0OCl:0C2
MOVERL.4F d4:d5:d14:d15, (r5) +nl ; save 0OD1:0D2
1
loopend2
[
asra n2
tfra b2,r2
1
[
asra n2
addl2a n3,r4 ; Y4+OFFSET
1
[
addl2a n3,r5 ; Y5+0FFSET
move2.4f (r2)+n2,d10:d11 ; Load WB1:WD1
]
loopendl

/1110070 7777777777777777777777/7//LRST LOOP (RADIX-4)///////////////////1//////////1/1////////1/1]/]/

;//// the commented instructions in the following 2 VELS were computed in previous loop

i/ LIIIITIPP 0077777777077 70 770777777777 77777777777777777777777777777777777777777777777777777777

[ ;01
; MAC2ASSAR dl1,d2,d0.H,d12 ; MI1_1.H = IA[re] + IC[re] * WC[re] - IC[im] * WC[im]
; ; M1_1.L = IA[re] - IC[re] * WC[rel + IC[im] * WC[im]
; MAC2AASSI d1,d2,d0.L,d13 ; M1_2.H = IA[im] + IC[re] * WC[im] + IC[im] * WC[re]
; ; M1_2.L = IA[im] - IC[re] * WC[im] - IC[im] * WC[re]
move2.4f (rl)+,d2:d43 ; Load WC1:WC2
1
[ ;02
; MAC2ASSAR d8,d10,d12.H,d12 ; M2 _1.H = M1_1.H + IB[re] * WB[re]l - IB[im] * WB[im]
; ; M2_1.L = M1_1.H - IB[re] * WB[rel + IB[im] * WB[im]
; MAC2AASSI d8,d10,d12.L,d4 ; M2 2.H = M1 1.L + IB[re] * WB[im] + IB[im] * WB[re]
; ; M2_2.L = M1_1.L - IB[re] * WB[im] - IB[im] * WB[re]
; MAC2AASSI d8,d10,d13.H,d13 ; M2 3.H = M1_2.H + IB[re] * WB[im] + IB[im] * WB[re]
; ; M2_3.L = M1_2.H - IB[re] * WB[im] - IB[im] * WB[re]
; MAC2SAASR d8,d10,d13.L,d5 ; M2_4.H = M1_2.L - IB[re] * WB[re]l + IB[im] * WB[im]
; ; M2_4.L = M1_2.L + IB[re] * WB[re]l - IB[im] * WB[im]
asra rl4 ; N/8
MOVE2.4F (r0)+,d0:d1 ; Load IA2:IC2
1
[ ;03
MAC2ASSAR d9,d11,d12 ; OA[re] = M2 _1.H + ID[re] * WD[re] - ID[im] * WD[im]
; OB[re]l] = M2 1.L - ID[re] * WD[re] + ID[im] * WD[im]
MAC2SSAAI d9,dl11,d4 ; OCl[re] = M2 _2.H - ID[re] * WD[im] - ID[im] * WD [re]
; OD[re] = M2_2.L + ID[re] * WD[im] + ID[im] * WD[re]
MAC2AASSI d9,d11,d13 ; OA[im] = M2 _3.H + ID[re] * WD[im] + ID[im] * WD[re]
; OB[im] = M2 _3.L - ID[re] * WD[im] - ID[im] * WD[re]
MAC2ASSAR d9,d11,d5 ; OCl[im] = M2 _4.H + ID[re] * WD[re]l - ID[im] * WD [im]
; OD[im] = M2 _4.L - ID[re] * WD[re] + ID[im] * WD[im]
deca rl4 ; N/8-1
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move2.4f (r2)+,d10:d11 ; Load WB2:WD2
1
;OHHHHHHHEH SRR R R R R R R R R R R R R R R R

[ ;04
MAC2ASSAR d1,d3,d0.H,dé ; M1_1.H = IA[re] + IC[re] * WC[re] - IC[im] * WC[im]
; M1_1.L = IA[re] - IC[re] * WC[re] + IC[im] * WC[im]
MAC2AASSI di1,d3,d0.L,d7 ; M1_2.H = IA[im] + IC[re] * WC[im] + IC[im] * WC[rel]
; M1_2.L = IA[im] - IC[re] * WC[im] - IC[im] * WC[re]
move2.4f (xr0)+,d8:d9 ; Load IB2:ID2
move2.4f (rl)+,d2:d43 ; Load WC1:WC2
1
[ ;05
MAC2ASSAR d8,d10,de6.H,dé ; M2_1.H = M1_1.H + IB[re] * WB[re]l - IB[im] * WB[im]
; M2_1.L = M1_1.H - IB[re] * WB[re] + IB[im] * WB[im]
MAC2AASSI d8,d10,d6.L,d14 ; M2 2.H = M1 1.L + IB[re] * WB[im] + IB[im] * WBI[re]
; M2 2.L = M1_1.L - IB[re] * WB[im] - IB[im] * WB[re]
MAC2AASSI d8,d10,d7.H,d7 ; M2_3.H = M1_2.H + IB[re] * WB[im] + IB[im] * WB[re]
; M2_3.L = M1_2.H - IB[re] * WB[im] - IB[im] * WB[re]
MAC2SAASR d8,d10,d7.L,d1l5 ; M2_4.H = M1_2.L - IB[re] * WB[re]l + IB[im] * WB[im]
; M2 _4.L = M1_2.L + IB[re] * WB[re] - IB[im] * WB[im]
doen0 rl4 ; init. lc2 = N/8-1
MOVE2.4F (r0)+,d0:d1 ; Load IAl:IC1
1
[ ;06
MAC2ASSAR d9,dl11,deé ; OA[re] = M2_1.H + ID[re] * WD[re] - ID[im] * WD[im]
; OB[re]l] = M2 1.L - ID[re] * WD[re] + ID[im] * WD[im]
MAC2SSAAI d9,d1l1,d14 ; OCl[re] = M2 _2.H - ID[re] * WD[im] - ID[im] * WD [re]
; OD[re] = M2 _2.L + ID[re] * WD[im] + ID[im] * WD[re]
MAC2AASSI d9,d11,d7 ; OA[im] = M2 _3.H + ID[re] * WD[im] + ID[im] * WD[re]
; OB[im] = M2 _3.L - ID[re] * WD[im] - ID[im] * WD[re]
MAC2ASSAR d9,d11,d1s ; OC[im] = M2 _4.H + ID[re] * WD[re] - ID[im] * WD[im]
; OD[im] = M2 _4.L - ID[re] * WD[re] + ID[im] * WD[im]
move2.4f (xr0)+,d8:d9 ; Load IB1:ID1
move2.4f (r2)+,d10:d11 ; Load WB1:WD1
1
FALIGN
_start_loop2_ stage3:
loopstart0
[ ;01
MAC2ASSAR d1,d2,d0.H,d12 ; M1_1.H = IA[re] + IC[re] * WC[re] - IC[im] * WC[im]
; M1_1.L = IA[re] - IC[re] * WC[re]l + IC[im] * WC[im]
MAC2AASSI di1,d2,d0.L,d13 ; M1_2.H = IA[im] + IC[re] * WC[im] + IC[im] * WC[re]
; M1_2.L = IA[im] - IC[re] * WC[im] - IC[im] * WCl[re]
MOVERH.4F d12:d13:d6:d7, (r4) +n0 ; save OA1:0A2
MOVERL.4F d12:d13:d6:d7, (xr5)+no0 ; save OB1:0B2
1
[ ;02
MAC2ASSAR d8,d10,d12.H,d12 ; M2_1.H = M1_1.H + IB[re] * WB[re]l - IB[im] * WB[im]
; M2_1.L = M1_1.H - IB[re] * WB[re]l + IB[im] * WB[im]
MAC2AASSI d8,d10,d12.L,d4 ; M2_2.H =M1_1.L + IB[re] * WB[im] + IB[im] * WB[re]
; M2_2.L = M1_1.L - IB[re] * WB[im] - IB[im] * WB[re]
MAC2AASSI d8,d10,d13.H,d13 ; M2_3.H = M1 _2.H + IB[re] * WB[im] + IB[im] * WB[re]
; M2_3.L = M1_2.H - IB[re] * WB[im] - IB[im] * WB[re]
MAC2SAASR d8,d10,d13.L,ds5 ; M2 4.H = M1 2.L - IB[re] * WB[re] + IB[im] * WBI[im]
; M2_4.L = M1_2.L + IB[re] * WB[re]l - IB[im] * WB[im]
MOVERH.4F d4:d5:d14:d15, (r4) +nl ; save 0C1:0C2
MOVERL.4F d4:d5:d14:d15, (r5)+nl ; save 0D1:0D2
]
[ ;03
MAC2ASSAR d9,d11,d12 ; OA[re] = M2 1.H + ID[re] * WD[re] - ID[im] * WD [im]
; OB[re] = M2_1.L - ID[re] * WD[re] + ID[im] * WD[im]
MAC2SSAAI d9,dl11,d4 ; OC[re]l] = M2 2.H - ID[re] * WD[im] - ID[im] * WD[re]
; OD[re] = M2_2.L + ID[re] * WD[im] + ID[im] * WD[re]
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MAC2AASSI d9,d11,di13 ; OA[im] = M2 _3.H + ID[re] * WD[im] + ID[im] * WD[re]
; OB[im] = M2 3.L - ID[re] * WD[im] - ID[im] * WD[re]

MAC2ASSAR d9,d11,ds ; OCl[im] = M2 _4.H + ID[re] * WD[re] - ID[im] * WD[im]
; OD[im] = M2 4.L - ID[re] * WD[re] + ID[im] * WD[im]

MOVE2.4F (r0)+,d0:d1 ; Load IA2:IC2

move2.4f (r2)+,d10:d11 ; Load WB2:WD2

]
PoOHHHHEEE R R R R R

[ ;04
MAC2ASSAR d1,d3,d0.H,dé ; M1_1.H = IA[re] + IC[re] * WC[re] - IC[im] * WC[im]
; M1_1.L = IA[re] - IC[re] * WC[re]l + IC[im] * WC[im]
MAC2AASSI di1,d3,d0.L,d7 ; M1_2.H = IA[im] + IC[re] * WC[im] + IC[im] * WC[re]
; M1_2.L = IA[im] - IC[re] * WC[im] - IC[im] * WC[re]
move2.4f (r0)+,d8:d9 ; Load IB2:ID2
move2.4f (rl)+,d2:d3 ; Load WC1:WC2
1
[ ;05
MAC2ASSAR d8,d10,d6.H,d6 ; M2 1.H = M1 1.H + IB[re] * WB[re] - IB[im] * WB[im]
; M2_1.L = M1_1.H - IB[re] * WB[re] + IB[im] * WB[im]
MAC2AASSI d8,d10,d6.L,dl14 ; M2 2.H = M1_1.L + IB[re] * WB[im] + IB[im] * WB[re]
; M2_2.L = M1_1.L - IB[re] * WB[im] - IB[im] * WB[re]
MAC2AASSI d8,d10,d7.H,d7 ; M2_3.H = M1_2.H + IB[re] * WB[im] + IB[im] * WB[re]
; M2 3.L = M1_2.H - IB[re] * WB[im] - IB[im] * WB[re]
MAC2SAASR d8,d10,d7.L,d15 ; M2 4.H = M1 2.L - IB[re] * WB[re] + IB[im] * WB[im]
; M2_4.L = M1_2.L + IB[re] * WB[re]l - IB[im] * WB[im]
MOVE2.4F (r0)+,d0:d1 ; Load IAl1:IC1
]
[ ;06
MAC2ASSAR d9,d11,deé ; OA[re] = M2_1.H + ID[re] * WD[re] - ID[im] * WD[im]
; OB[re] = M2_1.L - ID[re] * WD[re] + ID[im] * WD[im]
MAC2SSAAI d9,d11,di14 ; OC[re]l] = M2 2.H - ID[re] * WD[im] - ID[im] * WD[re]
; OD[re] = M2 _2.L + ID[re] * WD[im] + ID[im] * WD[re]
MAC2AASSI d9,d11,d7 ; OA[im] = M2_3.H + ID[re] * WD[im] + ID[im] * WD [re]
; OB[im] = M2 3.L - ID[re] * WD[im] - ID[im] * WD[re]
MAC2ASSAR d9,d11,d1s ; OC[im] = M2 _4.H + ID[re] * WD[re] - ID[im] * WD[im]
; OD[im] = M2_4.L - ID[re] * WD[re] + ID[im] * WD[im]
move2.4f (r0)+,d8:d9 ; Load IB1:ID1
move2.4f (r2)+,d10:d11 ; Load WB1:WD1
]
loopendO
[
MOVERH.4F d12:d13:d6:d7, (r4) +no0 ; save OAl:0A2
MOVERL.4F d12:d13:d6:d7, (r5) +n0 ; save OB1:0B2
1
[
MOVERH.4F d4:d5:d14:d15, (r4) ; save 0C1:0C2
pop MCTL
]
[
MOVERL.4F d4:d5:d14:d15, (r5) ; save 0D1:0D2

pop.21 de:d7
]
H pop.21 r6:xr7
NN
global F_sc3850 fft radix4 complex 16x16_asm end

F_sc3850_ fft radix4 complex 16x16_ asm_end: ;// finish to count cycles
end_benchmark:
rtsd move.l (SP-4),d3
move.l d3,SR
jmmm e TEST LOOP------ - - - - - oo oo oo o oo — -
ENDSEC

P/LIILITIP 0077777777777 7077777777777 77777777777777777777777777777777777777777777777
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4.6  Fixed-Point Arithmetic and Bit Accuracy

The SC3850 core architecture uses the fixed-point representation. Thefinite precision for the Radix-4 DIT
FFT islimited by the following parameters:

* Number of bitsthat are available in the input and output data

* Operations of finite arithmetic calculations (addition, subtraction, and multiplication with
rounding)

The data of Radix-4 DIT butterfly can be scaled down by afactor of 1, 2, or 4 and is equivalent to an
arithmetic right shift by 0, 1, or 2 bits to avoid the possibility of overflow. In the zero shift case, the final
significant bitsare 16-bit Q15 data, which uses all 16 bitsat therisk of overflowing. If the output is scaled
down by 4, the final significant bits are 14-bit Q13 data, which avoids the overflowing of the output data.
In summary, the output of each butterfly should have 14 ~ 16-bit accuracy for fixed-scaling method
(Q13-Q15in Q format).

4.7  Implementation of Radix-4 DIT IFFTs

A common method to implement the Inverse Fast Fourier Transform (IFFT) is to change the sign of the
twiddle factors and use the FFT subroutine. This method needs additional memory to store the twiddle
factors. Therefore, it is not efficient for reduction of memory requirement.

If the complex conjugate of FFT (Equation 3) is considered, the equation is defined by Equation 21.

X*(n) = NZ[X(k)exp( Znnkﬂ

k=0
N1

= ZX (k)exp((—J)Z””k) Eqn. 21

k=0
N 1

- ZX (k){cos(ZT:\Ink)
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The asterisk indicates the complex conjugate. In thisform, there is no need to have additional memory for
thetwiddlefactorssincethetwiddlefactor isthe sameasthe FFT. FFT isapplied on the complex conjugate
of X(k) (with appropriate scaling) to implement IFFT. The complex conjugate of the resulting time signal
x(n) isthe output of the IFFT. By having routines for both the FFT and the |FFT, thereis no need to have
the negative signed twiddle factors.

If the FFT isimplemented with scaling as described in Section 4.1, the resulting values in the frequency
domain are (1/N)X (k). For IFFT, no scaling should be applied in order to get back the original data.

The advantages of this implementation are summarized as follows:

» The same twiddle factors can be used for both the FFT and the IFFT. There is no need to save
additional twiddle factors.

* FFT routine usesthe 1/N factor and the IFFT routine does not. Therefore, there is more flexibility
regarding scaling.

Equation 22 describes the Radix-4 DIT butterfly calculation of the IFFT:

Ar” = Ar+(CrxWecr + CixWoci) + (BrxWbr + Bi x Wbi) + (Dr x Wdr + Di x Wdi)
Ai’ = Ai—(CrxWci —CixWcr)—(BrxWbi —Bi x Wbr) — (Dr x Wdi —Di x Wdr)
Br’ = Ar+ (CrxWocr+ CixWci)—(BrxWhbr + Bi x Wbi) —(Dr x Wdr + Di x Wdi)
Bi’ = Ai—(CrxWoci-CixWecr) +(Brx Wbi —Bi x Wbr) + (Dr x Wdi —Di x Wdr)
Cr” = Ar—(CrxWecr + Ci xWci) + (Brx Wbi —Bi x Wbr) — (Dr x Wdi —Di x Wdr)
Ci’ = Ai +(CrxWoci —Ci xWecr) + (Brx Wbr + Bi x Whi) — (Dr x Wdr + Di x Wdi)
Dr” = Ar—(CrxWecr + Ci x Wci) — (Br x Wbi —Bi x Wbr) + (Dr x Wdi —Di x Wdr)
Di’ = Ai+(CrxWci —Ci xWecr) —(Brx Wbr + Bi x Whi) + (Dr x Wdr + Di x Wdi)

Eqgn. 22

The differences between the FFT (Equation 20) and the IFFT (Equation 22) are the signs between
operands. So the IFFT can be easily implemented by modifying the FFT subroutine.

Software Optimization of FFTs and IFFTs Using the SC3850 Core, Rev. 0

46 Freescale Semiconductor



Experimental Results

5 Experimental Results

51 Test Vectors

Test vectors of length 256, 1024, 4096 are used to test the functionality of the corresponding FFT/IFFT
SC3850 kernels. The 256-point test vector is shown in Figure 19.

Real Part of Input Vector
0.015 T T T T |

0.01+ .

0.005 .

-0.005 - .

0.0 1 1 1 1 1
0 50 100 150 200 250 300

Imag Part of Input Vector
0.015 T T T T |

0.01+ .

0.005 -

-0.005 - .

0,01 ! ! | ! !
0 50 100 150 200 250 300

Figure 19. Test Vector for 256-point FFT
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52 Performance

521 FFT SNR Results

The FFT results obtained from the SC3850 core are compared with the reference, which is shownin
Figure 20 for the test vector of length 256. As the figure indicates, the SC3850 core and the reference
results are virtually identical.

Heal Part of Reference Imag Part of Reference
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Figure 20. 256-Point FFT Results from Matlab and the SC3850 Core

Signal-to-noise (SNR) was cal cul ated between the reference output and the SC3850 core output. Table 10
showsthe SNR resultsfor the different point FFTswith fixed scaling. The SNR for FFT iscomputed using:
SNR(dB) = 10*log(total_signal_power/total_noise_power). Given two complex signals, A and B, where
signal A isthereference signal and signal B isthe signal that is corrupted by noise (fixed-point), the SNR
isfound using 10* log((sum(Age"2)+ SUm(A;1*2))/ (SUM(Are-Bre)*2+ SUM(A 1By "2)).

Table 10. SNR for Different Point FFTs

N = SNR (dB)
256 75.5
1024 75.1
4096 74.8
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5.2.2 Cycle Count Measurements

The real-time cycle counts for the implemented Radix-4 DIT FFT/IFFT kernel are measured using the
SC3850 cycle accurate simulator. CodeWarrior Integrated Development Environment (IDE) R4.0 is used
to compiler the FFT/IFFT kernels and the corresponding test harness.

The cycle count and memory usage for Radix-4 DIT FFT/IFFT kernel (256, 1024, and 4096 points) are
summarized in Table 11. The conversion of the number of cyclesinto microsecondsisalso listed under an
assumption that the SC3850 core frequency is 1GHz.

Table 11. Cycle Count and Memory Usage of FFT/IFFT Kernels

Kernel Cycle Count Time (1S Memory Usage (Bytes)
256-FFT 792 0.79 950
1024-FFT 3773 3.77 950
4096-FFT 17986 17.99 950
256-IFFT 789 0.79 936
1024-IFFT 3770 3.77 936
4096-IFFT 17983 17.98 936
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Conclusions

6 Conclusions

The purpose of thisapplication noteisto develop Radix-4 DIT FFT agorithm implemented on the SC3850
core architecture. The implementation aspects of Radix-4 DIT FFT are based on the following SC3850
features:

* VLES execution model, which utilizes maximum parallelism by allowing multiple address
generation and data arithmetic logic units to execute multiple instructionsin asingle cycle

» Specia SIMD instructions, such as SOD2ffcc, MAC2ffggR, and MAC2ffggl

* MOVER instructions with scaling, rounding, and limiting to avoid overflowing

* Memory access with multiple data, such as MOVE2.4F, MOV E2.2f, MOV ERH.4f, and
MOVERL .4F.

» Bit-reversed (reverse-carry) addressing mode to support the bit-reversed order of data

The SC3850 fixed-point code incurs very little loss of accuracy compared to the floating-point Matlab
results. The SC3850 core performance shows that the execution time of 1024 points FFT is3.77 us
assuming the core frequency of 1 GHz. The data memory required to store input samplesis 4N bytes, 4N
bytes for output data, and 3N bytes for twiddle factors for N-point FFT. In addition, at each stage of the
FFT algorithm, the output data can be scaled down by 1, 2, or 4 to avoid overflowing. The scaling factor
isaparameter to the FFT kernel.

The powerful architecture and instruction set of the SC3850 core permits flexible and compact coding of
the algorithmsin assembly language. The optimization of Radix-4 DIT FFT is done by taking specia
advantage of StarCore parallel computation capabilities, such as SIMD, parallel computing, and software
pipelining.
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