

Freescale Semiconductor

Application Note

Document Number: AN3682 Rev. 0, 06/2009

i.MX25 IC Identification Module (IIM) **Fusebox**

Multimedia and Applications Division bv Freescale Semiconductor, Inc. Austin, TX

The IC identification module (IIM) provides the primary user-visible mechanism for interfacing with on-chip fuse elements. Among the uses for the fuses are unique chip identifiers, mask revision numbers, cryptographic keys, and various control signals requiring a fixed value.

The purpose of this application note is to describe the i.MX25 Fusebox electrical characteristics and to provide both a fuse-map definition and a detailed description of the necessary steps to program and read fuse bits.

Contents

1.	Fusebox Electrical Specifications 2
2.	IIM Fuse Definitions For Silicon Revision 1.1 2
4.	Fuse Programming Procedure 17
5.	Fuse Sensing Procedure 18
6.	Sample Code 18
7.	Revision History 21

Fusebox Electrical Specifications

1 Fusebox Electrical Specifications

Table 1 describes the operating ranges, supply current parameters, and timing characteristics of the fusebox.

Symbol	Parameter	Min	Тур	Max	Units
FUSE_VDD ¹	Fusebox program supply voltage	3.0	3.6	3.6	V
I _{program}	eFuse Program Current ^{2:} Current to program one eFuse bit epm_avdd = 3.6 V	26	35	62	mA
I _{read}	eFuse Read Current ³ Current to read an 8-bit eFuse word vdd_fusebox = 3.3 V	_	12.5	15	mA
t _{program}	Program time for eFuse ⁴	125	_	_	μs

Table 1. Fusebox Supply Current Parameters

¹ The Fusebox read supply is connected to the supply of the full speed USBPY2_VDD. FUSE_VDD is only used for programming. Connect it to ground when not using it for programming.

² The current Iprogram is during program time (tprogram).

³ The current Iread is present for approximately 50 ns of the read access to the 8-bit word.

⁴ The program length is defined by the value defined in the epm_pgm_length[2:0] bits of the IIM module. The value to program is based on a 32 Hz clock source (4 × 1/32 kHz = 125 μs).

2 IIM Fuse Definitions For Silicon Revision 1.1

Table 2 lists the fuse definitions for silicon revision 1.1.

IIM Address	IIM Bank	Fuse Name	Number of Fuses	Fuses Function	Setting	Locked by/ls Lock?
0000[7]	0	FBWP	1	Fuse Bank Write Protect. Controls whether the fuse bank may be programmed.	 0 Fuse bank may be programmed 1 Fuse bank may not be programmed (it is write-protected) 	LOCK
0000[6]	0	FBOP	1	Fuse Bank Override Protect. Controls whether the fuse bank may be overridden.	 Fuse bank may be overridden Fuse bank may not be overridden (it is override-protected) 	LOCK
0000[5]	0	FBRP	1	Fuse Bank Read Protect. Controls whether the fuse bank may be read.	 Fuse bank may be read by software Fuse bank may not be read by software (it is read-protected) 	LOCK

Table 2. IIM Fuse Definitions (Silicon Revision 1.1)

IIM Address	IIM Bank	Fuse Name	Number of Fuses	Fuses Function	Setting	Locked by/ls Lock?
0000[4]	0	TESTER_ LOCK	1	Tester fuses. Burnt on the tester at the end of the wafer sort. Locking rows 001C-003C, fusebank 0.	 Unlock (The controlled field can be read, sensed, burned or overridden in the corresponded IIM register) Lock (The controlled field can be read or sensed only) 	LOCK
0000[3]	0	FBESP	1	Fuse Banks Explicit Sense Protect. Controls whether the fuse bank may be explicitly sensed. The state of this fuse controls whether the IIM state machine allows explicit sense cycles (normal, 0-stress, or 1-stress).	 0 Fuse bank be explicitly sensed by software 1 Fuse bank may not be explicitly sensed by software (it is sense-protected) 	LOCK
0000[2]	0	MAC_ADDR_ LOCK	1	Locking row 0068-007C, fusebank0	 Unlock (The controlled field can be read, sensed, burned or overridden in the corresponded IIM register) Lock (The controlled field can be read or sensed only) 	LOCK
0000[1]	0	TRIM_LOCK	1	Locking rows 0008 0054-0064, fusebank0	 Unlock (The controlled field can be read, sensed, burned or overridden in the corresponded IIM register) Lock (The controlled field can be read or sensed only) 	LOCK
0000[0]	0	BOOT_LOCK	1	Boot fuses, Locking rows 0004, 000C-0018, 0040-0044, fusebank0	 Unlock (The controlled field can be read, sensed, burned or overridden in the corresponded IIM register) Lock (The controlled field can be read or sensed only) 	LOCK
0004[7]	0	SJC_ DISABLE]	1	Disabling the Secure JTAG Controller module clock. This fuse is used to create highest JTAG security level, where JTAG is completely blocked.	 Secure JTAG Controller enabled Secure JTAG Controller disabled 	BOOT_LOCK
0004 [6:5]	0	JTAG_ SMODE[1:0]	2	JTAG Security Mode. Controls the security mode of the JTAG debug interface.	00 JTAG enable mode 01 Secure JTAG mode 11 No debug mode	BOOT_LOCK

Table 2. IIM Fuse Definitions	(Silicon Revision 1.1) (continued)
-------------------------------	-----------------------	---------------

IIM Address	IIM Bank	Fuse Name	Number of Fuses	Fuses Function	Setting	Locked by/Is Lock?
0004[4]	0	JTAG_SCC	1	If JTAG_SMODE[1:0]=0 && SCC JTAG=0 then SCC debug through SJC is enabled. In all JTAG secure modes, but JTAG_SMODE[1:0]=0 && SCC JTAG=0, the Secure monitor of the SCC transitions into non-secure or failure state whenever JTAG is activated.	 SCC debug through SJC is enabled SCC debug through SJC is disabled 	BOOT_LOCK
0004[3]	0	JTAG_HEO	1	JTAG HAB Enable Override. Disallows HAB JTAG enabling. The HAB may normally enable JTAG debugging by means of the HAB_JDE bit in the IIM SCS0 register. The JTAG_HEO bit can override this behavior.	 0 HAB may enable JTAG debug access 1 HAB JTAG enable is overridden (HAB may not enable JTAG debug access) 	BOOT_LOCK
0004[2]	0	RESERVED	1	Reserved.	—	BOOT_LOCK
0004[1]	0	SEC_JTAG_ RE	1	Secure JTAG Re-enable. Overrides the Secure JTAG Bypass fuse (JTAG_BP, in this register) to limit JTAG access according to the JTAG_SMODE. The JTAG_RE signal permanently overrides JTAG security bypass, returning the device to "Secure JTAG" mode.	 Secure JTAG Bypass fuse is not overridden (secure JTAG bypass is allowed) Secure JTAG Bypass fuse is overridden (secure JTAG bypass is not allowed) 	BOOT_LOCK
0004[0]	0	JTAG_BP	1	JTAG Debug Security Bypass. Blowing this fuse semi-permanently returns the device to the "JTAG Enable" mode.	 JTAG Security bypass is not active JTAG Security bypass is active 	BOOT_LOCK
0008 [7:6]	0	RESERVED	2	Reserved for trimming data.	_	TRIM_LOCK
0008 [5:3]	0	HTDC[2:0]	3	High Temperature Detect Configuration. A field in DryIce Analog Configuration Register (DACR)		TRIM_LOCK

IIM Address	IIM Bank	Fuse Name	Number of Fuses	Fuses Function	Setting	Locked by/ls Lock?
0008 [2:0]	0	LTDC[2:0]	2	Low Temperature Detect Configuration. A field in Drylce Analog Configuration Register (DACR)	_	TRIM_LOCK
000C [7:6]	0	BT_SRC[1:0]	2	Choosing the specific eSDHC, CSPI or I2C controller for booting from. Has a corresponded GPIO pin.	If BT_MEM_CTL=11 & BT_MEM_TYPE=00 then 00 eSDHC-1 01 eSDHC-2 1x Reserved If BT_MEM_CTL=11 & BT_MEM_TYPE=10 then 00 I2C-1 01 I2C-2 10 I2C-3 11 Reserved If BT_MEM_CTL=11 & BT_MEM_TYPE=11 then 00 CSPI-1 01 CSPI-2 10 CSPI-3 11 Reserved Otherwise - Reserved	BOOT_LOCK
000C[5]	0	BT_MLC_ SEL	1	SLC/MLC NAND device. (Former BT_ECC_SEL fuse) Also used as a fast boot mode indication for eMMC 4.3 protocol.	If the bootable device is NAND then 0 SLC NAND device 1 MLC NAND device If the bootable device is MMC then 0 Do not use eMMC fast boot mode 1 Use eMMC fast boot mode	BOOT_LOCK
000C [4:3]	0	BT_RES[2:1]	2	Reserved for boot options. Has a corresponded GPIO pin, including a place in SRC SBMR register	_	BOOT_LOCK

Table 2. IIM Fuse Definitions	(Silicon Revision 1.1)	(continued))
-------------------------------	-----------------------	---	-------------	---

IIM Address	IIM Bank	Fuse Name	Number of Fuses	Fuses Function	Setting	Locked by/ls Lock?
000C[2]	0	BT_SPARE_ SIZE	1	Specifies the size of spare bytes for 4KB page size NAND Flash devices. Note: 512B page devices have 16 bytes spare area size, 2KB page devices have 64 bytes spare area size. Note: Assumes that the large spare area devices (218 byte) uses 8-bit ECC. Otherwise, 4-bit ECC. Also used as a fast boot mode indication for eSD 2.10 protocol. Has a corresponded GPIO pin.	If the bootable device is NAND then 0 128 bytes spare (Samsung) (4-bit ECC) 1 218 bytes spare (Micron, Toshiba) (8-bit ECC) If the bootable device is SD then 0 'FAST_BOOT' bit 29 in ACMD41 argument is 0 1 'FAST_BOOT' bit 29 in ACMD41 argument is 1	BOOT_LOCK
000C[1]	0	BT_DPLUS_ BYPASS	1	Bypassing a pullup on D+ line in case of LPB. Has a corresponded GPIO pin.	 After copying the initial 2K data from the boot device, ROM should pullup the D+ line. This is to gain additional 500 ms for the rest of the secure Boot scenario to continue in the event of a dead/low battery. No pullup on D+ line. 	BOOT_LOCK
000C[0]	0	BT_USB_ SRC	1	USB boot source selection. Has a corresponded GPIO pin.	 USB OTG Internal PHY (UTMI) USB OTG External PHY (ULPI) 	BOOT_LOCK
0010[7]	0	BT_RES3	1	Reserved for boot options. Has a corresponded GPIO pin, including a place in SRC SBMR register	_	BOOT_LOCK
0010 [6:5]	0	BT_PAGE_ SIZE[1:0]	2	NAND Flash Page Size. This field is used with conjunction with the BT_MEM_CTL[1:0] setting. Has a corresponding GPIO pin.	If BT_MEM_CTL = NAND Flash, then 00 512 bytes 01 2K bytes 10 4K bytes 11 Reserved	BOOT_LOCK
0010[4]	0	BT_EEPROM _CFG	1	Selects whether EEPROM device is used for load of configuration DCD data, prior to boot from other devices (not applicable when using EEPROM as boot device) Has a corresponding GPIO pin.	0 Use EEPROM DCD 1 Do not use EEPROM DCD	BOOT_LOCK

IIM Address	IIM Bank	Fuse Name	Number of Fuses	Fuses Function	Setting	Locked by/ls Lock?
0010[3]	0	GPIO_BT_ SEL	1	GPIO Boot Select. Determines whether certain boot fuse values are controlled from GPIO pins or IIM.	 The fuse values are determined by GPIO pins The fuse values are determined by fuses 	BOOT_LOCK
0010 [2:0]	0	HAB_ TYPE[2:0]	3	Security Type.	 001 Engineering (allows any code to be flashed and executed, even if does not have a valid signature) 100 Security Disabled (for internal/testing use) Others Production (Security On) 	BOOT_LOCK
0014[7]	0	BT_RES4	1	Reserved for boot options. Has a corresponded GPIO pin, including a place in SRC SBMR register	_	BOOT_LOCK
0014 [6:5]	0	BT_MEM_ TYPE[1:0]	2	Boot Memory Type. Interpreted by boot ROM SW according to BT_MEM_CTL setting. Signals could also be interpreted by HW to alter delays and timing in support of direct boot.	If BT_MEM_CTL = WEIM, then 00 NOR 01 Reserved 10 OneNand 11 Reserved If BT_MEM_CTL =NAND Flash 00 3 address cycles 01 4 address cycles 10 5 address cycles 11 Reserved If BT_MEM_CTL = Expansion Card Device 00 SD/MMC/MoviNAND HDD 01 Reserved 10 Serial ROM via I2C 11 Serial ROM via SPI	BOOT_LOCK
0014 [4:3]	0	BT_BUS_ WIDTH	2	Bus width and muxed/unmuxed interface. Has a corresponded GPIO pin.	If BT_MEM_CTL=NAND then 00 8 bit bus, 01 16 bit bus 1x Reserved If BT_MEM_CTL=WEIM then 00 16 bit addr/data muxed 01 16 bit addr/data unmuxed i 1x Reserved If BT_MEM_CTL=SPI then 00 2-addr word SPI (16-bit) 01 3-addr word SPI (24-bit) 1x Reserved	BOOT_LOCK

Table 2. IIM Fuse Definitions	(Silicon Revision	1.1) (continued)
-------------------------------	-------------------	------------------

IIM Fuse Definitions For Silicon Revision 1.1

IIM Address	IIM Bank	Fuse Name	Number of Fuses	Fuses Function	Setting	Locked by/ls Lock?
0014 [2:1]	0	BT_MEM_ CTL[1:0]	2	Boot Memory Control Type. (memory device)	00 WEIM 01 NAND Flash 10 ATA HDD 11 Expansion Device (SD/MMC, support high storage, EEPROMs. See BT_MEM_TYPE[1:0] settings for details.	BOOT_LOCK
0014[0]	0	DIR_BT_DIS	1	Direct External Memory Boot Disable.	 0 Direct boot from external memory is allowed 1 Direct boot from external memory is not allowed 	BOOT_LOCK
0018	0	HAB_ CUS[7:0]	8	HAB Customer Code. Select customer code as input to HAB.	_	BOOT_LOCK
001C	0	SI_REV[7:0]	8	Silicon revision number.	0 Rev1.0 1 Rev1.1	TESTER_ LOCK
0020- 003C	0	UID[63:0]	64	64-bit Unique ID.	—	TESTER_ LOCK
0040	0	RESERVED	8	Reserved.	—	BOOT_LOCK
0044 [7:5]	0	BT_LPB_ FREQ[2:0]	3	LPB ARM core frequency. Has a corresponded GPIO pin.	 000 133 MHz (Default) 001 24MHz 010 55.33 MHz 011 66 MHz 100 83 MHz 101 166 MHz 110 266 MHz 111 Normal boot frequency 	BOOT_LOCK
0044 [4:2]	0	BT_UART_ SRC[2:0]	3	Choosing the specific UART controller for booting from. Has a corresponded GPIO pin.	000 UART-1 001 UART-2 010 UART-3 011 UART-4 100 UART-5 Others Reserved	BOOT_LOCK

IIM Address	IIM Bank	Fuse Name	Number of Fuses	Fuses Function	Setting	Locked by/ls Lock?
0044 [1:0]	0	BT_LPB[1:0]	2	Options for Low Power Boot mode.	 00 LPB disabled 01 Generic PMIC and one GPIO input (Low battery) 10 Generic PMIC and two GPIO inputs (Low battery and Charger detect) 11 Atlas AP Power Management IC. 	BOOT_LOCK
0048	0	AP_BI_ VER[15:8]	8	Application Processor Boot Image Version. Indicate the version of the code image authenticated by the High Assurance Boot. The fuse value must match the version of the image stored in non-volatile memory.	_	No lock
004C	0	AP_BI_ VER[7:0]	8	Application Processor Boot Image Version. Indicate the version of the code image authenticated by the High Assurance Boot. The fuse value must match the version of the image stored in non-volatile memory.	_	No Lock
0050	0	SRK0_HASH [255:248]	8	Most significant byte of 256-bit hash value of AP super root key (SRK0_HASH)	_	SRK0_LOCK
0054	0	STORE_ COUNT[7:0]	8	For SPC statistics during production.		TRIM_LOCK
0058	0	DVFS_ DELAY_ ADJUST[7:0]	8	Use for adjustment the compensator delays on silicon and the system works as a whole at 1.0V and 1.2V (DVFS)	_	TRIM_LOCK
005C [7:5]	0	PTC_VER [2:0]	3	PTC version control number.	_	TRIM_LOCK
005C[4]	0	GDPTCV_ VALID	1	Valid bit for GDPTCV[3:0] field.	0 GDPTCV fields are invalid 1 GDPTCV fields are valid	TRIM_LOCK

Table 2. IIM Fuse Definitions (Si	ilicon Revision 1.1) (continued)
-----------------------------------	----------------------------------

IIM Address	IIM Bank	Fuse Name	Number of Fuses	Fuses Function	Setting	Locked by/ls Lock?
005C [3:0]	0	GDPTCV[3:0]	4	GP domain DPTC/SPC Test Voltage. Indicates the testing voltage in production, using DPTC/SPC of GP transistor technology.	0000 1.0V 0001 0.975V 1111 0.625V	TRIM_LOCK
0060 [7:5]	0	VRC[2:0]	3	Voltage Reference Configuration. A field in Drylce Analog Configuration Register (DACR)		TRIM_LOCK
0060[4]	0	LDPTCV_ VALID	1	Valid bit for LDPTCV[3:0] field.	0 LDPTCV fields are invalid 1 LDPTCV fields are valid	TRIM_LOCK
0060 [3:0]	0	LDPTCV[3:0]	3	LP domain DPTC Test Voltage. Indicates the testing voltage in production, using DPTC of LP transistor technology.	0000 1.2V 0001 1.175V 1111 0.825V	TRIM_LOCK
0064 [7:5]	0	RESERVED	3	Reserved.	_	TRIM_LOCK
0064[4]	0	CPFA	1	Well Bias Charge Pump Frequency Adjust. Adjusting the frequency of the internal free-running oscillator.	 Low frequency operation High frequency operation 	TRIM_LOCK
0064 [3:0]	0	CPSPA[3:0]	4	Well Bias Charge Pump Set Point Adjustment. Allows optimization of the AWB for the mass production. Allows a back bias set point scheme to be implemented.	_	TRIM_LOCK
0068- 007C	0	MAC_ ADDR[47:0]	48	Ethernet MAC Address.	_	MAC_ADDR _LOCK
0000[7]	1	FBWP	1	Fuse Bank Write Protect. Controls whether the fuse bank may be programmed.	 Fuse bank may be programmed Fuse bank may not be programmed (it is write-protected) 	LOCK
0000[6]	1	FBOP	1	Fuse Bank Override Protect. Controls whether the fuse bank may be overridden.	 Fuse bank may be overridden Fuse bank may not be overridden (it is override-protected) 	LOCK

IIM Address	IIM Bank	Fuse Name	Number of Fuses	Fuses Function	Setting	Locked by/ls Lock?
0000[5]	1	FBRP	1	Fuse Bank Read Protect. Controls whether the fuse bank may be read.	 0 Fuse bank may be read by software 1 Fuse bank may not be read by software (it is read-protected) 	LOCK
0000[4]	1	USR5_LOCK	1	Locking row 0058, fusebank 1	 Unlock (The controlled field can be read, sensed, burned or overridden in the corresponded IIM register) Lock (The controlled field can be read or sensed only) 	LOCK
0000[3]	1	FBESP	1	Fuse Banks Explicit Sense Protect. Controls whether the fuse bank may be explicitly sensed. The state of this fuse controls whether the IIM state machine allows explicit sense cycles (normal, 0-stress, or 1-stress).	 0 Fuse bank be explicitly sensed by software 1 Fuse bank may not be explicitly sensed by software (it is sense-protected) 	LOCK
0000[2]	1	USR6_LOCK	1	Lock for rows 0078–007C of fusebank 1.	 Unlock (The controlled field can be read, sensed, burned or overridden in the corresponding IIM register) Lock (The controlled field can be read or sensed only) 	LOCK
0000[1]	1	SJC_RESP_ LOCK	1	Locking 0008-0020, fusebank1. SJC_RESP[55:0] When locked, the fuses cannot be read, sensed, overridden nor programmed	 Unlock (SJC_RESP[55:0] can be read, sensed, burned or overridden in the corresponding IIM register) Lock (SJC_RESP[55:0] cannot be read, sensed, overridden, or written) 	LOCK
0000[0]	1	SCC_LOCK	1	Locking SCC_KEY[255:0] - whole fusebank2. When blown, the fuses cannot be read, sensed, overridden nor written. Note: Even unlocked, SCC_KEY[255:0] cannot be read or sensed.	 0 Unlock (SCC_KEY[255:0] cannot be read, sensed, but can be burned or overridden in the corresponded IIM register) 1 Lock (SCC_KEY[255:0] cannot be read, sensed, overridden nor written) 	LOCK
0004– 0054	1	SCC_ KEY[167:0]	168	SCC Secret Key. Protected by SCC_LOCK. Neither readable nor explicitly sensible by the default.	Random number for every part	SCC_LOCK

IIM Address	IIM Bank	Fuse Name	Number of Fuses	Fuses Function	Setting	Locked by/ls Lock?
0058	1	USR5[7:0]	8	Fuses available for software/customers.	_	USR5_LOCK
005C- 0074	1	SJC_ RESP[55:0]	56	Response reference value for the secure JTAG controller.	_	SJC_RESP_L OCK (locks also for read, scan and sense)
0078- 007C	1	USR6[15:0]	16	Fuses available for software/customers.	_	USR6_LOCK
0000[7]	2	FBWP	1	Fuse Bank Write Protect. Controls whether the fuse bank may be programmed.	 0 Fuse bank may be programmed 1 Fuse bank may not be programmed (it is write protected) 	LOCK
0000[6]	2	FBOP	1	Fuse Bank Override Protect. Controls whether the fuse bank may be overridden.	 Fuse bank may be overridden Fuse bank may not be overridden (it is override protected) 	LOCK
0000[5]	2	FBRP	1	Fuse Bank Read Protect. Controls whether the fuse bank may be read.	 0 Fuse bank may be read by software 1 Fuse bank may not be read by software (it is read protected) 	LOCK
0000[4]	2	RESERVED	1	Reserved	_	No Lock
0000[3]	2	FBESP	1	Fuse Banks Explicit Sense Protect. Controls whether the fuse bank may be explicitly sensed. The state of this fuse controls whether the IIM state machine allows explicit sense cycles (normal, 0-stress, or 1-stress).	 Fuse bank be explicitly sensed by software Fuse bank may not be explicitly sensed by software (it is sense protected) 	LOCK
0000[2]	2	RESERVED	1	Reserved.	—	No lock
0000[1]	2	SRK0_ LOCK96	1	Lock for SRK_HASH[255:160] fuses in row 0050, fusebank0 and in rows 0004-002C, fusebank3.	 Fuse bank is sensible. Fuse bank is explicit sense-protected. This lock does not protect against reading. 	LOCK

IIM Address	IIM Bank	Fuse Name	Number of Fuses	Fuses Function	Setting	Locked by/ls Lock?
0000[0]	2	SRK0_ LOCK160	1	Lock for SRK0_HASH[159:0] fuses in rows 0030–007C.	 Unlock (The controlled field can be read, sensed, burned, or overridden in the corresponding IIM register) Lock (The controlled field can be read or sensed only) 	LOCK
0004– 002C	2	SRK0_HASH [247:160]	88	AP Super Root Key hash, bits [247:160]. Most significant byte SRK_HASH[255:248] is in the fuse bank #0, 0050	—	SRK0_LOCK9 6
0030- 007C	2	SRK0_ HASH[159:0]	160	AP Super Root Key hash, bits [159:0].	_	SRK0_LOCK1 60

Table 2. IIM Fuse Definitions (Silicon Revision 1.1) (continued)

Table 3 provides a fuse map for Silicon Revision 1.1. Shading indicates burned or locked fuses. The address offset is from the IIM Base Address added to the Fuse Bank Base Address. For more information see Section 3, "Fuse Addressing".

Table 3.	Fuse	Мар	(Silicon	Revision	1.1)
----------	------	-----	----------	----------	------

Address Offset	7	6	5	4	3	2	1	0	Initially Burned Values		
	Fuse Bank 0										
0000	FBWP	FBOP	FBRP	TESTER_ LOCK	FBESP	MAC_ADD R_LOCK	TRIM_LOCK	BOOT_ LOCK	0001 0000		
0004	SJC_DISA BLE	JTAG_SMODE[1:0]		JTAG_SCC	JTAG_ HEO	RESERVED	SEC_JTAG_ RE	JTAG_BP	000x 0x00		
0008	RESEF	RESERVED		HTDC[2:0]		LTDC[2:0]			0000 0000		
000C	BT_SR	C[1:0]	BT_MLC BT_RES[2:1]		S[2:1]	BT_SPARE _SIZE	BT_DPLUS_ BYPASS	BT_USB_ SRC	0000 0000		
0010	BT_RES3	BT_PAGE_ SIZE[1:0]		BT_EEPRO M_CFG	GPIO_BT _SEL	HAB_T	YPE[2:1]	HAB_ TYPE[0]	0000 0001		
0014	BT_RES4	BT_MEM_ TYPE[1:0]		BT_BUS_WIDTH[1:0]		BT_MEM_ CTL[1:0]		DIR_BT_ DIS	0000 0000		
0018	HAB_CUS[7:0]								0000 0000		
001C	SI_REV[7:0] ¹								0000 0000		

IIM Fuse Definitions For Silicon Revision 1.1

Address Offset	7	6	5	4	3	2	1	0	Initially Burned Values			
0020		UID[63:0]										
0024												
0028												
002C												
0030												
0034												
0038									XXXX XXXX			
003C									XXXX XXXX			
0040				RE	SERVED				XXXX XXXX			
0044	BT_L	PB_FREQ[2	2:0]	BT_U	JART_SRC	[2:0]	BT_LF	PB[1:0]	0000 0000			
0048				AP_BI	_VER[15:8]	2			0000 0000			
004C		AP_BI_VER[7:0] ²										
0050		SRK0_HASH[255:248] ³										
0054				STORE	_COUNT[7	:0]			0000 0000			
0058				DVFS_DEL	AY_ADJUS	T[7:0]			0000 0000			
005C	PTC_VER[2:0] GDPTCV_ GDPTCV[3:0] VALID								0000 0000			
0060	VRC[2:0] LDPTCV_ LDPTCV[3:0] VALID								0000 0000			
0064	R	ESERVED		CPFA		CP	SPA[3:0]		0000 0000			
0068				MAC_A	ADDR[47:40	D]			0000 0000			
006C				MAC_A	ADDR[39:32	2]			0000 0000			
0070				MAC_A	ADDR[31:24	4]			0000 0000			
0074	MAC_ADDR[23:16]											
0078	MAC_ADDR[15:8]											
007C	MAC_ADDR[7:0]											
	Fuse Bank 1											
0000	FBWP	FBOP	FBRP	USR5_ LOCK	FBESP	USR6_ LOCK	SJC_RESP_ LOCK	SCC_LOCK	0101 1101			
0004	RESERVED ⁴											
0008	RESERVED ⁴											
000C	RESERVED ⁴								XXXX XXXX			

Table 3. Fuse Map (Silicon Revision 1.1) (continued)

Address Offset 0010 0014	7	6	5						Initially	
	I		5	4	3	2	1	0	Burned Values	
0014	RESERVED ⁴									
0014	RESERVED ⁴									
0018	RESERVED ⁴									
001C	RESERVED ⁴									
0020	RESERVED ⁴									
0024	RESERVED ⁴									
0028				RES	SERVED ⁴				XXXX XXXX	
002C				RES	SERVED ⁴				XXXX XXXX	
0030				RES	SERVED ⁴				XXXX XXXX	
0034				RES	SERVED ⁴				XXXX XXXX	
0038				RES	SERVED ⁴				XXXX XXXX	
003C	RESERVED ⁴									
0040	RESERVED ⁴									
0044	RESERVED ⁴									
0048	RESERVED ⁴									
004C	RESERVED ⁴									
0050	RESERVED ⁴									
0054	RESERVED ⁴									
0058	USR5[7:0]									
005C	SJC_RESP[55:48] ⁵ 0									
0060	SJC_RESP[47:40] ⁵									
0064				SJC_R	ESP[39:32] ⁵			0000 0000	
0068				SJC_R	ESP[31:24] ⁵			0000 0000	
006C				SJC_R	ESP[23:16] ⁵			0000 0000	
0070	SJC_RESP[15:8] ⁵									
0074	SJC_RESP[7:0] ⁵ 0000									
0078	USR6[15:8]									
007C	USR6[7:0] x									
				Fus	e Bank 2 ⁶					
0000	FBWP FBOP FBRP RESERVED FBESP RESERVED SRK0_ SRK0_ 00 LOCK96 LOCK160									
0004			1	SRK0_H	ASH[247:2	40]		1	0000 0000	

i.MX25 IC Identification Module (IIM) Fusebox, Rev. 0

Address Offset	7	6	5	4	3	2	1	0	Initially Burned Values		
0008	SRK0_HASH[239:232]										
000C	SRK0_HASH[231:224]										
0010	SRK0_HASH[223:216]										
0014	SRK0_HASH[215:208]										
0018	SRK0_HASH[207:200]										
001C				SRK0_H	IASH[199:1	92]			0000 0000		
0020				SRK0_H	IASH[191:1	84]			0000 0000		
0024				SRK0_H	IASH[183:1	76]			0000 0000		
0028				SRK0_H	IASH[175:1	68]			0000 0000		
002C				SRK0_H	IASH[167:1	60]			0000 0000		
0030	SRK0_HASH[159:152]										
0034	SRK0_HASH[151:144]										
0038	SRK0_HASH[143:136]										
003C	SRK0_HASH[135:128]										
0040	SRK0_HASH[127:120]										
0044	SRK0_HASH[119:112]										
0048	SRK0_HASH[111:104]										
004C	SRK0_HASH[103:96]										
0050	SRK0_HASH[95:88]										
0054				SRK0_	HASH[87:8	0]			0000 0000		
0058	SRK0_HASH[79:72]										
005C				SRK0_	HASH[71:6	4]			0000 0000		
0060	SRK0_HASH[63:56]										
0064	SRK0_HASH[55:48]										
0068	SRK0_HASH[47:40]										
006C	SRK0_HASH[39:32]										
0070	SRK0_HASH[31:24]										
0074	SRK0_HASH[23:16]										
0078				SRK0	_HASH[15:8	3]			0000 0000		
007C				SRK0	_HASH[7:0]			0000 0000		

Table 3. Fuse Map (Silicon Revision 1.1) (continued)

¹ According to the chip silicon revision, 1 = Rev 1.1

² Boot Image Version

- ³ Most significant byte of 256-bit SRKO_HASH
- ⁴ Unreadable SCC Key
- ⁵ Response reference value for the secure JTAG controller. Cannot be read, overridden, or programmed after SJC_REP_LOCK is blown.
- ⁶ Bits 247.0 of Hash of super-root key stored in FLASH

3 Fuse Addressing

The IIM module base address register is 0x53FF_0000. All registers are 8-bit wide, but addressable on 32-bit boundaries.

The IIM contains three fuse banks. Each bank contains 256 8-bit rows for a total of 2048 fuses per bank. Each fuse row is addressable on a 32-bit boundary, meaning that Fuse Row Index 0 is at Fuse Row Offset 0x0, Fuse Row Index 1 is at Fuse Row Offset 0x4, Fuse Row Index 2 is at Fuse Row Offset 0x8, and so on.

Fuse Bank 0 is located at offset 0x0800 from the IIM base address (0x53FF_0000). Fuse Bank 1 is located at offset 0x0C00. Fuse Bank 2 is located at offset 0x1000.

For example, the absolute address of Fuse Row 0xC at Bank 0 is $0x53FF_0000 + 0x0800 + 0xC == 0x53FF_080C$. Keep in mind that the Fuse Row Index is 3.

4 Fuse Programming Procedure

Fuse programming is accomplished using the following procedure:

- 1. Define the fuse bit address by writing to the upper address (UA) and lower address (LA) registers.
 - UA register is located at 0x53FF_0014. LA register is located at 0x53FF_0018.
 - UA[5:3] selects the fuse bank.
 - UA[2:0] provides the most significant portion of the Fuse Row Index within the bank.
 - LA[7:3] provides the least significant portion of the Fuse Row Index within the bank.
 - LA[2:0] selects the bit position within the selected row (or fuse byte).
- 2. Write 0xAA to the program protection register (PRG_P), which is located at address 0x53FF_0028.

This register is used to protect against accidental fuse programming. The fuses can be blown only when the value of this register is 0xAA. Software should only program this register to 0xAA while actively blowing fuses. After the program operation is complete, immediately reprogram this register to a different value.

- 3. Enable and start fuse programming using the fuse control register (FCTL), which is located at address 0x53FF_0010. Writing 0x71 to this register commands the IIM to blow the fuse.
- 4. Wait until fuse programming is finished by IIM. When bit 1 of the status register (STAT) equals one, the program operation has finished. STAT is located at address 0x53FF_0000.
- 5. Clear bit 1 of STAT by writing "1" to it.
- 6. Write any value other than 0xAA to PRG_P register to prevent inadvertent fuse programming.
- 7. Check if there were errors by reading the content of the module errors register (ERR), which is located at address 0x53FF_0008. If bits[7:1] are all zeros, no error occurred.

i.MX25 IC Identification Module (IIM) Fusebox, Rev. 0

Fuse Sensing Procedure

5 Fuse Sensing Procedure

While fuse programming blows fuses one bit at a time, fuse sensing or reading always works at a byte boundary. There are two methods for reading fuse values: direct register address dereferencing and explicit fuse sensing.

5.1 Reading Fuses Using Direct Address Dereferencing

Direct register address dereferencing is accomplished by calculating the absolute fuse address and reading the content of the register using standard pointer dereferencing methods. For example, the fuse row located at offset 0x10 from fuse bank 0 can be read with the following C code:

char fuse_byte = *(char *) (0x53FF0000 + 0x0800 + 0x10);

5.2 Reading Fuses Using Explicit Sensing

Explicit sensing is accomplished using the following procedure:

- 1. Write something other than 0xAA to PRG_P register to prevent fuses from being blown inadvertently.
- 2. Define the fuse row (or byte) address by writing to the upper address and lower address registers.
 - UA[5:3] selects the fuse bank.
 - UA[2:0] provides the most significant portion of the Fuse Row Index within the bank.
 - LA[7:3] provides the least significant portion of the Fuse Row Index within the bank.
 - LA [2:0] is disregarded during fuse sensing operations because it always reads all 8 bits within the given fuse row.
- 3. Set the SENS strength to the fuse control register (FCTL), which triggers a sense cycle. Only one of bits[3:1] can be set to 1 to start a read cycle.
- 4. Wait until SNSD bit from the status register (STAT[0]) equals one.
- 5. Write "1" to SNSD bit from the status register (STAT[0]) to clear it.
- 6. Check for errors by reading the content of the module errors register (ERR), which is located at address 0x53FF_0008. If bits[7:1] are all zeros, no error occurred.
- 7. The fuse row (or byte) value can be retrieved by reading the SDAT register, which is located at address 0x53FF_001C.

6 Sample Code

The following source code describes how to do fuse programming and fuse sensing in C programming language.

```
#define setmem8(address, value) *(volatile unsigned char *)address = (unsigned char)value
#define readmem8(address) (*(volatile unsigned char *)address)
//Important IIM register definitions.
```

```
#define IIM_BASE_ADDRESS (0x53FF0000)
```



```
#define IIM_UPPER_ADDRESS_REG
                                    (IIM_BASE_ADDRESS + 0x14)
#define IIM_LOWER_ADDRESS_REG
                                    (IIM_BASE_ADDRESS + 0x18)
#define IIM_PRG_P_REG
                                    (IIM_BASE_ADDRESS + 0x28)
#define IIM_FCTL_REG
                                    (IIM_BASE_ADDRESS + 0x10)
#define IIM_STAT_REG
                                    (IIM_BASE_ADDRESS + 0x00)
#define IIM_ERR_REG
                                    (IIM_BASE_ADDRESS + 0x08)
#define IIM_SDAT_REG
                                    (IIM_BASE_ADDRESS + 0x1C)
typedef enum
{
        ESNS_1 = 2,
        ESNS_0 = 4,
        ESNS_N = 8 //Normal Sensing
}e_sens_strength;
typedef enum
{
        FUSE_BANK_0,
        FUSE_BANK_1,
        FUSE_BANK_2,
        MAX_FUSE_BANK //MX25 only has 3 fuse banks, 0, 1 and 2.
}e_fuse_banks;
//fuse_bank is the fuse bank index. MX25 only has 3 banks. That's why they've been enumerated.
//fuse_row_addr: represents the address of the row where we are going to blow a fuse.
11
        Each Row addresses one byte worth of data. This means one row contains 8 fuses ready
to be blown!
11
        Row Index 0 is Row Address 0x0
        Row Index 1 is Row Address 0x4
11
11
        Row Index 2 is Row Address 0x8
11
        Row Index 3 is Row Address 0xC
11
                  ... And so on
//fuse_bit_addr: A number from 0 to 7 that represent the fuse bit index that we are going to
blow or sense.
static void set_fuse_address(e_fuse_banks fuse_bank, unsigned short fuse_row_addr, unsigned
char fuse_bit_addr)
{
        unsigned char upper_addr;
         unsigned char lower_addr;
         unsigned char fuse_index;
         //A fuse bank contains 256 fuse rows. for a total of 2048 fuse bits.
         //Dividing the fuse_address by 4 will give us the fuse index.
         fuse_index = (unsigned char)(fuse_row_addr >> 2);
         upper addr = ( (unsigned char)fuse bank << 3);
        upper_addr |= ((fuse_index >> 5) & 0x7);
         lower_addr = ((fuse_index & 0x1F) << 3);</pre>
        lower_addr |= (fuse_bit_addr & 0x7);
         //write address to UA LA register
        setmem8(IIM_UPPER_ADDRESS_REG, upper_addr);
         setmem8(IIM_LOWER_ADDRESS_REG, lower_addr);
}
//Returns 0 when Successful.
```

```
NP
```

```
Sample Code
```

```
unsigned char fuse_bit_program(e_fuse_banks fuse_bank,
                                    unsigned char fuse_row_addr,
                                    unsigned char fuse_bit_addr)
{
        unsigned char error;
        //Define the fuse bit address that we want to program.
        set_fuse_address(fuse_bank, fuse_row_addr, fuse_bit_addr);
        //write 0xAA to Program Protection Register (PRG_P) register
        //The value 0xAA is an arbitrarily chosen value that needs to be written
        //to the register so the fuse program operation actually works.
        //This helps prevent to blow fuse by mistake.
        setmem8(IIM_PRG_P_REG, 0xAA);
        //Enable and Start Fuse Programming via Fuse Control Register(FCTL)
        setmem8(IIM_FCTL_REG,0x71);
        //Wait until fuse blowing is finished.
        while( (readmem8(IIM_STAT_REG) & 0x2) == 0 );
        //Write 1 to clear PRGD bit
        setmem8(IIM_STAT_REG,0x02);
        //Very good to do too. for safety.
        setmem8(IIM_PRG_P_REG, 0x0);
        //Check Error status.
        error = readmem8(IIM_ERR_REG);
        if (error & 0xFE)
         {
                 //Clear Error Status Register. By writing the same value we got.
        //These are Clear-on-Write type of bits.
                 setmem8(IIM_ERR_REG, error);
                 //Some error occurred.
                 return error;
         }
         //No error at all.
        return 0;
}
//Returns the value of all the fuses (8 fuses or 8 bits)
// contained in fuse_row_addr.
unsigned char fuse_byte_read(e_fuse_banks fuse_bank,
                           unsigned char fuse_row_addr,
                           e_sens_strength sens_strength)
{
        unsigned char error;
        unsigned char fuse_byte_value;
        //Just in case.
        // Write something different than 0xAA to IIM_PRG_P_REG to prevent
        //fuses from being blown inadvertently.
        setmem8(IIM_PRG_P_REG, 0x0);
```

Revision History

```
NP
```

}

```
//Define the fuse row address that we want to read.
set_fuse_address(fuse_bank, fuse_row_addr, 0);
//Set the SENS strength to the Fuse Control Register
// which will also trigger a sense cycle.
setmem8(IIM_FCTL_REG, sens_strength);
// wait for SNSD bit to set. While this is 0,
// it means the sensing has not finished.
while ( (readmem8(IIM_STAT_REG) & 0x1) == 0 );
//Write 1 to SNSD bit in the STAT register. This is the way to clear it.
setmem8(IIM_STAT_REG,0x01);
//Was there an error??
error = readmem8(IIM_ERR_REG);
if (error & 0xFE)
//Clear Error Status Register. By writing the same value we got.
//These are clear on Write type of bits.
        setmem8(IIM_ERR_REG, error);
        while (1); //READ ERROR. LOOP ForEver.
}
//Read the byte we wanted.
fuse_byte_value = readmem8(IIM_SDAT_REG);
return fuse_byte_value;
```

The following source code shows how to blow the HAB_TYPE[0] fuse, available for Silicon Revision 1.1, using the **fuse_bit_program** function defined above:

//Blow the HAB_TYPE Fuse. Bit 0 , of Fuse Row 0x 10 in FuseBank 0
unsigned char error = fuse_bit_program(FUSE_BANK_0, 0x10 , 0);

The following source code shows how to explicitly sense the HAB_TYPE[0] fuse using the **fuse_byte_read** function defined above:

```
unsigned char fuse_byte_value = fuse_byte_read(FUSE_BANK_0, 0x10 , ESNS_N);
//If the HAB_TYPE[0] fuse is blown, fuse_byte_value bit 0 must be on.
//In case where no other fuses are blown in this byte then it will be 0x1 .
```

As mentioned before, the same fuse row can also be read using direct register address dereferencing, which is shown in the following code:

unsigned char fuse_byte_value = *(unsigned char *)(0x53FF0000 + 0x0800 + 0x10);

7 Revision History

Table 4. Document Revision History

Rev. Number	Date	Substantive Change(s)				
0	06/2009	Initial Release, based on version for i.MX35				

i.MX25 IC Identification Module (IIM) Fusebox, Rev. 0

Revision History

THIS PAGE INTENTIONALLY LEFT BLANK

Revision History

THIS PAGE INTENTIONALLY LEFT BLANK

How to Reach Us:

Home Page: www.freescale.com

Web Support: http://www.freescale.com/support

USA/Europe or Locations Not Listed:

Freescale Semiconductor, Inc. Technical Information Center, EL516 2100 East Elliot Road Tempe, Arizona 85284 1-800-521-6274 or +1-480-768-2130 www.freescale.com/support

Europe, Middle East, and Africa:

Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) www.freescale.com/support

Japan:

Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku Tokyo 153-0064 Japan 0120 191014 or +81 3 5437 9125 support.japan@freescale.com

Asia/Pacific:

Freescale Semiconductor China Ltd. Exchange Building 23F No. 118 Jianguo Road Chaoyang District Beijing 100022 China +86 10 5879 8000 support.asia@freescale.com

For Literature Requests Only:

Freescale Semiconductor Literature Distribution Center P.O. Box 5405 Denver, Colorado 80217 1-800 441-2447 or +1-303-675-2140 Fax: +1-303-675-2150 LDCForFreescaleSemiconductor @hibbertgroup.com

Document Number: AN3682 Rev. 0 06/2009 Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part.

Freescale and the Freescale logo are trademarks or registered trademarks of Freescale Semiconductor, Inc. in the U.S. and other countries. ARM is the registered trademark of ARM Limited. All other product or service names are the property of their respective owners.

© Freescale Semiconductor, Inc., 2009. All rights reserved.

