
Freescale Semiconductor
Application Note

Document Number: AN3732
Rev. 0, 06/2008

Contents

Migrating Between 8-Bit and 32-Bit 2
AC Hardware Comparison. 3
Common Porting Issues . 4

3.1 Porting Tip 1: Remove the Assembly Code. 4
3.2 Porting Tip 2: Assign Interrupt Vectors Using Interrupt

Declarations in CodeWarrior Header Files 4
3.3 Porting Tip 3: Reference Memory Using

Register_Bitname Peripheral Declarations in
CodeWarrior Header Files 5

3.4 Porting Tip 4: Avoid Software Delays and Maintain
Timing through Peripherals 6

3.5 Porting Support . 6
4 Clock Module Migration . 6

4.1 Clock Module Differences . 6
4.2 Clock Code Examples . 8

5 Timer Module Migration. 11
5.1 Timer Modules Features . 12
5.2 Timer Modules in Each AC Version 12
5.3 Timer Modules — Migrating within 9S08AC

Devices . 13
5.4 Header Files . 14

6 Conclusion. 14
Appendix AMCU Change Wizard . 15

Migrating Between MC9S08AC
and MCF51AC Flexis Devices
by: Bruno Castelucci

Bruno Nunes
RTAC, Americas
This application note describes how to migrate from the
MC9S08AC device to the MCF51AC device. As the
need to add new features accelerates, engineers face the
challenging task of migrating applications from 8-bit to
32-bit microcontrollers (MCU). The AC family of
devices is part of the Flexis series, which has a single
development tool, common peripheral set, and pin-to-pin
compatibility to reduce hardware/software investment
and maximize reuse when moving between 8-bit and
32-bit.

Although most peripherals are identical in this family,
there are differences between 8-bit and 32-bit
architectures. This document helps designers develop
applications for easy migration between 8-bit and 32-bit
devices.

This application note covers the architectural differences
between 8-bit and 32-bit AC MCUs. It provides tips and
tricks for writing C applications, ensuring code reuse and
an easy migration. Finally, it details the enhancements in
CodeWarrior for Microcontrollers, describing how the
tool simplifies the porting experience between S08 and
ColdFire V1 microcontrollers.

1
2
3

© Freescale Semiconductor, Inc., 2008. All rights reserved.

Migrating Between 8-Bit and 32-Bit
1 Migrating Between 8-Bit and 32-Bit
Before deciding to use 8-bit or 32-bit technology, the following items should be considered.

A difficulty that can be found when migrating from an 8-bit to a 32-bit application is the use of different
software tools. The time it takes to learn features and functionality can be significant, depending on how
different the tools are. Hardware tools are commonly different; this implies extra cost and development
time. The configuration of peripherals can get as complicated as the complexity gap between an 8-bit and
a 32-bit architecture.

Simple factors like differences in debugging tools and debugging modules of both devices can impact the
development. Regarding the pin out, peripherals and supply pins might be located in different areas of the
silicon. The supply voltage might be different and extra hardware might be required. The assignment of
signals can vary creating conflict when building the new board.

All these differences lead a designer to rewrite software: differences in peripherals, variations in memory
maps, and changes in exception handling. These migration headaches could be the difference between a
failing and a successful project.

The Flexis series of microcontrollers have a single development tool to ease migration between 8-bit (S08)
and 32-bit (CFV1). The same CodeWarrior version supports both cores. There is a common peripheral set
to preserve software investment between 8-bit and 32-bit. The Flexis family has practical pin compatibility
to maximize hardware reuse when moving between 8-bit and 32-bit.

Table 1. 8-Bit vs. 32-Bit

8-Bit 32-Bit

The core is not as complex. Increased memory footprint and a wider portfolio of devices.

Devices where low power consumption is more critical than
performance.

Provides access to high-end hardware devices and complex
peripherals.

Packaging is an important advantage where space is critical. Applications demand more performance.

The gap between 32-bit prices and 8-bit prices is getting
smaller.
Migrating Between MC9S08AC and MCF51AC Flexis Devices, Rev. 0

Freescale Semiconductor2

AC Hardware Comparison
2 AC Hardware Comparison
Figure 1 shows the hardware architecture the S08 (MC9S08AC) and ColdFire V1 (MCF51AC) share. This
sharing makes the migrations easy for applications engineers and developers.

Figure 1. AC Devices Hardware Comparison

Although the CPU is different, a common set of peripherals is shared between the AC devices. This
includes the ADC, serial modules, ACMP and others. The ColdFire device also has RTC, CAN and FTM
modules that are not present in the S08. Besides the CPU, some other modules are different such as clock
and timer modules that will be carefully reviewed in next sections.

The AC devices are pin-to-pin compatible, although some pin-count versions are not available for some
devices. In Table 2 you can find the pin-count AC version availability.

Table 2. AC Devices Pin-Count Availability

Device 80 64 48 44 32

MC9S08AC8/16 X X X

MC9S08AC32/48/60 X X X X

MC9S08AC96/128 X X X

MCF51AC128/256 X X
Migrating Between MC9S08AC and MCF51AC Flexis Devices, Rev. 0

Freescale Semiconductor 3

Common Porting Issues
3 Common Porting Issues
When porting the software from 8-bit MC9S08AC to 32-bit ColdFire MCF51ACV1AC be aware of subtle
architecture differences that can affect the software operation. In this section, these architectural
differences will be shown along with how to avoid some mistakes. Other more complex porting issues
(clock and timer) that must also be considered will be presented in other sections of this application note.

3.1 Porting Tip 1: Remove the Assembly Code
When switching between different architectures the use of in-line assembly instructions is ineffective.
8-bit S08 core and 32-bit ColdFire V1 core have different instruction set architectures. If the code has some
in-line assembly instructions, this can lead to a compiler error stating that the instruction operand is
invalid. The C code for replacing in-line assembly instructions with correct compiler instructions is an
example of that. For example:

Must be replaced by:

3.2 Porting Tip 2: Assign Interrupt Vectors Using Interrupt
Declarations in CodeWarrior Header Files

Interrupt vector tables between the 8-bit S08 and 32-bit ColdFire V1 are not identical and reside in
different memory locations. Therefore, vector assignments will not match up in memory space because
vector numbers are different. For example:

For the MC9S08AC, the RTI interrupt is vector number 29.

For the MCF51AC, the RTI interrupt is vector number 91.

A common mistake is to use the following improper interrupt assignment:

This assignment works only for S08. Then instead of going back and forth when using the S08 and
ColdFire V1, use the vector numbers defined by CodeWarrior. A solution is to replace with:
Migrating Between MC9S08AC and MCF51AC Flexis Devices, Rev. 0

Freescale Semiconductor4

Common Porting Issues
3.3 Porting Tip 3: Reference Memory Using Register_Bitname
Peripheral Declarations in CodeWarrior Header Files

The on-chip memory in the MC9S08AC and MCF51AC series of MCUs consist of RAM, flash program
memory for nonvolatile data storage, plus I/O and control/status registers.

These areas are located in different address in MC9S08AC and MCF51AC, as we can see in the Figure 2.

Figure 2. Different Memory Maps

The S08 architecture uses a 16-bit data bus. That means the maximum memory addressable is more than
64 KB, so for the MC9S08AC96 and MC9S08AC128 there is a need to use the paging window and a
MMU (memory management unit). That isn’t necessary in the CF V1 device after the data bus is 32-bit.

For further reference on memory paging for S08 devices, refer to AN3730 available at the Freescale
website www.freescale.com.

In both devices, RAM and flash memory allocation is determined by respective linker files.

A good programming practice is to make reference to memory using register_bitname peripheral
declarations in CodeWarrior header files (for example: PTAD_PTAD0) and allow the linker to place
variables in available memory and remove absolute address.

0x(00)04_0000

0x(00)00_0000

0x(00)03_FFFF

CPU Address

0x(00)7F_FFFF

0x(00)80_0000

0x(00)80_7FFF
0x(00)80_8000

0x(00)BF_FFFF

0x(FF)FF_8000

0x(FF)FF_FFFF

MCF51AC256

0x(00)C0_0000

0x(00)C0_000F
0x(00)C0_0010

0x(FF)FF_7FFF

Slave

RAM
32 Kbytes

Peripherals

256 Kbytes
Flash memory

Reserved

Reserved

ColdFire
Rapid GPIO

Reserved

0x0000

0x007F
0x0080

0x17FF

0x20EF

16384 BYTES

PPAGE=1
FLASH

0x0_0000
Extended Address CPU Address

0x7FFF

0x4000

Paging Window
Extended addresses
formed with PPAGE
and CPU addresses

A13:A0

0x186F

0x1800

0x1870

0x20F0

0x3FFF

16384 BYTES

PPAGE=3
FLASH

0x0_3FFF
0x0_4000

0x0_7FFF
0x0_8000

0x0_BFFF
0x0_C000

0x0_FFFF

0x8000

0xBFFF
0xC000

0xFFFF

DIRECT PAGE

RAM
6016 BYTES

128 BYTES

HIGH PAGE

112 BYTES

7952 BYTES

REGISTERS

REGISTERS

RAM
2176 BYTES

PPAGE=0
FLASH
Migrating Between MC9S08AC and MCF51AC Flexis Devices, Rev. 0

Freescale Semiconductor 5

Clock Module Migration
An example of improper absolute memory declaration is:

In this case, the code would work for the S08 device, after the 0x80 address is RAM area, but it wouldn’t
work for the CFV1 because the 0x80 is a flash memory area.

To avoid that mistake, the best practice is to use the linker to allocate the variable, so the code should be
replaced by:

3.4 Porting Tip 4: Avoid Software Delays and Maintain Timing
through Peripherals

In many software applications it is common to have software delays or timing in code. When migrating
between 8-bit S08 and 32-bit ColdFire V1, software timing will result in a problem because of the different
instruction sets and instruction timings. These devices execute at a different frequency: ColdFire V1
instructions execute at CPU frequency, and S08 instructions execute at bus clock frequency.

The cycle time required by some instructions differs depending on the platform (S08 or ColdFire) used.
For this reason, it is necessary to avoid software delays and use a common time base through peripherals,
like TPM, FTM, and RTC.

3.5 Porting Support
A useful feature in CodeWarrior that can help port applications faster are Porting Tips. These Porting Tips
are built in the compiler and can be controlled through new pragma instructions. They are automatically
added to a ColdFire V1 project in the file porting_support.h:

This pragma reports all absolute addressing found in code and includes reporting fixed interrupt
assignments.

The pragmas can be disabled with these commands.

This pragma reports anytime it finds invalid assembly codes.

4 Clock Module Migration

4.1 Clock Module Differences
The clock module of MC9S08AC is called ICG (internal clock generator). For the Coldfire V1 this module
is called MCG (multipurpose clock generator). The integrated clock module provides multiple options for
clock source and in-application clock switching.
Migrating Between MC9S08AC and MCF51AC Flexis Devices, Rev. 0

Freescale Semiconductor6

Clock Module Migration
The MC9S08AC ICG provides multiple options for clock sources. This offers a user great flexibility when
making choices between cost, precision, current draw, and performance. The ICG consists of four
functional blocks: oscillator, internal reference generator, frequency-locked loop (FLL), and clock select
blocks.

The multipurpose clock generator (MCG) module provides several clock source choices for the
MCF51AC. The module contains a frequency-locked loop (FLL) and a phase-locked loop (PLL) that are
controllable by either an internal or an external reference clock. The module can select either of the FLL
or PLL clocks, or either of the internal or external reference clocks as a source for the MCU system clock.
The selected clock source is passed through a reduced bus divider which allows a lower output clock
frequency to be derived. The MCG also controls a crystal oscillator (XOSC), which allows an external
crystal, ceramic resonator, or another external clock source to produce the external reference clock.

There are differences between modes of operation supported by ICG and MCG modules, Table 1 and
Table 2 show these modes and provide a brief description of each one.

ICG Modes
• Off — The output clock, ICGOUT, is static. This mode may be entered when the STOP instruction

is executed.
• Self-clocked (SCM) — Default mode of operation that is entered immediately after reset. The

ICG’s FLL is open loop and the digitally controlled oscillator (DCO) is free running at a frequency
set by the filter bits.

• FLL engaged internal (FEI) — In this mode, the ICG’s FLL is used to create frequencies that are
programmable multiples of the internal reference clock.

• FLL bypassed external (FBE) — In this mode, the ICG is configured to bypass the FLL and use an
external clock as the clock source.

• FLL engaged external (FEE) — The ICG’s FLL is used to generate frequencies that are
programmable multiples of the external clock reference.

MCG Modes
• Stop — Entered whenever the MCU enters a stop state.
• FLL engaged internal (FEI) (default) — MCGOUT is derived from the FLL clock, which is

controlled by the internal reference clock.
• FLL engaged external (FEE) — MCGOUT is derived from the FLL clock, which is controlled by

the external reference clock.
• FLL bypassed internal (FBI) — MCGOUT is derived from the internal reference clock; the FLL

is operational, but its output clock is not used. This mode is useful to allow the FLL to acquire its
target frequency while the MCGOUT clock is driven from the internal reference clock.

• FLL bypassed external (FBE) — MCGOUT is derived from the external reference clock; the FLL
is operational, but its output clock is not used. This mode is useful to allow the FLL to acquire its
target frequency while MCGOUT is driven from the external reference clock.

• PLL engaged external (PEE) — MCGOUT is derived from the PLL clock, which is controlled by
the external reference clock.
Migrating Between MC9S08AC and MCF51AC Flexis Devices, Rev. 0

Freescale Semiconductor 7

Clock Module Migration
• PLL bypassed external (PBE) — MCGOUT is derived from the external reference clock; the PLL
is operational, but its output clock is not used. This mode is useful to allow the PLL to acquire its
target frequency while MCGOUT is driven from the external reference clock.

• Bypassed low power internal (BLPI) — MCGOUT is derived from the internal reference clock.
The PLL and FLL are disabled, and MCGLCLK is not available for BDC communications.

• Bypassed low power external (BLPE) — MCGOUT is derived from the external reference clock.
The PLL and FLL are disabled, and MCGLCLK is not available for BDC communications.

For reference, the register map for both clock modules can be found in the next lines.

The ICG module registers are:
• ICG Control Register 1 (ICGC1)
• ICG Control Register 2 (ICGC2)
• ICG Status Register 1 (ICGS1)
• ICG Status Register 2 (ICGS2)
• ICG Filter Registers (ICGFLTU, ICGFLTL)
• ICG Trim Register (ICGTRM).

The MCG module has the following registers:
• MCG Control Register 1 (MCGC1)
• MCG Control Register 2 (MCGC2)
• MCG Control Register 3 (MCGC3)
• MCG Control Register 4 (MCGC4)
• MCG Status and Control Register (MCGSC)
• MCG Test Register (MCGT)

For further reference on clock modules details, please refer to corresponding data sheets and reference
manuals.

4.2 Clock Code Examples
To ease the ICG to MCG migration path, in this section you can find examples using ICG and MCG
modules. It will be provided code for both modules, using internal and external clock references.

NOTE
The Device Initialization tool in CodeWarrior is also a powerful tool to help
in the migration. With this tool you can visually configure both modules,
and the code necessary will be automatically generated.

4.2.1 Internal Clock Configuration

In the following initialization function Int_S08_ICG_init(), the frequency FLL will be used (in FEI mode)
to multiply the internal 243 kHz (approximate) reference clock up to 40 MHz to achieve 20 MHz bus
frequency for the MC9S08AC device.
Migrating Between MC9S08AC and MCF51AC Flexis Devices, Rev. 0

Freescale Semiconductor8

Clock Module Migration
void Int_S08_ICG_init(){

 ICGC1 = 0x4C;
/***
Bit 7 HGO 0 Configures oscillator for low power
Bit 6 RANGE 1 Configures oscillator for high-frequency range; FLL prescale factor is 1
Bit 5 REFS 1 Oscillator using crystal or resonator requested (bit is really a don’t care)
Bits 4:3 CLKS 01 FLL engaged, internal reference clock mode
Bit 2 OSCSTEN 1 Enables the oscillator
Bit 1 LOCD 0 Loss-of-clock enabled
Bit 0 0 Unimplemented or reserved, always reads zero
***/

ICGC2 = 0x70;
/***
Bit 7 LOLRE 0 Generates an interrupt request on loss of lock
Bit 6:4 MFD 111 Sets the MFD multiplication factor to 18
Bit 3 LOCRE 0 Generates an interrupt request on loss of clock
Bit 2:0 RFD 000 Sets the RFD division factor to ÷1
***/

ICGTRM = *(unsigned char*far)0xFFBE;
/* Initialize ICGTRM register from a non volatile memory */
 while(!ICGS1_LOCK) { /* Wait until FLL is locked*/
 }
}

In the Int_V1_MCG_init() function below, the FLL will be used (FEI) to multiply the internal 32 kHz to
achieve a 20 MHz bus frequency. This system will also use the trim function to fine tune the frequency
based on nonvolatile memory position.
void Int_V1_MCG_init(){

/* System clock initialization */
 MCGTRM = *(unsigned char*far)0x03FF; /* Initialize MCGTRM register from a nonvolatile memory */
 MCGSC = *(unsigned char*far)0x03FE; /* Initialize MCGSC register from a nonvolatile memory */

 MCGC2 = 0x00; /* Set MCGC2 register */
/***
Bit 7:6 BDIV 00 — Divides selected clock by 1
Bit 5 RANGE 0 low frequency range selected for the crystal oscillator of 32 kHz to 100 kHz
Bit 4 HGO High Gain Oscillator Select — 0 Configure crystal oscillator for low power operation
Bit 3 Power Select — 0 FLL (or PLL) is not disabled in bypass modes.
Bit 2 EREFS 0 not used here
Bit 1 ERCLKEN 0 not used
Bit 0 EREFSTEN 0 not used
***/

 MCGC1 = 0x06; /* Set MCGC1 register */
/***
Bit 7:6 CLKS 00 Output of FLL or PLL is selected.
Bit 5:3 RDIV not used
Bit 2 IREFS 1 Internal reference clock selected
Bit 1 IRCLKEN 1 Enables the internal reference clock for use as MCGIRCLK.
Bit 0 IREFSTEN 0 0 Internal reference clock is disabled in stop
***/
Migrating Between MC9S08AC and MCF51AC Flexis Devices, Rev. 0

Freescale Semiconductor 9

Clock Module Migration
 MCGC3 = 0x81; /* Set MCGC3 register */
/***
Bit 7 LOLIE 1 Generate an interrupt request on loss of lock.
Bit 6 PLLS 0 FLL is selected
Bit 5 CME 0 Clock monitor is disabled.
Bit 4 DIV32 0 Divide-by-32 is disabled.
Bit 3:0 VDIV VCO Divider — not used
***/

MCGC4 = 0x21; /* Set MCGC4 register */
/***
Bit 7:6 0 Reserved.
Bit 5 DMX32 1 DCO is fined tuned for maximum frequency with 32.768 kHz reference.
Bit 4:2 0 reserved
Bit 1 DRST: indicate the current frequency range for the FLL output, DCOOUT.
Bit 0 DRS select the frequency range for the FLL output:
01Mid range
***/

 while(!MCGSC_LOCK) { /* Wait until FLL is locked */
 }
}

4.2.2 External Clock Configuration

In the following initialization function Ext_S08_ICG_init(), a 4 MHz external crystal oscillator was used
to generate a 16 MHz bus clock frequency.
void Ext_V1_ICG_init(){

 ICGC1 = 0xFC;
/***
Bit 7 HGO 1 Configures oscillator for high gain
Bit 6 RANGE 1 Configures oscillator for high-frequency range; FLL prescale factor is 1
Bit 5 REFS 1 Oscillator using crystal or resonator requested
Bits 4:3 CLKS 11 FLL engaged, external reference
Bit 2 OSCSTEN 1 Enables the oscillator
Bit 1 LOCD 0 Loss-of-clock enabled
Bit 0 0 Unimplemented or reserved, always reads zero
***/

 ICGC2 = 0x20;
/***
Bit 7 LOLRE 0 Generates an interrupt request on loss of lock
Bit 6:4 MFD 010 Sets the MFD multiplication factor to 8
Bit 3 LOCRE 0 Generates an interrupt request on loss of clock
Bit 2:0 RFD 000 Sets the RFD division factor to ÷1
***/
 while(!ICGS1_LOCK) { /* Wait until FLL is locked*/
 }

}

The same was made using the MCG module for the MCF51AC device in the Ext_V1_MCG_init()
function below.
void Ext_V1_MCG_init(){
Migrating Between MC9S08AC and MCF51AC Flexis Devices, Rev. 0

Freescale Semiconductor10

Timer Module Migration
MCGC2 = 0x36; /* Set MCGC2 register */
/***
Bit 7:6 BDIV 00 — Divides selected clock by 1
Bit 5 RANGE 1 High frequency range selected for the crystal oscillator of 1 MHz to 40 MHz for external
clock source.
Bit 4 HGO High Gain Oscillator Select — 1 Configure crystal oscillator for high gain operation
Bit 3 Power Select — 0 FLL (or PLL) is not disabled in bypass modes.
Bit 2 EREFS 1 Oscillator requested
Bit 1 ERCLKEN 1 External Reference Enable — Enables the external reference
Bit 0 EREFSTEN 0 External Reference Stop Enable- External reference clock is disabled in stop mode.
***/
MCGC3 |= (unsigned char)0x10;

 MCGC1 = 0x10; /* Set MCGC1 register */
/***
Bit 7:6 CLKS 00 Output of FLL is selected.
Bit 5:3 RDIV 010 External Reference Divider by 1
Bit 2 IREFS 1 External reference clock selected
Bit 1 IRCLKEN 0 not used
Bit 0 IREFSTEN 0 not used
***/
 MCGC3 = 0x91; /* Set MCGC3 register */
/***
Bit 7 LOLIE 1 Generate an interrupt request on loss of lock.
Bit 6 PLLS 0 FLL is selected
Bit 5 CME 0 Clock monitor is disabled.
Bit 4 DIV32 1 Divide-by-32 is enabled.
Bit 3:0 VDIV 0001 VCO Divider — not used
***/
 MCGC4 = 0x01; /* Set MCGC4 register */
/***
Bit 7:6 0 Reserved.
Bit 5 DMX32 0 DCO isn’t fined tuned
Bit 4:2 0 reserved
Bit 1 DRST 0 : indicate the current frequency range for the FLL output, DCOOUT.
Bit 0 DRS select the frequency range for the FLL output:
01Mid range
***/
while(MCGSC_IREFST); /* Wait until external reference is selected */

 while(!MCGSC_LOCK) ; /* Wait until FLL is locked */

 while((MCGSC & 0x0C) != 0x00) { /* Wait until FLL clock is selected as a bus clock
reference */
 }

}

5 Timer Module Migration
The 8-bit MC9S08AC devices have three TPM (timer and PWM module). The 32-bit MCF51AC devices
have two FTM (FlexTimer module) and also one TPM (timer and PWM module).
Migrating Between MC9S08AC and MCF51AC Flexis Devices, Rev. 0

Freescale Semiconductor 11

Timer Module Migration
5.1 Timer Modules Features
The FTM module has the same features as the TPM module and others such as dead time insertion and
fault detection. The Table 3 shows a comparison of the two different timer modules’ features.

5.2 Timer Modules in Each AC Version
Some of the 9S08AC MCU devices have timer modules with more or fewer channels than others to reduce
price and best fit in each market application. Table 4 shows how many and what timer modules are present
in each device, separated by pin count.

Table 3. Timer Modules Features

FTM Features Include TPM Features Include

 • Backwards compatible with TPM

 • FTM source clock is selectable
 — Source clock can be the system clock, the fixed system clock, or a clock

from an external pin
 — External clock pin may be shared with any FTM channel pin or a

separated input pin
 • Prescaler divide-by 1, 2, 4, 8, 16, 32, 64, or 128

 — External clock source is synchronized to the system clock by FTM

 • TPM source clock is selectable
 — Source clock can be the system clock,

the fixed system clock or a clock from an
external pin

 — External clock pin may be shared with
any TPM channel pin or a separated
input pin

 • Prescaler divide-by 1, 2, 4, 8, 16, 32, 64, or
128

 • FTM has a 16-bit counter
 — It can be a free-running counter or a counter with initial and final value
 — The counting can be up or up-down

 • TPM has a 16-bit counter
 — It can be a free-running counter or a

counter modulo final value
 — The counting can be up or up-down

 • The generation of one interrupt per channel
 • The generation of one interrupt in the end of the counting

 • The generation of one interrupt per channel
 • The generation of one interrupt in the end of

the counting

 • Each channel can be configured for input capture, output compare, or
edge-aligned PWM mode

 • In input capture mode
 — the capture can occur on rising edges, falling edges, or both edges
 — an input filter can be selected for some channels

 • In output compare mode the output signal can be set, cleared or toggled on
match

 • All channels can be configured for center-aligned PWM mode
 • Each pair of channels can be combined to generate a PWM signal (with

independent control of both edges of PWM signal)
 • The FTM channels can operate as pairs with equal outputs, pairs with

complementary outputs, or independent channels (with independent
outputs)

 • The deadtime insertion is available for each complementary pair
 • Generation of triggers to ADC (hardware trigger)
 • Software control of PWM outputs
 • A fault input for global fault control
 • The polarity of each channel is configurable
 • The load of the FTM registers that have write buffers can be synchronized
 • Write protection for critical registers

 • Each channel can be configured for input
capture, output compare, or edge-aligned
PWM mode

 • In input capture mode
 — the capture can occur on rising edges,

falling edges, or both edges
 • In output compare mode the output signal

can be set, cleared, or toggled on match
 • All channels can be configured for

center-aligned PWM mode
 • Each TPM may be configured for buffered,

center-aligned pulse-width modulation
(CPWM) on all channels
Migrating Between MC9S08AC and MCF51AC Flexis Devices, Rev. 0

Freescale Semiconductor12

Timer Module Migration
5.3 Timer Modules — Migrating within 9S08AC Devices
The FTM module is backwards compatible with TPM. This means that FTM has all the TPM features.

For full compatibility between both timer modules we should consider a project using only TPM features,
made for any of the 9S08AC or MCF51AC devices (even if using the FTM).

All the TPM registers are compatible with the FTM registers, but as the timer modules are different, the
nomenclature changes. For example if we consider the TPM Status and Control Register (TPMxSC), there
is a compatible FTM register named FTM Status and Control Register (FTMxSC) with the same control
bits and options from the TPM register.

When migrating between an 8-bit 9S08AC device to a 32-bit one, the nomenclature changes should be
considered and reviewed so that the correspondent timer module works properly.

To ease this migration, all the registers in Table 5 should be considered. This table shows the correspondent
register in 8-bit and 32-bit Flexis AC devices.

To ease the migration path, the header files described in the next chapter were created.

Table 4. Timer Modules on AC Devices

Device 80 64 48 44 32

MC9S08AC8/16 — — TPM1 – 4 ch
TPM2 – 2 ch
TPM3 – 2 ch

TPM1 – 4 ch
TPM2 – 2 ch
TPM3 – 2 ch

TPM1 – 2 ch
TPM2 – 2 ch
TPM3 – 2 ch

MC9S08AC32/48/60 — TPM1 – 6 ch
TPM2 – 2 ch
TPM3 – 2 ch

TPM1 – 4 ch
TPM2 – 2 ch
TPM3 – 2 ch

TPM1 – 4 ch
TPM2 – 2 ch
TPM3 – 2 ch

TPM1 – 2 ch
TPM2 – 2 ch
TPM3 – 2 ch

MC9S08AC96/128 TPM1 – 6 ch
TPM2 – 6 ch
TPM3 – 2 ch

TPM1 – 6 ch
TPM2 – 2 ch
TPM3 – 2 ch

— TPM1 – 4 ch
TPM2 – 2 ch
TPM3 – 2 ch

—

MCF51AC128/256 FTM1 – 6 ch
FTM2 – 6 ch
TPM3 – 2 ch

FTM1 – 6 ch
FTM2 – 2 ch
TPM3 – 2 ch

— — —

Table 5. Timer Modules’ Registers

TPM FTM Definition

TPMxSC FTMxSC Status and Control

TPMxCNTH FTMxCNTH Counter Register High

TPMxCNTL FTMxCNTL Counter Register Low

TPMxMODH FTMxMODH Modulo Register High

TPMxMODL FTMxMODL Modulo Register Low

TPMxC0SC FTMxC0SC Channel 0 Status and Control

TPMxC0VH FTMxC0VH Channel 0 Value High

TPMxC0VL FTMxC0VL Channel 0 Value Low
Migrating Between MC9S08AC and MCF51AC Flexis Devices, Rev. 0

Freescale Semiconductor 13

Conclusion
NOTE
The Device Initialization tool in CodeWarrior is also a powerful tool to help
in the migration. With this tool you can visually configure both modules,
and the necessary code will be automatically generated.

5.4 Header Files
The header files created with this document are useful when migrating your application between 8-bit and
32-bit Flexis AC devices, especially when the timer module is used.

There are two header files. The TimerH_S08toV1.h is to be used when migrating from an MC9S08AC
device to an MCF51AC. The TimerH_V1toS08.h file is to be used when migrating from an MCF51AC to
an MC9S08AC.

The header files are composed of #defines where the FTM registers are mapped using the nomenclature
from the TPM registers (and vice-versa for the other header file), as shown in the example for the
TimerH_S08toV1.h header file:
#define TPM1SC FTM1SC

The header file that contains this example is used when migrating from the MC9S08AC to the MCF51AC.
In this case, the old TPM registers that were defined to work with the TPM module on the MC9S08AC
device will be automatically understood by the compiler as the new FTM registers for the MCF51AC, and
the project should migrate with no further problems.

Both header files contain all the compatible timer registers, and also all the bit definitions inside these
registers. You can find the full header files in the file AN3732.zip available at Freescale website
www.freescale.com .

To use these header files in your project, you must include them in the .c file you use timer registers, not
only in initialization routines but also in all use of timer registers. To successfully include the files, you
should place them in your project folder and then add a include as follows in the beginning of your .c files:
#include "TimerH_S08toV1.h"

6 Conclusion
The 8-bit to 32-bit Freescale Controller Continuum delivers unique capabilities to system designers, in
terms of power optimization, size, performance, peripheral usage, and development tools. By following
the porting tips such as being aware of clock and timer module differences and proper use of the new
CodeWarrior features, a single application that compiles in 8- and 32-bit architectures can be developed,
with working peripherals and improvements to some of the project features. The Flexis series is the 8- to
32-bit connection point in the Freescale Controller Continuum where S08 and ColdFire V1
microcontrollers share common sets of peripherals and development tools to deliver the ultimate in
migration flexibility. In addition, with the ability to seamlessly transition upward, the Freescale Controller
Continuum provides companies a long term planning capability. It is possible to move quickly from an
8-bit design to a 32-bit design — perfect for developing a portfolio of products that span the performance
spectrum.
Migrating Between MC9S08AC and MCF51AC Flexis Devices, Rev. 0

Freescale Semiconductor14

Conclusion
Appendix A MCU Change Wizard
The MCU change wizard in CodeWarrior for microcontrollers allows you to change cores with very few
clicks.

A project can change from an S08 to a V1 core in four simple steps.
1. Choose the option Change MCU/Connections.
2. Select the correct ColdFire V1 derivative to migrate the application.
3. Select the connection mode.
4. Click on the finish button.

Figure below shows how to change from an S08 core to a ColdFire V1 core.

Figure 3. MCU Change Wizard

The group of libraries is different in the 8- and 32-bit cores. The integrated tool provides all the files used
to build a project in both Flexis AC devices.
Migrating Between MC9S08AC and MCF51AC Flexis Devices, Rev. 0

Freescale Semiconductor 15

Freescale™ and the Freescale logo are trademarks of
Freescale Semiconductor, Inc. All other product or service names
are the property of their respective owners.
© Freescale Semiconductor, Inc. 2008. All rights reserved.

Document Number: AN3732
Rev. 0
06/2008

How to Reach Us:

Home Page:
www.freescale.com

Web Support:
http://www.freescale.com/support

USA/Europe or Locations Not Listed:
Freescale Semiconductor, Inc.
Technical Information Center, EL516
2100 East Elliot Road
Tempe, Arizona 85284
1-800-521-6274 or +1-480-768-2130
www.freescale.com/support

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
www.freescale.com/support

Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064
Japan
0120 191014 or +81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:
Freescale Semiconductor China Ltd.
Exchange Building 23F
No. 118 Jianguo Road
Chaoyang District
Beijing 100022
China
+86 10 5879 8000
support.asia@freescale.com

For Literature Requests Only:
Freescale Semiconductor Literature Distribution Center
P.O. Box 5405
Denver, Colorado 80217
1-800-441-2447 or +1-303-675-2140
Fax: +1-303-675-2150
LDCForFreescaleSemiconductor@hibbertgroup.com

Information in this document is provided solely to enable system and
software implementers to use Freescale Semiconductor products. There are
no express or implied copyright licenses granted hereunder to design or
fabricate any integrated circuits or integrated circuits based on the
information in this document.

Freescale Semiconductor reserves the right to make changes without further
notice to any products herein. Freescale Semiconductor makes no warranty,
representation or guarantee regarding the suitability of its products for any
particular purpose, nor does Freescale Semiconductor assume any liability
arising out of the application or use of any product or circuit, and specifically
disclaims any and all liability, including without limitation consequential or
incidental damages. “Typical” parameters that may be provided in Freescale
Semiconductor data sheets and/or specifications can and do vary in different
applications and actual performance may vary over time. All operating
parameters, including “Typicals”, must be validated for each customer
application by customer’s technical experts. Freescale Semiconductor does
not convey any license under its patent rights nor the rights of others.
Freescale Semiconductor products are not designed, intended, or authorized
for use as components in systems intended for surgical implant into the body,
or other applications intended to support or sustain life, or for any other
application in which the failure of the Freescale Semiconductor product could
create a situation where personal injury or death may occur. Should Buyer
purchase or use Freescale Semiconductor products for any such unintended
or unauthorized application, Buyer shall indemnify and hold Freescale
Semiconductor and its officers, employees, subsidiaries, affiliates, and
distributors harmless against all claims, costs, damages, and expenses, and
reasonable attorney fees arising out of, directly or indirectly, any claim of
personal injury or death associated with such unintended or unauthorized
use, even if such claim alleges that Freescale Semiconductor was negligent
regarding the design or manufacture of the part.

	1 Migrating Between 8-Bit and 32-Bit
	2 AC Hardware Comparison
	3 Common Porting Issues
	3.1 Porting Tip 1: Remove the Assembly Code
	3.2 Porting Tip 2: Assign Interrupt Vectors Using Interrupt Declarations in CodeWarrior Header Files
	3.3 Porting Tip 3: Reference Memory Using Register_Bitname Peripheral Declarations in CodeWarrior Header Files
	3.4 Porting Tip 4: Avoid Software Delays and Maintain Timing through Peripherals
	3.5 Porting Support

	4 Clock Module Migration
	4.1 Clock Module Differences
	4.2 Clock Code Examples
	4.2.1 Internal Clock Configuration
	4.2.2 External Clock Configuration

	5 Timer Module Migration
	5.1 Timer Modules Features
	5.2 Timer Modules in Each AC Version
	5.3 Timer Modules - Migrating within 9S08AC Devices
	5.4 Header Files

	6 Conclusion

