
Freescale Semiconductor
Application Note

© Freescale Semiconductor, Inc., 2008. All rights reserved.

The DSP563xxEVM hardware development tool is an
evaluation module that supports all of the general purpose
DSP563xx devices available in the 196-pin Molded Array
Process-Ball Grid Array (MAP-BGA) package. The
Freescale Symphony™ Studio Development Software tool
supports the Symphony audio DSP family, as well as all
DSP56300-based DSPs supported by the DSP563xxEVM.

This application note discusses how to use the Symphony
Studio tool to edit and run code on the DSP563xxEVM. This
application note also presents code to program the Flash
memory of the DSP563xxEVM with user code so that the
EVM can be used in stand-alone mode.

Document Number: AN3754
Rev. 0, 07/2007

Contents
1. DSP563xxEVM Overview . 2
2. Symphony Studio Overview . 3
3. Load and Edit Code: C/C++ Perspective 3

3.1. Create the Project . 4
3.2. Add the Code . 4
3.3. Edit the Code . 5
3.4. Build the Code . 6

4. Debug and Run Code: Debug Perspective 7
4.1. External Tool Configuration . 7
4.2. Debug . 8

5. Run Code from Flash Memory 9
6. Flash Memory Programming Code Description 9

6.1. Main Code . 12
6.2. Bootloader Code . 12
6.3. Flash Memory Write Routine 13

Using Symphony™ Studio with the
DSP563xxEVM

Using Symphony™ Studio with the DSP563xxEVM, Rev. 0

2 Freescale Semiconductor

DSP563xxEVM Overview

1 DSP563xxEVM Overview
The DSP563xxEVM was designed to support all of the general purpose DSP563xx devices that are
currently available in the 196-pin MAP-BGA package: DSP56303, DSP56309, DSP56311 and
DSP56321. Included with the DSP563xxEVM is a sample case that contains all of these devices so the
user can choose which device to evaluate. The DSP563xxEVM contains a socket in which any of these
devices can be placed. Some of these devices have different core voltage requirements. Table 1-1 shows
the jumper settings required to set the correct core voltage for each device.

The DSP563xxEVME User’s Manual (DSP563xxEVMEUM/D) describes the DSP563xxEVM in more
detail. This application note assumes that the DSP563xxEVM has been setup as described in Sections 1.2.1
- 1.2.3 of the User’s Manual. It is important for the timing of the Flash memory programming code to
verify that the DSP is driven with the 19.6608 MHz clock by setting the jumper at J13 (CLK_SEL) to pins
1 to 2. This application note does not use the Suite56 Software described in Section 1.2.4, so it is not
necessary to complete the steps in this section.

The DSP563xxEVM also includes:

• 64K × 24-bit fast static RAM (FSRAM) for expansion memory

• 256K × bit-bit Flash memory for stand-alone operation

• 16-bit CD-quality audio codec

• headers to facilitate direct access for off board devices to the on-chip peripheral ports

• 14-pin JTAG/OnCE connector that allows direct connection of an external command converter

• buttons for asserting RESET and the IRQ pins of the DSP

• switches for setting the DSP boot mode.

This application note presents assembly code to program the Flash memory with user code to allow
stand-alone operations after setting the correct boot mode switches. This document also describes how to
write code to Flash memory that programs the DSP ESSI ports to communicate to the audio codec and
allow music to be passed from the audio input jack (J12) to the DSP and back to the audio output jack (J10)
or the headphone jack (J15). Please see Appendix A of the DSP563xxEVME User’s Manual for a full
description of the audio codec programming code.

Table 1-1. DSP563xxEVM Voltage Jumper Settings

Device
Core

Voltage
J18 (Voltage Select) Setting

J16 (Low Voltage
Select) Setting

DSP56303 3.3 V 1 to 2 (3.3 V) —

DSP56309 3.3 V 1 to 2 (3.3 V) —

DSP56311 1.8 V 2 to 3 (Low voltage determined by J16) 3 to 4

DSP56321 1.6 V 2 to 3 (Low voltage determined by J16) 5 to 6

Using Symphony™ Studio with the DSP563xxEVM, Rev. 0

Freescale Semiconductor 3

Symphony Studio Overview

2 Symphony Studio Overview
This application note describes how to use the new Symphony Studio Development Software with the
DSP563xxEVM. Symphony Studio uses the extensible development platform Eclipse, which is an open
source industry standard, to provide a new way to develop code through an Integrated Development
Environment (IDE). The IDE allows code creation and editing as well as project management, debugging
and code compilation all in one software suite. Symphony Studio is fully backward compatible with
existing application code, as the Suite56 assembler and linker tools are reused in the platform. Since the
toolset reuses many components from the Suite56 platform, the learning curve is minimized. The IDE
allows quicker code generation and easy program management. In addition, unlike the Suite56 tool that
only allows access to the EVM through a parallel port, the Symphony Studio allows communication to the
EVM through a USB port.

Symphony Studio can be downloaded from the Freescale web site at
http://www.freescale.com/symphonystudio. The Symphony Studio User Guide (DSPSTUDIOUG)
describes the Symphony Studio in detail. This application note assumes that the Symphony Studio has
been installed as described in Section 2 of the Symphony Studio User’s Guide.

This application note discussed two options for the hardware command converter:

• Axiom parallel port DSP JTAG Pod (which is included with the DSP563xxEVM) for which you
must install the parallel port driver as described in Section 2.3.2 of the Symphony Studio User
Guide

• Xverve USB Signalyzer Tool (with the DSP563xx adapter) for which you must install the drivers
that can be downloaded from the Signalyzer web site at http://www.signalyzer.com/. Pricing
information and a detailed description of the Signalyzer tool can also be found at the Signalyzer
web site.

3 Load and Edit Code: C/C++ Perspective
For details, please see the Symphony Studio documentation that contains information on how to create,
build, debug and run assembly projects. There are usually multiple methods to complete any task in the
Symphony Studio, for example using a pull down menu, using a right mouse click shortcut, using a button
in the tool bar, or using one of the function keys. This document attempts to point out as many of these
techniques as possible.

Creating and editing code (including the Flash memory programming assembly code) is done in the
C/C++ perspective of Symphony Studio. Different perspectives are chosen by clicking on the
corresponding text in the tab in the top right hand corner of the Symphony Studio (C/C++ or Debug)
application window. If you do not see the perspective you need in the top right hand corner, you can use
the Window > Open Perspective > Other... pull down menu to open either of these perspectives.

Using Symphony™ Studio with the DSP563xxEVM, Rev. 0

4 Freescale Semiconductor

Load and Edit Code: C/C++ Perspective

3.1 Create the Project
Symphony Studio uses projects to organize different groups of code. To create a new project for the Flash
memory programming code, navigate to the C/C++ perspective then choose File > New > Managed Make
ASM Project. You can also right click in the Navigator View and choose New > Managed Make ASM
Project. The Navigator View is usually on the left hand side of the C++ Perspective. If not, you can open
the Navigator View using the Window > Show View > Other... pull down menu. You can also create a
new project by clicking on the New tool bar button (which looks like a little window with a plus in the
upper corner).

Type a project name in the Project name: field and click on the Next> button. Then click on the Finish
button because the default settings are appropriate for this project. You can now see your empty project in
the Navigator View.

3.2 Add the Code
Next, add the Flash memory programming code to your new project. If you already have the Flash memory
programming code in a file, you can use the import function to add the file to the project. To use the import
function, right click in the Navigator View and choose Import or choose File > Import from the pull down
menu. Choose File System under General and click Next>. Make sure the Into folder: field contains your
project name. Click the Browse button next to the From directory: field. Navigate to the directory that
contains the Flash memory programming code and click the OK button. Click in the box next to the Flash
memory programming code and click the Finish button. You can also add the Flash memory programming
code to the project by dragging it from a file explorer window and dropping it into the project folder in
Symphony Studio.

If you do not have the Flash memory programming code in a file, you can use the new file option. To create
a new file, right click in the Navigator View and choose New > File or choose File > New > File from the
pull down menu. Click on your project name, and type a name for the Flash memory programming code
file (flash.asm works nicely) in the File name field:. Then click the Finish button. Now you can copy the
text of the Flash memory programming code from Example 5 of this document and paste it into the editing
window of your new file.

The Flash memory programming code requires that the user code you want to write to the Flash memory
is also loaded into the DSP memory. For this document, we write the audio codec programming code that
is included with the DSP563xxEVM (on the DSP563xxEVME Technical Documentation CD) to the Flash
memory. Therefore, the codec code needs to be added to the project so that it can be loaded to the DSP
memory before running the Flash memory programming code. Locate where the codec files were saved
from the DSP563xxEVM software installation. The codec files should be in a directory called
Tests\Codec_Source. To add the codec files to the project, use the Import function (as described above)
or drag the files from a file explorer window to the Symphony Studio project folder. You need to add the
following files from the Codec_Source directory:

• direct.asm

• ada_equ.asm

• ada_init.asm

• ioequ.asm

Using Symphony™ Studio with the DSP563xxEVM, Rev. 0

Freescale Semiconductor 5

Load and Edit Code: C/C++ Perspective

3.3 Edit the Code
Once the necessary code files are added to the project, you must edit these code files. You must tell the
Flash memory programming code which DSP device you will be using and you must change the codec
code to allow it to build in the Symphony Studio environment.

3.3.1 Flash Memory Programming Code Device Define

The Flash memory programming code in Example 5 uses a define assembly directive, shown in
Example 1, to determine on which device the code is going to be run.

Example 1. Flash Memory Programming Code Device Define Directive

DEFINE DEVICE '56311'

The code can be configured for a DSP56303, DSP56309, DSP56311, or DSP56321 device by changing
the text in quotes of the define directive to 56303, 56309, 56311 or 56321 respectively. To use the Flash
memory programming code for a device other than the DSP56311, you must change the text in the quotes
to represent the device you are using. The information from the define directive is used in the Flash
memory programming code with conditional assembly directives to determine the location of the Flash
memory programming code in program memory and to program the PLL registers.

The Flash memory programming code is placed at the top of the internal program memory so that the user
code can be placed in the low program memory (and use the default interrupt vector locations, if needed).
The different DSP devices have different amounts of program memory. Therefore, the Flash memory
programming code uses conditional assembly directives to determine where to place the code depending
on the device selected in the define directive.

The DSP56321 has a different PLL circuit than the other DSP563xx devices. Therefore, the Flash memory
programming code uses conditional assembly directives to choose different PLL register programming
instructions when the code is to be run on a DSP56321 device.

Using Symphony™ Studio with the DSP563xxEVM, Rev. 0

6 Freescale Semiconductor

Load and Edit Code: C/C++ Perspective

3.3.2 Codec Code Edits
The codec code include file directives need to be modified to be used with Symphony Studio. First, right
click on each of the three include files (ada_equ.asm, ada_init.asm and ioequ.asm) in the Navigator View
and choose Rename. Change the extension of each of these three files from .asm to .equ. Your project now
contains two .asm files (flash and direct) and three .equ files (ada_equ, ada_init and ioequ).

Next, double click on the direct.asm file to open it in the editing window. At the top of the direct.asm file,
change the code from Example 2 to be the same as the code from Example 3.

Example 2. Original direct.asm Include Directives

include 'ioequ.asm'
include 'intequ.asm'
include 'ada_equ.asm'
; NOTE -- audio passthrough method below uses polling, not interrupts
include 'vectors.asm'

Example 3. Modified direct.asm Include Directives

include '../ioequ.equ'
include '../ada_equ.equ'

The file extensions for the ioequ and ada_equ files have been updated. The relative reference to the parent
directory is required because the Managed Make ASM scripts build the application in the Debug directory
(which is created if it does not already exist) within the project directory. The source files are located in
the project directory. In addition, the codec code does not use interrupts; therefore, the intequ.asm and
vectors.asm references can be removed.

Finally, scroll down to the bottom of the direct.asm file and make the same changes for the include
statement for the ada_init.asm file. The final statement for the ada_init include file should look like
Example 4.

Example 4. Modified direct.asm Include Code for ada_init File

 include '../ada_init.equ'

Make sure you save any files that you modify. You can save files using the File > Save pull down menu
or by clicking on the Save button in the tool bar (which looks like a little diskette).

3.4 Build the Code
Now, you can build the project. Symphony Studio has two build choices, which depend on how the Build
Automatically option is set under the Project pull down menu. If this option is selected (check next to the
option), Symphony Studio builds the project every time a file within the project is modified and saved. If
this option is not selected (no check next to the option), Symphony Studio builds the project only when
instructed. If Build Automatically is not selected, you can direct Symphony Studio to build your project
by using the Project > Build All pull down menu, by clicking on the Build All button in the tool bar
(which looks like a little piece of paper with 1s and 0s on it) or, by right clicking on the project name in
the Navigator View and choosing Build Project. If the code was modified correctly, a few warnings may
appear in the Console window at the bottom of the Symphony Studio, but no errors.

Using Symphony™ Studio with the DSP563xxEVM, Rev. 0

Freescale Semiconductor 7

Debug and Run Code: Debug Perspective

4 Debug and Run Code: Debug Perspective
After the code is built, debug and run the code by navigating to the Debug Perspective. To switch to the
Debug Perspective, click on the Debug tab in the top right hand corner of the Symphony Studio or use the
Window > Open Perspective pull down menu.

But first, if you are using a parallel port command converter (Axiom DSP JTAG Pod), you must modify
the communication timeout values to allow the debugger enough time to download both the Flash memory
programming code and the codec code. To increase the timeout interval, choose the Window >
Preferences pull down menu and then open the C/C++ > Debug > GDB MI preferences. Change the
Debugger timeout to 30000 ms and the Launch timeout to 90000 ms. This is just an example of timeout
values. You can adjust these timeout numbers to appropriate values for your system.

4.1 External Tool Configuration
The first step in debugging is to setup the External Tool. The External Tool launches the Open On-Chip
Debugger (OpenOCD), which is a GDB-JTAG server that enables the host computer to communicate with
the target hardware. The External Tool configuration is managed via the Run > External Tools > External
Tools... pull down menu. Highlight the OpenOCD GDB Server configuration on the left, then click the
New button to create a configuration. You can also double click on the OpenOCD GDB Server
configuration to create the configuration. In the OpenOCD Configuration File group, choose 56300 for
the Device. Then choose the Dongle based in the hardware command converter you are using:

• Signalyzer for the Signalyzer USB tool

• Wiggler for the Axiom parallel port DSP JTAG Pod.

If you are going to be using more than one OpenOCD server configuration, you may want to change the
name of the configuration in the Name: field to describe each configuration more clearly. Then you can
click on the Run button to launch the connection to either OpenOCD server (make sure the EVM is
powered on and connected to the PC correctly).

You can also use the External Tools button in the tool bar (which looks like an arrow in a green circle with
a little red toolbox). If you click on this button, Symphony Studio automatically launches the last used
External Tool configuration, or you can click on the arrow to the right of the button to access the External
Tools options (instead of using the pull down menu).

When you launch an External Tool Configuration, the new link is listed in the Debug View window as well
as any notes or errors in the Console window. After you run an External Tool configuration the first time,
it becomes available as a choice in the Run > External Tools pull down menu (and the External Tools tool
bar button menu), therefore, you do not need to create this configuration again.

To stop the External Tool process use the Run > Terminate pull down menu or click on the Terminate
button in the Debug View window tool bar (which looks like a red square) when the External Tool process
is highlighted in the Debug View window. To remove the External Tool process from the Debug View
window, you can click on the Remove All Terminated Launches button in the Debug View window tool
bar (which looks like two grey x’s). You can also terminate and remove an External Tool processes by right
clicking on it in the Debug View window and choosing Terminate, Terminate and Remove, or even
Terminate and Relaunch. You must terminate the process before it can be removed. You should not
terminate the External Tool process if you still have a Debug process running.

Using Symphony™ Studio with the DSP563xxEVM, Rev. 0

8 Freescale Semiconductor

Debug and Run Code: Debug Perspective

4.2 Debug
After the connection to the EVM has been established, the code can be downloaded to the DSP. This is
accomplished with the Debug configuration. To setup a new Debug configuration, use the Run > Debug...
pull down menu. Highlight Freescale 563xx, then click the New button to create a debug configuration or
you can double click on the Freescale 563xx to create the configuration. The Name: and Project: fields
should already be filled out (you can change the name if you desire). Click on the Search Project... button.
The object file (*.cld) for this project should already be chosen, so click the OK button. Then click the
Debug button. Be patient: using the parallel command converter it may take as long as 30 seconds to
download both programs to the DSP.

You can also use the Debug button in the tool bar (which looks like a little green bug). If you click on this
button, Symphony Studio automatically launches the last used Debug configuration, or you can click on
the arrow to the right of the button to access the Debug options (instead of using the pull down menu).

When you launch the Debug Configuration, the new link is listed in the Debug window as well as any notes
or errors in the Console window. After you run a Debug configuration the first time, it becomes available
as a choice in the Run > Debug History pull down menu (and the Debug tool bar button menu) for you
to use; therefore, you do not need to create this configuration again.

After the code is downloaded to the DSP, your Flash memory programming code appears in a window
view below the Debug View. A green highlight tells where the program counter is located in the code. The
green highlight should appear on the first line of the Flash memory programming code (move #$100,r0).
You can step through the code and watch the green highlight change one line at a time. You can step by
using the Run > Step Into or Step Over pull down menu, clicking on the Step Into or Step Over Debug
View tool bar buttons (which look like yellow arrows), or using the F5 and F6 function keys.

Now the code is ready to run. There are several ways to run the code:

• use the Run > Resume pull down menu.

• use the Resume Debug View tool bar button which looks like a green triangle.

• right click on the debug process list in the Debug View and choose Resume.
• use the F8 function key.

When using any of these methods, the Flash memory programming code runs and it loads the codec code
to the Flash memory of the EVM. When the code is running, control is given to the DSP; therefore, the
windows of the debugger do not update. The Flash memory programming code was written to stop
automatically when it is finished and return control back to the debugger. Thus, when the Flash memory
programming is complete, the debugger windows update, and you can see that the Flash memory
programming code has stopped at a debug instruction.

To stop the Debug process, use the Run > Terminate pull down menu, or click on the Terminate button
in the Debug View window tool bar (this button looks like a red square) when the Debug process is
highlighted in the Debug View window. To remove the Debug process from the Debug View window, click
on the Remove All Terminated Launches button in the Debug View window tool bar (the button looks
like two grey x’s). You can also terminate and remove a Debug processes by right clicking on it in the
Debug View window and choosing Terminate, Terminate and Remove, or even Terminate and Relaunch.
You must terminate the process before it can be removed.

Using Symphony™ Studio with the DSP563xxEVM, Rev. 0

Freescale Semiconductor 9

Run Code from Flash Memory

5 Run Code from Flash Memory
After the codec code has been programmed to the Flash memory, the code can be run in stand-alone mode,
that is, with no connection to the PC via a hardware command converter. Therefore, you can remove the
command converter connected to J3 of the EVM. You must make sure that the correct boot mode is set on
the boot mode switches at SW4. The DSP checks the pins connected to these switches (MODA-D) after
reset to determine how to boot the DSP. To boot the DSP from the Flash memory, use boot mode 9:
bootstrap from byte-wide memory, by setting the switches on SW4 to be 4 = OFF, 3 = ON, 2 = ON, and
1 = OFF.

The audio codec programming code requires music input to the EVM and a set of headphones for the
output. Connect a music source to the audio input jack at J12 using an audio interface cable with 1/8-inch
stereo plugs and connect a set of headphone to the jack at J15. Then, you simply press the Reset button,
SW1, and you can hear the music in the headphones. Now, you have successfully programmed the
DSP563xxEVM Flash memory and run the DSP in stand-alone mode using the Symphony Studio
development tools.

6 Flash Memory Programming Code Description
Example 5 is an example of code used to program the Flash memory. This code has three sections: the
main code, the bootloader code, and the Flash memory write routine. The following subsections describe
in detail the code sections used in this example.

Example 5. Flash Memory Programming Code

;--
; Flash.asm: routine to make user code bootable from FLASH on the DSP563xxEVM
;
; Execute with: R0 pointing to first word of user code
; R1 containing size of the user code in WORDS
;
; Copyright Freescale 2008
;--

DEFINE DEVICE '56311'
; Put I/O equates here for flash program so codec program and use ioequ.file
; and everything compiles in one big project
M1_PCTL EQU $FFFFFD ; PLL Control Register
M1_PCTL_321 EQU $FFFFD1 ; DSP56321 DPLL Control Register
M1_DSCR_321 EQU $FFFFD0 ; DSP56321 DPLL Static Control Register
M1_AAR1 EQU $FFFFF8 ; Address Attribute Register 1
M1_BCR EQU $FFFFFB ; Bus Control Register
; Register Equates
AAR1V EQU $040711 ; maps FLASH from x:$040000-x:$05ffff
BCRV EQU $0126A1 ; 21 wait states in AAR1 domain

;--

if (DEVICE==56303)
org p:$F00 ; put flash code high in memory for DSP56303
endif
if (DEVICE==56309)
org p:$4F00 ; put flash code high in memory for DSP56309
endif
if (DEVICE==56311)

Using Symphony™ Studio with the DSP563xxEVM, Rev. 0

10 Freescale Semiconductor

Flash Memory Programming Code Description

org p:$7F00 ; put flash code high in memory for DSP56311
endif
if (DEVICE==56321)
org p:$7F00 ; put flash code high in memory for DSP56321
endif

main_flash ; can go in low memory

move #$100,r0 ; first word of user code at p:$100
move #$100,r1 ; user code is 0x100 words long

if (DEVICE==56321)
movep #$000008,x:M1_PCTL_321 ; DSP56321 PLL enabled
movep #$000005,x:M1_DSCR_321 ; DSP56321 PLL = 5x19.6608MHz = ~100MHz
else
movep #$040004,x:M1_PCTL ; PLL =(5/(1*1)) x 19.6608MHz = ~100MHz
endif

movep #AAR1V,x:M1_AAR1 ; maps FLASH from x:$040000-x:$05ffff
movep #BCRV,x:M1_BCR ; 21 wait states in AAR1 domain

move #>42,x0 ; calculate number of flash sectors
clr b r1,a ; for user code

_cmpsec
inc b
sub x0,a
bgt _cmpsec
move b0,p:NUM_SEC ; save number of sectors

;--
; write the bootloader code into the FLASH

move r0,p:CODE_START ; save code start for user code
move r1,p:CODE_SIZE ; save code size for user code
move #BOOT,r0 ; starting location of data to write
move #$040000,r2 ; starting location of flash memory
jsr WR_FLASH ; jump to flash write routine

;--
; write the user code into the FLASH

move #$040080,r2 ; user code begins at flash address $80
move p:CODE_START,r0 ; where to get the user code
move p:NUM_SEC,r3 ; the number of sectors to write
dor r3,_wrsec
bsr <WR_FLASH ; WR_FLASH loads 42 words each time
nop

_wrsec
nop
debug ; program end
nop

;--
; Bootloader code
; The following code moves the user code from the FLASH to P:RAM.
; The users code starts in the 2nd sector of the FLASH at x:$040080
BOOT

dc BOOT_END-BOOT ; storage for size of boot
dc bootgo ; storage for address of boot

bootgo
movep #AAR1V,x:M1_AAR1 ; maps FLASH from p:$040000-$05ffff
movep #BCRV,x:M1_BCR ; 31 wait states in AAR1 domain

Using Symphony™ Studio with the DSP563xxEVM, Rev. 0

Freescale Semiconductor 11

Flash Memory Programming Code Description

load move p:NUM_SEC,r3 ; number of sectors to read
move p:CODE_START,r0 ; starting address of user code
move p:CODE_SIZE,r2 ; R2 contains the length of code in WORDS
move #$040080,r1 ; user code goes into FLASH at $040080

dor r3,_sector_loop ; get all sectors
dor #42,_word_loop ; 42 words per FLASH sector
dor #3,_byte_loop ; each word requires 3 bytes
move x:(r1)+,a2 ; Load byte from FLASH
asr #8,a,a ; Shift 8 times to move byte into

; correct position.
_byte_loop

movem a1,p:(r0)+ ; Stores 24-bit word into P mem
nop ; dummy NOP to avoid do loop restrict.

_word_loop
move (r1)+
move (r1)+

_sector_loop
move p:CODE_START,r1
jmp (r1) ; Jump to the users code

CODE_SIZE ds 1 ; user code size
CODE_START ds 1 ; starting location of user code
NUM_SEC ds 1 ; number of sectors to save

BOOT_END equ *
;--
; WR_FLASH
; This routine writes one 128-byte FLASH sector
;
; enter with: r2 pointing to starting FLASH Byte Address
; r0 pointing to first DSP word to save
;
; corrupts: r0 - points to next P:memory location to save
; r2 - points to next FLASH byte address to write a,b,x0
WR_FLASH ; disable_protect - Software data Protection routine
disable_protect

move #>$8D,x0 ; $8D at DSP ==> $AA at FLASH
move x0,x:$45555 ; Atmel address $5555
move #>$72,x0 ; $7d at DSP ==> $55 at FLASH
move x0,x:$42AAA ; Atmel address $2AAA
move #>$05,x0 ; $05 at DSP ==> $A0 at FLASH
move x0,x:$45555 ; Atmel address $5555

;--- writes are now enabled
dor #42,move_code ; move 128 bytes
move p:(r0)+,a ; get byte from SRAM
nop
nop
move a1,x:(r2)+ ; move low byte to FLASH
lsr #8,a
move a1,x:(r2)+ ; move mid byte to FLASH
lsr #8,a
move a1,x:(r2)+ ; move high byte to FLASH
nop

move_code
move a1,x:(r2)+ ; dummy write
move a1,x:(r2)+ ; dummy write

Using Symphony™ Studio with the DSP563xxEVM, Rev. 0

12 Freescale Semiconductor

Flash Memory Programming Code Description

bsr <delay_20m ; wait 20 ms to finish program cycle
rts

;--
; delay_20m --
; 21.0 ms of delay guarantees that the write cycle has finished.
; Icycles for a 98.304 MHz clock. (10.17 ns/Instruction_cycle)
; The Write Cycle Time is 20ms, so we just wait long enough here for the
; write cycle to have started AND finished...
delay_20m

dor #280,_l1 ; 280 x 7374 x 27.13ns = 21.0 ms
move #7374,x0
rep x0
nop

_l1 rts
;--

end main_flash

6.1 Main Code
The main code starts with its own I/O register equates for the PLL and program bus registers (i.e it does
not use an ioequ include file) so that the codec code file can use the I/O register equate include file without
conflicts in the project. The main code also includes equates for the AAR1 and BCR control register
values. The Flash memory programming code is located at the top of the internal program memory so that
the user code can be placed in the low program memory (and use the default interrupt vector locations if
needed). See Section 3.3.1, “Flash Memory Programming Code Device Define for more detail of these
instructions.

The first two move instructions after the main_flash label define the location of the first word of the user
code and the number of 24-bit words in the user code. The codec programming code starts at location
p:0x100 and is a little less than 0x100 words long. These values are used in the bootloader code and must
be modified if the user code is changed.

The next instructions in the main code program the PLL control register(s) using conditional assembly
directives. See Section 3.3.1, “Flash Memory Programming Code Device Define for more detail of these
instructions. Then the main code programs the external memory interface control registers (AAR1 and
BCR) to enable access to the Flash memory. The main code also calculates number of Flash memory
sectors that are needed to contain the user code.

After the initialization, the main code uses the Flash memory write routine to write the bootloader code to
the first sector of the Flash memory. Then the main code uses the Flash memory write routine to write the
user code to the Flash memory starting at the second sector.

The main code ends at a debug instruction that passes control of the DSP to the debugger so that you know
when the code is complete.

6.2 Bootloader Code
The bootloader code is loaded by the main code to the first sector of the Flash memory. The bootloader
transfers the user code from the Flash memory (starting at the second sector of the Flash memory) to the
DSP internal program memory and then the bootloader code jumps to the beginning of the user code. As

Using Symphony™ Studio with the DSP563xxEVM, Rev. 0

Freescale Semiconductor 13

Flash Memory Programming Code Description

it is currently written, the bootloader code only moves user code from Flash memory to internal program
memory. This code can easily be modified to add data transfers from Flash memory to X or Y data
memory.

For stand-alone operation, the DSP performs the following steps following a reset with boot mode 9 (boot
from byte wide memory):

• jump to 0xFF0000

• run the internal bootstrap code and download the bootloader code

• jump to the bootloader code

• run the bootloader and download the user code

• jump to the user code

• run the user code.

6.3 Flash Memory Write Routine
The Flash memory write routine (WR_FLASH) disables the Flash memory software data protection and
then loads one Flash memory sector with data. The Flash memory write code includes a small delay
routine. The delay routine is called at the end of the Flash memory write routine to guarantee that the write
cycle has finished before any other data is loaded to the Flash memory. The Flash memory write routine
is called by the main code as many times as necessary to write the entire user code to the Flash memory
depending how many sectors are required to accommodate the user code.

Using Symphony™ Studio with the DSP563xxEVM, Rev. 0

14 Freescale Semiconductor

Flash Memory Programming Code Description

Using Symphony™ Studio with the DSP563xxEVM, Rev. 0

Freescale Semiconductor 15

Flash Memory Programming Code Description

Document Number: AN3754
Rev. 0
07/2007

Information in this document is provided solely to enable system and software

implementers to use Freescale Semiconductor products. There are no express or

implied copyright licenses granted hereunder to design or fabricate any integrated

circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to

any products herein. Freescale Semiconductor makes no warranty, representation or

guarantee regarding the suitability of its products for any particular purpose, nor does

Freescale Semiconductor assume any liability arising out of the application or use of

any product or circuit, and specifically disclaims any and all liability, including without

limitation consequential or incidental damages. “Typical” parameters which may be

provided in Freescale Semiconductor data sheets and/or specifications can and do

vary in different applications and actual performance may vary over time. All operating

parameters, including “Typicals” must be validated for each customer application by

customer’s technical experts. Freescale Semiconductor does not convey any license

under its patent rights nor the rights of others. Freescale Semiconductor products are

not designed, intended, or authorized for use as components in systems intended for

surgical implant into the body, or other applications intended to support or sustain life,

or for any other application in which the failure of the Freescale Semiconductor product

could create a situation where personal injury or death may occur. Should Buyer

purchase or use Freescale Semiconductor products for any such unintended or

unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor

and its officers, employees, subsidiaries, affiliates, and distributors harmless against all

claims, costs, damages, and expenses, and reasonable attorney fees arising out of,

directly or indirectly, any claim of personal injury or death associated with such

unintended or unauthorized use, even if such claim alleges that Freescale

Semiconductor was negligent regarding the design or manufacture of the part.

How to Reach Us:

Home Page:
www.freescale.com

Web Support:
http://www.freescale.com/support

USA/Europe or Locations Not Listed:
Freescale Semiconductor, Inc.
Technical Information Center, EL516
2100 East Elliot Road
Tempe, Arizona 85284
+1-800-521-6274 or
+1-480-768-2130
www.freescale.com/support

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
www.freescale.com/support

Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku
Tokyo 153-0064
Japan
0120 191014 or
+81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:
Freescale Semiconductor China Ltd.
Exchange Building 23F
No. 118 Jianguo Road
Chaoyang District
Beijing 100022
China
+86 010 5879 8000
support.asia@freescale.com

For Literature Requests Only:
Freescale Semiconductor
 Literature Distribution Center
P.O. Box 5405
Denver, Colorado 80217
+1-800 441-2447 or
+1-303-675-2140
Fax: +1-303-675-2150
LDCForFreescaleSemiconductor
 @hibbertgroup.com

Freescale™, the Freescale logo, and Symphony are trademarks of Freescale
Semiconductor, Inc. All other product or service names are the property of their
respective owners.

© Freescale Semiconductor, Inc., 2008. All rights reserved.

	Using Symphony™ Studio with the DSP563xxEVM
	1 DSP563xxEVM Overview
	2 Symphony Studio Overview
	3 Load and Edit Code: C/C++ Perspective
	3.1 Create the Project
	3.2 Add the Code
	3.3 Edit the Code
	3.3.1 Flash Memory Programming Code Device Define
	3.3.2 Codec Code Edits

	3.4 Build the Code

	4 Debug and Run Code: Debug Perspective
	4.1 External Tool Configuration
	4.2 Debug

	5 Run Code from Flash Memory
	6 Flash Memory Programming Code Description
	6.1 Main Code
	6.2 Bootloader Code
	6.3 Flash Memory Write Routine

