
Freescale Semiconductor
Application Note

AN3788
4/2010

CONTENTS

1 Reference Documents ..............................................2
2 Overview..................................................................2
3 Overlay Sections ......................................................2
4 Tool Support ............................................................2
5 Object File Interface...............................................15
6 Linker Error Messages ...........................................15

Overlay Support in StarCore Compiler 
This document is intended to present the StarCore Compiler 
support for overlays. It also includes some examples of tool 
configurations.

Note: This document refers to sc100-ld StarCore 
linker. The configuration required for sc3000-
ld StarCore linker is not explained in this 
document.

Note: This document refers to non-MMU based 
overlays.
© 2009—2010 Freescale Semiconductor, Inc. All rights reserved.



Reference Documents
1 Reference Documents
• Assembler Manual, available as a PDF file in CodeWarrior

• SC100 Linker User Guide, available as PDF file in CodeWarrior

• Configuration_mgt.txt, available as release note in CodeWarrior

2 Overview
The StarCore Compiler provides support for both code/data overlay and pure data overlay. Code/data overlay is 
meant to represent a mechanism that adds support for a number of sections to be loaded in memory at different 
addresses, but run from the same address. Pure data overlay differs from code/data overlay, the pure data section 
content is undefined at startup (pure data overlay sections can hold only uninitialized data).

In order to use the overlay support from the compiler one should be familiar with application files and linker 
command files. If assembler support is needed, the sectype directive should also be used.

It is users responsibility to write an overlay manager which copies an overlay section from its load to its run 
address. Such an overlay manager (both in C and assembly) is presented in the Examples chapter.

3 Overlay Sections
An overlay section is similar to a “progbits” section except that it has two starting addresses instead of one:

• Load address

• Run address

The run address is the address at which the section will begin when its code is being executed. References to 
symbols in an overlay section refer to the run address.

The load address is the address at which the section is linked. It is the responsibility of an overlay manager to copy 
the section from its load address to its run address. All references to symbols in an overlay section refer to the run 
address. To refer to a global symbol's load address, prefix the name with "LoadAddr_".

For each overlay section the linker creates a “LoadAddr_<sec_name>” global symbol which may be used by the 
overlay manager to copy the section from its load to its run address.

4 Tool Support

4.1   Tool Command Line Options
SCC accepts the following command line options:

• for the linker command file: -mem <linker_command_file>

• for the application file: -ma <application_file>

The linker accepts –c <linker_command_file>.
Overlay Support in StarCore Compiler

2 Freescale Semiconductor



Tool Support
4.2   CodeWarrior IDE Options
In the CodeWarrior IDE the application file may be specified in Project Settings-> StarCore Compiler-> 
PassThrough-> Use Application Configuration File and the linker command file in Project Settings-> Linker-> 
Enterprise Linker-> Additional by adding -mem <linker_command_file>.

4.3   Application Configuration Files
The application configuration file contains information about the interaction between the application software and 
the hardware. This file indicates to the compiler how to compile specific software units in order to ensure efficient 
sharing of hardware resources in particular memory space. This information can be modified to suit the 
requirements of your application. An application configuration file can be specified using –ma command line 
option.

4.3.1   Syntax
The application configuration file syntax is:

view <View_name>

<View_Body>

end view

use view <view_name>

where:

<View_Body>:

<Section_definitions>

<Section_settings>

<Variable settings>

<Control_option_settings>

<Calling_convention_setting>

<List Of Modules> ; A module name is the file without the extension

<Module>:

module <module_name> [

<Variable settings>

<Control_option_settings>

<Calling_convention_setting>

<List of functions>

]

<Function>:

function <function_name>

<Control_option_settings>

<Calling_convention_setting>

]

Section definitions:

It is a way to bind physical segments (used by the linker) to logical names in order to be able to easily redefine a 
mapping. This information does apply to the whole view.

<Section_definitions>:

section

<Section_list>

end section

<Section>:
Overlay Support in StarCore Compiler

Freescale Semiconductor 3



Tool Support
<Section_type> = [ <Binding_List> ]

<Section_type>:

data

program

bss

rom

init

<Binding>:

<Logical_Name> : <Physical_Name> <Optionnal_Qualifier>

<Qualifier>:

overlay

Example:

....

section

data = [

data1: "My_Data_Seg1",

data2: "My_Data_Seg2" overlay,

data3: "My_Data_Seg3" overlay

]

program = [Pgm1: "My_Pgm_Seg1"]

end section

....

Section settings:

Once the section is defined it is possible to specify a setting in each context. If nothing is specified then the settings 
are inherited from the hierarchy. For example, if a setting is defined in a module, all the functions in this module 
will inherit from this setting unless locally overridden.

<Section_settings>:

<Section_type> = <Logical_Name>

<Section_type>:

data

program

bss

rom

init

<Logical_Name> must be defined in Section_Definitions.

Example:

module "My_Module"

...

data = data2 /* Use data2 as a data space for the whole module */
program = Pgm1  /* Use Pgm1 as a program space for the whole module */
...

function _foo

...

data = data3 /* Use data3 as a data space for function _foo, overrides data = data2 */
...

]

]

Variable settings:
Overlay Support in StarCore Compiler

4 Freescale Semiconductor



Tool Support
It is a way to specify additional information on user variables:

• Alignment:

Force it: the variable is simply forced to the provided alignment value
Inform: Let the compiler know something about a pointer alignment

• Segment information:

Overrides the data segment in scope for a list of variable.
<Variable_settings>:

<Alignment_List>

<Placement_List>

<Alignment>:

align <Var_Name> <Value>

|

align * <Var_Name> <Value>

<Placement>:

place ( <Var_Name_List> ) in <Logical_Name>

Example:

view My_View

section

data = [data1: "My_Data_Seg1", data2: "My_Data_Seg2" overlay, data3: "My_Data_Seg3" 

overlay]

program = [Pgm1: "My_Pgm_Seg1"]

end section

place ( _A, _B, _C) in data2

/*Globals _A, _B and _C will be allocated in segment data2 (e.g My_Data_Seg2)*/
place ( _X, _Y) in data3

/* Globals _X, _Y will be allocated in segment data3 (e.g My_Data_Seg3) */

module "file1" [

data = data2

opt_level = speed

program = Pgm1

place (_AB, _CD) in data1

/* Global or static _AB, _CD will be allocated in segment data1 (e.g 

My_Data_Seg1) */

function _foo [

align _X 2 /* Local _X will be forced to 2 byte boundary */

align *_Y 4 /* Let the compiler know that Y is pointing to a 4 byte aligned 

location */

]

]

end view

Note: The rest of the application configuration file settings are irrelevant to overlay support and will not 
be detailed.
Overlay Support in StarCore Compiler

Freescale Semiconductor 5



Tool Support
4.4   Overlay Manager Support
The StarCore compiler provides two header files which may be used for overlay support — prototype.h and 
overlay.h. The prototype.h header provides access to the Ovl_Load_Address function which adds support for the 
load address of the overlay sections.

The following piece of code provide access to the load address of an overlay section:

extern void *Pgm1;

{

_overlay_manager(Ovl_Load_Address(&Pgm1));

}

The overlay.h header defines the ovltab structure.

4.5   Assembler Support
A regular section is defined with the SECTION directive and possibly modified by the SECFLAGS and SECTYPE 
directives. An overlay section is defined by using the OVERLAY operand of the SECTYPE directive as shown in 
the below example:

section .ovl_foo local

secflags nowrite,alloc,execinstr

sectype overlay

An overlay section has two starting addresses — a load address and a run address:

• The run address is the address at which the section begins when its code is executed.

• The load address is the address at which the section is linked.

All references to symbols in an overlay section refer to the run address. To refer to a global symbol’s load address, 
prefix the name with LoadAddr_, as shown in the below example. Local symbols cannot be referenced this way.

section .text local

global _main

_main:

push r0

move.l #LoadAddr__foo,r0

jsr __overlay_manager

. . .

pop r0

jsr _foo

rts

section .ovl_text local

secflags alloc,execinstr,nowrite

sectype overlay

global _foo

_foo:

. . .

rts

This code first loads the overlay section ".ovl_text" to its run address by calling the overlay manager. The overlay 
manager needs to know the load address of the section since that is unique (many overlays could run at the same 
address). After the overlay manager finishes, it should be safe to call code in the overlay section.

Note: The linker defines the “LoadAddr_<section_name>” symbols at the start of the overlay sections 
with the section load address as their values.
Overlay Support in StarCore Compiler

6 Freescale Semiconductor



Tool Support
The assembler also provides support for pure data overlays using the sectype union directive. The resulting section 
content is undefined, therefore it can hold only uninitialized data.

4.6   Linker Command Files

4.6.1   .overlay directive
Overlay sections must be linked normally (using .segment directives) and also grouped with the .overlay directive. 
The .segment directive determines where an overlay will be loaded. The new .overlay directive determines which 
overlays will share a run address. The syntax is:

.overlay "SECTION-NAME", "FLAGS", "PATTERN" [, "PATTERN" ...]

The directive specifies that a section with specified FLAGS (r, w, and x — read, write and execute respectively) 
should be created large enough to contain any of the overlay sections listed in the PATTERNs. PATTERNs may 
include wildcards (*, ?, and [ ) for specifying an arbitrary character sequence. Each pattern must be enclosed in 
double quotes (").

Example:

.overlay ".ovlfoo", "rwx", ".ovl_foo1", ".ovl_foo2", ".ovl_foo3"

.overlay ".ovlbar", "rwx", ".ovl_bar1", ".ovl_bar2"

.org 0x200

.segment TEXT, ".text"

.segment OVLFOO, ".ovlfoo"

.segment OVLBAR, ".ovlbar"

.org 0x10000

.segment RODATA, ".rodata"

.segment OVERLAYS, ".ovl_*"

This example implies that only one of .ovl_foo1, .ovl_foo2, or .ovl_foo3 is runnable at any given time; and only 
one of .ovl_bar1 or .ovl_bar2 is runnable at any given time.

An asterisk may be appended to one of the overlay sections specified in the .overlay directive. In that case this 
section will be loaded by the linker not only at its load address but also at its run address.

If a default section is specified in the .overlay directive the resulting section will have progbits type, otherwise it 
becomes bss.

Example:

.overlay “.My_Overlay”, “rx”, “.My_Pgm1”, “.My_Pgm2”*, “.My_Pgm3”

4.6.2   .group directive

.group "grp_name"{,{load_address,} segment_type}, "section_grp_pattern"

[,"section_grp_pattern"...]

The .group directive defines a logical name for a group of sections, and a partial order of the sections that match the 
section_group_pattern, by their runtime addresses. The section_group_pattern is a pattern of sections which 
represents groups of sections, and/or overlay sections.

This directive used in conjunction with the .overlay directive creates a hierarchy of overlay sections.
Overlay Support in StarCore Compiler

Freescale Semiconductor 7



Tool Support
If the segment type field is specified, the linker generates a segment with the type segment_type containing all the 
group sections.

The most usual segment types are:

1. Load segment

2. Dynamic segment

When the segment type is specified a load address may also be mentioned. In this case the linker assures that the 
segment is placed at the desired address else it will be placed according to the first fit basis.

The loader doesn’t load dynamic segments, as it does for load segments, instead another mechanism should be used 
(like a DMA channel). Note that the .group directive is the only way to create dynamic overlay segments. See also 
the .virtual_memory directive.

Example:

.overlay "Overlay_1", "rwx", "Pgm_7", "Pgm_8", "Pgm_9"

.group "Group1", "Pgm_1", "Pgm_2"

.group "Group2", "Pgm_3", "Pgm_4", "Pgm_5"

.group "Group3", "Overlay_1", "Pgm_6"

.overlay ".My_Overlay", "rwx", "Group_1", "Group_2", "Group_3"

.org 0x10000

.segment OVER, ".My_Overlay"

Memory map:

0x10000: [Pgm_7 Pgm_8 Pgm_9] [Pgm_1] [Pgm_3]

. . .  [Pgm_6]  [Pgm_2] [Pgm_4]

[Pgm_5]

The same section may appear in more than one .group directives:

.group "Group1", "Pgm_1", "Pgm_2"

.group "Group2", "Pgm_3", "Pgm_4", "Pgm_2"

.group "Group3", "Pgm_1", "Pgm_4"

.overlay ".My_Overlay", "rwx", "Group1", "Group2", "Group3"

.org 0x10000

.segment OVER, ".My_Overlay"

Memory map:

0x10000: [Pgm_1] [Pgm_3] [Pgm_1]

 Unused  [Pgm_4] [Pgm_4]

 [Pgm_2] [Pgm_2]

4.6.3   .virtual_memory

.virtual_memory lo_addr, hi_addr [, "flags"]

The .virtual_memory directive defines a region in memory that is available for dynamic sections (sections that will 
not be loaded). The lo_addr and hi_addr arguments are 32-bit expressions that set the region’s low and high 
addresses respectively. The optional flags argument is a string containing any combination of r, w, or x (read, write 
and execute respectively).
Overlay Support in StarCore Compiler

8 Freescale Semiconductor



Tool Support
This directive used in conjunction with the .group directive is the only method of creating dynamic segments.

4.6.4   .union
The .union directive determines which pure data overlay sections will share a run address.

.union <section-name>, “flags”, “section-pattern” [, “section-pattern” …]

The linker combines all sections matching the section_pattern argument(s) into a BSS section named section_name 
with the specified flags (r, w, or x). Sections are added in the order specified by the pattern arguments. Patterns may 
include wildcards (*, ?, and [ ) for specifying an arbitrary character sequence. Each pattern must be enclosed in 
double quotes ("). Multiple patterns must be separated by commas. All the sections in section patterns must be 
defined as bss.

The linker assures that the resulting union section is large enough to hold any of the sections listed in the specified 
patterns. 

The resulting section is linked normally using the .segment directive which determines the run address of the union 
section. If the union section is not mentioned in a .segment directive, the section will be linked on a first-fit basis 
after the linker command file is processed.

This directive may be combined with .group directive.

Note that .union and .overlay directives cannot be interchanged because:

• The content of the section resulting from .union directive is undefined, therefore it can hold only 
uninitialized data.

• The result of the .union directive is a section large enough to accommodate all the sections specified in 
section-patterns. Since these sections have SHT_STARCORE_UNION type, only one section is 
emitted in the linked file (the result of the .union directive) and its run address is equal to its load 
address. The SHT_STARCORE_OVERLAY sections used in .overlay directive are emitted in the 
linked file and also the result of the .overlay directive is placed in the .eld file.

• .union does not accept a default configuration.

4.7   Ovltab Section
The linker creates a section .ovltab wherever overlay sections are involved. This section contains two symbols 
__overlay_table and __overlay_count, where:

• __overlay_table is an array of type Elf32_Ovl that contains an entry for each overlay section.

• __overlay_count is an unsigned 32-bit integer that represents the number of entries in __overlay_table.

typedef struct{

Elf32_Addr ovl_run; /*overlay run address*/

Elf32_Addr ovl_load; /*overlay load address*/

Elf32_Word ovl_size; /*size in bytes of the overlay section*/

Elf32_Word ovl_checksum; /*checksum of the overlay data*/

Elf32_Word ovl_flags; /*overlay flags, used by the overlay manager*/

Elf32_Word ovl_other; /*other information*/

Elf32_Half ovl_shndx; /*overlay section index*/

Elf32_Half ovl_parent;  /*parent overlay*/

Elf32_Half ovl_sibling; /*next sibling overlay*/

Elf32_Half ovl_child; /*first child overlay*/

} Elf32_Ovl;
Overlay Support in StarCore Compiler

Freescale Semiconductor 9



Tool Support
where:

• Elf32_Addr is a 32-bit unsigned value

• Elf32_Word is a 32-bit integer value

• Elf32_Half is a 16-bit integer value

The ovl_run and ovl_load fields contain the run and load addresses of the overlay.

The ovl_size field contains the size of the overlay data.

The ovl_checksum field may contain a checksum of the overlay data. The StarCore linker always sets this field to 
zero.

The ovl_flags field is for use by the overlay manager. A typical use would be to indicate whether the overlay 
section is currently loaded.

The ovl_other field is a bitset which may contain the following flags:

• OVL_OTHER_NONE 0 — ordinary text section

• OVL_OTHER_WRITE 1 — ordinary data section

• OVL_OTHER_DEF_LOADED 2 — section loaded by the linker at the its run address

The above-mentioned values are defined in the overlay.h file.

The field should be written only by the linker and may be used by the overlay manager to copy back only the data 
sections and to know which sections are loaded by default by the linker at their run address.

The ovl_shndx field is the section number of the corresponding overlay.

Although the ovl_parent, ovl_sibling, and ovl_child fields can be used to represent a dependency tree, since the 
StarCore linker command file permits an overlay section to appear in as many group directives as necessary, these 
fields are not used (they are always set to zero).

4.8   Debug Support
The compiler generates for each overlay section ovlsec separate debug sections:

.debug_lineovlsec, .debug_infoovlsec, …

The linker appends a signature to each overlay section to let the debugger automatically identify the overlay section 
that is currently loaded into the run space.

The signature consists of two fields:

• uint16_t ovl_shndx — overlay section index

• uint32_t ovl_size — overlay section size including the signature

The linker also generates an overlay table for each debug section.

.debug_line_ovltab, .debug_info_ovltab, …, which contains the following fields for each overlay debug section:

• uint16_t ovl_shndx — index in ovltab of the corresponding overlay section

• uint16_t debug_shndx — index of the debug information (.debug_infoovlsec) corresponding to the 
overlay section
Overlay Support in StarCore Compiler

10 Freescale Semiconductor



Tool Support
• uint32_t ovl_run — offset from the beginning of the debug section (.debug_infoovlsec) where the 
debug information for the overlay section is located

• uint32_t ovl_size — the size of the debug information corresponding to the overlay section

In order to generate consistent debug information a module containing an overlay/union section must not include 
other text sections. This remark applies only to modules containing debug information.

4.9   Examples
A simple C overlay manager in presented below:

void *_overlay_manager(void *load_addr) {

unsigned long int k;

void *res;

for (k=0; k<_overlay_count; k++) {

if (_overlay_table[k].ovl_load == load_addr) {

res = memcpy(_overlay_table[k].ovl_run, _overlay_table[k].ovl_load,

_overlay_table[k].ovl_size);

return res;

}

}

printf("ERROR: Unable to find an overlay section with load address =

%08lX\n",load_addr);

return NULL;

}

If an assembly version is needed a simple implementation is presented below:

;input: r0 - the load address of the overlay section to be loaded

;output: r0 - the run address if an overlay section was found or 0

; otherwise

global __overlay_manager

align 16

__overlay_manager type func OPT_SPEED

[

move.l <__overlay_count,d0 ;no of overlay sections

suba r1,r1 ;software loop counter

]

[

tsteq d0 ;test if there are overlay sections

push r6 ;ABI

push r7 ;ABI

]

[

adda #<8,sp ;prepare for memcpy()

bt <L2 ;no overlay sections

]

move.l #__overlay_table+4,r3 ;pointer to overlay_table - load_addr

move.l #__overlay_table,r2 ;pointer to overlay_table - run_addr

falign

L1

[

move.l (r3),r4 ;the load address of the overlay section

adda #>32,r3,r3

;pointer to the next entry in overlay_table - load_addr
Overlay Support in StarCore Compiler

Freescale Semiconductor 11



Tool Support
]

nop ;AGU stall

cmpeqa r4,r0 ;check if load_addr of the current

entry in overlay_table == input

bf <L3 ;this isn't the input section

;we've found the section

[

move.l (r2),r0 ;take the run_addr of the current section

adda #<8,r2 ;pointer to ovl_size in overlay_table - for memcpy()

]

;prepare call to memcpy()

[

move.l (r2),d1

tfra r4,r1

]

jsrd _memcpy ;perform memcpy()

move.l d1,(sp-4) ;third parameter for memcpy()

jmp L6 ;go to the end

L3

[

adda #<1,r1 ;increment the loop counter

adda #>32,r2,r2

;pointer to the next entry in overlay_table - run_addr

]

move.l r1,d2

;check if we finished all the entries in overlay_table

cmphi d2,d0

bt <L1 ;software loop

L2

;an overlay section with the specified load address wasn't found

suba r0,r0 ;return NULL

L6

;we've found an overlay section with the specified load address

suba #<8,sp ;restore the stack

[

pop r6 ;ABI

pop r7 ;ABI

]

rts

F__overlay_manager_end

endsec

In order to call the overlay manager one should use the following piece of code:

extern void *Pgm1, *Pgm2,*Data1,*Data2; /*name of overlay sections*/

void main()

{

_overlay_manager(Ovl_Load_Address(&Pgm1));

_overlay_manager(Ovl_Load_Address(&Data1));

}

The assembly-written overlay manager may be called using:

extern void *Pgm1, *Pgm2; /*name of overlay sections*/

extern void *_overlay_manager(void *);

void main()

{

Overlay Support in StarCore Compiler

12 Freescale Semiconductor



Tool Support
void *res;

//called from C

res = _overlay_manager(Ovl_Load_Address(&Pgm1));

if (!res)

return;

//called from asm

asm(" move.l #LoadAddr__Pgm2,r0");

asm(" jsr __overlay_manager");

}

A simple application file is presented below:

configuration

view My_View

section

program = [pgm1: "Pgm1" overlay,

pgm2: "Pgm2" overlay,

pgm3: "Pgm3" overlay,

pgm4: "Pgm4" overlay,

pgm5: "Pgm5" overlay,

]

data = [

data1: "Data1" overlay,

data2: "Data2" overlay,

data3: "Data3" overlay,

data4: "Data4" overlay,

data5: "Data5" overlay,

data_non_ovl: “Data_non_ovl”

]

end section

module "f1" [

program = pgm1

data = data1

place (“variables_not_overlaid”) in data_non_ovl

]

module "f2" [

program = pgm2

data = data2

place (“variables_not_overlaid”) in data_non_ovl

]

module "f3" [

program = pgm3

data = data3

place (“variables_not_overlaid”) in data_non_ovl

]

module "f4" [

program = pgm4

data = data4

place (“variables_not_overlaid”) in data_non_ovl

]

module "f5" [

program = pgm5

data = data5

place (“variables_not_overlaid”) in data_non_ovl

]

end view
Overlay Support in StarCore Compiler

Freescale Semiconductor 13



Tool Support
use view My_View

end configuration

Using this application file creates overlay sections for the whole code in f1, f2, f3, f4 and f5.c modules and overlay 
sections for data in the same modules. The variables specified in variables_not_overlaid will be placed in 
sections, an ordinary .data section (not an overlay section).

A simple linker command file which overlays two text sections (Pgm1 and Pgm2) and two data sections (Data1 
and Data2) should contain:

.provide Run_OVER, 0x4000

.memory 0, 0x7ffff, "rwx"

;;overlay definition

.overlay ".My_Program_Overlay", "rwx","Pgm1","Pgm2"

.overlay ".My_Data_Overlay", "rw","Data1","Data2"

;; overlay run address

.org Run_OVER

.segment .ovl_program ,".My_Program_Overlay"

.segment .ovl_data ,".My_Data_Overlay"

If groups are needed one may use this:

.provide Run_OVER, 0x4000

.memory 0, 0x7ffff, "rwx"

.group ".My_Prog1", "Pgm1", "Pgm3"

;Pgm1 and Pgm3 may exist at the same time

.group ".My_Prog2", "Pgm2", "Pgm4"

;Pgm2 and Pgm4 may exist at the same time

.group ".My_Data1", "Data1", "Data3"

;Data1 and Data3 may exist at the same time

.group ".My_Data2", "Data2", "Data4"

;Data2 and Data4 may exist at the same time

;;overlay definition

.overlay ".My_Program_Overlay", "rwx",".My_Prog1",".My_Prog2"

;.My_Prog1 and .My_Prog2 are run at the same address

.overlay ".My_Data_Overlay", "rw",".My_Data1",".My_Data2"

;.My_Data1 and .My_Data2 are run at the same address

;; overlay run address

.org Run_OVER

.segment .ovl_program ,".My_Program_Overlay"

.segment .ovl_data ,".My_Data_Overlay"

The map file will look like:

0x4000 [Pgm1] [Pgm2]

. . . [Pgm3] [Pgm4]

0x4100 [Data1] [Data2]

. . . [Data3] [Data4]

If an overlay section is needed in more than one group:

.provide Load_Pgm2G, 0x2000

.group "Pgm1G", "Data1", "Pgm1", "Data5","Pgm5"

.group "Pgm2G", Load_Pgm2G, Load_Segment, "Data2", "Pgm2"

.group "Pgm3G", "Data3", "Pgm3"

.group "Pgm4G", "Data4", "Pgm4"

.group "G1", "Pgm1G", "Pgm2G"

.group "G2", "Pgm3G", "Pgm4G", "Pgm2G"
Overlay Support in StarCore Compiler

14 Freescale Semiconductor



Object File Interface
.group "G3", "Pgm3G", "Pgm2G"

.overlay ".My_Overlay", "rwx","G1","G2,"G3"

.org 0x1000

.segment .ovl, “.My_Overlay”

The map file (assuming all section are 50 bytes long):

0x1000 [Data1] [Data3] [Data3]

[Pgm1] [Pgm3] [Pgm3]

[Data5] [Data4] [empty]

[Pgm5] [Pgm4] [empty]

[Data2] [Data2] [Data2]

[Pgm2] [Pgm2] [Pgm2]

In the following example the Initial_ovl section will be also loaded by the linker at its run address:

.overlay ".My_Overlay", "rwx","Ovl1","Ovl2","Init_ovl"* ,"Ovl3"

5 Object File Interface
ELF section type SHT_STARCORE_OVERLAY (0x70000000) equivalent to a SHT_PROGBITS section except 
that at link time its run address and load address are different. The sh_addr field contains the run address and the 
sh_info field contains the link address. The sh_link field points to the section number of the file's overlay table. In 
a relocatable object file, all of these fields are zero.

The linker is responsible for creating a segment large enough to hold the largest overlay. This created segment will 
be of type PT_LOAD with p_filesz==0.

ELF section type SHT_STARCORE_OVLTAB (0x70000001) is a loadable, writeable section (SHF_ALLOC | 
SHF_WRITE) which contains information about the overlays in an executable. This structure is used by a run-time 
overlay manager. The name of the section is .ovltab, it contains the _overlay_table array of overlay structures 
followed by _overlay_count, an unsigned 32-bit integer containing the number of array entries. The structure of the 
_overlay_table array is presented in Ovltab Section.

ELF section type SHT_STARCORE_UNION (0x70000002) equivalent to a SHT_NOBITS section, generated only 
by the assembler.

6 Linker Error Messages
The linker may give the following error messages applicable to overlays:

• Could you try to place segment <segment_name> at <address>.

The linker cannot place the segment at the user specified address. Try to use the suggested address.

• Section <section_name> was not mentioned in any .overlay/.union directive.

An overlay/union section must be present in exactly one overlay/union directive.

• Computation of overlay section cannot be done because […].

At least a section specified in the .group directives is to be placed at two run addresses. Possible loops.

• <section_name> has already been overlaid.

The specified section was mentioned in more than one .overlay directive.
Overlay Support in StarCore Compiler

Freescale Semiconductor 15



Linker Error Messages
• Can’t link group section <section_name> explicitly.

A .group section can’t be used for the .segment directive.

• <section_name> is not an overlay/union section.

A non-overlay section was specified in a .overlay/.union directive.

• It is illegal to have two default configurations into overlay directive.

Two sections are to be loaded by the linker at the same run address. Remove an asterisk.

• Section <section_name> already exists in overlay <overlay_name>.

The same section was specified twice in the same overlay directive.

• Overlay <overlay_name> already exists in command file.

The same overlay name was used in more than one .overlay directive.
Overlay Support in StarCore Compiler

16 Freescale Semiconductor



Document Order No.: AN3788
4/2010

Information in this document is provided solely to enable system and software implementers to 
use Freescale Semiconductor products. There are no express or implied copyright licenses 
granted hereunder to design or fabricate any integrated circuits or integrated circuits based on 
the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any 
products mentioned herein. Freescale Semiconductor makes no warranty, representation or 
guarantee regarding the suitability of its products for any particular purpose, nor does 
Freescale Semiconductor assume any liability arising out of the application or use of any 
product or circuit, and specifically disclaims any and all liability, including without limitation 
consequential or incidental damages. “Typical” parameters which may be provided in Freescale 
Semiconductor data sheets and/or specifications can and do vary in different applications and 
actual performance may vary over time. All operating parameters, including “Typicals” must be 
validated for each customer application by customer’s technical experts. Freescale 
Semiconductor does not convey any license under its patent rights nor the rights of others. 
Freescale Semiconductor products are not designed, intended, or authorized for use as 
components in systems intended for surgical implant into the body, or other applications 
intended to support or sustain life, or for any other application in which the failure of the 
Freescale Semiconductor product could create a situation where personal injury or death may 
occur. Should Buyer purchase or use Freescale Semiconductor products for any such 
unintended or unauthorized application, Buyer shall indemnify and hold Freescale 
Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless 
against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, 
directly or indirectly, any claim of personal injury or death associated with such unintended or 
unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent 
regarding the design or manufacture of the part.

Freescale, the Freescale logo and CodeWarrior are trademarks of Freescale Semiconductor, 
Inc., Reg. U.S. Pat. & Tm. Off. All other product or service names are the property of their 
respective owners

© 2009—2010 Freescale Semiconductor, Inc. All rights reserved.

How to Reach Us:
Home Page:
www.freescale.com

E-mail:
support@freescale.com

USA/Europe or Locations not listed:
Freescale Semiconductor 
Technical Information Center, CH370
1300 N. Alma School Road
Chandler, Arizona 85224
+1-800-521-6274 or +1-480-768-2130
support@freescale.com

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GMBH
Technical Information Center
Schatzbogen 7
81829 München, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
support@freescale.com

Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064, Japan
0120 191014 or +81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:
Freescale Semiconductor Hong Kong Ltd.
Technical Information Center
2 Dai King Street
Tai Po Industrial Estate
Tai Po, N.T. Hong Kong
+800 2666 8080

For Literature Requests Only:
Freescale Semiconductor Literature Distribution Center
P.O. Box 5405
Denver, Colorado 80217
1-800-441-2447 or 303-675-2140
Fax: 303-675-2150
LDCForFreescaleSemiconductor@hibbertgroup.com


	1 Reference Documents
	2 Overview
	3 Overlay Sections
	4 Tool Support
	4.1 Tool Command Line Options
	4.2 CodeWarrior IDE Options
	4.3 Application Configuration Files
	4.4 Overlay Manager Support
	4.5 Assembler Support
	4.6 Linker Command Files
	4.7 Ovltab Section
	4.8 Debug Support
	4.9 Examples

	5 Object File Interface
	6 Linker Error Messages



