
Freescale Semiconductor
Application Note

© Freescale Semiconductor, Inc., 2009. All rights reserved.

This document describes the Microsoft® .NET Micro
Framework architecture and provides detailed instructions
(using a C# GUI example) for creating a sample application
that can be used as the starting point for any complex
application. The .NET Micro Framework allows users to
take advantage of high end programming skills to develop
powerful multimedia embedded solutions at very low
licensing cost.

This document is a reference for .NET Micro Framework
developers using Freescale platforms. The Tahoe-II
Development Board from Device Solutions uses .NET
Micro Framework with the Freescale i.MXS microprocessor.
In addition, .Net Micro Framework can be ported to any
i.MX processor. Consult the Microsoft .Net Micro
Framework web site for more information.

Document Number: AN3887
Rev. 0, 08/2009

Contents
1. Overview . 2

1.1. Architecture . 2
1.2. Targeted Applications . 5
1.3. Tools . 6
1.4. Help . 8

2. Create a GUI Using C# . 8
2.1. Hardware and Software Components 8
2.2. IDE Layout and Description . 9
2.3. Common IDE Tasks . 10

3. Develop an Application . 10
3.1. Create the Solution, Project, or Application 10
3.2. Include the Hardware-Specific Files 11
3.3. Add UI Elements to the Application 11

4. Deployment Errors . 15
4.1. USB Port is Busy with Other Application 15
4.2. USB Driver is Incorrectly Installed 16
4.3. USB Communication is Broken 16
4.4. Application is Deployed with Errors 16

Development with Microsoft® .NET
Micro Framework 2.0
by Multimedia Applications Division

Freescale Semiconductor, Inc.
Austin, TX

Development with Microsoft® .NET Micro Framework 2.0, Rev. 0

2 Freescale Semiconductor

Overview

1 Overview
This section provides an overview of the .NET Micro Framework version 2.0 architecture, tools,
applications, and resources. Some of the information in this section is applicable to other versions of .Net
Micro Framework. The information in this section is adapted from the Microsoft Developers Network®
(MSDN) web site for use with Freescale devices.

1.1 Architecture
The .NET Micro Framework architecture is optimized for small devices such as, but not limited to:

• Sensor networks

• Robotics

• GPS navigation

• Wearable devices

• Medical instrumentation

• Industrial automation devices

• Other small devices that require an efficient, low-resource-consuming Microsoft .NET client

The .NET Micro Framework is available for an increasing variety of hardware platforms. Its architecture
is extremely flexible and highly adaptable to new hardware platforms. Figure 1 illustrates the .NET Micro
Framework hardware and software architecture.

Figure 1. .NET Micro Framework Architecture

Development with Microsoft® .NET Micro Framework 2.0, Rev. 0

Freescale Semiconductor 3

Overview

1.1.1 Hardware Layer
The hardware layer contains the user-selected microprocessor and other circuitry. The .NET Micro
Framework runs on a growing number of i.MX hardware platforms. It is possible to port the .NET Micro
Framework to other i.MX chipsets. It is also possible to run the .NET Micro Framework runtime on top of
operating systems, such as Microsoft Windows®, but is almost exclusively used when ported directly to
the hardware.

1.1.2 Runtime Component Layer (RCL)
The RCL has three components:

• .NET Micro Framework common language runtime (CLR)

• Hardware abstraction layer (HAL)

• Platform abstraction layer (PAL)

1.1.2.1 Common Language Runtime

The .NET Micro Framework CLR is a subset of the .NET Framework CLR, which is the run-time
environment provided by the .NET Framework. The .NET Micro Framework CLR provides robust
application support. It manages memory, thread execution, code execution, and other system services. The
CLR provides all of these features and services from a very small memory footprint. It occupies only about
390 Kbytes of memory when all of the functionality is used. This memory-usage estimate is for the
Microsoft implementation framework for existing i.MX platforms.

The CLR is fast and performs about 15,000 managed method calls per second at 27.6 MHz (these results
are based on the average method-call complexity developed for the Smart Personal Objects Technology
(SPOT) watch application). Managed applications for the CLR can be programmed and debugged using
the Microsoft Visual Studio® 2005 development system.

NOTE
C# is currently the only programming language supported by the CLR.

Features of the .NET Micro Framework CLR include:

• Numeric types, class types, value types, arrays (one-dimensional only), delegates, events,
references, and weak references

• Synchronization, threads, and timers

• Reflection

• Serialization

• Garbage collection

• Exception handling

• Time classes, including DateTime and TimeSpan (using INT64 arithmetic)

• Time-sliced thread management

Exceptions to and extensions of the CLR include:

• Execution constraints that limit call durations and prevent failures

Development with Microsoft® .NET Micro Framework 2.0, Rev. 0

4 Freescale Semiconductor

Overview

• Strings represented internally as UTF-8 and exposed as Unicode

• No support for sparse or jagged multidimensional arrays

• A global, shared string table for well-known values (types, methods, and fields) that reduces RAM
and ROM and reduces the number of cross-references

• No virtual tables for method resolution which saves RAM

• A WeakDelegate class to handle dangling references to delegates

• Support for extending the hardware chipset by programming its drivers directly in C#, using the
Managed Drivers Framework. Hardware devices compatible with industry communication
standards (such as GPIO, serial, SPI, or I2C) can be added to the chipset and used by a managed
C# application.

1.1.2.2 Hardware Abstraction Layer and Platform Abstraction Layer

The HAL and the PAL control the underlying system hardware. Both the HAL and the PAL are groups of
C++ functions called by the CLR. The PAL functions are independent of the hardware and should not need
to be ported.

NOTE
Users must develop their own version of the HAL when porting to an
unsupported i.MX processor or porting to a new platform.

The bootstrap code is also associated with the HAL. The bootstrap code initializes the low-level hardware
when the device is turned on and then starts the CLR to perform the higher-level initialization. The
bootstrap code performs its tasks through calls to the HAL and assembly-language routines. Other than
starting the CLR, the bootstrap code has no interaction with the code preceding it in the software
architecture.

1.1.3 Class Library Layer
The class library included with the .NET Micro Framework is an object-oriented collection of reusable
types that can be used to develop embedded applications. It includes C# libraries that provide support for
the following:

• Encryption

• Debug, graphics, and shell DLLs

• The CLR API class library and the CLR corelib

• Access for managed C# applications to extended chipsets that support specific communications
standards, such as GPIO, serial, SPI, or I2C.

NOTE
The .NET Micro Framework libraries are implemented in namespaces that
mirror the .NET Framework Base Class Libraries (BCL) whenever possible,
otherwise they are placed in the .NET Micro Framework SPOT namespace.

Development with Microsoft® .NET Micro Framework 2.0, Rev. 0

Freescale Semiconductor 5

Overview

1.1.4 Application Layer
The top layer of the .NET Micro Framework contains the managed applications that are created for
devices. The types of applications developed depend entirely on the device hardware.

NOTE
C# is currently the only programming language supported for managed
applications.

1.2 Targeted Applications
The .NET Micro Framework is targeted for very small devices. The range of functionality in these devices
is typically constrained by some combination of cost, memory, processing capability, and power. The .NET
Micro Framework has been used in some of the smallest devices, including watches, GPS navigation
devices, and Windows® SideShow®-compatible displays.

Being targeted at the new, less expensive, and more power-efficient 32-bit processors, such as the
Freescale i.MX Family, enables the .NET Micro Framework platform to run on significantly reduced
resources. Additionally, it offers power management interfaces, thus maximizing the battery life of
devices. All of the .NET Micro Framework functionality can be squeezed into a minimum of 256 Kbytes
of Flash/ROM and executes in at least 512 Kbytes of RAM. Figure 2 illustrates the targeted Windows
markets.

Figure 2. Targeted Markets for the Windows Operating Systems

To make the .NET Micro Framework available with the smallest possible memory footprint, it is designed
to contain only those pieces of the .NET Framework that are most relevant to small devices. These include
the a major subset of the BCL namespaces, among others: System.Collections, System.Diagnostics,
System.Globalization, System.IO, System.Reflection, System.Resources, System.Runtime, and
System.Threading.

Development with Microsoft® .NET Micro Framework 2.0, Rev. 0

6 Freescale Semiconductor

Overview

1.3 Tools
The addition of the i.MX development tools to the .NET Micro Framework results in a powerful set of
tools for developing and debugging applications. Two tools are especially useful: FlashLite Client and
MFDeploy.

1.3.1 FlashLite Client
FlashLite Client captures debug output from the execution of the .NET Micro Framework on a device.
While this tool also provides additional functionality, the capture function is the most frequently used.
Debug output is produced by the .NET Micro Framework runtime, as well as by the execution of
Debug.Print(Strings) statements located in the C# application. Figure 3 illustrates the FlashLite Client
main screen.

Figure 3. FlashLite Client Main Screen

1.3.2 MFDeploy
MFDeploy helps deploy, upgrade, or erase the firmware being developed for hardware. Two frequently
performed tasks are described in Section 1.3.2.1, “Ping the Device,” and Section 1.3.2.2, “Clear the
Deployment and Persistence Sectors.”

Development with Microsoft® .NET Micro Framework 2.0, Rev. 0

Freescale Semiconductor 7

Overview

Figure 4 illustrates the MFDeploy screen.

Figure 4. MFDeploy Main Screen

1.3.2.1 Ping the Device

Ping the device to confirm the correct communication between the PC and the i.MX development board
through serial communication using these steps:

1. Run MFDeploy

2. Select the correct port

3. Click Ping to determine if the .NET Micro Framework is running and communicating through the
designated port

When using a COM port, failure can indicate that another process on the computer is using that port.

1.3.2.2 Clear the Deployment and Persistence Sectors

Perform this task to deploy .NET Micro Framework application with errors using these steps:

1. Run MFDeploy

2. Select the correct port

3. Click Erase to clear all assemblies from the device

Development with Microsoft® .NET Micro Framework 2.0, Rev. 0

8 Freescale Semiconductor

Create a GUI Using C#

1.4 Help
To obtain help with .NET Micro Framework applications for Freescale devices:

• Search the Internet to review information available on this topic

• Use the .NET Framework Help program, because .NET Framework and .NET Micro Framework
are very similar (.NET Framework contains additional advanced functionality)

The .NET Framework Help information searches can be configured to filter for .NET Micro Framework
with C# using these steps:

1. Open Visual Studio or Visual C#

2. On the Help menu, select Search
A dialog displays options for Language, Technology, and Content Type

3. Configure the options as follows:

Language: C#

Technology: .NET Micro Framework

Content Type: All

2 Create a GUI Using C#
This section provides a sample application for the .NET Micro Framework using Visual Studio 2005 C#
as the Integrated Development Environment (IDE). The sample information can be used as a reference for
application development.

2.1 Hardware and Software Components
Table 1 identifies the software and hardware used in developing and testing the C# GUI example. If the
software/firmware listed in Table 1 is not installed, download it from the recommended site and install it.

Table 1. Components

Component Description Location

i.MX Development Kit

i.MX Development Board1

1 For example the Tahoe-II Development Kit provided by Device Solutions.

Hardware i.MX Development Kit Supplier

.NET Micro Framework 2.0 flashed in the board Firmware CD of contents

PC

Microsoft Visual Studio 2005 Software Microsoft Web site

Microsoft Visual C# Software Microsoft Web site

Microsoft .NET Micro Framework 2.0 Software Microsoft Web site

FlashLite Client Software CD of contents

MFDeploy Software Microsoft Web site

USB Driver for Board Software CD of contents

Development with Microsoft® .NET Micro Framework 2.0, Rev. 0

Freescale Semiconductor 9

Create a GUI Using C#

2.2 IDE Layout and Description
The IDE used for this example is the standard Microsoft Visual Studio IDE. The IDE (Figure 5), provides
a set of tools using four window panes, to help write and modify the program code as well as detect and
correct program errors. Table 2 describes the IDE window panes.

Figure 5. Visual Studio 2005 IDE

Table 2. IDE Tools

Pane
Location in

Figure 5
Description

Source Code Editor Top Left Displays handwritten C# source code development activities. Provides
helpful development features, such as syntax highlighting,
class/method auto-completion (IntelliSense), and squiggly underline
error indication. Multiple source files can be opened simultaneously
and can be accessed from tabs above the editor.

Solution Explorer Top Right Lists the files in the current project. Double-clicking a source file (*.cs,
*.xml …) in the tree displays the code in the Source Code Editor.

Properties Bottom Right Displays additional information about the selected file.

Errors/Warnings List Bottom Left Displays errors and warnings as the compiler runs. Visual Studio runs
auto-compilation in the background as new code is typed without
requiring an explicit compile.

Development with Microsoft® .NET Micro Framework 2.0, Rev. 0

10 Freescale Semiconductor

Develop an Application

2.3 Common IDE Tasks
Table 3 describes the commands for frequently used tasks.

3 Develop an Application
This section provides the information needed to develop a .NET Micro Framework application, including
descriptions of the file contents.

3.1 Create the Solution, Project, or Application
To create a .NET Micro Framework C# solution, project, or application, use these steps:

1. Open Visual Studio or Visual C#

2. Click File > New > Project
The New Project window is displayed (Figure 6).

Figure 6. New Project Window

Table 3. Common Tasks

Task Command

Build Solution Click Build > Build Solution, or press F6

Build and Deploy Solution Click Debug > Start Without Debugging, or press CTRL+F5

Build, Deploy, and Debug Solution Click Debug > Start Debugging, or press F5

Add New File to Solution Right-click the project file in the Solution Explorer and click Add > New Item

Add New Resource Double-click the Resources.resx file in the Solution Explorer to open the Resource
Editor in place of the Source Code Editor. Click Add Resource and select an option.

Development with Microsoft® .NET Micro Framework 2.0, Rev. 0

Freescale Semiconductor 11

Develop an Application

3. In the Project types window, select Visual C# > Micro Framework
4. In the Templates window, select Window Application
5. For Name, enter a descriptive name for the project

6. Next to Location, select from the drop-down list or click Browse to select the location where the
project is saved

7. For Solution, select Create New Solution
8. Select Create directory for solution to create a new directory in which to place this solution

9. Click OK
The Solution Explorer pane lists the files that are added to the project.

The most important file in which the program is located is Program.cs. This file contains the definition of
the Program class that must be of type Microsoft.SPOT.Application. The Program class contains the
Main() method, which is called when the application starts. Additional files provide code that is related to
window creation and configuration for the button press interrupt handler.

3.2 Include the Hardware-Specific Files
The hardware-specific files contain platform-specific information that is used in the managed code to
configure the serial ports, keyboard, GPIO, specific modules, and so on.

3.2.1 HardwareProvider Class
The HardwareProvider class provides access to information about pin assignments for serial
communications devices such as I2C, UART, and SPI. The HardwareProvider class is implemented in
one of the hardware-specific files provided by the board supplier. The file may be edited as needed.
Defining this class correctly for an application ensures that the standard serial classes of .NET Micro
Framework operates with the serial ports.

3.3 Add UI Elements to the Application
The .NET Micro Framework includes a limited set of user interface (UI) elements, with limited
functionality. These elements (Canvas, Text, Image, ListBox, Panel and StackPanel among others) can be
used in any .NET Micro Framework application.

To add UI elements to an application, use these steps:

1. Ensure that the Microsoft.SPOT.Presentation.Controls namespace is referenced at the beginning
of the Program.cs file, with the following instruction line:

using Microsoft.SPOT.Presentation.Controls

If the line is not included, add it.

The Microsoft.SPOT.Presentation.Controls namespace provides classes, delegates, and
enumerations that are used to create elements (known as controls) that enable a user to interact with
an application.

Development with Microsoft® .NET Micro Framework 2.0, Rev. 0

12 Freescale Semiconductor

Develop an Application

NOTE
If an error is displayed after the instruction line is added and compiled,
include a reference to the Microsoft.SPOT.TinyCore.dll, as shown in the
Solution Explorer pane of the IDE, Figure 5.

2. Write code into the CreateWindow() method, which is created by default. Example 1 displays
the default code.

Example 1. Default Content of the CreateWindow() Method

public Window CreateWindow()
{

// Create a window object and set its size to the
// size of the display.
mainWindow = new Window();
mainWindow.Height = SystemMetrics.ScreenHeight;
mainWindow.Width = SystemMetrics.ScreenWidth;

// Create a single text control.
Text text = new Text();
text.Font = Resources.GetFont(Resources.FontResources.small);
text.TextContent = Resources.GetString(Resources.StringResources.String1);
text.HorizontalAlignment = Microsoft.SPOT.Presentation.HorizontalAlignment.Center;
text.VerticalAlignment = Microsoft.SPOT.Presentation.VerticalAlignment.Center;

// Add the text control to the window.
mainWindow.Child = text;

// Connect the button handler to all of the buttons.
mainWindow.AddHandler(Buttons.ButtonUpEvent,new ButtonEventHandler(OnButtonUp),false);
// Set the window visibility to visible.
mainWindow.Visibility = Visibility.Visible;

// Attach the button focus to the window.
Buttons.Focus(mainWindow);

return mainWindow;
}

3. To modify this code, create the StackPanel element and assign to it the text element.

Add the following lines before the mainWindow.Child = text; line:

StackPanel panel = new StackPanel(Orientation.Vertical);
panel.Children.Add(text);

4. Assign the panel element as the Child element of the mainWindow, instead of the text element.
Example 2 displays the updated CreateWindow() method.

Example 2. Updated Content of the CreateWindow() Method

public Window CreateWindow()
{

// Create a window object and set its size to the
// size of the display.
mainWindow = new Window();

Development with Microsoft® .NET Micro Framework 2.0, Rev. 0

Freescale Semiconductor 13

Develop an Application

mainWindow.Height = SystemMetrics.ScreenHeight;
mainWindow.Width = SystemMetrics.ScreenWidth;

// Create a single text control.
Text text = new Text();
text.Font = Resources.GetFont(Resources.FontResources.small);
text.TextContent = Resources.GetString(Resources.StringResources.String1);
text.HorizontalAlignment = Microsoft.SPOT.Presentation.HorizontalAlignment.Center;
text.VerticalAlignment = Microsoft.SPOT.Presentation.VerticalAlignment.Center;

// Create the StackPanel control.
StackPanel panel = new StackPanel(Orientation.Vertical);

// Add the text to the StackPanel.
panel.Children.Add(text);

// Add the StackPanel control to the window.
mainWindow.Child = panel;

// Connect the button handler to all of the buttons.
mainWindow.AddHandler(Buttons.ButtonUpEvent,new ButtonEventHandler(OnButtonUp),false);

// Set the window visibility to visible.
mainWindow.Visibility = Visibility.Visible;

// Attach the button focus to the window.
Buttons.Focus(mainWindow);
return mainWindow;

}

3.3.1 Add Keyboard Events to the Application

This section describes how to add keyboard interaction to the application. When a key is pressed, the name
of the key is printed through a text element in the StackPanel. To add keyboard management, first ensure
that the hardware-specific namespace is referenced at the beginning of the Program.cs file. In this example,
the instruction line is:

FSL.SPOT.Hardware.BOARD;

NOTE
If an error is displayed after this line is added and compiled, see Section 3.2,
“Include the Hardware-Specific Files.”

Write code into the Program.cs file, which is created by default:

1. Delete the GPIOButtonInputProvider.cs file from the Solution Explorer pane of the IDE. This
example uses the GPIOButtonInputProvider class from the hardware-specific files.

2. Add code to the OnButtonUp() method, which is created by default. The OnButtonUp() method
adds keyboard events to the application. The goal is to identify the pressed button, then assign
custom text to a variable that is assigned to the StackPanel at the end of the function. The updated
method is shown in Example 3.

Development with Microsoft® .NET Micro Framework 2.0, Rev. 0

14 Freescale Semiconductor

Develop an Application

Example 3. Updated Content of the OnButtonUp() Method

private void OnButtonUp(object sender, ButtonEventArgs e)
{

// Print the button code to the Visual Studio output window.
Debug.Print(e.Button.ToString());

// Define the temporalText variable with the name of the button pressed.
Text temporalText = new Text("Button");
temporalText.Font = Resources.GetFont(Resources.FontResources.small);
temporalText.HorizontalAlignment=Microsoft.SPOT.Presentation.HorizontalAlignment.Center;
temporalText.VerticalAlignment=Microsoft.SPOT.Presentation.VerticalAlignment.Center;
switch(e.Button){

case Button.Select:
temporalText.TextContent += " Center";
break;

case Button.Down:
temporalText.TextContent += " Down";
break;

case Button.Up:
temporalText.TextContent += " Up";
break;

case Button.Left:
temporalText.TextContent += " Left";
break;

case Button.Right:
temporalText.TextContent += " Right";
break;

default:
temporalText.TextContent += " Not identified";
break;

}
// Add the temporalText to the StackPanel defined for the mainWindow.Child
((StackPanel)mainWindow.Child).Children.Add(temporalText);

}

Now, each time the OnButtonUp() method executes due to a key press, the program updates the content
of the StackPanel in the window with the name of the key that is pressed.

Development with Microsoft® .NET Micro Framework 2.0, Rev. 0

Freescale Semiconductor 15

Deployment Errors

3.3.2 Deploy and Run the Application
The last step is to deploy and run the application. First, the board must be connected to the PC using a USB
cable. Next, configure the .NET Micro Framework application to work with the board using these steps:

1. Click Project > [Application Name] Properties...
The Source Code Editor is displayed (Figure 7).

Figure 7. Micro Framework Deployment Configuration

2. Select the Micro Framework tab in the navigation panel

3. For Configuration, select the type of configuration to use

4. For Transport, select USB
5. For Device, accept the displayed Device number, which is the board identification

The application is ready to deploy.

4 Deployment Errors
This section describes the most frequently encountered issues related to developing and deploying .NET
Micro Framework applications.

4.1 USB Port is Busy with Other Application
In some cases, the development boards for .NET Micro Framework have only one USB device port. To
support debug logging and application deployment, the USB port is multiplexed between FlashLite Client
(Debug Logging) and Visual Studio 2005 (Application Deployment).

Development with Microsoft® .NET Micro Framework 2.0, Rev. 0

16 Freescale Semiconductor

Deployment Errors

When FlashLite Client is in Start mode, the USB port is not available to Visual Studio. If deployment
problems in Visual Studio are encountered, ensure that the FlashLite Client is in Stop mode.

4.2 USB Driver is Incorrectly Installed
This error message indicates that the USB driver for the board is not correctly installed and the driver must
be reinstalled. The hardware must be correctly installed and ready to use.

To reinstall the USB driver, use these steps:

1. Click Start, point to Run, and enter devmgmt.msc, to run the Device Manager

2. Find and uninstall the element Micro Framework MXS Reference Design or similar term

3. Run the scan, by clicking Menu Action > Scan for hardware changes
4. In the Found New Hardware Wizard, select the USB board driver recommended by the i.MX

development board manufacturer. Typically, the board driver is located on the CD that is included
with the development kit.

4.3 USB Communication is Broken
The following failures indicate that the USB communication is not working:

• The device seems connected, but Visual Studio cannot deploy new applications

• FlashLite Client does not display debug information and it cannot ping the board

To restart the USB driver, use these steps:

1. Ensure that FlashLite Client is in Stop mode

2. Unplug the mini-USB connector from the board and plug it back in

3. Restart the board

4.4 Application is Deployed with Errors
In Visual Studio 2005, the last deployment is interrupted or is completed with errors and any subsequent
try at re-deployment fails.

To clear the deployment and persistence sectors, use these steps:

1. Ensure that FlashLite Client is in Stop mode

2. Follow the steps in Section 1.3.2.2, “Clear the Deployment and Persistence Sectors”

3. Try to deploy the application again

Development with Microsoft® .NET Micro Framework 2.0, Rev. 0

Freescale Semiconductor 17

Deployment Errors

THIS PAGE INTENTIONALLY LEFT BLANK

Development with Microsoft® .NET Micro Framework 2.0, Rev. 0

18 Freescale Semiconductor

Deployment Errors

THIS PAGE INTENTIONALLY LEFT BLANK

Development with Microsoft® .NET Micro Framework 2.0, Rev. 0

Freescale Semiconductor 19

Deployment Errors

THIS PAGE INTENTIONALLY LEFT BLANK

Document Number: AN3887
Rev. 0
08/2009

Information in this document is provided solely to enable system and software

implementers to use Freescale Semiconductor products. There are no express or

implied copyright licenses granted hereunder to design or fabricate any integrated

circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to

any products herein. Freescale Semiconductor makes no warranty, representation or

guarantee regarding the suitability of its products for any particular purpose, nor does

Freescale Semiconductor assume any liability arising out of the application or use of

any product or circuit, and specifically disclaims any and all liability, including without

limitation consequential or incidental damages. “Typical” parameters which may be

provided in Freescale Semiconductor data sheets and/or specifications can and do

vary in different applications and actual performance may vary over time. All operating

parameters, including “Typicals” must be validated for each customer application by

customer’s technical experts. Freescale Semiconductor does not convey any license

under its patent rights nor the rights of others. Freescale Semiconductor products are

not designed, intended, or authorized for use as components in systems intended for

surgical implant into the body, or other applications intended to support or sustain life,

or for any other application in which the failure of the Freescale Semiconductor product

could create a situation where personal injury or death may occur. Should Buyer

purchase or use Freescale Semiconductor products for any such unintended or

unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor

and its officers, employees, subsidiaries, affiliates, and distributors harmless against all

claims, costs, damages, and expenses, and reasonable attorney fees arising out of,

directly or indirectly, any claim of personal injury or death associated with such

unintended or unauthorized use, even if such claim alleges that Freescale

Semiconductor was negligent regarding the design or manufacture of the part.

How to Reach Us:

Home Page:
www.freescale.com

Web Support:
http://www.freescale.com/support

USA/Europe or Locations Not Listed:
Freescale Semiconductor, Inc.
Technical Information Center, EL516
2100 East Elliot Road
Tempe, Arizona 85284
1-800-521-6274 or
+1-480-768-2130
www.freescale.com/support

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
www.freescale.com/support

Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku
Tokyo 153-0064
Japan
0120 191014 or
+81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:
Freescale Semiconductor China Ltd.
Exchange Building 23F
No. 118 Jianguo Road
Chaoyang District
Beijing 100022
China
+86 10 5879 8000
support.asia@freescale.com

For Literature Requests Only:
Freescale Semiconductor

Literature Distribution Center
P.O. Box 5405
Denver, Colorado 80217
1-800 441-2447 or
+1-303-675-2140
Fax: +1-303-675-2150
LDCForFreescaleSemiconductor

@hibbertgroup.com

Freescale and the Freescale logo are trademarks or registered trademarks
of Freescale Semiconductor, Inc. in the U.S. and other countries. All other
product or service names are the property of their respective owners. ARM
is the registered trademark of ARM Limited. Microsoft, SlideShow, and
Windows are either registered trademarks or trademarks of Microsoft
Corporation in the United States and/or other countries. Microsoft product
screen shot(s) reprinted with permission from Microsoft Corporation.

© Freescale Semiconductor, Inc., 2009. All rights reserved.

	Development with Microsoft® .NET Micro Framework 2.0
	1 Overview
	1.1 Architecture
	1.1.1 Hardware Layer
	1.1.2 Runtime Component Layer (RCL)
	1.1.2.1 Common Language Runtime
	1.1.2.2 Hardware Abstraction Layer and Platform Abstraction Layer

	1.1.3 Class Library Layer
	1.1.4 Application Layer

	1.2 Targeted Applications
	1.3 Tools
	1.3.1 FlashLite Client
	1.3.2 MFDeploy
	1.3.2.1 Ping the Device
	1.3.2.2 Clear the Deployment and Persistence Sectors

	1.4 Help

	2 Create a GUI Using C#
	2.1 Hardware and Software Components
	2.2 IDE Layout and Description
	2.3 Common IDE Tasks

	3 Develop an Application
	3.1 Create the Solution, Project, or Application
	3.2 Include the Hardware-Specific Files
	3.2.1 HardwareProvider Class

	3.3 Add UI Elements to the Application
	3.3.1 Add Keyboard Events to the Application
	3.3.2 Deploy and Run the Application

	4 Deployment Errors
	4.1 USB Port is Busy with Other Application
	4.2 USB Driver is Incorrectly Installed
	4.3 USB Communication is Broken
	4.4 Application is Deployed with Errors

