
AN3920
Rev 0, 02/2010

Freescale Semiconductor
Application Note
Using the 32 Sample First In First Out (FIFO)
in the MMA8450Q
by: Kimberly Tuck

Applications Engineer

1.0 Introduction
The MMA8450Q has a built in 32 sample first in, first out

buffer capable of storing either 12-bit data or 8-bit data. The
FIFO is very beneficial for saving overall system power by
putting the processor into sleep mode until it needs to process
data from the accelerometer. The idea is to configure the
MMA8450Q to monitor a desired interrupt, putting the
processor in a low power mode until it needs to respond to the
accelerometer. This minimizes the system’s overall power
consumption, increasing the life of the battery. The embedded
FIFO is a proven benefit as it limits how often the processor
needs to read the data. The FIFO allows the processor to
sleep longer while samples are being collected inside the
sensor.

Higher sample rate data can be captured in the FIFO and
accessed at a reasonable update time without increasing
computational throughput by accessing every sample
individually.

1.1 Key Words
Accelerometer, Output Data Rate, 32 Sample FIFO, 12-bit
Data, 8-bit Data, I2C Bus, Flushing, Algorithm Development,
Circular Buffer Mode, Fill Buffer Mode, Watermark, Overflow,
Sensor, Power Savings, Multi-read, Processor, MCU

TABLE OF CONTENTS
1.0 Introduction. 1

1.1 Key Words . 1
1.2 Summary . 2

2.0 MMA8450Q Consumer 3-axis Accelerometer 3 x 3 x 1 mm 2
2.1 Key Features of the MMA8450Q . 2
2.2 Two (2) Programmable Interrupt Pins for 8 Interrupt Sources 2
2.3 Application Notes for the MMA8450Q . 3

3.0 Applications Using the FIFO . 3
3.1 Power Savings Using the FIFO Data Logging . 3

3.1.1 Flushing the FIFO at 100 Hz ODR and Below 4
3.1.2 Flushing the FIFO at 200 Hz ODR . 5
3.1.3 Flushing the FIFO at 400 Hz ODR . 5

3.2 Power Savings Using the FIFO to Collect the History Leading up to an Event
Trigger . 7

3.3 FIFO Behavior During Wake to Sleep Transitions . 7
4.0 Embedded Settings of the FIFO . 8

4.1 Register 0x16: XYZ_DATA_CFG Sensor Data Configuration Register 8
4.2 Register 0x11-0x12: F_8DATA and F_12DATA FIFO Data 8
4.3 Register 0x13: F_SETUP FIFO Setup Register . 8

4.3.1 Changing Modes of the FIFO . 8
4.4 Register 0x10: F_STATUS FIFO Status Register . 9

5.0 Configuring the FIFO to an Interrupt Pin . 9
5.1 Reading the System Interrupt Status Source Register 9

6.0 Example Code Using the FIFO . 10
6.1 Power Minimization Example: Data logger Collecting 12-bit Data 100 Hz . . 10
6.2 Event Detection Waiting for a Tap Event to Flush the Data for Further Analysis

400 Hz ODR, 8g Mode . 11
6.3 Auto-Wake Sleep Trigger Using the FIFO to Hold the Data that Saved Before

the ODR Changed . 12
© Freescale Semiconductor, Inc., 2010. All rights reserved.

1.2 Summary
A. The embedded FIFO is highly beneficial for system power savings and minimizing traffic across the I2C bus.
B. The FIFO can be flushed at all sample rates. At 400 Hz reading out 12-bit data the FIFO must be flushed more

often to ensure no data is missed.
C. The FIFO allows for remarkable power savings of the system by allowing the host processor/MCU to go into a

sleep mode while the accelerometer independently stores the data, up to 32 samples.
D. The FIFO can be configured to be in a circular buffer mode or a fill buffer mode, which is application dependent.
E. The FIFO is very useful for further enhancing embedded algorithms to extract more details from what caused the

interrupt, with the ability to read previous history.

2.0 MMA8450Q Consumer 3-axis Accelerometer 3 x 3 x 1 mm
The MMA8450Q has a selectable dynamic range of ±2g, ±4g and ±8g with sensitivities of 1024 counts/g, 512 counts/g and

256 counts/g respectively. The device offers either 8-bit or 12-bit XYZ output data for algorithm development. The chip shot and
pinout are shown in Figure 1.

Figure 1. MMA8450Q Consumer 3-axis Accelerometer 3 x 3 x 1 mm

2.1 Key Features of the MMA8450Q
1. Shutdown Mode: Typical < 1 μA, Standby Mode 3 μA
2. Low Power Mode current consumption ranges from 27 μA (1.56 - 50 Hz) to 120 μA (400 Hz)
3. Normal Mode current consumption ranges from 42 μA (1.56 - 50 Hz) to 225 μA (400 Hz)
4. I2C digital output interface (operates up to 400 kHz Fast Mode)
5. 12-bit and 8-bit data output, 8-bit high pass filtered data output
6. Post Board Mount Offset < ±50 mg typical
7. Self Test X, Y and Z axes

2.2 Two (2) Programmable Interrupt Pins for 8 Interrupt Sources
1. Embedded 4 channels of Motion detection

a. Freefall or Motion detection: 2 channels
b. Tap detection: 1 channel
c. Transient detection: 1 channel

2. Embedded orientation (Portrait/Landscape) detection with hysteresis compensation
3. Embedded automatic ODR change for auto-wake-up and return-to-sleep
4. Embedded 32 sample FIFO
5. Data Ready Interrupt

1

GND

VDD

SCL

NC

INT2

INT1

GND

GND

SD
A

SA
0

V
D

D
EN

N
C

N
C

NC

GND

MMA8450Q
2

16

12

13

1415

11

10

3

4

5
6 7 8

9

16 Pin QFN
3mm x 3 mm x 1mm
AN3920

Sensors
2 Freescale Semiconductor

2.3 Application Notes for the MMA8450Q
The following is a list of Freescale Application Notes written for the MMA8450Q:

• AN3915, Embedded Orientation Detection Using the MMA8450Q
• AN3916, Offset Calibration of the MMA8450Q
• AN3917, Motion and Freefall Detection Using the MMA8450Q
• AN3918, High Pass Filtered Data and Transient Detection Using the MMA8450Q
• AN3919, MMA8450Q Single/Double and Directional Tap Detection
• AN3920, Using the 32 Sample First In First Out (FIFO) in the MMA8450Q
• AN3921, Low Power Modes and Auto-Wake/Sleep Using the MMA8450Q
• AN3922, Data Manipulation and Basic Settings of the MMA8450Q
• AN3923, MMA8450Q Design Checklist and Board Mounting Guidelines

3.0 Applications Using the FIFO
The FIFO is used typically for the following functions:

• Data logging- flushing once every 32 samples for power savings and to relieve bus contention
• Storing the previous history leading up to an event, for power savings and relives bus contention
• The FIFO can also be programmed to stop on an event trigger if the device was in sleep mode and the sample

rate changes when the event occurs

3.1 Power Savings Using the FIFO Data Logging
The FIFO is very beneficial for saving overall system power by putting the processor into sleep mode until it needs to process

data from the accelerometer. The idea is to configure the MMA8450Q to monitor a desired interrupt, putting the processor in a
low power mode until it needs to respond to the accelerometer. This maximizes the time that the processor spends in a sleep or
low power mode and ultimately will minimize the system’s overall power consumption, increasing the life of the battery. The FIFO
allows the processor to sleep longer while samples are being collected inside the sensor. This also minimizes the traffic across
the I2C bus.

The timing of the data rate and the bus speed should be chosen with care. As an example the accelerometer is put in Low
Power Mode sampling at 50 Hz (20 ms) with the FIFO running in Fill Mode and the FIFO interrupt enabled. The interrupt would
be used to trigger the processor to wake up, service the interrupt, and flush the 32 samples. New data cannot be stored into the
FIFO while it is being flushed. Therefore the processor must wake up, service the interrupt and flush the data within 20 ms before
the next sample is available.

The FIFO overflow is asserted every 32 samples. The user has the option of flushing either the 12-bit data or the 8-bit data.
For the 12-bit data each sample consists of three 12-bit values, each stored as 2 bytes. Therefore, when full, the FIFO will contain
192 bytes. For the 8-bit data each sample consists of three 8-bit values, each stored as 1 byte. Therefore in this case when full
the FIFO will contain 96 bytes. An I2C burst access has about 3 extra bytes of “overhead”, for a total of 195 bytes in the 12-bit
data flush and 99 bytes in total for the 8-bit data flush. Also the Start, Stop and Repeat Start I2C transactions take a minimum of
0.6 μs. A 1 μs value will be added for each of these. Assuming that each I2C byte requires a 10-bit transfer window (8 for data,
1 for the acknowledge and 1 for bus idle), the time required to perform an I2C burst read of N samples can be calculated as fol-
lows:

Figure 2. I2C Single Byte Read Transaction

12- bit Data Flush Calculations
FIFORead(N) = ((((N · 3 · 2) + 3) · 10) / I2C bit rate)
FIFORead(32) = 1950 / I2C bit rate
For an I2C bit rate of 400 kHz, FIFORead(32) + 3 μs = 4.878 ms.
For an I2C bit rate of 400 kHz, FIFORead(16) + 3 μs = 2.478 ms.

8-bit Data Flush Calculations
FIFORead(N) = ((((N · 3) + 3) · 10) / I2C bit rate)
FIFORead(32) = 990 / I2C bit rate
For an I2C bit rate of 400 kHz, FIFORead(32) + 3 μs = 2.478 ms.

Master ST Device Address [6:0] W Register Address [7:0] SR Device Address [6:0] R NAK SP

Slave AK AK AK Data [7:0]

10 10 10 10
AN3920

Sensors
Freescale Semiconductor 3

Note that bursting out 32 samples of 12-bit XYZ data consecutively takes 1950 bits to perform the transaction. By bursting XYZ
12-bit data each time new data is ready requires 2880 bits, as this requires 32 iterations. The start, stop and repeat start trans-
actions calculated at 1 μs each start to add up over 32 iterations.

DataReadyRead(32) = (((3 · 2)+ 3) · 10) · 32 = 2880 bits/I2C bit rate

For an I2C bit rate of 400 kHz, DataReadyRead(32) = 7.2 ms + 3 μs · 32 = 7.296 ms

It is seen that using the FIFO to pull out all 32 samples at one time saves on the overhead. This allows the application proces-
sor to do other things or to remain in a low power mode for longer.

Example conditions are given for a processor with the wake timing and current consumption values in Table 1. In Wake Mode
the example processor uses a total of 12 mA, while in sleep mode it only uses 0.5 mA. It take 3 ms to wake the processor from
sleep and read the FIFO status. As shown above, a 12-bit data flush from the accelerometer FIFO takes close to 5 ms while an
8-bit flush of the FIFO takes 2.5 ms. With these example conditions, the average current consumption and the percentage of
saved current consumption can be calculated.

Note: current consumption and wake times on different processors/MCUs will vary but this same methodology applies. The next
several sections will show the analysis of flushing the FIFO at different sample rates using the assumed conditions from Table 1.

3.1.1 Flushing the FIFO at 100 Hz ODR and Below
At 100 Hz (or less) output data rate the processor can wake up and flush the FIFO without missing any samples. The following

is a timing diagram typical of how the FIFO and processor would be configured for sample rates 100 Hz or less. The FIFO collects
data until the overflow flag interrupt is asserted. Then the processor wakes up and flushes all the data out of the FIFO before the
next sample is ready. From sample 1 to sample 32 the processor is in sleep mode. Note: The processor will also be asleep during
the later part of the interval before the first sample is ready. The details of the sleep to wake timing are captured below in Figure 3
and Table 2. The total current is calculated assuming 0.5 mA in sleep mode and 12 mA in active mode.

Figure 3. Timing of the FIFO at 100 Hz ODR Showing Sleep and Wake Timing

Table 1. Example Conditions
Wake-Up Time 12-bit Flush 8-bit Flush Sleep Mode Wake Mode

3 ms 5 ms 2.5 ms 0.5 mA 12 mA

Table 2. Wake to Sleep Timing at 100 Hz ODR

Data ODR Total Time Sleep Time Wake Time Watermark Wake/Total Sleep/Total Total Current Current
Savings

12-bit 100 320 ms 312 ms 8 ms 32 8/320 312/320 0.7875 mA 93.4%
8-bit 100 320 ms 314.5 ms 5.5 ms 32 5.5/320 314.5/320 0.6978 mA 94.2%
AN3920

Sensors
4 Freescale Semiconductor

3.1.2 Flushing the FIFO at 200 Hz ODR
When the data rate is set to 200 Hz the processor can be triggered by the watermark set at 31 samples, giving 5 ms to turn

on, which is more than enough time. Then when the overflow flag asserts the FIFO is flushed, which takes almost 5 ms for flushing
the 12-bit data and 2.5 ms for flushing the 8-bit data. The FIFO can be flushed at 200 Hz ODR without missing any samples by
waking up from the Watermark interrupt set at sample 31 as shown in Figure 4. If the 12-bit data flush takes longer than the 5 ms
then the first sample of the next data set will be missed. The results of the sleep to wake timing and current drain are captured
in Table 3.

Figure 4. Timing of the FIFO at 200 Hz ODR Showing Sleep and Wake Timing

3.1.3 Flushing the FIFO at 400 Hz ODR
When sampling at 400 Hz, there is a new sample every 2.5 ms, which does not allow a lot of time to wake and flush without

missing samples. At 400 Hz the best way to configure the FIFO to avoid losing data is to set the Watermark for 30 samples. This
is the trigger to interrupt the processor to wake up. Then, when the overflow flag is asserted, a 16 sample (12-bit data) flush oc-
curs, which takes 2.475 ms. Next, the processor will go immediately to sleep and continue cycling through this pattern, waking
up at the watermark then flushing the last 16 samples when the overflow flag asserts. When flushing 8-bit samples the FIFO
should have enough time to flush the entire buffer. Figure 5 shows the timing for flushing 12-bit data at 400 Hz ODR. Figure 6
shows the timing for the 8-bit data flush at 400 Hz.

Figure 5. Timing of the FIFO at 400 Hz ODR Flushing 12-bit data Showing Sleep and Wake Timing

Figure 6. Timing of the FIFO at 400 HZ ODR Flushing 8-bit data Showing Sleep and Wake Timing

Table 4 presents all the calculations at 400 Hz flushing 12-bit data and 8-bit data without missing samples.

Table 3. Wake to Sleep Timing at 200 Hz ODR

Data ODR Total Time Sleep Time Wake Time Watermark Wake/Total Sleep/Total Total Current Current
Savings

12-bit 200 160 ms 150 ms 10 ms 31 10/160 150/160 1.218 mA 89.8%
8-bit 200 160 ms 152.5 ms 7.5 ms 31 7.5/160 152.5/160 1.039 mA 91.3%

Table 4. Wake to Sleep Timing at 400 Hz ODR
Data ODR Total Time Sleep Time Wake Time Watermark Wake/Total Sleep/Total Total Current Current Savings
12-bit 400 40 ms 32.5 ms 7.5 ms 14 7.5/40 32.5/40 2.656 mA 77.9%
8-bit 400 80 ms 72.5 ms 7.5 ms 30 7.5/80 72.5/80 1.578 mA 86.9%
AN3920

Sensors
Freescale Semiconductor 5

Table 5 summarizes the wake and sleep timing for all sample rates of the MMA8450Q. The total current consumed per cycle
and the current savings as a percentage are calculated based on the amount of time the processor is in wake vs. sleep.

From Table 5, these values can be related to the amount of time that a typical lithium ion battery for a cell phone would last.
This gives a representation of power savings related to battery life time. The percentage saved for current consumption is for the
application processor only. Table 6 incorporates the current consumption of the processor and the accelerometer in full power
mode to give the average total current consumption. An example lithium-ion cell phone battery stores 1200 mA hours. Based on
this information a comparison is made. This shows the total current consumption (processor + accelerometer) at all sample rates
when the processor is continuously polling data and therefore always in the wake state.

When the processor is continuously running, the accelerometer current consumption has a small effect on the battery life be-
cause the processor uses much more current than the accelerometer. The ability to use the accelerometer to put the processor
in a sleep mode can have a significant impact on the battery life (Table 7). The current consumption of the processor is based on
the 12-bit data that was explained from Table 5. Note in Table 7 the far column on the right displays the battery life improvement
by using the FIFO to data log the data. This shows that at the highest sampling rate in Normal Mode the battery life improves
4.2x what it would by polling the data with the processor continually running. At the lowest sample rate in Low Power Mode, the
savings is 22.6x longer battery life.

Table 5. Power Savings Using FIFO at Different Data Rates

ODR
Time

between
Samples

Sleep/Total
Ratio 12-bit

Current Consumption
12-bit Data Flush mA

Current Savings
12-bit Data (%)

Sleep/Total
Ratio 8-bit

Current Consumption
8-bit Data Flush mA

Current
Savings

8-bit Data (%)
1.56 Hz 641 ms 99.96% 0.505 95.8% 99.97% 0.503 95.8%
12.5 Hz 80 ms 99.69% 0.536 95.5% 99.79% 0.524 95.6%

50 Hz 20 ms 98.75% 0.644 94.6% 99.14% 0.599 95.0%

100 Hz 10 ms 97.50% 0.788 93.4% 98.28% 0.698 94.2%

200 Hz 5 ms 93.75% 1.219 89.8% 95.31% 1.039 91.3%
400 Hz 2.5 ms 81.25% 2.656 77.9% 90.63% 1.578 86.9%

Table 6. Example Li-Ion Battery Life Calculations without the FIFO to Data Log Data
ODR

LP-Low Power
N-Normal

Processor
Current Consumption

MMA8450Q
Current Consumption Total Consumption

AA LI-ion Battery Life
1200 mAh

(1200 mAh/Total mA) Time (h)
Time

(Days)

1.56 Hz (LP) 12 0.027 12.027 99.77 4.16
1.56 Hz (N) 12 0.042 12.042 99.65 4.16
12.5 Hz (LP) 12 0.027 12.027 99.77 4.16

12.5 Hz (N) 12 0.042 12.042 99.65 4.16

50 Hz (LP) 12 0.027 12.027 99.77 4.16

50 Hz (N) 12 0.042 12.042 99.65 4.16

100 Hz (LP) 12 0.042 12.042 99.65 4.15

100 Hz (N) 12 0.072 12.072 99.40 4.14

200 Hz (LP) 12 0.072 12.072 99.40 4.14
200 Hz (N) 12 0.132 12.132 98.91 4.12
400 Hz (LP) 12 0.120 12.120 99.01 4.13
400 Hz (N) 12 0.225 12.225 98.16 4.09

Table 7. Example Li-Ion Battery Life Calculations Using the FIFO to Data Log 12-bit Data
ODR

LP-Low Power
N-Normal

Processor Current
Consumption

12-bit Data Flush mA

MMA8450Q Current
Consumption

12-bit Data Flush mA

Total Consumption
12-bit Data Flush

mA

Li-Ion Battery 1200 mAh
(1200 mAh/Total mA)

Time (h)
Time

(Days)
Battery Life

Improvement
(x Longer)

1.56 Hz (LP) 0.505 0.027 0.532 2255.64 93.98 22.6
1.56 Hz (N) 0.505 0.042 0.547 2193.78 91.41 22.0
12.5 Hz (LP) 0.536 0.027 0.563 2131.44 88.81 21.4

12.5 Hz (N) 0.536 0.042 0.578 2076.12 86.51 20.8

50 Hz (LP) 0.644 0.027 0.671 1788.38 74.52 17.9

50 Hz (N) 0.644 0.042 0.686 1749.27 72.89 17.6

100 Hz (LP) 0.788 0.042 0.830 1445.78 60.24 14.5
AN3920

Sensors
6 Freescale Semiconductor

Note: A similar analysis can be done for the 8-bit data using the FIFO.

3.2 Power Savings Using the FIFO to Collect the History Leading up to an Event Trigger
Another use for the FIFO is the ability to analyze the data that occurred right up to the point of an interrupt triggering event.

After the interrupt flag of the event is set, the FIFO (configured in Circular Mode) can be flushed to extract the previous 32 sam-
ples of data leading up to the event. If it is desirable for the FIFO to hold the data in the FIFO after the interrupt, then this can only
be done when there is a transition from Wake to Sleep Mode only. Otherwise the FIFO must be flushed after the event to store
the data in the processor for further analysis. This technique is discussed in AN3919 for analyzing directional tap. The single tap
is configured and the FIFO is configured for Circular Buffer Mode to run at 400 Hz. When the tap interrupt flag is set, the FIFO is
read within 15 ms of the interrupt to collect the full signature of the tap to analyze the data leading up to the event, and the data
during the event. This technique can be particularly important when tracking events over a long period of time. The MCU or pro-
cessor can remain asleep until the event has triggered and it can add up to substantial power savings.

3.3 FIFO Behavior During Wake to Sleep Transitions
The following table describes the different behaviors of the FIFO under the wake/sleep conditions.

When the FIFO is configured and the auto-wake/sleep is configured with the FIFO Wake from Sleep bit set (Reg 0x3A bit 7)
the data in the FIFO is held until the FIFO is flushed. If a new sample arrives before the FIFO is flushed a FIFO Gate Error occurs
indicating at least one sample has been missed. The FIFO Gate Error bit is set by the system in register 0x14, bit 6. This bit will
clear when the FIFO is flushed. This can be useful to see the data up to the point before the device changes ODR.

100 Hz (N) 0.788 0.072 0.860 1395.35 58.14 14.0

200 Hz (LP) 1.219 0.072 1.291 929.51 38.73 9.4
200 Hz (N) 1.219 0.132 1.351 888.23 37.01 9.0

400 Hz (LP) 2.656 0.120 2.776 432.28 18.01 4.4
400 Hz (N) 2.656 0.225 2.881 416.52 17.36 4.2

Table 8. Behavior of FIFO under Wake/ Sleep Conditions
FIFO INT

ENABLED
Wake from

Sleep Enabled
Result

(Assuming that the FIFO is set up to accept samples in either Fill or Circular Mode)

NO NO

• FIFO will fall asleep when the sleep timer times out and no other interrupt wakes the system.
• There is an AUTOMATIC flush and the FIFO starts refilling at the Sleep ODR from 0.
• If another functional block causes the device to wake, the FIFO will FLUSH itself again and start filling at

Wake ODR.

YES NO

• With the interrupt enabled, the FIFO can be read and flushed (clearing the interrupt) to keep the device from
falling asleep. This is dependant on the sleep time out value and how fast the FIFO is clearing the interrupt.

• If the system does fall asleep, (and no interrupts occur during the time-out period), the FIFO
AUTOMATICALLY flushes and starts refilling at the Sleep ODR from 0.

• When the device wakes up again by an interrupt, the FIFO AUTMOATICALLY flushes and starts from 0 and
stores at the Wake ODR.

NO YES
• FIFO will fall asleep if no wake events occur within the time out period.
• Last data remains here in FIFO until it is flushed.
• Once the FIFO is flushed, it will start collecting the new data at the current ODR.

YES YES

• With interrupt enabled, the FIFO can be read and flushed (clearing the interrupt) to keep the device from
falling asleep.

• If the system does fall asleep, (and no interrupts occur during the tim out period), then the FIFO will stop
collecting any data.

• The last data will be held in FIFO.
• Once the FIFO is flushed, it will start collecting the new data at the current ODR.

Table 9. 0x14 SYSMOD: System Mode Register (Read Only)
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

PERR FGERR 0 0 0 0 SYSMOD1 SYSMOD0

Table 7. Example Li-Ion Battery Life Calculations Using the FIFO to Data Log 12-bit Data
AN3920

Sensors
Freescale Semiconductor 7

4.0 Embedded Settings of the FIFO
The following section discusses the different registers involved in configuring the FIFO.

1. Register 0x16 bit 7 – Set FDE bit
2. Registers 0x11(0x01), 0x12(0x05), 8-bit and12-bit FIFO data
3. Register 0x13 FIFO Set-Up Register
4. Register 0x10 FIFO Status Register
5. Register 0x3B Interrupt Enable Register bit 6
6. Register 0x3C Interrupt Configuration Register bit 6, Route INT1 or INT2

4.1 Register 0x16: XYZ_DATA_CFG Sensor Data Configuration Register
The XYZ_DATA_CFG register configures the 3-axis acceleration data and event flag generator based on ODR. First the FDE

(Bit 7) must be set (1). This points the sample data to the FIFO buffer. The Sensor Data Configuration Register is shown in
Table 10.

4.2 Register 0x11-0x12: F_8DATA and F_12DATA FIFO Data
F_8DATA is Register 0x11 is shown in Table 11 and provides access to the previous (up to) 32 samples of X, Y, and Z axis

acceleration data, at 8-bit resolution. Use F_12DATA (Table 12) to access the same FIFO data at 12-bit resolution. The advan-
tage of F_8DATA access is much faster download of the sample data, since it is represented by only 3 bytes per sample
(OUT_X_MSB, OUT_Y_MSB, and OUT_Z_MSB). The host application should initially perform a single byte read of the FIFO
status byte (address 0x10) to determine the status the FIFO and if it is determined that the FIFO contains data sample(s), the
FIFO contents can also be read from register address location 0x01 (8-bit data) or 0x05 (12-bit data). When the FDE bit is set to
logic 1, the F_12DATA FIFO root data pointer shares the same address location as the OUT_X_MSB register (0x05); therefore
all 12-bit accesses of the FIFO buffer data must use the I2C register address 0x05. All reads to the register address 0x02, 0x03,
0x06, 0x07, 0x08, 0x09, and 0x0A return a value of 0x00. The F_8DATA FIFO root data pointer shares the same address location
as the OUT_X_MSB register (0x01);

4.3 Register 0x13: F_SETUP FIFO Setup Register
The setup register shown in Table 13, is used to configure the options for the FIFO. The FIFO can operate in three (3) states

which are defined by the Mode Bits. The watermark bits are configured to set the number of samples of data to trigger the wa-
termark event flag. The maximum number of samples is 32.

4.3.1 Changing Modes of the FIFO
First note that the Watermark bits 0 through 5 can only be written in standby mode. The FIFO “Disable” bits 6 and 7 can be

activated in Active or Standby Mode. Note the F_Mode cannot be switched between the two operational modes (01 and 10) in
Active Mode. The F_Mode bits must first be set to “Disable” then they can be set to one of the two operational modes. This
allows the operational modes to be switched from Fill to Circular or vise versa without going to Standby.

To change Modes while in Active try the following sequence:
A. Set the Watermark 1 to 32 counts
B. Set F_Mode bit 6 and 7 to “Fill” 01
C. Set Active Mode 2g Mode
D. Set F_Mode bit 6 and 7 to “Disable” 00
E. Set F_Mode bit 6 and 7 to “Circular” 10

Table 10. 0x16 XYZ_DATA_CFG: Sensor Data Configuration Register (Read/Write)
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
FDE 0 0 0 0 ZDEFE YDEFE XDEFE

Table 11. 0x11 F_8DATA: 8-bit FIFO Data Register Points to Register 0x01 (Read Only)
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
XD11 XD10 XD9 XD8 XD7 XD6 XD5 XD4

Table 12. Register 0x12 F_12DATA: 12-bit FIFO Data Register Points to Register 0x05 (Read Only)
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

0 0 0 0 XD3 XD2 XD1 XD0

Table 13. Register 0x13 F_SETUP: FIFO Setup Register (Read/Write)
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

F_MODE1 F_MODE0 F_WMRK5 F_WMRK4 F_WMRK3 F_WMRK2 F_WMRK1 F_WMRK0
AN3920

Sensors
8 Freescale Semiconductor

A FIFO sample count exceeding the watermark event does not stop the FIFO from accepting new data. The FIFO update rate
is dictated by the selected system ODR. In active mode the ODR is set by the DR bits in the CTRL_REG1 register (0x38) and
when auto-sleep is active the ODR is set by the ASLP_RATE field in the CTRL_REG1 register (0x38).

When a byte is read from the FIFO buffer the oldest sample data in the FIFO buffer is returned and also deleted from the front
of the FIFO buffer, while the FIFO sample count is decremented by one. It is assumed that the host application shall use the I2C
multi-read transaction to dump the FIFO.

4.4 Register 0x10: F_STATUS FIFO Status Register
The FIFO Status Register shown in Table 14, is used to retrieve information about the FIFO. This register has a flag for the

overflow and watermark. It also has a counter that can be checked to review the number of samples stored in the buffer.

The F_OVF and F_WMRK_FLAG flags remain asserted while the event source is still active, but the user can clear the FIFO
interrupt bit flag in the interrupt source register (INT_SOURCE Reg 0x15) by reading the F_STATUS register (0x10).

The F_OVF bit flag will assert when the FIFO has overflowed and the F_WMRK_FLAG bit flag will assert when the F_CNT
value is greater than then F_WMRK value. These interrupts remain asserted until the F_STATUS is read. Both the Watermark
flag and the Overflow flag cause a System Interrupt for the FIFO in Register 0x15 when the FIFO interrupt is enabled.

5.0 Configuring the FIFO to an Interrupt Pin
In order to set up the system to route to a hardware interrupt pin, the System Interrupt (bit 6 in Reg 0x3B) must be enabled.

The MMA8450Q allows for eight (8) separate types of interrupts. One (1) of these is reserved for the FIFO.

Step 1: Enable the Interrupt in Register 0x3B shown in Table 15.

The INT_EN_FIFO interrupt enable bit allows the FIFO function to route its event detection flag to the interrupt controller of
the system. The interrupt controller routes the enabled function to either the INT1 or INT2 pin.

To enable the FIFO, set bit 6 in Register 0x3B as follows:

Code Example: IIC_RegWrite (0x3B, 0x40);

Step 2: Route the interrupt to INT1 or to INT2. This is done in register 0x3C shown in Table 16.
.

Note: To route the FIFO to INT1 set bit 6 in register 0x3C. Clear bit 6 to set the FIFO to INT2.

Code Example: IIC_RegWrite (0x3C,0x40); //Set to INT1

5.1 Reading the System Interrupt Status Source Register
In the interrupt source register, the status of the various embedded features can be determined. This is shown in Table 17.

The bits that are set (logic ‘1’) indicate which function has asserted an interrupt; conversely, the bits that are cleared (logic ‘0’)
indicate which function has not asserted or has de-asserted an interrupt. The interrupts are rising edge sensitive. The bits are
set by a low to high transition and are cleared by reading the appropriate interrupt source register.

Table 14. Register 0x10 F_STATUS: FIFO STATUS Register (Read Only)
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

F_OVF F_WMRK_FLAG F_CNT5 F_CNT4 F_CNT3 F_CNT2 F_CNT1 F_CNT0

Table 15. 0x3B CTRL_REG4 Register (Read/Write)
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

INT_EN _ASLP INT_EN _FIFO INT_EN _TRANS INT_EN _LNDPRT INT_EN _PULSE INT_EN _FF_MT_1 INT_EN _FF_MT_2 INT_EN_DRDY

Table 16. 0x3C CTRL_REG5 Register (Read/Write)
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

INT_CFG_ASLP INT_CFG_FIFO INT_CFG_TRANS INT_CFG_LNDPRT INT_CFG_PULSE INT_CFG_FF_MT_1 INT_CFG_FF_MT_2 INT_CFG_DRDY

Table 17. 0x15 INT_SOURCE: System Interrupt Status Register (Read Only)
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

SRC_ASLP SRC_FIFO SRC_TRANS SRC_LNDPRT SRC_PULSE SRC_FF_MT_1 SRC_FF_MT_2 SRC_DRDY
AN3920

Sensors
Freescale Semiconductor 9

6.0 Example Code Using the FIFO
The following are three examples for configuring the FIFO. Table 18 shows all the registers of importance for using the FIFO.

6.1 Power Minimization Example: Data logger Collecting 12-bit Data 100 Hz
Step 1: Go to Standby Mode to configure the device

IIC_RegWrite(0x38, 0x08); //Ctrl Reg1: 100 Hz mode, standby
Step 2: Register 0x16 Set FDE bit =1 to enable the FIFO

IIC_RegWrite(0x16, 0x84); //Set FDE = 1, and leave Event flag on Z-axis
Step 3: Set the FIFO to Fill Buffer Mode in Register 0x13 F_Setup

IIC_RegWrite(0x13, 0x80); //FIFO Set to Fill Mode
Step 4: Set the FIFO Interrupt Pin to Int1 to flush the data every 32 samples when the overflow flag

asserts
IIC_RegWrite(0x3B, 0x40); //Enable the interrupt Pin for the FIFO
IIC_RegWrite(0x3C, 0x40); //Set the interrupt to route to INT1

Step 5: Put device in 2g Active Mode
IIC_RegWrite(0x38, 0x09); //2g Active Mode 100 Hz

Step 6: Write an Interrupt Service Routine to Clear the interrupt and Flush the data from the FIFO
The interrupt service routine must be able to wake the device and flush the data within 10 ms
at this sample rate. It will take the 12-bit data 5 ms to flush 32 samples at 400 kHz as shown
in calculations above.

Interrupt void isr_KBI (void)
{

WAKE_MCU;
//clear the interrupt flag
CLEAR_KBI_INTERRUPT;

//Determine the source of the interrupt by reading the system interrupt
Int_SourceSystem = IIC_RegRead(0x15);
// Set up Case statement here to service all of the possible interrupts
if ((Int_SourceSystem&0x40)==0x40)
{

// 1. Read the Status Register to Clear the Overflow Flag Interrupt

Table 18. Registers of Importance for the FIFO

Reg Name Definition Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

10 F_STATUS FIFO Status R F_OVF F_WMRK_FLAG F_CNT5 F_CNT4 F_CNT3 F_CNT2 F_CNT1 F_CNT0

11 F_8DATA 8-bit FIFO Data R XD11 XD10 XD9 XD8 XD7 XD6 XD5 XD4

12 F_12DATA 12-bit FIFO Data R 0 0 0 0 XD3 XD2 XD1 XD0

13 F_SETUP FIFO Setup R/W F_MODE1 F_MODE0 F_WMRK5 F_WMRK4 F_WMRK3 F_WMRK2 F_WMRK1 F_WMRK0

14 SYSMOD System Mode R PERR FGERR 0 0 0 0 SYSMOD1 SYSMOD0

15 INT_SOURCE Interrupt Status R SRC_ASLP SRC_FIFO SRC_TRANS SRC_LNDPRT SRC_PULSE SRC_FF_MT_1 SRC_FF_MT_2 SRC_DRDY

3A CTRL_REG3
Control Reg3 R/W

(Wake Interrupts from
Sleep)

FIFO_GATE WAKE_TRANS WAKE_LNDPRT WAKE_PULSE WAKE_FF_MT_1 WAKE_FF_MT_2 IPOL PP_OD

3B CTRL_REG4 Control Reg4 R/W
(Interrupt Enable Map) INT_EN _ASLP INT_EN _FIFO INT_EN _TRANS INT_EN _LNDPRT INT_EN _PULSE INT_EN _FF_MT_1 INT_EN _FF_MT_2 INT_EN_DRDY

3C CTRL_REG5 Control reg5 R/W
(Interrupt Configuration) INT_CFG_ASLP INT_CFG_FIFO INT_CFG_TRANS INT_CFG_LNDPRT INT_CFG_PULSE INT_CFG_FF_MT_1 INT_CFG_FF_MT_2 INT_CFG_DRDY
AN3920

Sensors
10 Freescale Semiconductor

IIC_RegRead(0x10);

// 2. This would be used to burst out 12 bit data
ComObj.ReadDataBurst(CurDeviceAddress, 0X05, ref databuf12, 192);
//This would be used to burst out 8 bit data
ComObj.ReadDataBurst(CurDeviceAddress, 0X01, ref databuf8, 96);

}
}

6.2 Event Detection Waiting for a Tap Event to Flush the Data for Further Analysis
400 Hz ODR, 8g Mode
Step 1: Put device in Standby Mode

IIC_RegWrite(0x38, 0x00); //Ctrl Reg1: 400 Hz mode, standby
Step 2: Register 0x16 Set FDE bit = 1 to enable the FIFO

IIC_RegWrite(0x16, 0x84); //Set FDE = 1, and leave Event flag on Z-axis
Step 3: Set the FIFO to Circular Buffer Mode in Register 0x13 F_Setup

IIC_RegWrite(0x13, 0x40); //FIFO Set to Circular Buffer Mode
Step 4: Enable X and Y and Z Single Pulse

IIC_RegWrite(0x2F, 0x15)
Step 5: Set Threshold 1.55g on X and 2.58g on Z

Note: Every step is 0.258g
• 1.55g/ 0.258g = 6 counts
• 2.58g/0.258g = 10 counts
IIC_RegWrite(0x31, 0x06); //Set X Threshold to 1.55g
IIC_RegWrite(0x32, 0x06); //Set Y Threshold to 1.55g
IIC_RegWrite(0x33, 0x0A); //Set Z Threshold to 2.58g

Step 6: Set Time Limit for Tap Detection to 50ms
Note: 400 Hz ODR, Time step is 0.625 ms per step
• 50 ms/0.625 ms = 80 counts
IIC_RegWrite(0x34,0x50); //50 ms

Step 7: Set Latency Timer to 300 ms
• Note: 400 Hz ODR, Time step is 1.25 ms per step
• 300ms/1.25 ms = 240 counts
IIC_RegWrite(0x35,0xF0); //300 ms

Step 8: Set the Tap Interrupt Pin to INT1 to Alert to MCU to wake up and flush the FIFO
IIC_RegWrite(0x3B, 0x08); //Enable the interrupt Pin Tap
IIC_RegWrite(0x3C, 0x08); //Set the interrupt to route to INT1

Step 9: Put Device in 8g Active Mode
IIC_RegWrite(0x38, 0x03); //8g Active Mode

Step 10: Write an Interrupt Service Routine to Clear the interrupt and Flush the data from the FIFO
The interrupt service routine will wake the MCU, and then wait 10-12 ms to allow a few more
samples to come into the buffer, and then it will flush the FIFO. Sometimes the rebound
acceleration data can be very insightful to understanding an event. Therefore it is a good
idea to capture the data right before the event, during the event and maybe a few samples
after the event. All of this can be accomplished with the FIFO.
AN3920

Sensors
Freescale Semiconductor 11

Interrupt void isr_KBI (void)
{

WAKE_MCU;
//clear the interrupt flag
CLEAR_KBI_INTERRUPT;
//Determine the source of the interrupt by first reading the system interrupt
register
Int_SourceSystem = IIC_RegRead(0x15);
// Set up Case statement here to service all of the possible interrupts
if ((Int_SourceSystem&0x08)==0x08)
{

// 1. Read the Status Register to Clear the Tap Status Flag
TapStatus = IIC_RegRead(0x30);
TIME_DELAY(10); //10ms delay to allow 4-5 more samples
// 2. If 8 bit data only required
 ComObj.ReadDataBurst(CurDeviceAddress, 0X01, ref databuf8, 96);
// Or if 12 bit data required
ComObj.ReadDataBurst(CurDeviceAddress, 0X05, ref databuf12, 192);

}
}

6.3 Auto-Wake Sleep Trigger Using the FIFO to Hold the Data that Saved Before the
ODR Changed
Step 1: Put the device in Standby Mode, ASLEEP = 50 Hz, Wake DR = 400 Hz

IIC_RegWrite (0x38, 0x00);
Step 2: Enable Auto Sleep: To enable the Auto-Wake/Sleep set bit 1 in Register 39, the SLPE bit.

• Note: Register 0x39 CTRL_REG2
CTRLReg2Data = IIC_RegRead(0x39); //Store value in the Register
CTRLReg2Data| = 0x02; //Set the Sleep Enable Bit
IIC_RegWrite(0x39, CTRLReg2Data); Write the updated value in CTRL Register 2.

Step 3: Set the Sleep Timer for 20 seconds to time out
Note: Time step at 400 Hz ODR = 320 ms steps

20s/ 0.32s = 62.5, rounded to 63 counts
IIC_RegWrite(0x37, 0x3F);

Step 4: Set the FIFO Gate and the Motion Block 1 in the Wake From Sleep Register
WakeRegData = IIC_RegRead(0x3A); //Store Register contents
WakeRegData| = 0x88; Set the Wake from Motion and the FIFO Gate
IIC_RegWrite(0x3A, WakeRegData);

Step 5: Configure the FIFO, enabling FDE=1 from Register 0x16
IIC_RegWrite(0x16, 0x84); //Set FDE = 1, and leave Event flag on Z axis

Step 6: Put the FIFO in Circular Buffer Mode
IIC_RegWrite(0x13, 0x40); //FIFO Set to Circular Buffer Mode

Step 7: Set up the Motion Freefall Block 1 (INT2), and Auto Sleep (INT1)
IIC_RegWrite(0x3B, 0x84); // Enable Motion Block, Auto Sleep
IIC_RegWrite(0x3C, 0x80); //Set INT1 to AutoSleep, Set INT2 to Motion

Step 8: Enable X, Y, Z with “OR” Condition for Motion Detection
IIC_RegWrite(0x23, 0x6A);
AN3920

Sensors
12 Freescale Semiconductor

Step 9: Set the Threshold to 2g in 2g Mode
Note: In 2g mode each count is 15.75 mg
• 2g/0.01575g
IIC_RegWrite(0x25, 0x7F);

Step 10: Set the debounce counter to eliminate false readings at 50 Hz (Sleep ODR)
IIC_RegWrite(0x26, 0x04);

Step 11: Put the device in 2g Active Mode, Wake sample rate is 400 Hz
IIC_RegWrite(0x38, 0x01);

Step 12: Set up the Interrupt Service Routine
Interrupt void isr_KBI (void)
{

WAKE_MCU;
//clear the interrupt flag
CLEAR_KBI_INTERRUPT;
//Determine the source of the interrupt by first reading the system interrupt
register
Int_SourceSystem = IIC_RegRead(0x15);
// Set up Case statement here to service all of the possible interrupts
if ((Int_SourceSystem&0x80)==0x80)
{

//Perform an Action since AutoSleep Flag has been set
//Read the System Mode to clear the system interrupt
Int_SysMod = IIC_RegRead(0x14);
if (Int_SysMod==0x02)
{

// sleep mode
//Flush Data to MCU and store
ComObj.ReadDataBurst(CurDeviceAddress, 0X01, ref databuf8, 96);

}
else if (Int_SysMod==0x01)
{

//Wake Mode
//Flush Data to MCU and store
ComObj.ReadDataBurst(CurDeviceAddress, 0X01, ref databuf8, 96);

}
else
{

//Error
}

}
}

AN3920

Sensors
Freescale Semiconductor 13

How to Reach Us:

Home Page:
www.freescale.com

Web Support:
http://www.freescale.com/support

USA/Europe or Locations Not Listed:
Freescale Semiconductor, Inc.
Technical Information Center, EL516
2100 East Elliot Road
Tempe, Arizona 85284
1-800-521-6274 or +1-480-768-2130
www.freescale.com/support

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
www.freescale.com/support

Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064
Japan
0120 191014 or +81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:
Freescale Semiconductor China Ltd.
Exchange Building 23F
No. 118 Jianguo Road
Chaoyang District
Beijing 100022
China
+86 10 5879 8000
support.asia@freescale.com

For Literature Requests Only:
1-800-441-2447 or +1-303-675-2140
Fax: +1-303-675-2150
LDCForFreescaleSemiconductor@hibbertgroup.com

AN3920
Rev. 0
02/2010

Information in this document is provided solely to enable system and software
implementers to use Freescale Semiconductor products. There are no express or
implied copyright licenses granted hereunder to design or fabricate any integrated
circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to
any products herein. Freescale Semiconductor makes no warranty, representation or
guarantee regarding the suitability of its products for any particular purpose, nor does
Freescale Semiconductor assume any liability arising out of the application or use of any
product or circuit, and specifically disclaims any and all liability, including without
limitation consequential or incidental damages. “Typical” parameters that may be
provided in Freescale Semiconductor data sheets and/or specifications can and do vary
in different applications and actual performance may vary over time. All operating
parameters, including “Typicals”, must be validated for each customer application by
customer’s technical experts. Freescale Semiconductor does not convey any license
under its patent rights nor the rights of others. Freescale Semiconductor products are
not designed, intended, or authorized for use as components in systems intended for
surgical implant into the body, or other applications intended to support or sustain life,
or for any other application in which the failure of the Freescale Semiconductor product
could create a situation where personal injury or death may occur. Should Buyer
purchase or use Freescale Semiconductor products for any such unintended or
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and
its officers, employees, subsidiaries, affiliates, and distributors harmless against all
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,
directly or indirectly, any claim of personal injury or death associated with such
unintended or unauthorized use, even if such claim alleges that Freescale
Semiconductor was negligent regarding the design or manufacture of the part.

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.
All other product or service names are the property of their respective owners.
© Freescale Semiconductor, Inc. 2010. All rights reserved.

	1.0 Introduction
	1.1 Key Words
	Table of Contents
	1.2 Summary
	2.0 MMA8450Q Consumer 3-axis Accelerometer 3 x 3 x 1 mm
	The MMA8450Q has a selectable dynamic range of ±2g, ±4g and ±8g with sensitivities of 1024 counts/g, 512 counts/g and 256 counts...

	2.1 Key Features of the MMA8450Q
	2.2 Two (2) Programmable Interrupt Pins for 8 Interrupt Sources
	2.3 Application Notes for the MMA8450Q
	3.0 Applications Using the FIFO
	The FIFO is used typically for the following functions:

	3.1 Power Savings Using the FIFO Data Logging
	The FIFO is very beneficial for saving overall system power by putting the processor into sleep mode until it needs to process d...
	The timing of the data rate and the bus speed should be chosen with care. As an example the accelerometer is put in Low Power Mo...
	The FIFO overflow is asserted every 32 samples. The user has the option of flushing either the 12-bit data or the 8-bit data. Fo...
	Note that bursting out 32 samples of 12-bit XYZ data consecutively takes 1950 bits to perform the transaction. By bursting XYZ 1...
	DataReadyRead(32) = (((3 · 2)+ 3) · 10) · 32 = 2880 bits/I2C bit rate
	For an I2C bit rate of 400 kHz, DataReadyRead(32) = 7.2 ms + 3 ms · 32 = 7.296 ms

	It is seen that using the FIFO to pull out all 32 samples at one time saves on the overhead. This allows the application processor to do other things or to remain in a low power mode for longer.
	Example conditions are given for a processor with the wake timing and current consumption values in Table 1. In Wake Mode the ex...
	Table 1. Example Conditions

	3.1.1 Flushing the FIFO at 100 Hz ODR and Below
	At 100 Hz (or less) output data rate the processor can wake up and flush the FIFO without missing any samples. The following is ...
	Table 2. Wake to Sleep Timing at 100 Hz ODR

	3.1.2 Flushing the FIFO at 200 Hz ODR
	When the data rate is set to 200 Hz the processor can be triggered by the watermark set at 31 samples, giving 5 ms to turn on, w...
	Table 3. Wake to Sleep Timing at 200 Hz ODR

	3.1.3 Flushing the FIFO at 400 Hz ODR
	When sampling at 400 Hz, there is a new sample every 2.5 ms, which does not allow a lot of time to wake and flush without missin...
	Table 4 presents all the calculations at 400 Hz flushing 12-bit data and 8-bit data without missing samples.
	Table 4. Wake to Sleep Timing at 400 Hz ODR

	Table 5 summarizes the wake and sleep timing for all sample rates of the MMA8450Q. The total current consumed per cycle and the current savings as a percentage are calculated based on the amount of time the processor is in wake vs. sleep.
	Table 5. Power Savings Using FIFO at Different Data Rates

	From Table 5, these values can be related to the amount of time that a typical lithium ion battery for a cell phone would last. ...
	Table 6. Example Li-Ion Battery Life Calculations without the FIFO to Data Log Data

	When the processor is continuously running, the accelerometer current consumption has a small effect on the battery life because...
	Table 7. Example Li-Ion Battery Life Calculations Using the FIFO to Data Log 12-bit Data

	3.2 Power Savings Using the FIFO to Collect the History Leading up to an Event Trigger
	Another use for the FIFO is the ability to analyze the data that occurred right up to the point of an interrupt triggering event...

	3.3 FIFO Behavior During Wake to Sleep Transitions
	The following table describes the different behaviors of the FIFO under the wake/sleep conditions.
	Table 8. Behavior of FIFO under Wake/ Sleep Conditions

	When the FIFO is configured and the auto-wake/sleep is configured with the FIFO Wake from Sleep bit set (Reg 0x3A bit 7) the dat...
	Table 9. 0x14 SYSMOD: System Mode Register (Read Only)

	4.0 Embedded Settings of the FIFO
	The following section discusses the different registers involved in configuring the FIFO.

	4.1 Register 0x16: XYZ_DATA_CFG Sensor Data Configuration Register
	The XYZ_DATA_CFG register configures the 3-axis acceleration data and event flag generator based on ODR. First the FDE (Bit 7) must be set (1). This points the sample data to the FIFO buffer. The Sensor Data Configuration Register is shown in Table 10.
	Table 10. 0x16 XYZ_DATA_CFG: Sensor Data Configuration Register (Read/Write)

	4.2 Register 0x11-0x12: F_8DATA and F_12DATA FIFO Data
	F_8DATA is Register 0x11 is shown in Table 11 and provides access to the previous (up to) 32 samples of X, Y, and Z axis acceler...
	Table 11. 0x11 F_8DATA: 8-bit FIFO Data Register Points to Register 0x01 (Read Only)
	Table 12. Register 0x12 F_12DATA: 12-bit FIFO Data Register Points to Register 0x05 (Read Only)

	4.3 Register 0x13: F_SETUP FIFO Setup Register
	The setup register shown in Table 13, is used to configure the options for the FIFO. The FIFO can operate in three (3) states wh...
	Table 13. Register 0x13 F_SETUP: FIFO Setup Register (Read/Write)

	4.3.1 Changing Modes of the FIFO
	First note that the Watermark bits 0 through 5 can only be written in standby mode. The FIFO “Disable” bits 6 and 7 can be activ...
	To change Modes while in Active try the following sequence:
	A FIFO sample count exceeding the watermark event does not stop the FIFO from accepting new data. The FIFO update rate is dictat...
	When a byte is read from the FIFO buffer the oldest sample data in the FIFO buffer is returned and also deleted from the front o...

	4.4 Register 0x10: F_STATUS FIFO Status Register
	The FIFO Status Register shown in Table 14, is used to retrieve information about the FIFO. This register has a flag for the overflow and watermark. It also has a counter that can be checked to review the number of samples stored in the buffer.
	Table 14. Register 0x10 F_STATUS: FIFO STATUS Register (Read Only)

	The F_OVF and F_WMRK_FLAG flags remain asserted while the event source is still active, but the user can clear the FIFO interrupt bit flag in the interrupt source register (INT_SOURCE Reg 0x15) by reading the F_STATUS register (0x10).
	The F_OVF bit flag will assert when the FIFO has overflowed and the F_WMRK_FLAG bit flag will assert when the F_CNT value is gre...

	5.0 Configuring the FIFO to an Interrupt Pin
	In order to set up the system to route to a hardware interrupt pin, the System Interrupt (bit 6 in Reg 0x3B) must be enabled. The MMA8450Q allows for eight (8) separate types of interrupts. One (1) of these is reserved for the FIFO.
	Table 15. 0x3B CTRL_REG4 Register (Read/Write)

	The INT_EN_FIFO interrupt enable bit allows the FIFO function to route its event detection flag to the interrupt controller of the system. The interrupt controller routes the enabled function to either the INT1 or INT2 pin.
	Table 16. 0x3C CTRL_REG5 Register (Read/Write)

	5.1 Reading the System Interrupt Status Source Register
	In the interrupt source register, the status of the various embedded features can be determined. This is shown in Table 17.
	The bits that are set (logic ‘1’) indicate which function has asserted an interrupt; conversely, the bits that are cleared (logi...
	Table 17. 0x15 INT_SOURCE: System Interrupt Status Register (Read Only)

	6.0 Example Code Using the FIFO
	The following are three examples for configuring the FIFO. Table 18 shows all the registers of importance for using the FIFO.
	Table 18. Registers of Importance for the FIFO

	6.1 Power Minimization Example: Data logger Collecting 12-bit Data 100 Hz
	6.2 Event Detection Waiting for a Tap Event to Flush the Data for Further Analysis 400 Hz ODR, 8g Mode
	6.3 Auto-Wake Sleep Trigger Using the FIFO to Hold the Data that Saved Before the ODR Changed

