
Freescale Semiconductor
Application Note

© 2010 Freescale Semiconductor, Inc. All rights reserved.

1 Introduction
Both the Flash Abstraction Layer (FAL) and Flash Media
Driver (FMD)-based Flash driver and the Model Device
Driver (MDD) and Platform-Dependent Driver
(PDD)-based Flash driver, manages Flash ROM as a single
disk by default. When the WinCE system is booted up, the
file system on the NAND Flash disk is scanned. This scan
covers all the partitions on the disk, including the
un-mounted partitions. If there are many files on the Flash
disk, the time taken to scan the files is too long, and this in
turn makes the WinCE boot time longer.

When WinCE boots up, the device.dll file loads the NAND
Flash disk driver. Other system services such as gwes.dll,
explorer.exe, and servicesStart.exe depend on the device.dll
file, and these services start only after the device.dll file
completes its tasks. But, the file system scan on the NAND
Flash disk, blocks the device.dll file to complete its tasks and
due to this, the start of the system services gets delayed, and
the booting time also becomes too long.

One of the ways to avoid this problem is to stop loading the
NAND Flash disk driver at boot time. After the system is
booted up, allow the device.dll file to load the disk driver by

Document Number: AN4139
Rev. 0, 06/2010

Contents

1. Introduction .1
2. Design References .2
3. NAND Flash PDD Driver Reference 8
4. NANDFMD LIB Reference .15
5. OAL KernelIoControl Code Reference 16
6. Registry and BIB Settings .19
7. NAND Storage Disk Auto Load Application20
8. Patch for i.MX27ADS WinCE 6.0 F15 BSP 20
9. Patch for i.MX313DS WinCE 6.0 SDK 1.4 BSP21

10. Revision History .21
A. Improving the Boot Up Speed on Old NAND Flash

Driver .22

Multi-NAND Disks Implementation
Guide
by Multimedia Applications Division

Freescale Semiconductor, Inc.
Austin, TX

Multi-NAND Disks Implementation Guide, Rev. 0

2 Freescale Semiconductor

Design References

calling the ActivateDevice function (see Section Appendix A, “Improving the Boot Up Speed on Old
NAND Flash Driver‚”). After the system boots up, all the threads run in parallel, and the file system scan
does not block other services. But, if the user enables the Hive-based registry or the ROM-Only file
system, then the NAND Flash disk driver must be loaded at boot time. However, this solution is not
feasible.

Based on the above analysis, the multi-NAND Disks solution is imported. The NAND Flash is divided
into two disks—when the system boots up, only the small disk (used for Hive-based registry or ROM-Only
file system) is loaded with the device.dll file, and the big disk (used for user storage) is loaded after booting
up an auto-run application.

This application note describes the ways to implement the multi-NAND Disks solution on a WinCE 6.0
Board Support Package (BSP), and introduces the multi-NAND Disks supported by the Flash driver
architecture.

The reference codes given in this application note are based on the Single-Level Cell (SLC) NAND Flash
chip.

2 Design References
This section includes the framework description and a porting example.

2.1 Framework Description
The multi-NAND Disks Flash driver is based on the Microsoft Windows CE R2 MDD- and PDD-based
Flash driver. To support the R2 MDD- and PDD based-Flash driver, the SYSGEN_FLASHMDD must be set to
"1", and it includes the following items:

• Block device driver—implements the NAND Flash PDD driver.

• NANDFMD LIB—implements the Flash hardware access code, and this LIB is shared by the OEM
Adaption Layer (OAL) and Eboot.

• OAL kernel IOControl code—manages all the Flash access requests between the Flash PDD driver
and the Flash hardware access LIB.

• Registry setting—identifies the multi-NAND Disks.

• Auto-run application—used to load the storage NAND disk after the WinCE is booted up.

The earlier version of the NAND Flash driver had a single driver that managed the whole NAND chip, and
the blocks used for the XLDR, EBOOT, IPL, BOOT CONFIG, and NK regions were marked as Reserved.
Also, this earlier version of the NAND Flash driver do not use these blocks for storage.

Multi-NAND Disks Implementation Guide, Rev. 0

Freescale Semiconductor 3

Design References

Figure 1 shows the layout of the single NAND flash driver.

Figure 1. Layout of Single NAND Flash Driver

In the multi-NAND Disks Flash driver, the driver for each disk manages the blocks that are assigned only
to it. These drivers do not have access to other NAND Flash blocks. All storage disks use the same
drivers—flashmdd.dll and flashpdd_nand.dll—and these storage disks are identified from each other by
the difference in context of the FmdWrapperPdd structure.

Figure 2 shows the layout of the multi-NAND Disks Flash driver.

Figure 2. Layout of Multi-NAND Disks Flash Driver

Multi-NAND Disks Implementation Guide, Rev. 0

4 Freescale Semiconductor

Design References

Figure 3 shows the system architecture of the new multi-NAND Disks based Flash driver.

Figure 3. System Architecture of the Multi-NAND Disks Flash Driver

2.2 Porting Example
This application note uses the 2 Kbytes page size SLC NAND Flash (MT29F4G08ABC) and 512 bytes
page size SLC NAND Flash as the target Flash ROM, based on the i.MX27ADS WinCE 6.0 F15 BSP. This
solution can also be used for other WinCE 6.0 BSP systems with some modifications done to the NAND
Flash driver.

The following is the list of all changes that need to be done in the i.MX27ADS F15 WinCE 6.0 BSP to
support the multi-NAND Disks, and all these changes should be in the BSP folder:

• WINCE600\PLATFORM\i.MX27ADS\i.MX27ADS.bat file:

— Rename MX27ADS.bat to i.MX27ADS.bat.

— Add set IMGNAND=1.

— Add set SYSGEN_FLASHMDD=1 to support the WinCE 6.0 R2 MDD- and PDD-based Flash driver.

— Add set BSP_NAND_PDD=1 to use the Flash PDD driver and include all the related codes.

— Change set BSP_NAND_FMD=1 to avoid the earlier version of the NAND FMD driver:

set IMGNAND=1
set BSP_NAND_FMD=1
set BSP_NAND_PDD=1
set SYSGEN_FLASHMDD=1

Multi-NAND Disks Implementation Guide, Rev. 0

Freescale Semiconductor 5

Design References

• WINCE600\PLATFORM\i.MX27ADS\sources.cmn file:

— Add the macro defined for BSP_NAND_PDD. This macro is used in the source codes to support the
multi-NAND Disks:

!IF "$(BSP_NAND_PDD)"=="1"
CDEFINES=$(CDEFINES) -DBSP_NAND_PDD
!ENDIF

• WINCE600\PLATFORM\i.MX27ADS\FILES\Platform.bib file:

— Add the Flash PDD driver flashpdd_nand.dll and the auto-run application InstallNand.exe in
the MODULES section as follows:

IF BSP_NAND_PDD
flashpdd_nand.dll $(_FLATRELEASEDIR)\flashpdd_nand.dll NKSHK
InstallNand.exe $(_FLATRELEASEDIR)\InstallNand.exe NK SH

ENDIF

• WINCE600\PLATFORM\i.MX27ADS\FILES\Platform.reg file:

— Add the registry settings for the multi-NAND Disks support:

IF BSP_NAND_PDD
; HIVE BOOT SECTION
[HKEY_LOCAL_MACHINE\Drivers\BuiltIn\NAND_Flash]

"Dll"="flashmdd.dll"
"FlashPddDll"="flashpdd_nand.dll"
"Order"=dword:1
"Prefix"="DSK"
"Ioctl"=dword:4
"Profile"="NSFlash"
"IClass"=multi_sz:"{A4E7EDDA-E575-4252-9D6B-4195D48BB865}"
"FriendlyName"="NAND FLASH Driver"
"RegionNumber"=dword:1

IF SYSGEN_FSREGHIVE
"Flags"=dword:1000

ENDIF
; Override names in default profile
[HKEY_LOCAL_MACHINE\System\StorageManager\Profiles\NSFlash]

"PartitionDriver"="flashpart.dll"
"Name"="NANDFLASH"
"Folder"="NANDFlash"
"AutoMount"=dword:1
"AutoPart"=dword:1
"AutoFormat"=dword:1
"MountFlags"=dword:0
"Ioctl"=dword:4

IF SYSGEN_FSREGHIVE
"MountAsBootable"=dword:1
"MountPermanent"=dword:1

; "MountHidden"=dword:1
ENDIF
IF SYSGEN_FSROMONLY

"MountAsRoot"=dword:1
ENDIF
[HKEY_LOCAL_MACHINE\Drivers\BlockDevice\NAND_Flash2]

"Dll"="flashmdd.dll"
"FlashPddDll"="flashpdd_nand.dll"
"Order"=dword:1
"Prefix"="DSK"

Multi-NAND Disks Implementation Guide, Rev. 0

6 Freescale Semiconductor

Design References

"Ioctl"=dword:4
"Profile"="NSFlash2"
"IClass"=multi_sz:"{A4E7EDDA-E575-4252-9D6B-4195D48BB865}"
"FriendlyName"="NAND FLASH Driver2"
"RegionNumber"=dword:2

; Override names in default profile
[HKEY_LOCAL_MACHINE\System\StorageManager\Profiles\NSFlash2]

"PartitionDriver"="flashpart.dll"
"Name"="NANDFLASH"
"Folder"="NANDFlash"
"AutoMount"=dword:1
"AutoPart"=dword:1
"AutoFormat"=dword:1
"MountFlags"=dword:0
"Ioctl"=dword:4

; END HIVE BOOT SECTION
[HKEY_LOCAL_MACHINE\init]

"Launch129"="InstallNand.exe"
"Depend129"=hex:14,00

ENDIF

• WINCE600\PLATFORM\i.MX27ADS\src\inc\Ioctl_cfg.h file:

— Add the definition for IOCTL_HAL_NANDFMD_ACCESS:

#ifdef BSP_NAND_PDD
//OEM IOCTL CODE
#define IOCTL_HAL_NANDFMD_ACCESSCTL_CODE(FILE_DEVICE_HAL, 4000, METHOD_BUFFERED,
FILE_ANY_ACCESS)
#endif

• WINCE600\PLATFORM\i.MX27ADS\src\inc\Ioctl_tab.h file:

— Add a link between the macro IOCTL_HAL_NANDFMD_ACCESS and the function
OALIoCtlHalNandfmdAccess():

#ifdef BSP_NAND_PDD
{ IOCTL_HAL_NANDFMD_ACCESS, 0, OALIoCtlHalNandfmdAccess },
#endif

• WINCE600\PLATFORM\i.MX27ADS\src\common\nandfmd folder:

— Update the nandfmd_lib for multi-NAND Disks support, and it can support both the 2 Kbytes
page size and 512 bytes page size SLC NAND Flash. Refer to NANDFMD.zip file located in the
AN4139SW.zip file for more details.

• WINCE600\PLATFORM\i.MX27ADS\src\drivers\block\nandpdd folder:

— Add this folder to support the new PDD Flash driver. Refer to NANDPDD.zip file located in the
AN4139SW.zip file for more details.

• WINCE600\PLATFORM\i.MX27ADS\src\drivers\block\dir file:

— Add NANDPDD to DIRS.

• WINCE600\PLATFORM\i.MX27\SRC\OAL\OALLIB\nfc.cpp file:

— Add this new file to support the NANDFMD_LIB in OAL. Refer to nfc.cpp file located in the
AN4139SW.zip file for more details.

• WINCE600\PLATFORM\i.MX27\SRC\OAL\OALLIB\sources file:

— Add nfc.cpp to SOURCES for compilation.

Multi-NAND Disks Implementation Guide, Rev. 0

Freescale Semiconductor 7

Design References

• WINCE600\PLATFORM\i.MX27\SRC\OAL\OALLIB\ioctl.c file:

— Implement the OALIoCtlHalNandfmdAccess and CriticalSection functions for the NAND Flash
operation:

#ifdef BSP_NAND_PDD
#include <partdrv.h>
#include "..\..\common\nandfmd\nandfmd.h"
#endif
… …
#ifdef BSP_NAND_PDD
CRITICAL_SECTION g_oalNfcMutex;
#endif
… …
BOOL OALIoCtlHalPostInit(
UINT32 code, VOID *pInpBuffer, UINT32 inpSize, VOID *pOutBuffer,
UINT32 outSize, UINT32 *pOutSize)
{
// Note that WinCE 6.00 only allows the use of critical sections whereas
// WinCE 5.00 also allowed the use of named mutexes. Therefore, we must
// now create and use a single critical section instead of a named mutex
// to provide mutual exclusion between the OAL and all PMIC drivers for
// accessing the CSPI bus.
InitializeCriticalSection(&g_oalPmicMutex);
#ifdef BSP_NAND_PDD
InitializeCriticalSection(&g_oalNfcMutex);
#endif
// Set flag to indicate it is okay to call EnterCriticalSection() and
// LeaveCriticalSection() within the OAL.
g_oalPostInit = TRUE;
return(TRUE);
}
… …
#ifdef BSP_NAND_PDD
BOOL OALIoCtlHalNandfmdAccess(
UINT32 code, VOID* pInpBuffer, UINT32 inpSize, VOID* pOutBuffer,
UINT32 outSize, UINT32 *pOutSize)
{

BOOL bResult;
EnterCriticalSection(&g_oalNfcMutex);
bResult = OALFMD_Access(pInpBuffer, inpSize);
LeaveCriticalSection(&g_oalNfcMutex);
return bResult;

}
#endif

• WINCE600\PLATFORM\i.MX27\SRC\OAL\OALEXE\sources file:

— Add support for using nandfmd_lib.lib in OAL:

!IF "$(BSP_NAND_PDD)" == "1"
TARGETLIBS=\

$(TARGETLIBS) \
$(_TARGETPLATROOT)\lib\$(_CPUINDPATH)\nandfmd_lib.lib

!ENDIF

• WINCE600\PLATFORM\i.MX27ADS\SRC\TOOLS\InstallNand folder:

Multi-NAND Disks Implementation Guide, Rev. 0

8 Freescale Semiconductor

NAND Flash PDD Driver Reference

— This is the auto-run application that is used to load the Flash storage disk driver after the
WinCE is booted up. Refer to Tools.zip file located in the AN4139SW.zip file for more details.

• WINCE600\PLATFORM\i.MX27ADS\SRC\DIRS file:

— Add the Tools folder to compile.

• WINCE600\PLATFORM\i.MX27ADS\SRC\BOOTLOADER\XLDR\NAND folder:

— This folder is updated to support MT29F4G08AB and other 5-cycle address mode NAND Flash.
Refer to nandchip.inc, xldr.s and the sources file located in the AN4139SW.zip file for more
details.

• WINCE600\PLATFORM\i.MX27ADS\SRC\OAL\OALLIB\oal_startup.c file:

— Add the following lines of code to support both the 2 Kbytes page size and 512 Kbytes page
size NAND Flash. Line 80:

#ifdef NAND_LARGE_PAGE
pSYSCTRL->FMCR = 0xFCFFFFE9;
#else
pSYSCTRL->FMCR = 0xFCFFFFC9;
#endif

3 NAND Flash PDD Driver Reference
The Flash PDD driver does not access the Flash hardware directly and currently all the Flash hardware
access requests are sent to OAL by the KernelIoControl(IOCTL_HAL_NANDFMD_ACCESS) function.

The main functions of the PDD driver are as follows:

• Create the FmdWrapperPdd context to identify each of the NAND disks.

• Get the RegionNumber from the registry, and decide the m_dwStartBlock and m_dwBlockCounts for
each of the NAND disks.

• Wrap all the NAND Flash access requests into a structure FmdAccessInfo, and send this to OAL by
using the KernelIoControl(IOCTL_HAL_NANDFMD_ACCESS) function.

3.1 NAND Flash PDD Driver Source Files
The NAND Flash PDD driver source files are contained in the following locations:

WINCE600\PLATFORM\iMX27ADS\SRC\DRIVERS\BLOCK\NANDPDD\flashpdd.def

WINCE600\PLATFORM\iMX27ADS\SRC\DRIVERS\BLOCK\NANDPDD\fmdwrappermain.cpp

WINCE600\PLATFORM\iMX27ADS\SRC\DRIVERS\BLOCK\NANDPDD\fmdwrappermain.h

WINCE600\PLATFORM\iMX27ADS\SRC\DRIVERS\BLOCK\NANDPDD\fmdwrapperpdd.cpp

WINCE600\PLATFORM\iMX27ADS\SRC\DRIVERS\BLOCK\NANDPDD\fmdwrapperpdd.h

WINCE600\PLATFORM\iMX27ADS\SRC\DRIVERS\BLOCK\NANDPDD\makefile

WINCE600\PLATFORM\iMX27ADS\SRC\DRIVERS\BLOCK\NANDPDD\nandfmd.cpp

WINCE600\PLATFORM\iMX27ADS\SRC\DRIVERS\BLOCK\NANDPDD\sources

Multi-NAND Disks Implementation Guide, Rev. 0

Freescale Semiconductor 9

NAND Flash PDD Driver Reference

3.2 Flashpdd.def
This is the Flash PDD stream driver define file, and it is the same as the Microsoft reference file which is
contained in the following location:
WINCE600\PUBLIC\COMMON\OAK\DRIVERS\BLOCK\MSFLASH\FMDWRAPPERPDD\flashpdd.def

3.3 Fmdwrappermain.cpp
This file implements the stream interface functions for the Flash PDD driver, and the update from
Microsoft reference driver is FlashPdd_Init().

Read the RegionNumber from registry and save it to FmdWrapperPdd context. This RegionNumber is used to
identify different sets of NAND disks.

3.4 Fmdwrappermain.h
Based on the Microsoft reference driver file, the definitions for
REG_NAND_DRIVER_REGION_NUMBER and SMALL_PARTITION_BLOCKS are given below:

• REG_NAND_DRIVER_REGION_NUMBER—defines the registry key name for RegionNumber.

• SMALL_PARTITION_BLOCKS—defines the small disk size. In this example, the small disk is
used for Hive-based registry, and the default setting is 100 blocks.

3.5 Fmdwrapperpdd.cpp
Based on the Microsoft reference driver file, replace all the FMD_xxx function calls with OemFMD_xxx. In this
example, FMDInterface is re-defined to support the multi-NAND Disks functions.

3.6 Fmdwrapperpdd.h
Based on the Microsoft reference driver file, replace FMDInterface with OemFMDInterface. The
sub-functions in the OemFMDInterface function can support more parameters, that are required by the
multi-NAND Disks.

The structure FmdWrapperPdd has the following additional variable members:

• m_dwRegionNumber—is used to identify the disk number.

• m_dwStartBlock—records the start NAND block for the disk.

• m_dwBlockCounts—records the size of the NAND disk in block.

• m_bInitialized—flags for driver initialization.

3.7 Nandfmd.cpp
This file defines the OEMFMD_xxx functions for OemFMDInterface and it includes the following functions:

OEMFMD_Init(),

OEMFMD_Deinit(),

OEMFMD_ReadSector(),

OEMFMD_WriteSector(),

Multi-NAND Disks Implementation Guide, Rev. 0

10 Freescale Semiconductor

NAND Flash PDD Driver Reference

OEMFMD_EraseBlock(),

OEMFMD_PowerUp(),

OEMFMD_PowerDown(),

OEMFMD_OemIoControl(),

OEMFMD_GetInfo(),

OEMFMD_GetBlockStatus(),

OEMFMD_SetBlockStatus().

3.7.1 OEMFMD_Init
OemFMDInterface > PFN_OemINIT

This function initializes the NAND Flash hardware with KernelIoControl (IOCTL_HAL_NANDFMD_ACCESS),
and FMD_ACCESS_CODE_HWINIT is the dwAccessCode.

The OEMFMD_Init function along with its parameters, is displayed below:
PVOID OEMFMD_Init(LPCTSTR lpActiveReg, PPCI_REG_INFO pRegIn, PPCI_REG_INFO pRegOut);

3.7.1.1 Parameters

The functions of the three parameters are described below:

• lpActiveReg: [in]—pointer to the active registry string which is used to find the device information
from the registry. This parameter is set to NULL, if not required.

• pRegIn: [in]—pointer to the PCI_REG_INFO structure which is used to find the Flash hardware on a
PCI hardware. This parameter is set to NULL, if not required.

• pRegOut: [in/out]—pointer to the PCI_REG_INFO structure which is used to return the flash
information. This parameter is set to NULL, if not required.

3.7.1.2 Returns

A handle that can be used in a call to OEMFMD_Deinit function. It is the responsibility of the specific FMD
implementation to determine what this value represents. A value of zero represents failure.

3.7.2 OEMFMD_Deinit
OemFMDInterface > PFN_OemDEINIT

This function de-initializes the flash chip and does nothing else.

The OEMFMD_Deinit function along with its parameter, is displayed below:
BOOL OEMFMD_Deinit(PVOID pContext);

3.7.2.1 Parameter

The function of the parameter is described below:

• pContext: [in]—is a handle that is returned from the OEMFMD_Init function.

Multi-NAND Disks Implementation Guide, Rev. 0

Freescale Semiconductor 11

NAND Flash PDD Driver Reference

3.7.2.2 Returns

This function returns TRUE on success and FALSE on failure.

3.7.3 OEMFMD_ReadSector
OemFMDInterface > PFN_OemREADSECTOR

This function reads the requested sector data and metadata from the Flash media, and calls
KernelIoControl (IOCTL_HAL_NANDFMD_ACCESS) with dwAccessCode FMD_ACCESS_CODE_READSECTOR.

The OEMFMD_ReadSector function along with its parameters, is displayed below:
BOOL OEMFMD_ReadSector(PVOID pContext, SECTOR_ADDR startSectorAddr, LPBYTE pSectorBuff,
PSectorInfo pSectorInfoBuff, DWORD dwNumSectors, BOOL bWithStartBlock);

3.7.3.1 Parameters

The functions of the six parameters are described below:

• pContext: [in]—is a handle for FmdWrapperPdd.

• startSectorAddr: [in]—is the starting physical sector address to read.

• pSectorBuff: [out]—pointer to the buffer that contains the sector data to be read from the flash
memory. This parameter is set to NULL, if not required.

• pSectorInfoBuff: [out]—is a buffer for an array of sector information structures. There is only one
sector information entry for every sector that is to be read. This parameter is set to NULL, if not
required.

• dwNumSectors: [in]—is the number of sectors to read.

• bWithStartBlock: [in]—if this value is TRUE, the startSectorAddr must be added with
BLOCK_TO_SECTOR (pFlashWrapper > m_dwStartBlock) to form the target sector. All function
calls from the top layer must set this flag to TRUE.

3.7.3.2 Returns

This function returns TRUE on success and FALSE on failure.

3.7.4 OEMFMD_WriteSector
OemFMDInterface > PFN_OemWRITESECTOR

This function writes the requested sector data and metadata to the flash media, and calls KernelIoControl
(IOCTL_HAL_NANDFMD_ACCESS) with dwAccessCode FMD_ACCESS_CODE_WRITESECTOR.

The OEMFMD_WriteSector function along with its parameters, is displayed below:
BOOL OEMFMD_WriteSector(PVOID pContext, SECTOR_ADDR startSectorAddr, LPBYTE pSectorBuff,
PSectorInfo pSectorInfoBuff, DWORD dwNumSectors, BOOL bWithStartBlock);

3.7.4.1 Parameters

The functions of the six parameters are described below:

Multi-NAND Disks Implementation Guide, Rev. 0

12 Freescale Semiconductor

NAND Flash PDD Driver Reference

• pContext: [in]—is a handle for FmdWrapperPdd.

• startSectorAddr: [in]—is the starting physical sector address to write.

• pSectorBuff: [in]—pointer to the buffer that contains the sector data to be written. This parameter
is set to NULL, if no data is to be written.

• pSectorInfoBuff: [in]—is a buffer for an array of sector information structures. There is only one
sector information entry for every sector that is to be written. This parameter is set to NULL, if no
data is to be written.

• dwNumSectors: [in]—is the number of sectors to write.

• bWithStartBlock: [in]—if this value is TRUE, the startSectorAddr must be added with
BLOCK_TO_SECTOR (pFlashWrapper > m_dwStartBlock) to form the target sector. All function
calls from the top layer must set this flag to TRUE.

3.7.4.2 Returns

This function returns TRUE on success and FALSE on failure.

3.7.5 OEMFMD_EraseBlock
OemFMDInterface > PFN_OemERASEBLOCK

This function erases the specified flash block, and calls KernelIoControl (IOCTL_HAL_NANDFMD_ACCESS)
with dwAccessCode FMD_ACCESS_CODE_ERASEBLOCK.

The OEMFMD_EraseBlock function along with its parameters, is displayed below:
BOOL OEMFMD_EraseBlock(PVOID pContext, BLOCK_ID blockID, BOOL bWithStartBlock);

3.7.5.1 Parameters

The functions of the three parameters are described below:

• pContext: [in]—is a handle for FmdWrapperPdd.

• blockID: [in]—is the block number to be erased.

• bWithStartBlock: [in]—if this value is TRUE, the SectorAddr must be added with
BLOCK_TO_SECTOR (pFlashWrapper > m_dwStartBlock) to form the target sector. All function
calls from the top layer must set this flag to TRUE.

3.7.5.2 Returns

This function returns TRUE on success and FALSE on failure.

3.7.6 OEMFMD_PowerUp
OemFMDInterface > PFN_OemPOWERUP

This function restores power to the flash memory device if required, but this function is not in use
currently. The OEMFMD_PowerUp function along with its parameter, is displayed below:
VOID OEMFMD_PowerUp(PVOID pContext);

Multi-NAND Disks Implementation Guide, Rev. 0

Freescale Semiconductor 13

NAND Flash PDD Driver Reference

3.7.6.1 Parameter

The function of the parameter is described below:

• pContext: [in]—is a handle for FmdWrapperPdd.

3.7.6.2 Returns

NONE.

3.7.7 OEMFMD_PowerDown
OemFMDInterface > PFN_OemPOWERDOWN

This function suspends power to the flash memory device if required, but this function is not in use
currently. The OEMFMD_PowerDown function along with its parameter, is displayed below:
VOID OEMFMD_PowerDown(PVOID pContext);

3.7.7.1 Parameter

The function of the parameter is described below:

• pContext: [in]—is a handle for FmdWrapperPdd.

3.7.7.2 Returns

NONE.

3.7.8 OEMFMD_OemIoControl
OemFMDInterface > PFN_OemIOCONTROL

This function implements the user-defined commands for the flash memory device, but this function is not
in use currently. The OEMFMD_OemIoControl function along with its parameters, is displayed below:
BOOL OEMFMD_OemIoControl(PVOID pContext, DWORD dwIoControlCode, PBYTE pInBuf, DWORD nInBufSize,
PBYTE pOutBuf, DWORD nOutBufSize, PDWORD pBytesReturned);

3.7.8.1 Parameters

The functions of the seven parameters are described below:

• pContext: [in]—is a handle for FmdWrapperPdd.

• dwIoControlCode: [in]—is the control code which specifies the command to execute.

• pInBuf: [in]—long pointer to a buffer that contains the data required to perform the operation. This
parameter is set to NULL, if the dwIoControlCode parameter specifies an operation that does not
require any input data.

• nInBufSize: [in]—is the size of the buffer pointed to by pInBuf, in bytes.

• pOutBuf: [out]—long pointer to a buffer that receives the output data for the operation. This
parameter is set to NULL, if the dwIoControlCode parameter specifies an operation that does not
produce an output data.

Multi-NAND Disks Implementation Guide, Rev. 0

14 Freescale Semiconductor

NAND Flash PDD Driver Reference

• nOutBufSize: [in]—is the size of the buffer pointed to by pOutBuf, in bytes.

• pBytesReturned: [out]—long pointer to a variable that receives the size (in bytes) of the data stored
in the buffer pointed to by pOutBuf. The DeviceIoControl function uses the variable pointed to by
the pBytesReturned parameter, even when an operation produces no output data and pOutBuf is set
to NULL. But, the value of the variable has no meaning after such operations.

3.7.8.2 Returns

This function returns TRUE on success and FALSE on failure.

3.7.9 OEMFMD_GetInfo
OemFMDInterface > PFN_OemGETINFO

This function determines the size characteristics for the flash memory device. Based on m_dwRegionNumber,
this function returns different flash region information for different NAND disks. This function also
determines the value of pFlashWrapper > m_dwStartBlock and pFlashWrapper > m_dwBlockCounts for
each NAND disk.

The OEMFMD_GetInfo function along with its parameters, is displayed below:
BOOL OEMFMD_GetInfo(PVOID pContext, PFlashInfo pFlashInfo);

3.7.9.1 Parameters

The functions of the two parameters are described below:

• pContext: [in]—is a handle for FmdWrapperPdd.

• pFlashInfo: [out]—pointer to a structure that contains the size characteristics for the flash memory
device.

3.7.9.2 Returns

This function returns TRUE on success and FALSE on failure.

3.7.10 OEMFMD_GetBlockStatus
OemFMDInterface > PFN_OemGETBLOCKSTATUS

This function returns the status of a block and calls OEMFMD_ReadSector() function to get the block status.

The OEMFMD_GetBlockStatus function along with its parameters, is displayed below:
DWORD OEMFMD_GetBlockStatus(PVOID pContext, BLOCK_ID blockID, BOOL bWithStartBlock);

3.7.10.1 Parameters

The functions of the three parameters are described below:

• pContext: [in]—is a handle for FmdWrapperPdd.

• blockID: [in]—is the block number used to check the status.

Multi-NAND Disks Implementation Guide, Rev. 0

Freescale Semiconductor 15

NANDFMD LIB Reference

• bWithStartBlock: [in]—if this value is TRUE, the sector must be added with
BLOCK_TO_SECTOR (pFlashWrapper > m_dwStartBlock) to form the target sector. All function
calls from the top layer must set this flag to TRUE.

3.7.10.2 Returns

This function return flags to describe the status of the block.

3.7.11 OEMFMD_SetBlockStatus
OemFMDInterface > PFN_OemSETBLOCKSTATUS

This function sets the status of a block and calls OEMFMD_WriteSector() function to set the block status.

The OEMFMD_SetBlockStatus function along with its parameters, is displayed below:
BOOL OEMFMD_SetBlockStatus(PVOID pContext, BLOCK_ID blockID, DWORD dwStatus, BOOL
bWithStartBlock);

3.7.11.1 Parameters

The functions of the four parameters are described below:

• pContext: [in]—is a handle for FmdWrapperPdd.

• blockID: [in]—is the block number used to set the status.

• dwStatus: [in]—is the status value that is to be set.

• bWithStartBlock: [in]—if this value is TRUE, the sector must be added with
BLOCK_TO_SECTOR (pFlashWrapper > m_dwStartBlock) to form the target sector. All function
calls from the top layer must set this flag to TRUE.

3.7.11.2 Returns

This function returns TRUE on success and FALSE on failure.

4 NANDFMD LIB Reference
The nandfmd_lib.lib file includes the low-level code for NAND Flash operations, and this lib is shared by
Eboot and OAL.

4.1 NANDFMD LIB Source Files
The NANDFMD LIB source files are contained in the following locations:

WINCE600\PLATFORM\iMX27ADS\SRC\COMMON\NANDFMD\makefile

WINCE600\PLATFORM\iMX27ADS\SRC\COMMON\NANDFMD\nandfmd.cpp

WINCE600\PLATFORM\iMX27ADS\SRC\COMMON\NANDFMD\nandfmd.h

WINCE600\PLATFORM\iMX27ADS\SRC\COMMON\NANDFMD\k9f1g08u0a.h

WINCE600\PLATFORM\iMX27ADS\SRC\COMMON\NANDFMD\k9f2g08r0a.h

Multi-NAND Disks Implementation Guide, Rev. 0

16 Freescale Semiconductor

OAL KernelIoControl Code Reference

WINCE600\PLATFORM\iMX27ADS\SRC\COMMON\NANDFMD\k9f4g08u0m.h

WINCE600\PLATFORM\iMX27ADS\SRC\COMMON\NANDFMD\k9k1g08u0b.h

WINCE600\PLATFORM\iMX27ADS\SRC\COMMON\NANDFMD\k9k2g08u0a.h

WINCE600\PLATFORM\iMX27ADS\SRC\COMMON\NANDFMD\MT29F4G08ABC.h

WINCE600\PLATFORM\iMX27ADS\SRC\COMMON\NANDFMD\nfc.s

WINCE600\PLATFORM\iMX27ADS\SRC\COMMON\NANDFMD\sources

4.2 Nandfmd.h
This file defines some NAND Flash common macros such as command, operation macro, NAND Flash
type file, FMD access code, and the FmdAccessInfo structure. The supported NAND Flash types are
k9f1g08u0a, k9f2g08r0a, k9f4g08u0m, k9k1g08u0b, k9k2g08u0a, and MT29F4G08ABC.

The structure FmdAccessInfo has the following variable members:

• dwAccessCode—is the NAND Flash access code and it currently supports HWINIT,
READSECTOR, WRITESECTOR, and ERASEBLOCK.

• dwStartSector—defines the start sector for read, write, and erase. While erasing, the start sector
must be converted from the BLOCK ID.

• dwSectorNum—is used only for read/write, and defines the number of sectors to read/write.

• pMData—is a pointer to the main data buffer for read/write operation.

• pSData—is a pointer to the spare data buffer for read/write operation.

4.3 Nandfmd.cpp
This file is updated to support both the 2 Kbytes page size and 512 bytes page size SLC NAND Flash for
nandfmd_lib. It also defines all the hardware operation functions for the NAND Flash.

4.4 Nfc.s
This file is updated to support both the 2 Kbytes page size and 512 bytes page size SLC NAND Flash for
nandfmd_lib. It also defines the ASM code for NFC buffer read and write operation.

5 OAL KernelIoControl Code Reference
To implement the multi-NAND Disks function, the two disk drivers must not be accessed at the same time,
in order to access the NFC hardware. Therefore, all the NFC and NAND Flash hardware-related codes are
moved to KernelIoControl(). The EnterCriticalSection() and LeaveCriticalSection() functions can be
used to avoid multiple access at the same time.

5.1 Kernel Sources Files
The Kernel source files are contained in the following locations:

WINCE600\PLATFORM\iMX27ADS\SRC\INC\ioctl_cfg.h

Multi-NAND Disks Implementation Guide, Rev. 0

Freescale Semiconductor 17

OAL KernelIoControl Code Reference

WINCE600\PLATFORM\iMX27ADS\SRC\INC\ioctl_tab.h

WINCE600\PLATFORM\iMX27ADS\SRC\OAL\OALLIB\ioctl.c

WINCE600\PLATFORM\iMX27ADS\SRC\OAL\OALLIB\nfc.cpp

WINCE600\PLATFORM\iMX27ADS\SRC\OAL\OALLIB\sources

WINCE600\PLATFORM\iMX27ADS\SRC\OAL\OALEXE\sources

5.2 Ioctl_cfg.h
A definition is added for IOCTL_HAL_NANDFMD_ACCESS. The following code is the main interface
between the NAND Flash PDD driver and the OAL:

#ifdef BSP_NAND_PDD
//OEM IOCTL CODE
#define IOCTL_HAL_NANDFMD_ACCESSCTL_CODE(FILE_DEVICE_HAL, 4000, METHOD_BUFFERED,
FILE_ANY_ACCESS)
#endif

5.3 Ioctl_tab.h
A link is added for the IOCTL_HAL_NANDFMD_ACCESS function.

#ifdef BSP_NAND_PDD
{ IOCTL_HAL_NANDFMD_ACCESS, 0, OALIoCtlHalNandfmdAccess },
#endif

5.4 Ioctl.c
A definition is added for the CRITICAL_SECTION g_oalNfcMutex variable, and this global variable is
initialized in the OALIoCtlHalPostInit() function. It is also used to avoid multiple access of the NAND
Flash driver at the same time.

The definition for the OALIoCtlHalNandfmdAccess() function is also added, and this function transfers all
the top layer KernelIoControl functions to OAL NAND Flash operation. The nandfmd_lib.lib file uses the
OALFMD_Access() function.

#ifdef BSP_NAND_PDD
#include <partdrv.h>
#include "..\..\common\nandfmd\nandfmd.h"
#endif
… …
#ifdef BSP_NAND_PDD
CRITICAL_SECTION g_oalNfcMutex;
#endif
… …
BOOL OALIoCtlHalPostInit(
UINT32 code, VOID *pInpBuffer, UINT32 inpSize, VOID *pOutBuffer,
UINT32 outSize, UINT32 *pOutSize)
{
// Note that WinCE 6.00 only allows the use of critical sections whereas
// WinCE 5.00 also allowed the use of named mutexes. Therefore, we must
// now create and use a single critical section instead of a named mutex
// to provide mutual exclusion between the OAL and all PMIC drivers for

Multi-NAND Disks Implementation Guide, Rev. 0

18 Freescale Semiconductor

OAL KernelIoControl Code Reference

// accessing the CSPI bus.
InitializeCriticalSection(&g_oalPmicMutex);
#ifdef BSP_NAND_PDD
InitializeCriticalSection(&g_oalNfcMutex);
#endif
// Set flag to indicate it is okay to call EnterCriticalSection() and
// LeaveCriticalSection() within the OAL.
g_oalPostInit = TRUE;
return(TRUE);
}
… …
#ifdef BSP_NAND_PDD
BOOL OALIoCtlHalNandfmdAccess(
UINT32 code, VOID* pInpBuffer, UINT32 inpSize, VOID* pOutBuffer,
UINT32 outSize, UINT32 *pOutSize)
{

BOOL bResult;
EnterCriticalSection(&g_oalNfcMutex);
bResult = OALFMD_Access(pInpBuffer, inpSize);
LeaveCriticalSection(&g_oalNfcMutex);
return bResult;

}
#endif

5.5 Nfc.cpp
This file defines the NFCAlloc(), NFCWait(), and NFCSetClock() functions for using the nandfmd_lib.lib
file. It also defines the OALFMD_Access() function, which converts the OALIoCtlHalNandfmdAccess()
function to FMD_xxx() operation function.

5.6 Sources (OALLIB)
The following lines of code are to be added to compile nfc.cpp into OAL, when using the multi-NAND
Disks support:

!IF "$(BSP_NAND_PDD)" == "1"
SOURCES=$(SOURCES)\

nfc.cpp
!ENDIF

5.7 Sources (OALEXE)
The following lines of code are to be added to link nandfmd_lib.lib into OAL.exe, when using the
multi-NAND Disks support:

!IF "$(BSP_NAND_PDD)" == "1"
TARGETLIBS=\

$(TARGETLIBS) \
$(_TARGETPLATROOT)\lib\$(_CPUINDPATH)\nandfmd_lib.lib

!ENDIF

Multi-NAND Disks Implementation Guide, Rev. 0

Freescale Semiconductor 19

Registry and BIB Settings

6 Registry and BIB Settings
This section shows the settings to be done in the platform.reg and platform.bib files.

6.1 Platform.reg
When WinCE is booted up, only the RegionNumber=1 disk is loaded for the Hive-based registry, and the
storage disk RegionNumber=2 is not loaded:

; HIVE BOOT SECTION
IF SYSGEN_FSREGHIVE
[HKEY_LOCAL_MACHINE\init\BootVars]

"SYSTEMHIVE"="\\NANDFlash\\system.hv"
"PROFILEDIR"="\\NANDFlash\\usr.hv"
"Start DevMgr"=dword:1
"DefaultUser"="default"

; "RegistryFlags"=dword:1
ENDIF
IF BSP_NAND_PDD
[HKEY_LOCAL_MACHINE\Drivers\BuiltIn\NAND_Flash]
"Dll"="flashmdd.dll"
"FlashPddDll"="flashpdd_nand.dll"
"Order"=dword:0
"Prefix"="DSK"
"Ioctl"=dword:4
"Profile"="NSFlash"
"IClass"=multi_sz:"{A4E7EDDA-E575-4252-9D6B-4195D48BB865}"
"FriendlyName"="NAND FLASH Driver"
"RegionNumber"=dword:1
IF SYSGEN_FSREGHIVE
"Flags"=dword:1000
ENDIF
; Override names in default profile
[HKEY_LOCAL_MACHINE\System\StorageManager\Profiles\NSFlash]
"PartitionDriver"="flashpart.dll"
"Name"="NANDFLASH"
"Folder"="NANDFlash"
"AutoMount"=dword:1
"AutoPart"=dword:1
"AutoFormat"=dword:1

"MountFlags"=dword:0
"Ioctl"=dword:4

IF SYSGEN_FSREGHIVE
"MountAsBootable"=dword:1
"MountPermanent"=dword:1

; "MountHidden"=dword:1
ENDIF
IF SYSGEN_FSROMONLY

"MountAsRoot"=dword:1
ENDIF
IF SYSGEN_FSREGHIVE
[HKEY_LOCAL_MACHINE\System\StorageManager\AutoLoad\NSFlash]
"DriverPath"="Drivers\\BuiltIn\\NAND_Flash"

"LoadFlags"=dword:1
"BootPhase"=dword:0
"Order"=dword:0

Multi-NAND Disks Implementation Guide, Rev. 0

20 Freescale Semiconductor

NAND Storage Disk Auto Load Application

ENDIF
[HKEY_LOCAL_MACHINE\Drivers\BlockDevice\NAND_Flash2]
"Dll"="flashmdd.dll"
"FlashPddDll"="flashpdd_nand.dll"
"Order"=dword:1
"Prefix"="DSK"
"Ioctl"=dword:4
"Profile"="NSFlash2"
"IClass"=multi_sz:"{A4E7EDDA-E575-4252-9D6B-4195D48BB865}"
"FriendlyName"="NAND FLASH Driver2"
"RegionNumber"=dword:2
; Override names in default profile
[HKEY_LOCAL_MACHINE\System\StorageManager\Profiles\NSFlash2]
"PartitionDriver"="flashpart.dll"
"Name"="NANDFLASH"
"Folder"="NANDFlash"
"AutoMount"=dword:1
"AutoPart"=dword:1
"AutoFormat"=dword:1

"MountFlags"=dword:0
"Ioctl"=dword:4

ENDIF
; END HIVE BOOT SECTION

6.2 Platform.bib
In platform.bib, the PDD NAND Flash driver must be added in the MODULES section.

flashpdd_nand.dll $(_FLATRELEASEDIR)\flashpdd_nand.dll NK SHK

7 NAND Storage Disk Auto Load Application
This application is added to the WINCE600\PLATFORM\iMX27ADS\SRC\TOOLS \InstallNand folder, and it calls
the ActivateDevice() function to load the storage disk driver.

In platform.bib, the following line must be added to the MODULES section to include this application in
the NK image:

InstallNand.exe $(_FLATRELEASEDIR)\InstallNand.exe NK SH

In platform.reg, the following lines of code must be added to make the application auto-run, after WinCE
boots up:

[HKEY_LOCAL_MACHINE\init]
"Launch129"="InstallNand.exe"
"Depend129"=hex:14,00

8 Patch for i.MX27ADS WinCE 6.0 F15 BSP
Unzip the patch file and cover to old BSP folder, sysgen, and built. This BSP is tested on 512 bytes page
size SLC NAND Flash K9K1G08U0B. Refer to i.MX27ADS_Multi-NANDDisk.zip file located in the
AN4139SW.zip file for more details.

Multi-NAND Disks Implementation Guide, Rev. 0

Freescale Semiconductor 21

Patch for i.MX313DS WinCE 6.0 SDK 1.4 BSP

9 Patch for i.MX313DS WinCE 6.0 SDK 1.4 BSP
Unzip the patch file and cover to old BSP folder, sysgen, and built. This BSP is tested on 2 Kbytes page
size SLC NAND Flash K9F2G08R0A. Refer to i.MX313DS_Multi-NANDDisk.zip file located in the
AN4139SW.zip file for more details.

10 Revision History
Table 1 provides the revision history for this application note.

Table 1. Document Revision History

Rev.
Number

Date Substantive Change(s)

0 06/2010 Initial release

Multi-NAND Disks Implementation Guide, Rev. 0

22 Freescale Semiconductor

Improving the Boot Up Speed on Old NAND Flash Driver

Appendix A Improving the Boot Up Speed on Old NAND
Flash Driver

As mentioned in Section 1, “Introduction‚” there is a simple way to avoid the long time boot up issue,
which is not available on the Hive-based registry and ROM-Only file system device. This method can also
be used on WinCE 5.0.

NOTE
The multi-NAND Disks solution can work only on WinCE 6.0 systems.

When WinCE is booted up, do not load the NAND Flash disk driver. Change the registry setting for
nandfmd.dll, and move it from [HKEY_LOCAL_MACHINE\Drivers\ BuiltIn] to
[HKEY_LOCAL_MACHINE\Drivers\BlockDevice] location, as follows:

;[HKEY_LOCAL_MACHINE\Drivers\BuiltIn\NAND_Flash]
[HKEY_LOCAL_MACHINE\Drivers\BlockDevice\NAND_Flash]
"Dll"="nandfmd.dll"
"Order"=dword:0
"Prefix"="DSK"
"Ioctl"=dword:4
"Profile"="FlashDisk"
"IClass"=multi_sz:"{A4E7EDDA-E575-4252-9D6B-4195D48BB865}"
"FriendlyName"="NAND FLASH Driver"

Use the Tools\InstallNand folder to load the NAND Flash driver after the system boots up, and the sample
code is as follows:

int WINAPI WinMain(
HINSTANCE hinst,
HINSTANCE hinstPrev,
LPWSTR szCmdLine,
int iCmdShow
)
{

HANDLE hDevHandle;
TCHAR pszDriverPath[] = TEXT("\\Drivers\\BlockDevice\\NAND_Flash");
UNREFERENCED_PARAMETER(hinst);
UNREFERENCED_PARAMETER(hinstPrev);
UNREFERENCED_PARAMETER(szCmdLine);
UNREFERENCED_PARAMETER(iCmdShow);
Sleep(5000);
hDevHandle = ActivateDevice(pszDriverPath, 0);
if(hDevHandle == NULL)
{

RETAILMSG(1, (TEXT("ActivateDevice failed, error = %d.\r\n"),
GetLastError()));

}
else
{

RETAILMSG(1, (TEXT("ActivateDevice success.\r\n")));
}
return 0;

}

Multi-NAND Disks Implementation Guide, Rev. 0

Freescale Semiconductor 23

Improving the Boot Up Speed on Old NAND Flash Driver

The following lines of code are added to the platform.reg file to make InstallNand.exe auto-run, after the
system is booted up:

[HKEY_LOCAL_MACHINE\init]
"Launch129"="InstallNand.exe"
"Depend129"=hex:14,00

Document Number: AN4139
Rev. 0
06/2010

Information in this document is provided solely to enable system and software

implementers to use Freescale Semiconductor products. There are no express or

implied copyright licenses granted hereunder to design or fabricate any integrated

circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to

any products herein. Freescale Semiconductor makes no warranty, representation or

guarantee regarding the suitability of its products for any particular purpose, nor does

Freescale Semiconductor assume any liability arising out of the application or use of

any product or circuit, and specifically disclaims any and all liability, including without

limitation consequential or incidental damages. “Typical” parameters which may be

provided in Freescale Semiconductor data sheets and/or specifications can and do

vary in different applications and actual performance may vary over time. All operating

parameters, including “Typicals” must be validated for each customer application by

customer’s technical experts. Freescale Semiconductor does not convey any license

under its patent rights nor the rights of others. Freescale Semiconductor products are

not designed, intended, or authorized for use as components in systems intended for

surgical implant into the body, or other applications intended to support or sustain life,

or for any other application in which the failure of the Freescale Semiconductor product

could create a situation where personal injury or death may occur. Should Buyer

purchase or use Freescale Semiconductor products for any such unintended or

unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor

and its officers, employees, subsidiaries, affiliates, and distributors harmless against all

claims, costs, damages, and expenses, and reasonable attorney fees arising out of,

directly or indirectly, any claim of personal injury or death associated with such

unintended or unauthorized use, even if such claim alleges that Freescale

Semiconductor was negligent regarding the design or manufacture of the part.

How to Reach Us:

Home Page:
www.freescale.com

Web Support:
http://www.freescale.com/support

USA/Europe or Locations Not Listed:
Freescale Semiconductor, Inc.
Technical Information Center, EL516
2100 East Elliot Road
Tempe, Arizona 85284
1-800-521-6274 or
+1-480-768-2130
www.freescale.com/support

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
www.freescale.com/support

Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku
Tokyo 153-0064
Japan
0120 191014 or
+81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:
Freescale Semiconductor China Ltd.
Exchange Building 23F
No. 118 Jianguo Road
Chaoyang District
Beijing 100022
China
+86 10 5879 8000
support.asia@freescale.com

For Literature Requests Only:
Freescale Semiconductor

Literature Distribution Center
1-800 441-2447 or
+1-303-675-2140
Fax: +1-303-675-2150
LDCForFreescaleSemiconductor

@hibbertgroup.com

Freescale, the Freescale logo, CodeWarrior, ColdFire, PowerQUICC,
StarCore, and Symphony are trademarks of Freescale Semiconductor, Inc.
Reg. U.S. Pat. & Tm. Off. CoreNet, QorIQ, QUICC Engine, and VortiQa are
trademarks of Freescale Semiconductor, Inc. All other product or service
names are the property of their respective owners. ARM is the registered
trademark of ARM Limited.
© 2010 Freescale Semiconductor, Inc.

	Multi-NAND Disks Implementation Guide
	1 Introduction
	2 Design References
	2.1 Framework Description
	Figure 1. Layout of Single NAND Flash Driver
	Figure 2. Layout of Multi-NAND Disks Flash Driver
	Figure 3. System Architecture of the Multi-NAND Disks Flash Driver

	2.2 Porting Example

	3 NAND Flash PDD Driver Reference
	3.1 NAND Flash PDD Driver Source Files
	3.2 Flashpdd.def
	3.3 Fmdwrappermain.cpp
	3.4 Fmdwrappermain.h
	3.5 Fmdwrapperpdd.cpp
	3.6 Fmdwrapperpdd.h
	3.7 Nandfmd.cpp
	3.7.1 OEMFMD_Init
	3.7.1.1 Parameters
	3.7.1.2 Returns

	3.7.2 OEMFMD_Deinit
	3.7.2.1 Parameter
	3.7.2.2 Returns

	3.7.3 OEMFMD_ReadSector
	3.7.3.1 Parameters
	3.7.3.2 Returns

	3.7.4 OEMFMD_WriteSector
	3.7.4.1 Parameters
	3.7.4.2 Returns

	3.7.5 OEMFMD_EraseBlock
	3.7.5.1 Parameters
	3.7.5.2 Returns

	3.7.6 OEMFMD_PowerUp
	3.7.6.1 Parameter
	3.7.6.2 Returns

	3.7.7 OEMFMD_PowerDown
	3.7.7.1 Parameter
	3.7.7.2 Returns

	3.7.8 OEMFMD_OemIoControl
	3.7.8.1 Parameters
	3.7.8.2 Returns

	3.7.9 OEMFMD_GetInfo
	3.7.9.1 Parameters
	3.7.9.2 Returns

	3.7.10 OEMFMD_GetBlockStatus
	3.7.10.1 Parameters
	3.7.10.2 Returns

	3.7.11 OEMFMD_SetBlockStatus
	3.7.11.1 Parameters
	3.7.11.2 Returns

	4 NANDFMD LIB Reference
	4.1 NANDFMD LIB Source Files
	4.2 Nandfmd.h
	4.3 Nandfmd.cpp
	4.4 Nfc.s

	5 OAL KernelIoControl Code Reference
	5.1 Kernel Sources Files
	5.2 Ioctl_cfg.h
	5.3 Ioctl_tab.h
	5.4 Ioctl.c
	5.5 Nfc.cpp
	5.6 Sources (OALLIB)
	5.7 Sources (OALEXE)

	6 Registry and BIB Settings
	6.1 Platform.reg
	6.2 Platform.bib

	7 NAND Storage Disk Auto Load Application
	8 Patch for i.MX27ADS WinCE 6.0 F15 BSP
	9 Patch for i.MX313DS WinCE 6.0 SDK 1.4 BSP
	10 Revision History
	Table 1. Document Revision History

	Appendix A Improving the Boot Up Speed on Old NAND Flash Driver

