
Freescale Semiconductor
Application Note

Document Number: AN4219
Rev. 0, 10/2010

Contents

Introduction . 1
Overview . 2

2.1 SENT Encoding Scheme. 2
2.2 SPC Protocol . 5
2.3 SENT/SPC Physical Layer 6
SENT/SPC Software Driver for the MPC5510. 8

3.1 Physical Layer Topology . 8
3.2 Utilized MPC5510 Peripherals. 8
3.3 Driver Configuration. 9
3.4 API. 11
3.5 Master Trigger Pulse Generation 14
3.6 SENT Data Acquisition . 15
3.7 API Calling Sequence . 16
3.8 Resource Metrics. 20
3.9 Application Example . 21
Conclusion. 23
References . 24
Acronyms. 25

SENT/SPC Driver for the
MPC5510 Microcontroller Family

by: Josef Kramolis
Roznov pod Radhostem, Czech Republic
1 Introduction
This application note describes the SENT/SPC driver for
the MPC5510 32-bit family of microcontrollers. The
fundamentals of the Single Edge Nibble Transmission
protocol (SENT, SAE J2716), along with its Short PWM
Code (SPC) enhancement, are discussed in the overview
section of the document. The driver implementation,
API, state diagrams, and the recommended program flow
along with the application code example are shown in the
further sections.

Most of the information about the SENT protocol was
derived from the SAE-J2716 Surface Vehicle
Information Report, FEB2008.

1
2

3

4
5
6

© Freescale Semiconductor, Inc., 2010. All rights reserved.

Overview
2 Overview
The Single Edge Nibble Transmission protocol is targeted for use in those applications where
high-resolution data is transmitted from a sensor to the ECU. It can be considered as an alternative to
conventional sensors providing analog output voltage, and for PWM output sensors. It can be also
considered as a low-cost alternative to the LIN or CAN communication standards.

The electronic power steering, throttle position sensing, pedal position sensing, airflow mass sensing,
liquid level sensing applications, etc., can be used as examples of target applications for SENT compatible
sensor devices.

2.1 SENT Encoding Scheme
SENT is an unidirectional communication standard where data from a sensor is transmitted independently
without any intervention of the data receiving device (e.g. the MCU). A signal transmitted by the sensor
consists of a series of pulses, where the distance between consecutive falling edges defines the transmitted
4-bit data nibble representing values from 0 to 15. Total transmission time is dependent on transmitted data
values and on clock variation of the transmitter (sensor). A consecutive SENT transmission starts
immediately after the previous transmission ends (the trailing falling edge of the SENT transmission CRC
nibble is also the leading falling edge of the consecutive SENT transmission Synchronization/Calibration
nibble, see Figure 1).

A SENT communication fundamental unit of time (unit time - UT, nominal transmitter clock period) can
be in the range of 3 microseconds to 10 microseconds, according to the SAE J2716 specification. The
maximum allowed clock variation is ±20% from the nominal unit time which allows the use of low-cost
RC oscillators in the sensor device.

NOTE
A three microsecond fundamental unit time will be considered as nominal
for unification of further timing descriptions.

The transmission sequence consists of the following pulses:
1. Synchronization/Calibration pulse (56 unit times)
2. 4-bit Status nibble pulse (12 to 27 unit times)
3. Up to six 4-bit Data nibble pulses (12 to 27 unit times each)
4. 4-bit Checksum nibble pulse (12 to 27 unit times)
SENT/SPC Driver for the MPC5510 Microcontroller Family, Rev. 0

Freescale Semiconductor2

Overview
Figure 1. Transmission Example of 16-bit and 8-bit Signal Data

2.1.1 Synchronization/Calibration Pulse

Since the SAE J2716 specification allows a ±20% transmitter clock deviation from the nominal unit time,
the Synchronization/Calibration pulse provides information on the actual transmitter (sensor) unit time
period. The time between Synchronization/Calibration pulse falling edges defines 56 unit time periods.
The receiver can calculate the actual unit time period of the sensor from the pulse width, and can thus
re-synchronize. The actual sensor data is measured during the Synchronization/Calibration pulse duration.

The pulse starts with the falling edge and remains low for 5 or more unit times. The remainder of the pulse
width is driven high (see Figure 2).

Figure 2. Synchronization/Calibration Pulse Format

2.1.2 Status and Communication Nibble Pulse

The Status nibble contains 4-bit status information of the sensor (e.g. fault indication and mode of
operation). It can also contain a serial message (one bit as a serial data bit, one bit as a start bit). The
complete 16-bit serial message is then transmitted in 16 consecutive SENT transmissions (refer to SAE
J2716 at www.sae.org for detailed description).

The width of the Status nibble pulse is dependent on the nibble value. The status nibble pulse and data
nibble pulse formats are identical. Refer to Section 2.1.3, “Data Nibble Pulse”.

Sync./Calib. S
ta

tu
s

D
at

a
1

D
at

a
2

D
at

a
3

D
at

a
4

D
at

a
5

D
at

a
6

C
R

C

152÷272 UT (456÷816 µs)

16-bit data 8-bit data

C
R

C

Sync./Calib.

≥5 UT (≥15 µs)

56 UT (168 µs)
SENT/SPC Driver for the MPC5510 Microcontroller Family, Rev. 0

Freescale Semiconductor 3

http://www.sae.org

Overview
2.1.3 Data Nibble Pulse

A single data nibble pulse carries 4-bit sensor data. A maximum of 6 data nibbles can be transmitted in
one SENT transmission. The total number of data nibbles depends on the size of the data provided by the
sensor and this is fixed during the sensor operation (see Figure 1 for a combined 16-bit and 8-bit data
transmission example). Some sensors provide the possibility of pre-programming the resolution of the
measured value using special tools, thus changing the number of data nibbles.

The width of the data nibble pulse is dependent on the nibble value. Figure 3 depicts the format of the data
nibble pulse. The pulse starts with the falling edge and remains low for 5 or more unit times. The remainder
of the pulse width is driven high. The next pulse falling edge occurs after 12 unit times from the initial
falling edge plus the number of unit times equal to the nibble value. The data pulse width in the number
of unit times is defined by Equation 1:

Eqn. 1

Figure 3. Data Nibble Pulse Format

2.1.4 Checksum Nibble Pulse

The checksum nibble contains a 4-bit CRC. The checksum is calculated using the x4 + x3 + x2 + 1
polynomial with the seed value of 5 (0b0101), and is calculated over all nibbles except for the status and
communication nibble (according to SAE J2716).

The CRC allows detection of the following errors:
1. All single bit errors.
2. All odd number of errors.
3. All single burst errors of length ≤ 4.
4. 87.5% of single burst errors of length = 5.
5. 93.75% of single burst errors of length > 5.

DataNibblePulseWidth 12 NibbleValue+()=

(12+N) UT, (36+3⋅N) µs

12 UT (36 µs)

0 15Nibble Value (N)

N⋅UT (0÷45 µs)

≥5 UT (≥15 µs)
SENT/SPC Driver for the MPC5510 Microcontroller Family, Rev. 0

Freescale Semiconductor4

Overview
Refer to SAE J2716 (www.sae.org) for more information about the SENT CRC polynomial error
detection.

NOTE
The driver CRC calculation includes also the status and communication
nibble value as it is primarily intended for use with the Infineon TLE4889C
Hall sensor.

2.2 SPC Protocol
The SPC protocol enhances the SENT protocol defined by the SAE 2716 specification. SPC introduces a
half-duplex synchronous communication. The receiver (MCU) generates the Master Trigger pulse on the
communication line by pulling it low for a defined amount of time (tMT). The pulse width is measured by
the transmitter (sensor) and the SENT transmission is initiated only if the width is within defined limits.
The end pulse is generated additionally after the SENT transmission has completed to provide a trailing
falling edge for the CRC nibble pulse. The communication line then remains idle until a new Master
Trigger pulse is generated by the receiver. Figure 4 depicts the SENT/SPC frame format.

Figure 4. SENT/SPC Frame Format

The SPC protocol allows choosing between various protocol modes. For example, the TLE4998C Hall
sensor can be pre-programmed in one of three protocol modes:

1. Synchronous mode — a single sensor is connected to the MCU, a Master Trigger pulse width in a
defined range triggers the transmission.

2. Synchronous mode with Range Selection — a single sensor is connected to the MCU, the width of
the Master Trigger pulse defines the magnetic range for the triggered transmission.

3. Synchronous Transmission with ID selection — up to 4 sensors are connected in parallel to the
MCU, the width of the Master Trigger pulse defines which sensor will start the transmission.

SENT Transmission

Sensor Response Time

tMT

Sync./calib. S
ta

tu
s

D
at

a
1

D
at

a
2

D
at

a
3

D
at

a
4

D
at

a
5

D
at

a
6

C
R

C

M
as

te
r

Tr
ig

ge
r

E
nd
SENT/SPC Driver for the MPC5510 Microcontroller Family, Rev. 0

Freescale Semiconductor 5

http://www.sae.org

Overview
2.3 SENT/SPC Physical Layer
The receiver side (ECU) provides the stabilized 5V voltage to supply the sensor. The communication line
is pulled-up by the 10÷51kΩ resistor to the supply voltage. The receiver input is formed by the parasitic
capacitance of the input pin and its ESD protection, and the 560Ω/2.2nF EMC low-pass filter to suppress
RF noise coupled to the communication line. The open-drain output pin on the MCU pulls down the
communication line to generate the Master Trigger pulse. See Figure 5.

The transmitter provides a bidirectional open-drain I/O pin with an EMC filter to suppress the RF noise
coupled to the communication line. The communication line is pulled-down by its output driver to generate
the SENT pulse sequence. See Figure 5.

Signal shaping is required to limit the radiated emissions. The maximum limits for the falling and rising
edge durations are TFALL = 6.5 μs and TRISE = 18 μs with a maximum allowed 0.1 μs falling edge jitter.
An example of a TLE4998C SENT/SPC compatible Hall sensor waveform is shown in Figure 6.

The overall resistance of all connectors is limited to 1 Ω, the bus wiring to 0.1nF/m capacitance and the
maximum cable length is limited to 5 m.

The transmitter-receiver network devices are protected from short-to-ground and short-to-supply
conditions. Upon recovery from these faults, normal operation is resumed.

Figure 5. SENT/SPC Circuit Topology

Transmitter (sensor board/package)

Input pin

Output pin
(Open Drain)

EMC filter

10÷51 kΩ

Cin

560 Ω Rf

2.2 nF Cf RV

Sensor device
with SENT

protocol
generator

Receiver (ECU)5 V

MCU

Communication
Line
SENT/SPC Driver for the MPC5510 Microcontroller Family, Rev. 0

Freescale Semiconductor6

Overview
Figure 6. TLE4998C SENT/SPC 12-bit Hall Waveform

M
as

te
r

Tr
ig

ge
r

S
yn

ch
./C

al
ib

.

S
ta

tu
s

D
at

a1

D
at

a2

D
at

a3

C
R

C

E
nd

0x
03

0x
03

0x
0F

0x
0D

0x
0D

OUT = 0x3FD = 1021
B = -25 mT @ Brange = ±50 mT
SENT/SPC Driver for the MPC5510 Microcontroller Family, Rev. 0

Freescale Semiconductor 7

SENT/SPC Software Driver for the MPC5510
3 SENT/SPC Software Driver for the MPC5510
The driver is provided as an example code only, and in the form of source code optimized for the Green
Hills compiler. It is intended for use with all members of the MPC5510 family and the Infineon TLE4998C
programmable linear Hall sensor. The driver supports code execution by both the MPC5510 e200z1 core
and the e200z0 core (if available on the device), and can be used for handling up to eight independent
SENT/SPC channels.

3.1 Physical Layer Topology
The driver is designed to control an external transistor connected to the output pin (2-pin solution). The
output transistor is driven by a pulse of positive polarity, thus pulling the communication line low to
generate the Master Trigger pulse. The output pin driver operates in the push-pull output mode. Figure 7
shows a typical TLE4998C Hall sensor application circuit with an external transistor.

Figure 7. Typical TLE4998C Application Circuit with External Transistor

3.2 Utilized MPC5510 Peripherals
The driver utilizes the following MPC5510 peripherals:

• System Integration Unit (SIU) - 2 pins for a single SENT/SPC channel.
• Enhanced Input/Output Subsystem (eMIOS) - 2 unified channels for a single SENT/SPC channel.
• Enhanced Direct Memory Address engine (eDMA) - a single channel for a single SENT/SPC

channel.

Only 16 out of a total 24 eMIOS unified channels available on MPC5510 devices are suitable for the driver
operations, thus only 8 SENT/SPC channels can be handled by a single MPC5510 device.

Voltage Supply
Sensor

Voltage Supply
MPC5510

TLE
4998C4

GND

VDD

In/Out

MPC5510

VDD

Input pin

Output pin

GND

47nF

2k2

20k
4.7nF

1nF

50
SENT/SPC Driver for the MPC5510 Microcontroller Family, Rev. 0

Freescale Semiconductor8

SENT/SPC Software Driver for the MPC5510
3.3 Driver Configuration
There are three pre-processor macros (accessible in the SENT_SPC_Driver.h header file) that need to be
properly defined before the final application can be finally build (see Table 1).

3.3.1 SENT/SPC Channel Configuration Structure

Each SENT/SPC channel has its own configuration structure in the form of a variable of type
SENT_SPC_CONTROL_T which needs to be initialized before the driver can be initialized, using the
appropriate API function. The driver uses a pointer to the SENT/SPC channel configuration structure as
an input parameter to all API functions. Follow the steps below to properly initialize the configuration
structure:

1. Declare a variable of type SENT_SPC_CONTROL_T
2. Initialize members of this variable:

a) Initialize structure member SentSpcDma
b) Initialize structure member SentSpcEmiosInput
c) Initialize structure member SentSpcEmiosOuput
d) Initialize structure member SentSpcOutputPin
e) Initialize structure member SentSpcFrame

Consult Table 2 for proper channel configuration structure member values.

Table 1. Pre-compile Time Parameters.

Macro Range Description

SENT_SPC_CORE_SELECT 0 or 1 Defines the MPC5510 core which will handle the execution of the interrupt service
routine (if enabled by SENT_SPC_INTERRUPT, see the table row below) to update
the driver status at the end of the SENT/SPC frame transfer.
0 e200z1 core
1 e200z0 core

SENT_SPC_INTERRUPT 0 or 1 Defines whether the eDMA channel interrupt or an additional eDMA transfer request
is generated at the end of the SENT/SPC frame transfer.

SENT_SPC_UT — Defines the number of the eMIOS unified channel ticks per 3 μs. This can be
calculated using the formula:

Eqn. 2SENT_SPC_UT SystemClockFrequency 3 10 6–
⋅ ⋅

eMIOSPeripheralDivider GlobalEMIOSPrescaler⋅
--- 1–=
SENT/SPC Driver for the MPC5510 Microcontroller Family, Rev. 0

Freescale Semiconductor 9

SENT/SPC Software Driver for the MPC5510
NOTE
Each SENT/SPC channel has to have its own unique eDMA channel and
eMIOS unified channels for input/output assigned in the channel
configuration structure variable. The driver, however, provides an internal
checking mechanism for duplicated channels.

See Section 3.9, “Application Example” for the example of declaration and initialization of two
SENT/SPC channel configuration structure variables.

Table 2. Mandatory Parameters of the SENT/SPC Channel Configuration Structure

Structure Member Range Description

SentSpcDma 0..15 The eDMA channel number used for channel operation.

SentSpcEmiosInput 0..15 The eMIOS unified channel number used for data reception.

SentSpcEmiosOutput 0..15 The eMIOS unified channel number used for driving the external transistor
(Master Trigger pulse generation).

SentSpcOutputPin SENT_SPC_PIN_INOUT,
SENT_SPC_PIN_OUT

Type of the eMIOS unified channel output pin.
SENT_SPC_PIN_INOUT Input/output pin type (PC[15..0])
SENT_SPC_PIN_OUT Output pin type

(PE[5..0], PD[15..12], PD[2..7])

SentSpcFrame SPC_FRAME_6,
SPC_FRAME_5,
SPC_FRAME_4,
SPC_FRAME_3

SENT/SPC frame format of the device connected to the SENT/SPC
channel.
SPC_FRAME_6 6 Data nibbles (16-bit Hall, 8-bit temperature)
SPC_FRAME_5 5 Data nibbles (12-bit Hall, 8-bit temperature)
SPC_FRAME_4 4 Data nibbles (16-bit Hall)
SPC_FRAME_3 3 Data nibbles (12-bit Hall)
SENT/SPC Driver for the MPC5510 Microcontroller Family, Rev. 0

Freescale Semiconductor10

SENT/SPC Software Driver for the MPC5510
3.4 API
The driver API consists of the following functions:

1. SENT_SPC_Init()
2. SENT_SPC_Request()
3. SENT_SPC_Load()
4. SENT_SPC_Read_Hall()

3.4.1 SENT_SPC_Init

NOTE
Initialization of the e200z1 core and the e200z0 core (if available), system
clock (PLL), on-chip flash memory, SRAM, interrupt controller (INTC) and
the interrupt vector table is not handled by the driver and it is the
responsibility of the user.

Syntax SENT_SPC_STATE_T
SENT_SPC_Init(SENT_SPC_CONTROL_T
*pParam)

Re-entrancy Non re-entrant

Parameters *pParam — pointer to the SENT/SPC channel
configuration structure variable

Return 16-bit driver status word

Description The function initializes all on-chip peripherals which are
required for the proper generation of the master pulse,
SENT data reception and processing of the selected
SENT/SPC channel data. The function updates the
internal SENT/SPC channel 16-bit status word (see
Table 6)
SENT/SPC Driver for the MPC5510 Microcontroller Family, Rev. 0

Freescale Semiconductor 11

SENT/SPC Software Driver for the MPC5510
3.4.2 SENT_SPC_Request

NOTE
The actual Master Trigger pulse width is dependent on the communication
line resistor/capacitor parameters and the operating temperature, and it is
always wider than the gate pulse width defined by the u8MasterTime input
parameter. The user shall ensure (e.g. by a measurement) that the master pulse
width will be always within the proper limits with respect to the sensor edge
detection thresholds.

The driver provides predefined macros for u8MasterTime input parameter, which were tested for
compliance of the Master Trigger pulse width according to the TLE4998C data sheet at a 23°C ambient
temperature and using the typical application circuit shown in Figure 7. Table 3, Table 4, Table 5 list the
provided macros based on the pre-programmed SPC protocol mode of the TLE4998C device(s).

Syntax SENT_SPC_STATE_T
SENT_SPC_Request(SENT_SPC_CONTROL_T
*pParam, uint8_t u8MasterTime)

Re-entrancy Non re-entrant

Parameters *pParam — pointer to the SENT/SPC channel
configuration structure.
u8MasterTime — the width of the external transistor
gate driving pulse in microseconds

Return 16-bit driver status word

Description The function generates the Master Trigger pulse on the
communication line of the selected SENT/SPC channel
via the external transistor. The function updates the
internal SENT/SPC channel 16-bit status word (see
Table 6)

Table 3. Typical Master Pulse Timing Macro for TLE4998C Synchronous Mode

Macro
Master Pulse

Width [UT]
Gate Pulse Width [μs]

SPC_SYNCH 2.75 4

Table 4. Typical Master Pulse Timing Macros for TLE4998C ID Selection Mode

Macro Sensor ID
Master Pulse
Width [UT]

Gate Pulse Width [μs]

SPC_ID_0 0 10.5 28

SPC_ID_1 1 21 59

SPC_ID_2 2 38 110

SPC_ID_3 3 64.5 190
SENT/SPC Driver for the MPC5510 Microcontroller Family, Rev. 0

Freescale Semiconductor12

SENT/SPC Software Driver for the MPC5510
Table 5. Typical Master Pulse Timing Macros for TLE4998C Dynamic Range Mode

Macro
Magnetic Field

Range
Master Pulse
Width [UT]

Gate Pulse Width [μs]

SPC_RANGE_200 ±200 mT 3.25 6

SPC_RANGE_100 ±100 mT 12 32

SPC_RANGE_50 ±50 mT 31.5 91
SENT/SPC Driver for the MPC5510 Microcontroller Family, Rev. 0

Freescale Semiconductor 13

SENT/SPC Software Driver for the MPC5510
3.4.3 SENT_SPC_Load

3.4.4 SENT_SPC_Read_Hall

3.5 Master Trigger Pulse Generation
The SENT_SPC_Request() API function initiates generation of the external transistor gate driving pulse to
generate the Master Trigger pulse on the communication line. The output dedicated eMIOS channel
operates in the Double Action Output Compare mode. The pulse width is defined by the u8MasterTime
input parameter of the SENT_SPC_Request() API function.

Syntax SENT_SPC_STATE_T
SENT_SPC_Load(SENT_SPC_CONTROL_T
*pParam)

Re-entrancy Non re-entrant

Parameters *pParam — pointer to the SENT/SPC channel
configuration structure variable

Return 16-bit driver status word

Description The function checks the time-out condition and cause of
the time-out (no master pulse, or an invalid number of
received nibbles with respect to the selected frame
format). It decodes and stores the data nibble values
into an internal memory array which is part of the
SENT/SPC channel configuration structure. It also tests
the nibble value range, calculates a CRC checksum and
compares it with the received Checksum nibble value.
The function updates the internal SENT/SPC channel
16-bit status word (see Table 6)

Syntax SENT_SPC_STATE_T
SENT_SPC_Request(SENT_SPC_CONTROL_T
*pParam, uint16_t *pHall, uint8_t
*pStatus)

Re-entrancy Non re-entrant

Parameters *pParam — pointer to the SENT/SPC channel
configuration structure.
*pHall — pointer to the user variable where the
received sensor Hall value will be stored.
*pStatus — pointer to the user variable where the
received sensor status will be stored.

Return None

Description The function returns the actual Hall value and the status
of the sensor. If any SENT/SPC channel error status bit
is set, this function does nothing.
SENT/SPC Driver for the MPC5510 Microcontroller Family, Rev. 0

Freescale Semiconductor14

SENT/SPC Software Driver for the MPC5510
3.6 SENT Data Acquisition
The MPC5510 eMIOS unified channel dedicated to the input pin operates in Single Action Input Capture
mode. Detection of each falling edge of the SENT/SPC frame captures the actual counter value of the input
eMIOS unified channel in the internal eMIOS register. Simultaneously, an eDMA channel transfer request
is generated by the eMIOS channel. The eDMA engine then transfers the captured value to the driver
timestamp buffer. Timestamps of each falling edge are used by the SENT_SPC_Load() API function to
calculate actual sensor unit time value and sensor data values.

After all the falling edges (defined by the selected SENT/SPC frame format) of the SENT/SPC frame are
detected, the eDMA interrupt is invoked. Its ISR updates the driver status. The eDMA interrupt is invoked
only if the SENT_SPC_INTERRUPT macro value is set to 1.

An additional eDMA transfer request is generated when the SENT_SPC_INTERRUPT is set to 0. This
additional eDMA transfer clears the driver status. This interrupt-free approach saves on CPU execution
time but increases SRAM memory consumption (see Section 3.8.1, “Memory Consumption,” on page 20).

The input eMIOS unified channel counter is reset each time the SENT_SPC_Request() API function is
called. Figure 8 illustrates the data acquisition process.

Figure 8. SENT/SPC Data Acquisition

Sync./calib. S
ta

tu
s

D
at

a
1

D
at

a
2

D
at

a
3

D
at

a
4

D
at

a
5

D
at

a
6

C
R

C

M
as

te
r

Tr
ig

ge
r

E
nd

SENT/SPC Frame

eMIOS UC
Output Flip-Flop

Input eMIOS UC
Counter Bus

0x000001

eDMA
Transfer Request

eDMA Channel
Interrupt Request

Application Code **ISR

*SENT_SPC_Request()
**eDMA Channel ISR

*RCode execution
SENT/SPC Driver for the MPC5510 Microcontroller Family, Rev. 0

Freescale Semiconductor 15

SENT/SPC Software Driver for the MPC5510
3.7 API Calling Sequence
To guarantee the correct behavior of the driver, the following API call sequence is recommended (Figure 9
for illustration):

1. SENT_SPC_Init()
2. SENT_SPC_Request() (after a 1.2ms modulus timer start - not handled by the driver)
3. SENT_SPC_Load() (after a modulus timer interrupt - not handled by the driver)
4. SENT_SPC_Read_Hall()
5. SENT_SPC_Request()
6. SENT_SPC_Load() (after the following modulus timer interrupt - not handled by the driver)
7. SENT_SPC_Read_Hall()
8. SENT_SPC_Request()
9. ...

3.7.1 Functional Description

The driver channel status is internally held in the SENT/SPC channel configuration structure. However,
all API functions, except for SENT_SPC_Read_Hall(), update and return the driver status in the form of
data type SENT_SPC_STATE_T. Table 6 lists all SENT_SPC_STATUS_T type structure members.

Table 6. SENT_SPC_STATUS_T Status Word Type Definition

Structure Bit Member Size Range
Updated by API

Function(s)
Description

ErrorCRC 1-bit 0 or 1 SENT_SPC_Load This bit reflects the result of the cyclic redundancy
check.
0 CRC correct
1 CRC incorrect

StateInvalidData 1-bit 0 or 1 SENT_SPC_Init,
SENT_SPC_Load

This bit indicates if the data is prepared for reading by
the SENT_SPC_Read_Hall() API function.
0 Data is ready for reading
1 Data is not ready for reading or is invalid

ErrorMultipleDMA 1-bit 0 or 1 SENT_SPC_Init This bit indicates the result of eDMA channel
initialization.
0 eDMA channel initialization done properly
1 eDMA channel is already used by another
SENT/SPC channel or the channel number is out of
range

ErrorMultipleEMIOS 1-bit 0 or 1 SENT_SPC_Init This bit indicates the result of eMIOS unified channel
initialization.
0 Both eMIOS unified channels are initialized
properly
1 Either one or both eMIOS unified channels are
already used by another SENT/SPC channel or the
channel number is out of range
SENT/SPC Driver for the MPC5510 Microcontroller Family, Rev. 0

Freescale Semiconductor16

SENT/SPC Software Driver for the MPC5510
The driver initialization is done by the SENT_SPC_Init() API function. If any of the eMIOS unified
channels or eDMA channels defined in the SENT/SPC channel configuration structure is already used by
another initialized SENT/SPC channel, the ErrorMultipleEMIOS or ErrorMultipleDMA status bits are set.
These are the development errors. The SENT/SPC channel configuration structure needs to be then
re-initialized to proper channel values.

If the configuration structure is properly initialized, the StateInvalidData status bit is set to indicate that
the driver is initialized and the data in the internal buffer is invalid.

The SENT_SPC_Request() API function needs to be called to request the data from the sensor. The
StateTransmission status bit is set after the request is processed, indicating that the request was properly
processed and the driver is waiting on new data. This bit is then cleared automatically after a successful
SENT/SPC frame reception.

StateTransmission 1-bit 0 or 1 SENT_SPC_Request This bit indicates if the driver is waiting on new data
from a sensor.
0 Driver acquired all data according to the selected
frame format
1 Driver is waiting on new data

ErrorTimeout 1-bit 0 or 1 SENT_SPC_Load This bit indicates if all data from a sensor was acquired
properly at the time of the SENT_SPC_Load() API
function call.
0 Data was acquired properly
1 Master Trigger pulse was not generated or an
incorrect number of data nibbles was received

ErrorNibbleOverflow 1-bit 0 or 1 SENT_SPC_Load This bit reflects the result of the data nibble value
check.
0 Data nibble value is in the proper range
(0x00..0x0F)
1 Data nibble overflow (greater than 0x0F)

ErrorNumberOfNibbles 1-bit 0 or 1 SENT_SPC_Load This bit indicates if the number of received nibbles is
correct according to the selected frame format.
0 Correct number of nibbles was received
1 Incorrect number of nibbles was received

ErrorNoMasterPulse 1-bit 0 or 1 SENT_SPC_Load This bit indicates if the Master Trigger pulse was
properly generated on the communication line.
0 Master pulse properly generated
1 Master pulse not generated
(SENT_SPC_Request() API function was not called
or an external transistor malfunction occurred)

Reserved 7-bit — — Reserved bits

Table 6. SENT_SPC_STATUS_T Status Word Type Definition (continued)

Structure Bit Member Size Range
Updated by API

Function(s)
Description
SENT/SPC Driver for the MPC5510 Microcontroller Family, Rev. 0

Freescale Semiconductor 17

SENT/SPC Software Driver for the MPC5510
The SENT_SPC_Request() function call should be done periodically. The minimum possible period of
time is defined by the sum of the complete SENT/SPC frame maximal width, and the execution time of
the SENT_SPC_Load(), SENT_SPC_Read_Hall() and SENT_SPC_Request() API functions (see Table 9
). The 1.2 ms time period is considered as a safe value.

The eDMA channel interrupt is invoked after all the SENT/SPC frame pulses are properly detected. The
respective ISR (SENT_SPC_DMA_Interrupt_Ch[15..0]) then clears the StateTransmission status bit to
indicate a complete frame reception. The eDMA interrupt is invoked only if the SENT_SPC_INTERRUPT
macro is equal to 1. Otherwise, the additional eDMA transfer request to clear the status is generated. See
Table 1 for the SENT_SPC_INTERRUPT macro description.

To process the captured timing values, the SENT_SPC_Load() API function needs to be called at the
beginning of the next 1.2 ms period. If all the SENT/SPC frame pulses are not properly detected by the
driver at the time of the SENT_SPC_Load() API function call (the StateTransmission bit is still set to one),
the ErrorTimeOut status bit is set. To extend the information value, the ErrorNoMasterPulse status bit is
then set, even if the Master Trigger pulse was not detected, or the ErrorNumberOfNibbles status bit is set
indicating an invalid number of received pulses with respect to the selected SENT/SPC channel frame
format.

If all the SENT/SPC frame nibble pulses were properly detected, the ErrorNibbleOverflow status bit is set
if one or more Data nibble pulse contains a data value greater than 15 (0x0F). If the calculated CRC value
is not equal to the received Checksum nibble value, the ErrorCRC status bit is set.

The StateInvalidData status bit is remains set during the data processing by the SENT_SPC_Load() API
function.

NOTE
If the SENT_SPC_Load() API function returns any errors, the user is
advised to request new data by the SENT_SPC_Request() function. The
status is then updated by the subsequent SENT_SPC_Load() function call at
the beginning of the consecutive 1.2 ms periods. If these errors remain set,
the SENT/SPC channel frame format might be set incorrectly, the sensor is
providing erroneous data, an external transistor malfunction has occurred,
or the API sequence was not executed in the proper order.

The actual Hall value is extracted from the received data by the SENT_SPC_Read_Hall() API function
based on the selected frame format. If any SENT/SPC channel error status bit is set, this function does
nothing.

Figure 9 shows the API calling sequence, possible state transitions and error reporting. The figure shows
also all possible transitions, differentiated by colors.
SENT/SPC Driver for the MPC5510 Microcontroller Family, Rev. 0

Freescale Semiconductor18

SENT/SPC Software Driver for the MPC5510
Figure 9. API Calling Sequence and Status
SENT/SPC Driver for the MPC5510 Microcontroller Family, Rev. 0

Freescale Semiconductor 19

SENT/SPC Software Driver for the MPC5510
3.8 Resource Metrics
This chapter provides information about the memory consumption and execution times of the driver API
and interrupt. The driver is compiled using the Green Hills compiler options listed in Table 7 without any
optimization.

3.8.1 Memory Consumption

Table 8 lists the memory consumption of the driver API functions, static functions, static variables and
constants.

Table 7. Compiler Options

Compiler Option Description

-bsp generic Generic target board.

-cpu=ppc5516 Target processor.

-G Generates Green Hills MULTI debugging information.

-dual_debug Enables generation of DWARF, COFF, or BSD debugging information in the
object file, according to the convention of the target.

--no_commons Allocates uninitialized global variables to a section and initializes them to
zero at program start-up.

-pnone Disables call count profiling.

-vle Enables VLE code generation and linkage with VLE libraries.

-c Produces an object file for each source file.

Table 8. Driver Memory Consumption

API Function / Internal function /
ISR / Variable / Constant

Memory
Section

Memory
Type

Size [Bytes]

SENT_SPC_INTERRUPT

0 1

SENT_SPC_Init() .vletext Flash 934 700

SENT_SPC_Request() .vletext Flash 592 534

SENT_SPC_Load() .vletext Flash 572 550

SENT_SPC_Read_Hall() .vletext Flash 94 90

SENT_SPC_DMA_Process_Interrupt() .vletext Flash — 102

SENT_SPC_Interrupt[15..0]() .vletext Flash — 1822

Single SENT/SPC channel configuration structure variable .bss SRAM 128 40

Internal constants .rodata Flash 18 16

Internal initialized variables .data SRAM 128 128
SENT/SPC Driver for the MPC5510 Microcontroller Family, Rev. 0

Freescale Semiconductor20

SENT/SPC Software Driver for the MPC5510
3.8.2 Execution Time Consumption

The number of cycles listed in Table 9 were measured on the e200z1 core at a 75 MHz system clock
frequency using optimal flash read/write wait state control and address pipelining control settings (see the
initSysclk() function in the Section 3.9, “Application Example”). A 3 data nibble frame format (12-bit
Hall) was used for the measurement.

3.9 Application Example
#include "typedefs.h" /* ITU types defined here */
#include "mpc5510.h" /* The register and bit field definitions for MPC5510 */

#include "SENT_SPC_Driver.h"

__interrupt void Periodically(void);
void initSysclk(void);
void initINTC(void);

static uint16_t ui16Nibble_hall_ch0, ui16Nibble_hall_ch1;
static uint8_t ui8Nibble_status_ch0,ui8Nibble_status_ch1;
SENT_SPC_STATE_T ui16Error_ch0,ui16Error_ch1;

#if(SENT_SPC_INTERRUPT == 0)
#pragma alignvar(32)
#endif
static SENT_SPC_CONTROL_T ch0, ch1;

void initSysclk(void)
{

CRP.CLKSRC.B.XOSCEN = 1; /* Enable external oscillator */
FMPLL.ESYNCR2.R = 0x00000005; /* Set ERFD to initial value of 5 */
FMPLL.ESYNCR1.R = 0xF001003B; /* Set CLKCFG=PLL, EPREDIV=0, EMFD=0x20 */
while (FMPLL.SYNSR.B.LOCK != 1)
{
} /* Wait for PLL to LOCK */
FMPLL.ESYNCR2.R = 0x00000003; /* Set ERFD to final value for 75MHz sysclk */
SIU.SYSCLK.B.SYSCLKSEL = 2; /* Select PLL for sysclk */

Table 9. Execution Time

API Function / ISR

Number of Cycles

SENT_SPC_INTERRUPT

0 1

SENT_SPC_Init 693 537

SENT_SPC_Request 276 219

SENT_SPC_Load 726 726

SENT_SPC_Read_Hall 206 211

SENT_SPC_DMA_Interrupt_Ch[N] — 2021

1 Includes prolog and epilog of the ISR (INTC in hardware vector mode)
SENT/SPC Driver for the MPC5510 Microcontroller Family, Rev. 0

Freescale Semiconductor 21

SENT/SPC Software Driver for the MPC5510
FLASH.PFCRP0.B.RWSC = 0x2; /* Read Wait State Control for 75 MHz Two additional */
/* wait-states are added */

FLASH.PFCRP0.B.WWSC = 0x1; /* Write Wait State Control for 75 MHz One additional */
/* wait-state is added */

FLASH.PFCRP0.B.APC = 0x2; /* Address Pipelining Control for 75 MHz Two additional */
/* hold cycles are added */

FLASH.PFCRP1.B.RWSC = 0x2; /* Read Wait State Control for 75 MHz Two additional */
/* wait-states are added */

FLASH.PFCRP1.B.WWSC = 0x1; /* Write Wait State Control for 75 MHz One additional */
/* wait-state is added */

FLASH.PFCRP1.B.APC = 0x2; /* Address Pipelining Control for 75 MHz Two additional */
/* hold cycles are added */

}

void initINTC(void)
{

INTC.MCR.R = 1; /* Enable HW vector mode */

INTC.PSR[11].R = 1; /* Set eDMA channel 0 priority higher than 0 */
INTC.PSR[14].R = 1; /* Set eDMA channel 3 priority higher than 0 */
INTC.PSR[81].R = 2; /* Set eMIOS channel 23 interrupt priority */

INTC.CPR_PRC0.R = 0; /* Set current priority for z1 to 0 */
asm("wrteei 1"); /* Enable z1 core external interrupts */

}

void main(void)
{

initINTC(); /* Initialize interrupt controller */
initSysclk(); /* Set sysclk = 75 MHz running from PLL */

ch0.SentSpcDma = 0;
ch0.SentSpcEmiosInput = 0;
ch0.SentSpcEmiosOutput = 1;
ch0.SentSpcOutputPin = SENT_SPC_PIN_INOUT; /* Pad PC1 will be used for eMIOS[1] */
ch0.SentSpcFrame = SPC_FRAME_3;

ch1.SentSpcDma = 3;
ch1.SentSpcEmiosInput = 9;
ch1.SentSpcEmiosOutput = 12;
ch1.SentSpcOutputPin = SENT_SPC_PIN_OUT; /* Pad PD4 will be used for eMIOS[12] */
ch1.SentSpcFrame = SPC_FRAME_3;

ui16Error_ch0 = SENT_SPC_Init(&ch0);
ui16Error_ch1 = SENT_SPC_Init(&ch1);

// eMIOS Global initialization
EMIOS.MCR.B.GPRE = 2; /* eMIOS global clock prescaler divide ratio 3 */
EMIOS.MCR.B.GPREN = 1; /* Enable eMIOS clock */
EMIOS.MCR.B.GTBE = 1; /* Enable global time base */
EMIOS.MCR.B.FRZ = 1; /* Enable stopping channels when in debug mode */

EMIOS.CH[23].CADR.R = 29999; /* Period will be 29999+1 = 30000 clocks (1,2 msec) */
EMIOS.CH[23].CCR.B.MODE = 0x50; /* MPC5510: Modulus Counter Buffered (MCB) */
EMIOS.CH[23].CCR.B.BSL = 0x3; /* Use internal counter */
EMIOS.CH[23].CCR.B.UCPRE = 0; /* Set channel prescaler to divide by 1 */
SENT/SPC Driver for the MPC5510 Microcontroller Family, Rev. 0

Freescale Semiconductor22

Conclusion
EMIOS.CH[23].CCR.B.FREN = 1; /* Freeze channel counting when in debug mode */
EMIOS.CH[23].CCR.B.UCPREN = 1; /* Enable prescaler; uses default divide by 1 */
EMIOS.CH[23].CCR.B.DMA = 0; /* Interrupt */
EMIOS.CH[23].CCR.B.FEN = 1; /* Enable FLAG flag to generate interrupt */

ui16Error_ch0 = SENT_SPC_Request(&ch0,SPC_SYNCH);
ui16Error_ch1 = SENT_SPC_Request(&ch1,SPC_SYNCH);

while (1)
{
} /* Wait forever */

}

__interrupt void Periodically(void)
{

EMIOS.CH[23].CSR.B.FLAG = 1;

ui16Error_ch0 = SENT_SPC_Load(&ch0);
SENT_SPC_Read_Hall(&ch0,&ui16Nibble_hall_ch0,&ui8Nibble_status_ch0);
ui16Error_ch0 = SENT_SPC_Request(&ch0,SPC_SYNCH);

ui16Error_ch1 = SENT_SPC_Load(&ch1);
SENT_SPC_Read_Hall(&ch1,&ui16Nibble_hall_ch1,&ui8Nibble_status_ch1);
ui16Error_ch1 = SENT_SPC_Request(&ch1,SPC_SYNCH);

INTC.EOIR_PRC0.R = 0x0; /* Exit Interrupt (End-of-Interrupt Register) */
}

4 Conclusion
The Application note AN4219 describes the SENT protocol basics along with its SPC enhancement. The
requirements for external components, a list of utilized peripherals, configuration description, application
programming interface description, data acquisition description, the API calling sequence, and a
functional description of the SENT/SPC driver for the MPC5510 family of microcontrollers are provided
in the text.

The software driver provides full communication with the Infineon TLE4998C programmable linear Hall
sensor. It is fully compatible with all TLE4998C supported SPC modes and SENT/SPC frame formats.

The usage of MPC5510 on-chip hardware peripherals such as the eMIOS and eDMA provides low
e200z1/e200z0 core load. The driver consumes approximately 1.34% of the e200z1 execution time, with
disabled interrupts, and 1.51% of the execution time with enabled interrupts. The percentages are related
to the 1.2 ms transmission triggering loop period at a 75 MHz system clock frequency.
SENT/SPC Driver for the MPC5510 Microcontroller Family, Rev. 0

Freescale Semiconductor 23

References
5 References
1. SAE J2716 (R) SENT - Single Edge Nibble Transmission for Automotive Applications, FEB2008
2. MPC5510 Microcontroller Family Reference Manual, Rev. 1, 06/2008
3. MPC5510 Microcontroller Family Data Sheet, Rev. 3, 3/2009
4. TLE4998C Target Data Sheet, V 0.3, July 2008
SENT/SPC Driver for the MPC5510 Microcontroller Family, Rev. 0

Freescale Semiconductor24

Acronyms
6 Acronyms
A/D Analog to Digital

API Application Programming Interface

CAN Controller Area Network

CPU Central Processing Unit

CRC Cyclic Redundancy Check

ECU Electronic Control Unit

eDMA Enhanced Direct Memory Access

EMC Electromagnetic Compatibility

eMIOS Enhanced Input/Output Subsystem

ESD Electrostatic Discharge

I/O Input/Output

INTC Interrupt Controller

ISR Interrupt Service Routine

LIN Local Interconnect Network

MCU Microcontroller Unit

PLL Phase-Locked Loop

PWM Pulse Width Modulation

RF Radio Frequency

SAE Society of Automotive Engineers

SENT Single Edge Nibble Transmission

SIU System Integration Unit

SPC Short PWM Code

SRAM Static Random Access Memory

UT Unit Time
SENT/SPC Driver for the MPC5510 Microcontroller Family, Rev. 0

Freescale Semiconductor 25

THIS PAGE IS INTENTIONALLY BLANK
SENT/SPC Driver for the MPC5510 Microcontroller Family, Rev. 0

Freescale Semiconductor26

Document Number: AN4219
Rev. 0
10/2010

How to Reach Us:

Home Page:
www.freescale.com

Web Support:
http://www.freescale.com/support

USA/Europe or Locations Not Listed:
Freescale Semiconductor, Inc.
Technical Information Center, EL516
2100 East Elliot Road
Tempe, Arizona 85284
+1-800-521-6274 or +1-480-768-2130
www.freescale.com/support

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
www.freescale.com/support

Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064
Japan
0120 191014 or +81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:
Freescale Semiconductor China Ltd.
Exchange Building 23F
No. 118 Jianguo Road
Chaoyang District
Beijing 100022
China
+86 10 5879 8000
support.asia@freescale.com

For Literature Requests Only:
Freescale Semiconductor Literature Distribution Center
1-800-441-2447 or 303-675-2140
Fax: 303-675-2150
LDCForFreescaleSemiconductor@hibbertgroup.com

Information in this document is provided solely to enable system and software
implementers to use Freescale Semiconductor products. There are no express or
implied copyright licenses granted hereunder to design or fabricate any integrated
circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to
any products herein. Freescale Semiconductor makes no warranty, representation or
guarantee regarding the suitability of its products for any particular purpose, nor does
Freescale Semiconductor assume any liability arising out of the application or use of any
product or circuit, and specifically disclaims any and all liability, including without
limitation consequential or incidental damages. “Typical” parameters that may be
provided in Freescale Semiconductor data sheets and/or specifications can and do vary
in different applications and actual performance may vary over time. All operating
parameters, including “Typicals”, must be validated for each customer application by
customer’s technical experts. Freescale Semiconductor does not convey any license
under its patent rights nor the rights of others. Freescale Semiconductor products are
not designed, intended, or authorized for use as components in systems intended for
surgical implant into the body, or other applications intended to support or sustain life,
or for any other application in which the failure of the Freescale Semiconductor product
could create a situation where personal injury or death may occur. Should Buyer
purchase or use Freescale Semiconductor products for any such unintended or
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and
its officers, employees, subsidiaries, affiliates, and distributors harmless against all
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,
directly or indirectly, any claim of personal injury or death associated with such
unintended or unauthorized use, even if such claim alleges that Freescale
Semiconductor was negligent regarding the design or manufacture of the part.

RoHS-compliant and/or Pb-free versions of Freescale products have the functionality
and electrical characteristics as their non-RoHS-compliant and/or non-Pb-free
counterparts. For further information, see http://www.freescale.com or contact your
Freescale sales representative.

For information on Freescale’s Environmental Products program, go to
http://www.freescale.com/epp.

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.
All other product or service names are the property of their respective owners.
© Freescale Semiconductor, Inc. 2010. All rights reserved.

http://www.freescale.com
http://www.freescale.com/epp

	1 Introduction
	2 Overview
	2.1 SENT Encoding Scheme
	2.1.1 Synchronization/Calibration Pulse
	2.1.2 Status and Communication Nibble Pulse
	2.1.3 Data Nibble Pulse
	2.1.4 Checksum Nibble Pulse

	2.2 SPC Protocol
	2.3 SENT/SPC Physical Layer

	3 SENT/SPC Software Driver for the MPC5510
	3.1 Physical Layer Topology
	3.2 Utilized MPC5510 Peripherals
	3.3 Driver Configuration
	3.3.1 SENT/SPC Channel Configuration Structure

	3.4 API
	3.4.1 SENT_SPC_Init
	3.4.2 SENT_SPC_Request
	3.4.3 SENT_SPC_Load
	3.4.4 SENT_SPC_Read_Hall

	3.5 Master Trigger Pulse Generation
	3.6 SENT Data Acquisition
	3.7 API Calling Sequence
	3.7.1 Functional Description

	3.8 Resource Metrics
	3.8.1 Memory Consumption
	3.8.2 Execution Time Consumption

	3.9 Application Example

	4 Conclusion
	5 References
	6 Acronyms

