

© Freescale Semiconductor, Inc., 2010. All rights reserved.

Freescale Semiconductor Document Number: AN4233

Application Note

HSST Setup for VTB Fast Download

1. Introduction
The main purpose of this application note is to
illustrate the steps required to setup the High-Speed
Simultaneous Transfer (HSST) download method
for Virtual Trace Buffer (VTB) fast download.

This is a VTB trace download method which is 6
to10 times faster than the default JTAG download
method.

All the results and screenshots in this document are
based on CodeWarrior10.1.5 release. For newer
releases, there might be minor GUI changes but
functionalities should be similar.

This application note assumes that the user is
familiar with the common terms used in Software
Analysis feature.

Contents
1. Introduction...1
2. High-Speed Simultaneous Transfer (HSST) ...2
3. Benefits of HSST...3
4. Step-by-Step Configuration4
5. Things to Consider while Using HSST..........14

 High-Speed Simultaneous Transfer (HSST)

HSST Setup for VTB Fast Download Application Note
 2 Freescale Semiconductor

2. High-Speed Simultaneous Transfer (HSST)
HSST is a method to facilitate data transfer between an application that runs on a target (MSC8156
target) and a host side application (CodeWarrior application).

 HSST download method uses the same physical communication layer as JTAG download method, but
due different implementation the download speed is increased about 6 to10 times as compared to the
JTAG download method.

While the JTAG download method transfers data by halting the target, exchanging the data followed by
resuming the target, the HSST download method works faster because the transfer between target and
host computer occurs without stopping the target.

NOTE The target is not stopped during the data transfer. The drawback of this method
compared with JTAG download method is, larger memory requirements from the
target point of view. This is due to the mechanism implemented: when the target
calls to standard I/O functions, these calls are redirected via HSST I/O calls at a
lower layer implemented in the HSST libraries, in order to transfer the data from the
target. The HSST libraries contain extra code and data sections that need to be linked
with the user’s main application.

NOTE HSST supports file I/O and console I/O also. These features are not covered into this

application note. The focus is on necessary settings for VTB download only.

Benefits of HSST

HSST Setup for VTB Fast Download Application Note
Freescale Semiconductor 3

3. Benefits of HSST
The main benefit of HSST is the higher download speed required for transferring large amount of data
during application profiling.
XFigure 1X shows a comparative download speed between JTAG and HSST methods, using the same
communication channel parameters. In this example, the packet size is 16 bytes.

Figure 1. Download Speed Comparison Between HSST and JTAG

For large and big chunks of download data, the HSST is about six times faster than JTAG method.

The default setup includes JTAG download method and the VTB size. It results in slow download speed
while tracing huge applications.

This type of setup is causing performance penalties in download speed since a high number of download
actions are required to get the data from the target, and in the same time, the improper setup of the trace
can cause application errors due to the broken application’s real-time behavior (caused by multiple
processor halts).

NOTE CodeWarrior offers even a faster method for download: HEAT. In most of the cases,
this method cannot be used in user custom applications due to its hardware and
software requirements. In these conditions, the HSST is only the best method to
speed up the VTB download process.

 Step-by-Step Configuration

HSST Setup for VTB Fast Download Application Note
 4 Freescale Semiconductor

4. Step-by-Step Configuration
This section lists the steps required for a successful setup of HSST VTB download method.

4.1. Assumptions About Use Case
The setup explained in this application note is based on the following assumptions:

1. You can run the application on all the six cores of the MSC8156 and each of the cores are traced.
In case, you are using less than six cores, the setup remains the same.

NOTE This application note can also be used for other types of DSPs. You might need to
make specific adjustments to match the platform in use, for example, MSC8144
target.

2. The communication or connection between MSC8156 and the host PC is done using JTAG

interface with either USB TAP or Ethernet TAP.
3. SmartDSP OS is not available. In this case, the recommended method is HEAT.
4. The VTB is placed in DDR and its size matches the large or big data download criteria, see

XFigure 1X for details.
5. The project used for demonstration is based on MSC8156 stationery project, modified to fill a

large VTB buffer.

4.2. Step1 – Add HSST Support to Project
To support the HSST protocol, the application must be linked with two HSST libraries provided by
Freescale:

1. hostio_be_x.elb: this library is located at
<CWInstallDir>\SC\StarCore_Support\compiler\lib\msc8156\

NOTE <CWInstallDir> is the directory where CodeWarrior is installed.

NOTE Multiple versions of the hostio libraries are located in this folder. For the purpose of
this application note, the library with big endian “_be” and long-long/double “-x”
support has been selected.

2. HSST8156b.elb: this library is located at

<CWInstallDir>\SC\StarCore_Support\HSST_Support_Sample\Libraries\
Target_Side\

NOTE If the project is built for another type of platform, make sure to select the appropriate
library.

In order to link these two libraries with the application, the project linker settings need to be modified.
Open the project properties, go to the linker library settings located under
C/C++Build\Settings\StarCode C/C++ Linker\Libraries and add the two libraries
into the Additional Libraries panel, see XFigure 2X for details.

Step-by-Step Configuration

HSST Setup for VTB Fast Download Application Note
Freescale Semiconductor 5

Figure 2. Adding HSST Libraries to Project

NOTE In case, your project already contains multiple libraries, after adding these two new
libraries, it is recommended to use reread-lib linker additional option in order to
force the linker to reread all libraries until it cannot resolve any more references.
Otherwise, depending on the additional libraries include order, the linker might
return errors.

Make sure you have instructed the linker to generate and keep the *.map file for the project. This file is
needed to confirm/check that the setup of HSST is done correctly. If the map file contains the symbols
related with HSST (like “_hsst_syscall”) then it is guaranteed that HSST method for download is
used. Otherwise, the default JTAG Stop-Transfer method will be used.

Also, the *.map file will be used to allocate the VTB buffer into a DDR free memory region after the
application is built with HSST support.

 Step-by-Step Configuration

HSST Setup for VTB Fast Download Application Note
 6 Freescale Semiconductor

Figure 3. Linker Configuration for Map File Generation and Additional Options

4.3. Step2 – Setup HSST Communication Channel Parameters
In addition to the HSST libraries, you need to declare two global variables that are used to configure the
communication channel between the target and the host PC.

void* hsst_hostio_stream = NULL;
char* hsst_channel_name = (char *)0xffffffff;

NOTE To reduce the number of modifications added to the project, these settings will be
done in the same file with the settings for the Software Analysis interrupt handler.

The application that is executed on the target will not change the communication channel name
hsst_channel_name during the execution. The debugger handles this automatically.

4.4. Step3 – Setup Software Analysis Interrupt
A DPU interrupt will be triggered in order to transfer the VTB trace data from the target to the host PC
when the writes into the VTB reach at, VTB Trace Event Request Address.

The Enhance Interrupt Controller (EPIC) can get the source of interrupt from two places: interrupt debug
A (DPUA) and interrupt debug B (DPUB) respectively. Depending on DPU control register (DP_CR)
settings, either DPUA or DPUB will trigger the interrupt that should handle the VTB data transfer from
target (MSC8156) to the host PC.

The source of the interrupt is controlled by DP_CR.DETB bits. By default, the software analysis engine
configures these bits to trigger a DPUA to the EPIC.

NOTE For demonstration purpose, this application note considers that the VTB download
interrupt source is DPUA. In case the VTB interrupt debug request is changed, make
sure that the change is consistent over the next steps.

Step-by-Step Configuration

HSST Setup for VTB Fast Download Application Note
Freescale Semiconductor 7

Based on the aspects presented above, the project needs to configure the EPIC. Once the VTB Trace
Event Request Address is reached and the DPUA interrupt is triggered, the interrupt handler must take
care of transferring the collected data from target to the host PC.

The easiest way to configure the EPIC is to take advantage of the demo projects provided with
CodeWarrior. In order to configure the EPIC, the intvec.asm file is needed.

One example of intvec.asm file that can be used is, the one located at
<CWInstall>\SC\StarCore_Support\SoftwareAnalysis\swandemo_8156ads_hsst
\Source\.
For the correct EPIC configuration, this file needs to be added into the project.
Alternatively, you can use the file sa_intvec.asm located at
<CWInstall>\analysis\1.1.0\lib\host\engine\modules\HSST\. It is recommended
to use the one from the demo because these files are checked for correctness for each CodeWarrior
release.

Use Add Files… from the context menu to select the file and then choose Copy the files and
directories option. This option is required because the file needs to be modified for the purpose of this
demonstration.

Figure 4. Add intvec.asm into Project

If the file import was successful, it should be displayed in the project source folder. In this particular
case, the file has been imported into the project Source folder.

 Step-by-Step Configuration

HSST Setup for VTB Fast Download Application Note
 8 Freescale Semiconductor

Figure 5. intvec.asm file location

Modify the newly added file to handle only the software analysis VTB Trace Event Request Address
interrupt. The modifications are shown below:

Original intvec.asm Modified intvec.asm
jmp >_timer0_handler

 nop
 dup 4
 nop
 endm
 jmp >_timer1_handler
 nop
 dup 4
 nop
 endm

 jmp >_sa_ter_handle
 dup 13
 nop
 endm

 jmp >___EmptyIntHandler
 nop
 dup 4
 nop
 endm
 jmp >___EmptyIntHandler
 nop
 dup 4
 nop
 endm

jmp >_sa_ter_handle
 dup 13
 nop
 endm

NOTE This method was chosen for its simplicity. You can implement your own method but

special attention needs to be paid for EPIC offset from VBA. If the offset is not
computed correctly, the _sa_ter_handle will not be executed and the download
will not work.

4.5. Step4 – Add Support for Software Analysis Interrupt Handler
After step 3 is complete, add the code for the interrupt handler. CodeWarrior provides a standard file
sa_handle.c that can be used to configure the software analysis interrupt handler.

Step-by-Step Configuration

HSST Setup for VTB Fast Download Application Note
Freescale Semiconductor 9

For the same reasons as explained in section X4.4X, the recommended file is the one located in
CodeWarrior demo folders <CWInstall>\SC\StarCore_Support\SoftwareAnalysis\
swandemo_8156ads_hsst\Source.

In order to add it into the project, follow the same procedure as shown in XFigure 4X. In the project Source
folder, the newly added file should be displayed.

Figure 6. sa_handle.c File Location

This file contains two major settings:

1. In the beginning of the file, the global variables of the HSST communication channel are added
as explained in section X4.3X.

2. Set the names of the files and location where the VTB data will be written using the HSST
communication channel that is opened between the target and the host PC.

Regarding the second aspect, you are free to change both file names and location in order to match its
restrictions. By default, the settings refer to C:\ drive as this path exists on host PC.

switch eID){ (cor
 case 0:
 if(first_entry_0){
 fp = fopen("C:\\sa_ter_hsst_0.txt","wb");
 first_entry_0 = 0;
 }
 else{
 fp = fopen("C:\\sa_ter_hsst_0.txt","ab");
 }
 break;

NOTE If the file name and path is changed in this file, you must update these settings
accordingly in the Trace and Profile setup, see XFigure 8X.

 Step-by-Step Configuration

HSST Setup for VTB Fast Download Application Note
 10 Freescale Semiconductor

Since the project used for demonstration is using all 6 cores to execute and trace the application, the
number of HSST communication channels that will be opened by the target to communicate with the
host PC will also be 6.

Therefore, the data/program sections associated with each HSST communication channel must be placed
in each of the core’s private memory. By default, for a stationery project the
program/data/rom/bss sections are placed in M3 shared memory. If this default setting is not
changed, the HSST VTB download method will not work.

To place the sa_ter_handle() into each core private memory, you can use the *.appli file
support.

The following module needs to be added into the view used to compile the project:

module "sa_handle" [
 rom = M3__cacheable_wb__sys__shared__rom
 bss = M3__cacheable_wb__sys__private__bss
 data = M3__cacheable_wb__sys__private__data

 function _sa_ter_handle [
 program = M2__cacheable__sys__private__text
]
]

The _sa_ter_handle function program will be placed in
M2__cacheable__sys__private__text and the data into
M3__cacheable_wb__sys__private__data.

NOTE Make sure the name of the module and linker input sections are matching the ones
from the user project. Otherwise, the compiler will return an error.

Now the project can be built and the map file checked to see if the modifications made to the project are
in place.

4.6. Step5 – Configure Trace and Profile
The last step required to collect the VTB data using HSST download method is the Trace and Profile
configuration. In the Trace and Profile configuration window, you must select HSST as Trace Offload
Method, see XFigure 7X.

Step-by-Step Configuration

HSST Setup for VTB Fast Download Application Note
Freescale Semiconductor 11

Figure 7. Enable Trace and Profile to Download Data Using HSST Method

In Advance Settings, the path of the HSST data files needs to be specified for debug configurations
associated with the cores.

Figure 8. HSST Advanced Settings

NOTE The path of the file must be identical with the one specified in section X4.5X.

 Step-by-Step Configuration

HSST Setup for VTB Fast Download Application Note
 12 Freescale Semiconductor

If the file does not exist, it will be created with the default name specified in sa_handle.c when the
application is started. If the file already exists in the specified location, it will be overwritten when the
application is started.

You need to allocate the VTB addresses in order to save the trace data. XFigure 9X shows an example of
VTB allocation in DDR for one core (for example, core#0).

Figure 9. Example of VTB Allocation for One Core

NOTE For each of the cores, the VTB should be private and must not overlap.

If you find it difficult to set the VTB addresses, check the Compute VTB location automatically
checkbox to set the default allocation used by CodeWarrior.
If you have decided to use the default allocation, make sure you have done the appropriate settings into
the linker files:

1. mmu_attr.l3k set the _ENABLE_VTB symbol with the memory bank you want to use.

Step-by-Step Configuration

HSST Setup for VTB Fast Download Application Note
Freescale Semiconductor 13

// Definitions for the VTB
// if 1 = reserve VTB in M2 memory
// if 2 = reserve VTB in M3 memory
// if 3 = reserve VTB in DDR memory
// else VTB will not be configured automatically

_ENABLE_VTB = 3;

2. common.l3k set the size of reserved VTB for each physical memory.

// Reserve VTB are in physical memory
// Set VTB start address and size for M2, M3 and DDR

 _M2_VTB_size= 0x1000; //4K for each core
 _M3_VTB_size= 0x8000; //32K for each core
 _DDR_VTB_size= 0x1FFEE0;//2M for each core

Additionally, if you still face issue with VTB allocation, CodeWarrior offers a feature called
MemoryMapViewer that can be opened from Window > Show View > Other… > Other >
MemoryMapViewer that can be used to identify a free memory location, see XFigure 10X.

HFigure 10H displays the MemoryMapViewer feature to help you to identify free memory regions.

Figure 10. MemoryMapViewer

 Things to Consider while Using HSST

HSST Setup for VTB Fast Download Application Note
14 Freescale Semiconductor

5. Things to Consider while Using HSST
In order to make sure that the data is collected successfully, follow the details which if ignored might
cause wrong results:

1. If the size of the VTB is too big and the application trace does not reach the VTB Trace Event
Request Address, the HSST transfer will not be done since the DPUA interrupt is never triggered.
In this case, at the end of application the entire VTB will be downloaded using default Stop-
Transfer method (JTAG). Make sure that the VTB is filled at least once during application
tracing.

2. At times, no matter which download method is used, the last portion of the VTB (before the last

triggered interrupt and the current location when the application was stopped) will be transferred
using JTAG Stop-Transfer method. This cannot be avoided.

3. It is recommended not to use any kind of I/O in the application when HSST is used as offload
method to trace the application. For example, if there is a printf() function which will be
executed using HSST and the VTB is almost full when the offload interrupt is triggered both
printf() and HSST offload methods might use the communication channel. In this case, some
data will be lost.

4. In some cases, it is possible to see some gaps or even the whole VTB is lost. This is because the
method to transfer the data between targets and host PC is using a Non-Maskable Interrupt.
When the VTB reaches the VTB Trace Event Request, the hardware triggers an interrupt to begin
the transfer. If other NMIs are triggered just before the VTB interrupt, those interrupts might fill
the remaining VTB and the start addresses of this buffer might be overwritten as the write pointer
is reset to the VTB start address. To avoid this kind of situation make sure that between the VTB
Event Request Address and VTB End Address there are at least 100 bytes for each possible NMI.

Information in this document is provided solely to enable system and software implementers to use
Freescale Semiconductor products. There are no express or implied copyright licenses granted

How to Reach Us:

Home Page: hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in
this document. www.freescale.com

E-mail: Freescale Semiconductor reserves the right to make changes without further notice to any products
support@freescale.com herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the

suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any USA/Europe or Locations Not Listed:
liability arising out of the application or use of any product or circuit, and specifically disclaims any Freescale Semiconductor
and all liability, including without limitation consequential or incidental damages. “Typical” parameters Technical Information Center, CH370
that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary 1300 N. Alma School Road

Chandler, Arizona 85224 in different applications and actual performance may vary over time. All operating parameters,
+1-800-521-6274 or +1-480-768-2130 including “Typicals”, must be validated for each customer application by customer’s technical experts.
support@freescale.com Freescale Semiconductor does not convey any license under its patent rights nor the rights of others.

Freescale Semiconductor products are not designed, intended, or authorized for use as components Europe, Middle East, and Africa:
in systems intended for surgical implant into the body, or other applications intended to support or Freescale Halbleiter Deutschland GmbH
sustain life, or for any other application in which the failure of the Freescale Semiconductor product Technical Information Center

Schatzbogen 7 could create a situation where personal injury or death may occur. Should Buyer purchase or use
81829 Muenchen, Germany Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall
+44 1296 380 456 (English) indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and +46 8 52200080 (English)

distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney +49 89 92103 559 (German)
fees arising out of, directly or indirectly, any claim of personal injury or death associated with such +33 1 69 35 48 48 (French)

support@freescale.com unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was
negligent regarding the design or manufacture of the part.

Japan:
Freescale Semiconductor Japan Ltd. Freescale and the Freescale logo are trademarks of Freescale Semiconductor, Inc. CodeWarrior Headquarters

is a trademark or registered trademark of Freescale Semiconductor, Inc. StarCore is a registered ARCO Tower 15F
trademark of Freescale Semiconductor, Inc. in the United States and/or other countries. All other 1-8-1, Shimo-Meguro, Meguro-ku,

Tokyo 153-0064, Japan product or service names are the property of their respective owners.
0120 191014 or +81 3 5437 9125 © Freescale Semiconductor, Inc. 2010. All rights reserved.
support.japan@freescale.com
Asia/Pacific:

 Freescale Semiconductor Hong Kong Ltd.
Technical Information Center
2 Dai King Street
Tai Po Industrial Estate
Tai Po, N.T., Hong Kong
+800 2666 8080
support.asia@freescale.com

For Literature Requests Only:
Freescale Semiconductor Literature Distribution Center
P.O. Box 5405
Denver, Colorado 80217
1-800-521-6274 or 303-675-2140
Fax: 303-675-2150
LDCForFreescaleSemiconductor@hibbertgroup.com

Document Number: AN4233 AN4233

24 November 2010

