
Freescale Semiconductor Document Number: AN4277
Application Note Rev. 1.0, 10/2014

© 2013-2014 Freescale Semiconductor, Inc. All rights reserved.

Contents

1 Introduction
Freescale’s FXTH87xx consist of complex
system-on-chip products that contain a pressure sensor, a
Radio Frequency (RF) transmitter, a Low Frequency
(LF) receiver, an 8-bit S08 microcontroller (MCU), and
may contain one or two axis accelerometers, all in one
package. As with most S08 solutions, users must
program the MCU with their program, but Freescale
already ships low-level drivers, as well as compensation
routines, within each part. In order to exploit these
routines, the developer must be familiar not only with the
MCU architecture, but also with the in-flash firmware.
The aim of this document is to fast-track the learning
curve of the latter part for someone that is already
cognizant of the former.

Two separate documents are referenced repeatedly
throughout this text. The firmware user guide is available
through the web and contains details on the in-flash
functions, variables, and their functionality. The device
data sheet, or product spec, is also available for

Interfacing to Freescale’s
FXTH87xx In-Flash Firmware
Routines Using C-language
Constructors
by: Andres Barrilado

Stephane Lestringuez

1 Introduction . 1
2 Creating a New Project . 2
3 Declarations. 2

3.1 Special types . 2
3.2 Shared global variables . 3
3.3 Universal uncompensated measurement array. . . . 3
3.4 Interfaces to in-flash firmware routines 4
3.5 Calling Freescale’s in-flash routines 4
3.6 Declaring interrupts . 5
3.7 Initializing shared global variables. 5

4 Conclusion. 6

Interfacing to Freescale’s FXTH87xx In-Flash Firmware Routines Using C-language Constructors

2 Freescale Semiconductor, Inc.

download and addresses hardware architecture, register locations, and overall functionality. Both are
recommended as reference for development.

2 Creating a New Project
For instructions on how to create a new CodeWarrior C project, refer to Section 4.2 in Freescale
application note AN2616, “Getting Started with HCS08 and CodeWarrior Using C, Revised for
CodeWarrior v3.1 - v5.1”.

When using CodeWarrior 10.x series, please refer to "MCU_HCS08_COMPILER, HCS08 Build Tools
Reference Manual for Microcontrollers V10.x" and its derivative.

3 Declarations
As with any C-language project, it is a good idea to start by defining the types, global variables, and
functions that will be used.

3.1 Special types
Freescale’s in-flash firmware does not require any special types to be defined, allowing for a strict Motor
Industry Software Reliability Association (MISRA) compilation if necessary. However, certain typedef
definitions will make the developer’s life easier. Throughout this document, special types are used as an
integral part of interfacing to the in-flash firmware.

3.1.1 T_RFDATA

T_RFDATA can be used to configure the Radio Frequency Module (RFM) through the
TPMS_RF_CONFIG_DATA routine. Figure 1 shows its definition. For more information on the meaning
of each field, refer to the firmware user guide pertinent to your family.

Figure 1. T_RFDATA typedef

typedef struct
{
 UINT8 Prescaler : 8; /* RFCR0 */
 UINT8 Modulation : 1;
 UINT8 Frequency : 1;
 UINT8 Encoding : 2; /* CODE - Manchester, BiPhase, NRZ or Direct */
 UINT8 : 2;
 UINT8 Polarity : 1;
 UINT8 EndOfMessage : 1;
 UINT16 PllA;
 UINT16 PllB;
} T_RFDATA;

Interfacing to Freescale’s FXTH87xx In-Flash Firmware Routines Using C-language Constructors

Freescale Semiconductor, Inc. 3

3.2 Shared global variables
Depending on the family of TPMS sensors two global variables must be declared and taken into account
for development.

3.2.1 TPMS_INTERRUPT_FLAG

Common between all families and derivatives, this 8-bit variable is used by firmware to identify when a
particular interrupt has taken place. Its content, as well as its absolute memory location is defined in the
pertinent firmware user guide.

This variable must be declared as shown in Figure 2, being careful to replace
TPMS_INTERRUPT_FLAG_LOCATION with the correct value provided in the firmware user guide.
Typically, this location is $8F, which is the last location of non-volatile RAM.

Figure 2. TPMS_INTERRUPT_FLAG definition

3.2.2 TPMS_CONT_ACCEL_GLOBAL

This variable’s content, as well as its absolute memory location, is defined in relevant firmware user
guides. This variable must be declared as shown in Figure 3, being careful to replace
TPMS_CONT_ACCEL_GLOBAL_LOCATION with the correct value. Typically, this is location $8E,
which is part of non-volatile RAM.

Figure 3. TPMS_CONT_ACCEL_GLOBAL definition

3.3 Universal uncompensated measurement array
The universal uncompensated measurement array (UUMA) is a four or five word-long array that must be
placed in memory to be able to call measurement routines. Its size varies depending on the family; four
words are needed for devices with one-axis accelerometers (one for each uncompensated measurement
available, i.e., voltage, temperature, pressure, and Z-axis acceleration), while five must be reserved for
devices with two axes accelerometers (one more for the X-axis acceleration measurement). As its name
indicates, it provides a standard, organized format for uncompensated measurements. A typical declaration
is shown in Figure 4. For more information regarding the structure and use of the UUMA, refer to the
firmware user guide relevant to your family.

Figure 4. UUMA Declaration

#define TPMS_INTERRUPT_FLAG_LOCATION ((UINT16)0x008Fu);
extern UINT8 TPMS_INTERRUPT_FLAG @ TPMS_INTERRUPT_FLAG_LOCATION;

#define TPMS_CONT_ACCEL_GLOBAL_LOCATION ((UINT16)0x008Eu);
extern UINT8 TPMS_INTERRUPT_FLAG @ TPMS_CONT_ACCEL_GLOBAL_LOCATION;

/* Declaration for the FXTH87xx02 */
volatile UINT16 au16UUMA[4u];

/* Declaration for the FXTH87xx11 */
volatile UINT16 au16UUMA[5u];

Interfacing to Freescale’s FXTH87xx In-Flash Firmware Routines Using C-language Constructors

4 Freescale Semiconductor, Inc.

3.4 Interfaces to in-flash firmware routines
In-flash firmware routines interface with user firmware through an in-flash look-up table. Each routine is
assigned a unique, absolute address, and can be called by declaring a pointer to its location. The example
in Figure 5 interfaces to TPMS_READ_PRESSURE, located at address $E00F in all families. Similar
pointers can be created for all functions. For a full example, download the accompanying code from the
web and refer to the accompanying .h file.

For more information on functions available, and their absolute location, refer to the pertinent user guide.

Figure 5. Sample Interface to an in-flash firmware routine

3.5 Calling Freescale’s in-flash routines
Once in-flash routines have been declared as pointers, calling them should be as simple as calling any other
function. Figure 6 illustrates this with the pointer definition performed in Figure 5. For more information
on available functions, and their prototypes, refer to the corresponding user guide.

Figure 6. Sample call to TPMS_READ_PRESSURE

/* UINT8 TPMS_READ_PRESSURE(UINT16 *u16UUMA, UINT8 u8Avg) */
#define TPMS_READ_PRESSURE ((UINT8(*)(UINT16*, UINT8))((UINT16)0xE00Fu))

 /* Declare local variables */
 UINT8 u8Status = CLEAR;
 UINT16 au16UUMA[4u];

 u8Status = TPMS_READ_PRESSURE(au16UUMA, 1u);

Interfacing to Freescale’s FXTH87xx In-Flash Firmware Routines Using C-language Constructors

Freescale Semiconductor, Inc. 5

3.6 Declaring interrupts
In the FXTH87xx family of products, interrupts are first handled by the in-flash firmware, and then, if
relevant, handed over to the user. The application developer is in charge of correctly handling these
interrupts through a set of pseudo-vectors that behave identically to regular interrupt vectors, but are
defined in a different location. User interrupt pseudo-vectors must be declared starting in location $DFE0.
Figure 7 shows a sample declaration. Note that the “main” is also declared here. For a comprehensive list
of interrupt vectors and their functions, refer to the section titled “Resets, Interrupts and System
Configuration” in the pertinent product’s data sheet.

Figure 7. Sample user interrupt vector declaration

3.7 Initializing shared global variables
All shared global variables must be initialized to “0” during the first execution cycle of the program. The
PDF bit inside the SPMSC2 register is cleared if this is the case, or set otherwise. Refer to Figure 8 for an
example of how to do so, and to the product’s data sheet. for more information on the PDF bit behavior.

Figure 8. Sample initialization of shared global variables

void(* const USER_INTERRUPT_TABLE[])() @ 0xDFE0 =
{
 USER_15_INTERRUPT,
 USER_14_INTERRUPT,
 USER_13_INTERRUPT,
 USER_12_INTERRUPT,
 USER_11_INTERRUPT,
 USER_10_INTERRUPT,
 USER_9_INTERRUPT,
 USER_8_INTERRUPT,
 USER_7_INTERRUPT,
 USER_6_INTERRUPT,
 USER_5_INTERRUPT,
 USER_4_INTERRUPT,
 USER_3_INTERRUPT,
 USER_2_INTERRUPT,
 USER_1_INTERRUPT,
 main
};

 /* Check if this is the first time we're executing code */
 if(SPMSC2_PDF == CLEAR)
 {
 TPMS_INTERRUPT_FLAG = CLEAR;
 TPMS_CONT_ACCEL_GLOBAL = CLEAR;
 }

Interfacing to Freescale’s FXTH87xx In-Flash Firmware Routines Using C-language Constructors

6 Freescale Semiconductor, Inc.

4 Conclusion
Using the simple pointers presented here, the developer can quickly interface to the in-flash routines.
Sample projects for the FXTH87xx that already implement what has been described in this application
note can be downloaded from the web and serve as templates as well.

Document Number: AN4277
Rev. 1.0
10/2014

Information in this document is provided solely to enable system and software

implementers to use Freescale products. There are no express or implied copyright

licenses granted hereunder to design or fabricate any integrated circuits based on the

information in this document.

Freescale reserves the right to make changes without further notice to any products

herein. Freescale makes no warranty, representation, or guarantee regarding the

suitability of its products for any particular purpose, nor does Freescale assume any

liability arising out of the application or use of any product or circuit, and specifically

disclaims any and all liability, including without limitation consequential or incidental

damages. “Typical” parameters that may be provided in Freescale data sheets and/or

specifications can and do vary in different applications, and actual performance may

vary over time. All operating parameters, including “typicals,” must be validated for each

customer application by customer’s technical experts. Freescale does not convey any

license under its patent rights nor the rights of others. Freescale sells products pursuant

to standard terms and conditions of sale, which can be found at the following address:

freescale.com/SalesTermsandConditions.

How to Reach Us:

Home Page:
freescale.com

Web Support:
freescale.com/support

Freescale and the Freescale logo, are trademarks of Freescale Semiconductor, Inc.,

Reg. U.S. Pat. & Tm. Off. All other product or service names are the property of their

respective owners.

© 2014 Freescale Semiconductor, Inc.

	Interfacing to Freescale’s FXTH87xx In-Flash Firmware Routines Using C-language Constructors
	1 Introduction
	2 Creating a New Project
	3 Declarations
	3.1 Special types
	3.2 Shared global variables
	3.3 Universal uncompensated measurement array
	3.4 Interfaces to in-flash firmware routines
	3.5 Calling Freescale’s in-flash routines
	3.6 Declaring interrupts
	3.7 Initializing shared global variables

	4 Conclusion
	Disclaimer

