

Freescale Semiconductor Document Number: AN4420
Application Note Rev. G, December/2011

© Freescale Semiconductor, Inc., 2011. All rights reserved.

Freescale Preliminary—Subject to Change Without Notice

Linux Kernel Program Tracing using
Nexus
(QorIQ e500mc devices)
by Software Analysis Team

Freescale Semiconductor, Inc.
Austin, TX

This application note details the configuration of
the Nexus debug facilities in a Freescale QorIQ
device allow tracing of the Linux kernel through
Nexus Messages. Several scenarios are listed to
allow varied collection based on the specific
need.

Note
For details on the Nexus implementation and
configuration, refer to the “e500mc Reference
Manual” Revision J.

Contents
1 Introduction .. 2
2 General Setup .. 3
3 Data Collection Scenarios .. 7
4 Revision History ... 16

2 Freescale Semiconductor

Freescale Preliminary—Subject to Change Without Notice

1 Introduction
The Nexus debug facilities of the QorIQ device allows the collected data to be captured to one or more
of the following configurable buffer locations:

1) Internally in the Nexus Port Controller (NPC) Trace Buffer

2) A trace buffer defined within the SOC’s DDR memory

Host side configuration, capture and decode of the trace data can use a combination of CodeWarrior
and/or some expert scripts. These scripts configure the trace logic and perform a simple trace collection
by using either of the two trace buffer locations.

There are tradeoffs associated with each method that dictate which is desirable for different trace
scenarios.

These tradeoffs will be discussed in detail in each scenario section but the most general statement is
comparison is done between speed and volume.

All buffer capabilities offer sufficient bandwidth to allow simple data and event tracing from all cores at
full clock rates. However the ability to fully trace the program flow from a single core is limited to the
NPC trace buffer.

Tracing to DDR buffers allow larger fixed size traces, but the writing of the buffer may be intrusive to
the measured application since the DDR is a shared resource.

Note
This application note defines the tool that will be used in section 2 and
details in section 3 some common scenarios for collecting data and the
associated specific configuration.

Freescale Semiconductor 3

Freescale Preliminary—Subject to Change Without Notice

2 General Setup

2.1 CodeWarrior Power Architecture Version 10 Debugger Setup
Note

This application note assumes the use of CodeWarrior Power Architecture
(PA) Version 10.1.1 or later. We refer to this as CodeWarrior PA 10
throughout this note.

After using the standard CodeWarrior for Power Architecture 10 installation process, follow the
instructions from the next sections to prepare the CodeWarrior debugger for attaching to the P4080
device.

2.1.1 CodeWarrior Project
Create a workspace and create a new project by importing the Linux kernel binary image:

• Choose File > Import > CodeWarrior > Power Architecture ELF Executable
• Enter the project name
• Select the path to the Linux kernel image (for example, vmlinux file)
• Select Bareboard Application toolchain option
• Select the processor type (P4080). In the Debugger Launch Configuration wizard, select the

default values

2.1.2 Memory Mapping File
Create a memory mapping file (for example, linux_mem.txt) to help the debugger correctly display
the assembly code retrieved from the physical memory, and handle software breakpoints correctly.
Using a text editor, create a file in your project’s folder, using the settings that match your kernel image.
For example:

range v:0xfe11c500 v:0xfe11c510 1 ReadWrite LogicalData

// An example for specifying address translation blocks:

// Syntax is:

// translate <v_addr> <ph_addr> <size>

// define an address translation of size 16MB

translate 0xC0000000 0x00000000 0x30000000

// request that elf file downloaded to be subjected to address translation.

AutoEnableTranslations true

2.1.3 Debug Launch Configuration
 Create an Attach type debug configuration utilizing all P4080 cores which are running Linux:

• Open Run/Debug Configurations
• Right-click on the CodeWarrior Attach entry in the left panel and select New

4 Freescale Semiconductor

Freescale Preliminary—Subject to Change Without Notice

• On the Main tab, select the project created above
• On the Main tab, click on Search project and select the Linux kernel image
• On the Main tab, click on the New button from the Remote System section and follow the wizard

steps:
o Select CodeWarrior Bareboard Debugging
o Select Hardware or Simulator Connection
o Provide a connection name (for example, linux)
o Create a new system type:

 Use the “CodeWarrior Bareboard Debugging/Hardware or Simulator
System/Hardware or Simulator System (default)”

 Use a system type name such as “linux_system”Select P4080 for the system type
 On the Initialization tab of the RSE system configurator:

• uncheck the Execute system reset option
• uncheck all other options

 On the System tab:
• check the Memory Configuration option for all debugged cores and

specify for each core the path to the memory mapping file created above
o Select the connection type that matches your TAP (for example, Gigabit TAP + Trace, if

you have a Gigabit TAP with an Aurora/Nexus daughter card) and complete configuring
the TAP settings by following the CodeWarrior online help instructions

• On the Main tab of the debug launch configuration created above, in the Remote System section,
select all cores on which the Linux kernel is running (for example, 0 through 7)

• On the Main tab, check the Ignore target initialization settings option
• On the Debugger tab, select “None” for the OS Awareness’ Target OS setting

o Note: setting “OS Awareness” to Linux will only allow core 0 to be controlled unless
Linux has already been booted on all cores (for example, before U-boot has completed)
and Linux won’t be able to boot successfully.

• On the Trace and Profile tab, uncheck the Enable Trace and Profile settings.

2.1.4 Using the Debug Launch Configuration
The Attach debug launch configurations do not reset the P4080 device and therefore, you have
two options for using the debug launch configuration created above.

2.1.4.1 Attaching to a Running Linux Kernel
If you have already booted the Linux kernel on the P4080 device, you can start using the Attach
debug launch configuration created above.

2.1.4.2 Attaching Before the Linux Kernel Boot Time
In certain situations, you may need to attach the debugger to the P4080 device before the Linux
kernel starts running on the cores. For example, this may be necessary if you wish to collect trace
data before the kernel starts running (for example, to trace the boot loader) or if you need to trace
the Linux kernel’s boot sequence.

Freescale Semiconductor 5

Freescale Preliminary—Subject to Change Without Notice

The easiest way to achieve this is to reset the P4080 board using the reset button, before using
the Attach debug launch configuration you created. However, if this is a remote system and this
cannot be done, you may follow these steps:

• Create a Connect type debug launch configuration, using a procedure similar to the one
used above, for creating an Attach type debug launch configuration

• Edit the RSE configuration associated with the Connect type debug launch configuration
and check the Execute system reset and the Core reset checkboxes (for all cores) on the
Initialization tab

• Launch the Connect type debug configuration
• After the debugger successfully connects to all cores, click on the Multi-core

Terminate button
• Launch the Attach type debug configuration

2.2 Linux Console Setup

The Gigabit TAP probe provides a serial port which can be configured to access the serial port of the
target system. This is useful if you need to remotely access the serial port of a target system. Refer to the
CodeWarrior online help for more instructions regarding connecting the Gigabit TAP probe to the serial
port of the P4080 device.

To connect from a host machine to the serial port of the P4080 device, you need to telnet to the IP
address of the Gigabit TAP, using port 1082. For example, “telnet 10.20.30.40 1082.”

2.3 P4080 Boot Process
After launching the Attach type debug launch configuration created above, the debugger will connect to
all debugged cores and display their current status.

Unless the Linux kernel is already running, a console connection may also need to be open, in order to
send commands to the boot loader (U-boot). For example, a boot loader command may need to be
entered in order to have the P4080 device boot from an NFS location. The steps are the following:

• Assuming that the cores are halted at the reset vector, they must be resumed by clicking on the
Multicore Resume button

• The console will start to display the output messages of the boot loader and the boot loader will
wait for five seconds for the user to interrupt the default boot sequence, by hitting the Enter key.
The boot loader commands, specific to your setup, can be entered at the prompt. For example,
type run nfsboot in order to boot from an NFS location previously configured.

2.4 Trace Control Python Scripts
Python scripts are provided to allow collection using the supported trace collection methods. The script
found at:
<CodeWarrior>/PA/cdde/sasdk/samples/py/tracebuffers/GetBufferTrace.py
collects trace data using either the NPC or DDR trace buffers.

6 Freescale Semiconductor

Freescale Preliminary—Subject to Change Without Notice

The full instructions for running this script are found in file README_GetBufferTrace.txt from
the directory above. The following is a summary of the instructions from those file.

The Python script is intended to be run from the <CodeWarrior>/PA/cdde/bin directory.

The script utilizes a set of default configuration information defined in xml-formatted files found in
subdirectories of <CodeWarrior>/PA/cdde/sasdk/data

The xml files used by GetBufferTrace are:
<CodeWarrior>/PA/cdde/sasdk/data/fsl.configs.sa.tracetarget/P4080Expert.xml

<CodeWarrior>/PA/cdde/sasdk/data/fsl.configs.sa.traceprobe/TraceProbeP4080DDR.xml

<CodeWarrior>/PA/cdde/sasdk/data/fsl.configs.sa.traceprobe/TraceProbeP4080NPC.xml

While each file contains multiple named configurations, generally we will only use the first
configuration that appears in the file. Configurations are named using the
<Configration><Name></Name> xml block.

The configuration name is important to the scripts and so changing the name is not recommended.

2.4.1 P4080Expert.xml
The P4080Expert.xmlfile defines the Nexus configurations that will be enabled on the target. The
default name is Nexus Trace.

Ensure the probe IP address and connection type are entered correctly in the CCS Server configuration
block. Only the “Debug Connection Id” needs to be adjusted.

If collecting program trace search for the “Enable Hard Sync” attribute and set its value to true.

All other configurations are scenario specific and will be detailed in Data Collection Scenarios section.

2.4.2 TraceProbeP4080DDR.xml
The TraceProbeP4080DDR.xmlfile defines the Nexus configurations that pertain to the definition
of the DDR buffer that will be enabled on the target. The default name is Nexus P4080 DDR.

Ensure the probe IP address and connection type are entered correctly in the CCS Server configuration
block. Only the “Debug Connection Id” needs to be adjusted.

The buffer specific configuration blocks will be adjusted when using the DDR as the Nexus Trace
buffer.

2.4.3 TraceProbeP4080NPC.xml
This file defines the Nexus configurations that pertain to the definition of the NPC Trace buffer. The
default name is Nexus P4080 NPC.

Ensure the probe IP address and connection type are entered correctly in the CCS Server configuration
block. Only the “Debug Connection Id” needs to be adjusted.

The buffer specific configuration blocks are read-only since the NPC buffer definition is fixed by the
hardware design.

Freescale Semiconductor 7

Freescale Preliminary—Subject to Change Without Notice

3 Data Collection Scenarios

3.1 Collection from the NPC Trace Buffer
The NPC Trace buffer is small (16k) and can operate in a single fill mode or a wrap mode where only
the last 16kB worth of trace messages are retained.

Defining the beginning of the trace collection is important and if the Nexus tracing is enabled, the trace
buffer will quickly fill with Timestamp overflow messages.

The following scenario uses the NPC buffer in the non-wrapped mode, triggered from exiting debug
mode:

3.1.1 TraceProbeP4080NPC.xml

3.1.1.1 ConfigBlock “Buffer”
Set the Wrap Enable attribute to false to set the NPC Trace buffer wrap mode off.

3.1.1.2 ConfigBlock “Misc”
Set the Suppress trace until core 0 resumes attribute to true. Trace collection will begin as soon as the
core is released from the debug mode.

Set the Trigger trace on core 0 IAC1 attribute to false.

3.1.2 P4080Expert.xml

3.1.2.1 ConfigBlock “Core 0”
All of the configuration will be defined for core 0 since this is the boot core for Linux. All other “core n”
should have the Enable attribute set to false.

Set Program Trace Enable to true. Set Watchpoint Trace, Data Acquisition Trace, and Ownership
Trace as desired.

3.1.2.2 ConfigBlock “Misc”
Set the Enable Hard Sync attribute to true in order to cause the trace logic to periodically send
program trace synchronization messages. This is recommended when collecting trace with the NPC
trace buffer configured in the circular (wrapping) mode. This is also recommended in case the decoded
program trace data appears to be invalid.

3.1.3 GetBufferTrace.py
Begin the trace collection by invoking the CodeWarrior Debug configuration. All cores would be held in
suspended.

Run the GetBufferTrace script with appropriate values for the options.

8 Freescale Semiconductor

Freescale Preliminary—Subject to Change Without Notice

[sgeorge@sa bin]$ python ../sasdk/samples/py/tracebuffers/GetBufferTrace.py -

buffer=NPC -target="Nexus Trace" -preftype=expert -elf=/srv/nfsroot/sa-

p4080/boot/vmlinux -out=trace-npc-out.txt

Command line switches used explained below:

python ../sasdk/samples/py/tracebuffers/GetBufferTrace.py – Runs the specified python script

-buffer=NPC – Defines the buffer location as NPC (also implicitly selects the
TraceProbeP4080NPC.xml configuration file)

-target="Nexus Trace" – Selects the configuration named “Nexus Trace” from all configuration files in
the fsl.configs.sa.tracetarget directory

-preftype=expert – Selects the “Expert” version of the target configuration files (P4080Expert.xml)

-elf=/srv/nfsroot/sa-p4080/boot/vmlinux – Selects the ELF file which the trace decoder will use to
resolve trace program addresses.

-out=trace-npc-out.txt – Defines an output file for the decoded trace

GetBufferTrace will configure the target system and wait for trace output before automatically
uploading a single full buffer trace from the NPC and beginning the trace decode.

Program output will be similar to:
[sgeorge@sa bin]$ python ../sasdk/samples/py/tracebuffers/GetBufferTrace.py -

buffer=NPC -target="Nexus Trace" -preftype=expert -elf=/srv/nfsroot/sa-

p4080/boot/vmlinux -out=trace-npc-out.txt

Configuring target to output trace to NPC buffer...

name = "Nexus Trace"

found requested config

Core 0...

Core 1...

Core 2...

Core 3...

Core 4...

Core 5...

Core 6...

Core 7...

Starting trace collection, ...

Task "Fill NPC Buffer"

NST = 0x90000001

Current buffer count = 0 (0x0)

Fill NPC Buffer progress: 0.0% NST = 0x90000001

Current buffer count = 0 (0x0)

NST = 0xb01c0000

Current buffer count = 16384 (0x4000)

Fill NPC Buffer progress: 100.0%, elapsed - 0 m 0 s, remaining - 0 m 0 s

Task "Upload NPC Buffer"

Upload NPC Buffer: progress 100.0%, elapsed - 0 m 0 s, remaining - 0 m 0 s

Freescale Semiconductor 9

Freescale Preliminary—Subject to Change Without Notice

redirecting output to "trace-npc-out.txt"

Done

Trace collection and decode successful.

If the NPC buffer is set to wrap mode enabled, a prompt reminder will be printed to hit Ctrl-C key to
manually stop the trace collection and to begin upload and decode of the trace data.

Trace output will be similar to:
[sgeorge@sa bin]$ python ../sasdk/samples/py/tracebuffers/GetBufferTrace.py -

buffer=NPC -target="Nexus Trace" -preftype=expert -elf=/srv/nfsroot/sa-

p4080/boot/vmlinux -out=trace-npc-out.txt

Configuring target to output trace to NPC buffer...

name = "Nexus Trace"

found requested config

NCP Trace buffer will wrap on overflow. Hit Ctrl-C to stop trace.

Core 0...

Core 1...

Core 2...

Core 3...

Core 4...

Core 5...

Core 6...

Core 7...

Starting trace collection, ...

Task "Fill NPC Buffer"

Fill NPC Buffer progress: 0.0%

NST = 0x90000001

Current buffer count = 0 (0x0)

NST = 0xb008015b

Current buffer count = 5536 (0x15a0)

Fill NPC Buffer progress: 33.8%, elapsed - 0 m 0 s, remaining - 0 m 0 s

NST = 0xb000003b

Current buffer count = 928 (0x3a0)

NST = 0xb00400ca

Current buffer count = 3216 (0xc90)

NST = 0xb0080151

Current buffer count = 5376 (0x1500)

^CStopped trace and begin trace upload

Task "Upload NPC Buffer"

Upload NPC Buffer: progress 100.0%, elapsed - 0 m 0 s, remaining - 0 m 0 s

redirecting output to "trace-npc-out.txt"

Done

Trace collection and decode successful.

10 Freescale Semiconductor

Freescale Preliminary—Subject to Change Without Notice

3.2 Collection from the NPC Trace Buffer from Specific Instruction
Address

The NPC Trace buffer is small (16k) so particular attention is needed to focus in on the code of interest
for tracing. The NPC buffer can also operate in a wrap mode where only the last 16kB worth of trace
messages are retained.

The following scenario uses the NPC buffer in the non-wrapped mode, triggered from a specific
instruction address.

3.2.1 TraceProbeP4080NPC.xml

3.2.1.1 ConfigBlock “Buffer”
Set the Wrap Enable attribute to false to set the NPC Trace buffer wrap mode off.

3.2.1.2 ConfigBlock “Misc”
Set the Trigger trace on core 0 IAC1 attribute to true to configure Nexus tracing to begin only when
the specified Instruction address is executed. For more details, refer to the P4080Expert.xml
section.

Set the Suppress trace until core 0 resumes attribute to false.

3.2.2 P4080Expert.xml

3.2.2.1 ConfigBlock “Core 0”
All of the configuration will be defined for core 0 since this is the boot core for Linux. All other “core n”
should have the Enable attribute set to false.

Set Program Trace Enable to false. Program trace will be enabled under nexus control when IAC1
matches.

Set Start Trigger to 1. This selects Program Trace enable to trigger on IAC1.

Optionally set End Trigger to 2 – Tracing stops on IAC2

Set Watchpoint Trace, Data Acquisition Trace, and Ownership Trace as desired.

Set “Instruction Address Compare” “Enable”; “Address 1 enable” and optionally “Address 2 enable”
True.

Set values for Address 1 and optionally Address 2 to define the Linux address of interest.

3.2.2.2 ConfigBlock “Misc”
Set the Enable Hard Sync attribute to true in order to cause the trace logic to periodically send
program trace synchronization messages. This is recommended when collecting trace with the NPC

Freescale Semiconductor 11

Freescale Preliminary—Subject to Change Without Notice

trace buffer configured in the circular (wrapping) mode. This is also recommended in case the decoded
program trace data appears to be invalid.

3.2.2.3 ConfigBlock “Event Out Control”
Set Event Out Control Enable to true.

Set Event Out 0 Mask to 0x1. This asserts EVTO0 when IAC1 address is executed. This trigger is also
linked to the NPC enable to allow tracing to the NPC buffer to begin.

3.2.3 GetBufferTrace.py
Begin trace collection by invoking the CodeWarrior Debug configuration. All cores would be held in
Suspended.

Run the GetBufferTrace script with appropriate values for the options.
[sgeorge@sa bin]$ python ../sasdk/samples/py/tracebuffers/GetBufferTrace.py -

buffer=NPC -target="Nexus Trace" -preftype=expert -elf=/srv/nfsroot/sa-

p4080/boot/vmlinux -out=trace-npc-out.txt

Command line switches used explained below:

python ../sasdk/samples/py/tracebuffers/GetBufferTrace.py – Runs the specified python script

-buffer=NPC – Defines the buffer location as NPC (also implicitly selects the
TraceProbeP4080NPC.xml configuration file)

-target="Nexus Trace" – Selects the configuration named “Nexus Trace” from all configuration files in
the fsl.configs.sa.tracetarget directory

-preftype=expert – Selects the “Expert” version of the target configuration files (P4080Expert.xml)

-elf=/srv/nfsroot/sa-p4080/boot/vmlinux – Selects the ELF file which the trace decoder will use to
resolve trace program addresses.

-out=trace-npc-out.txt – Defines an output file for the decoded trace

GetBufferTrace will configure the target system and wait for trace output before automatically
uploading a single full buffer trace from the NPC and beginning the trace decode.

Program output will be similar to:
[sgeorge@sa bin]$ python ../sasdk/samples/py/tracebuffers/GetBufferTrace.py -

buffer=NPC -target="Nexus Trace" -preftype=expert -elf=/srv/nfsroot/sa-

p4080/boot/vmlinux -out=trace-npc-out.txt

Configuring target to output trace to NPC buffer...

name = "Nexus Trace"

found requested config

Core 0...

Core 1...

Core 2...

12 Freescale Semiconductor

Freescale Preliminary—Subject to Change Without Notice

Core 3...

Core 4...

Core 5...

Core 6...

Core 7...

Starting trace collection, ...

Task "Fill NPC Buffer"

NST = 0x90000001

Current buffer count = 0 (0x0)

Fill NPC Buffer progress: 0.0% NST = 0x90000001

Current buffer count = 0 (0x0)

NST = 0xb01c0000

Current buffer count = 16384 (0x4000)

Fill NPC Buffer progress: 100.0%, elapsed - 0 m 0 s, remaining - 0 m 0 s

Task "Upload NPC Buffer"

Upload NPC Buffer: progress 100.0%, elapsed - 0 m 0 s, remaining - 0 m 0 s

redirecting output to "trace-npc-out.txt"

Done

Trace collection and decode successful.

If the NPC buffer was set to wrap mode enabled, a prompt reminder will be printed to hit Ctrl-C key to
manually stop the trace collection and to begin upload and decode of the trace data.

Trace output will be similar to:
[sgeorge@sa bin]$ python ../sasdk/samples/py/tracebuffers/GetBufferTrace.py -

buffer=NPC -target="Nexus Trace" -preftype=expert -elf=/srv/nfsroot/sa-

p4080/boot/vmlinux -out=trace-npc-out.txt

Configuring target to output trace to NPC buffer...

name = "Nexus Trace"

found requested config

NCP Trace buffer will wrap on overflow. Hit Ctrl-C to stop trace.

Core 0...

Core 1...

Core 2...

Core 3...

Core 4...

Core 5...

Core 6...

Core 7...

Starting trace collection, ...

Task "Fill NPC Buffer"

Fill NPC Buffer progress: 0.0%

NST = 0x90000001

Freescale Semiconductor 13

Freescale Preliminary—Subject to Change Without Notice

Current buffer count = 0 (0x0)

NST = 0xb008015b

Current buffer count = 5536 (0x15a0)

Fill NPC Buffer progress: 33.8%, elapsed - 0 m 0 s, remaining - 0 m 0 s

NST = 0xb000003b

Current buffer count = 928 (0x3a0)

NST = 0xb00400ca

Current buffer count = 3216 (0xc90)

NST = 0xb0080151

Current buffer count = 5376 (0x1500)

^CStopped trace and begin trace upload

Task "Upload NPC Buffer"

Upload NPC Buffer: progress 100.0%, elapsed - 0 m 0 s, remaining - 0 m 0 s

redirecting output to "trace-npc-out.txt"

Done

Trace collection and decode successful.

3.3 Collection from the DDR memory buffer
The following scenario uses the DDR memory as the trace buffer in the non-wrapped mode, triggered
from exiting debug mode.

The main configuration goal is to define a DDR buffer at an address which is not in conflict with any
user application or the Operating System.

Linux can be restricted to use less than all available memory thus freeing some memory for Nexus trace
use.

3.3.1 U-boot configuration for Linux
Restrict Linux to use less than 2GB of memory. For more details, refer to the ConfigBlock “Buffer”
section.

For example, using 1.5GB
=> setenv othbootargs mem=1536M

=> saveenv

3.3.2 TraceProbeP4080DDR.xml

3.3.2.1 ConfigBlock “Buffer”
Set the Address attribute to the beginning of the DDR buffer. For example, 0x6000_0000 (1.5GB).

NOTE
Issue: The CW scripts will not allow an address greater than 0x7fff_ffff
(2GB) to be entered.

14 Freescale Semiconductor

Freescale Preliminary—Subject to Change Without Notice

Set the Size attribute to the size of the DDR buffer in bytes. For example, 0x0010_0000 (1MB).

3.3.2.2 ConfigBlock “Misc”
Set the Suppress trace until core 0 resumes attribute to true. Trace collection will begin as soon as the
core is released from the debug mode.

3.3.3 P4080Expert.xml

3.3.3.1 ConfigBlock “Core 0”
All of the configuration will be defined for core 0 since this is the boot core for Linux. All other “core n”
should have the Enable attribute set to false.

Set Program Trace Enable to true.

Set Watchpoint Trace, Data Acquisition Trace, and Ownership Trace as desired.

3.3.3.2 ConfigBlock “Misc”
Set the Enable Hard Sync attribute to true in order to cause the trace logic to periodically send
program trace synchronization messages. This is recommended when collecting trace with the NPC
trace buffer configured in the circular (wrapping) mode. This is also recommended in case the decoded
program trace data appears to be invalid.

3.3.4 GetBufferTrace.py
Begin trace collection by invoking the CodeWarrior Debug configuration. All cores would be held in
suspended.

Run the GetBufferTrace script with appropriate values for the options.
[sgeorge@sa bin]$ python ../sasdk/samples/py/tracebuffers/GetBufferTrace.py -

buffer=DDR -target="Nexus Trace" -preftype=expert -elf=/srv/nfsroot/sa-

p4080/boot/vmlinux -out=trace-ddr-out.txt

Command line switches used explained below:

python ../sasdk/samples/py/tracebuffers/GetBufferTrace.py – Runs the specified python script

-buffer=DDR – Defines the buffer location as DDR (also implicitly selects the
TraceProbeP4080DDR.xml configuration file)

-target="Nexus Trace" – Selects the configuration named “Nexus Trace” from all configuration files in
the fsl.configs.sa.tracetarget directory

-preftype=expert – Selects the “Expert” version of the target configuration files (P4080Expert.xml)

-elf=/srv/nfsroot/sa-p4080/boot/vmlinux – Selects the ELF file which the trace decoder will use to
resolve the trace program addresses.

-out=trace-ddr-out.txt – Defines an output file for the decoded trace

Freescale Semiconductor 15

Freescale Preliminary—Subject to Change Without Notice

GetBufferTrace will configure the target system and wait for trace output before automatically
uploading a single full buffer trace from the DDR and beginning the trace decode.

Program output will be similar to:
[sgeorge@sa bin]$ python ../sasdk/samples/py/tracebuffers/GetBufferTrace.py -

buffer=DDR -target="Nexus Trace" -preftype=expert -elf=/srv/nfsroot/sa-p4080-

2/boot/vmlinux -out=trace-ddr-out.txt

Configuring target to output trace to DDR buffer...

name = "Nexus Trace"

found requested config

Applying Trace Tool Configuration...

Applying Target Configuration...

Starting trace collection, ...

Task "Fill DDR Buffer"

Current buffer count = 32 (0x20)

Fill DDR Buffer progress: 100.0%, elapsed - 0 m 0 s, remaining - 0 m 60 s

Task "Upload DDR Buffer"

Upload DDR Buffer progress: 0.0%

Upload DDR Buffer progress: 100.0%, elapsed - 0 m 2 s, remaining - 0 m 0 s

Upload DDR Buffer: progress 100.0%, elapsed - 0 m 4 s, remaining - 0 m 0 s

redirecting output to "trace-ddr-out.txt"

Done

Trace collection and decode successful.

If the DDR buffer was set to wrap mode enabled, a prompt reminder will be printed to hit Ctrl-C key to
manually stop the trace collection and to begin upload and decode of the trace data.

Trace output will be similar to:
[sgeorge@sa bin]$ python ../sasdk/samples/py/tracebuffers/GetBufferTrace.py -

buffer=DDR -target="Nexus Trace" -preftype=expert -elf=/srv/nfsroot/sa-p4080-

2/boot/vmlinux -out=trace-ddr-out.txt

Configuring target to output trace to DDR buffer...

name = "Nexus Trace"

found requested config

Applying Trace Tool Configuration...

NCP Trace buffer will wrap on overflow. Hit Ctrl-C to stop trace.

Applying Target Configuration...

Starting trace collection, ...

Task "Fill DDR Buffer"

Current buffer count = 32 (0x20)

Fill DDR Buffer progress: 0.0%, elapsed - 0 m 0 s, remaining - 16 m 23 s Current

buffer count = 32 (0x20)

Current buffer count = 1400576 (0x155f00)

16 Freescale Semiconductor

Freescale Preliminary—Subject to Change Without Notice

Fill DDR Buffer progress: 133.6%, elapsed - 0 m 0 s, remaining - 0 m 59 s Current

buffer count = 75315808 (0x47d3a60)

Fill DDR Buffer progress: 7182.7%, elapsed - 0 m 0 s, remaining - 0 m 59 s Current

buffer count = 150280768 (0x8f51a40)

Fill DDR Buffer progress: 19769.3%, elapsed - 0 m 0 s, remaining - 0 m 59 s Stopped

trace and begin trace upload

Task "Upload DDR Buffer"

Upload DDR Buffer progress: 0.0%

Upload DDR Buffer progress: 27.3%, elapsed - 0 m 1 s, remaining - 0 m 3 s

Upload DDR Buffer: progress 100.0%, elapsed - 0 m 7 s, remaining - 0 m 0 s

redirecting output to "trace-ddr-out.txt"

Done

Trace collection and decode successful.

4 Revision History
Table 1 provides a revision history for this application note.

Table 1. Revision History

Rev. Number Date Substantive Change

A 2010 September 13 Initial creation

B 2010 October 15 Added more scenarios

C 2010 October 21 Added DDR scenario trace output

D 2010 December 8 Removed FCP from footers.

E 2010 December 15 Added debug launch configuration setup information. Added instructions for
enabling the hard sync option.

F 2011 September 30 Update due to CodeWarrior interface changes.

G 2011 December 12 Fix Typos

Document Number: AN4420
Rev. G
12/2011

Freescale Preliminary—Subject to Change Without Notice

How to Reach Us:

Home Page:
www.freescale.com

Web Support:
http://www.freescale.com/support

USA/Europe or Locations Not Listed:
Freescale Semiconductor
Technical Information Center, EL516
2100 East Elliot Road
Tempe, Arizona 85284
+1-800-521-6274 or +1-480-768-2130
www.freescale.com/support

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
www.freescale.com/support

Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064, Japan
0120 191014 or +81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:
Freescale Semiconductor China Ltd.
Exchange Building 23F
No. 118 Jianguo Road
Chaoyang District
Beijing 100022
China
+86 010 5879 8000
support.asia@freescale.com

For Literature Requests Only:
Freescale Semiconductor Literature Distribution
Center
P.O. Box 5405
Denver, Colorado 80217
1-800-441-2447 or 303-675-2140
Fax: 303-675-2150
LDCForFreescaleSemiconductor@hibbertgroup.com

Information in this document is provided solely to enable system and software implementers to use
Freescale Semiconductor products. There are no express or implied copyright licenses granted
hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in
this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products
herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the
suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any
liability arising out of the application or use of any product or circuit, and specifically disclaims any and
all liability, including without limitation consequential or incidental damages. “Typical” parameters that
may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in
different applications and actual performance may vary over time. All operating parameters, including
“Typicals”, must be validated for each customer application by customer’s technical experts. Freescale
Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale
Semiconductor products are not designed, intended, or authorized for use as components in systems
intended for surgical implant into the body, or other applications intended to support or sustain life, or for
any other application in which the failure of the Freescale Semiconductor product could create a
situation where personal injury or death may occur. Should Buyer purchase or use Freescale
Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and
hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors
harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of,
directly or indirectly, any claim of personal injury or death associated with such unintended or
unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the
design or manufacture of the part.

Freescale, the Freescale logo, CodeWarrior, and PowerQUICC are trademarks of Freescale
Semiconductor, Inc. Reg. U.S. Pat. & Tm. Off. QorIQ is trademark of Freescale Semiconductor, Inc. All
other product or service names are the property of their respective owners. The Power Architecture and
Power.org word marks and the Power and Power.org logos and related marks are trademarks and
service marks licensed by Power.org.

© Freescale Semiconductor, Inc. 2011. All rights reserved.

