
Freescale Semiconductor

© Freescale Semiconductor, Inc., 2011. All rights reserved.

1 Using System Builder
You can follow the steps given below to compile the kernel
and U-Boot using System Builder.

NOTE
The commands in this section
are generic and can be
customized for any host or
target you choose. Please refer
to the examples for
target-specific commands.
The examples in this
application note are based on
the P4080ds target.

1.1 Install system builder on your
host machine

— As a root user, mount the ISO image on your
machine.

mount -o loop <System Builder Image>.iso
<systembuilder_install_path>

— As a non-root user, install the system builder.

<systembuilder_install_path>/install

Document Number: AN4436

CodeWarrior for Power Architecture

Compiling the Kernel and U-Boot
Using System Builder

Contents
1. Using System Builder . 1

1.1. Install system builder on your host machine 1
1.2. Set up the host environment . 2
1.3. Create a Platform Development Kit (PDK) project . . 2
1.4. Set up cross-compile environment and build images . 3
1.5. Building U-Boot for debugging with the CodeWarrior

Debugger 3
1.6. Building the Kernel for debugging with the CodeWarrior

Debugger 4
2. Configuring Target Hardware to Use the U-Boot Image

5
2.1. Copy U-Boot Image . 5
2.1. Load XML File . 5
2.2. Add a program action and a verify action 6
2.3. Run the Flash Programmer Target Task 7

3. Creating CodeWarrior Projects to Debug U-Boot and
Kernel 7

4. Debugging the U-Boot or Kernel Projects 8
A. Images folder . 8
B. Values of <bsp> for supported targets 9

Compiling the Kernel and U-Boot Using System Builder

2 Freescale Semiconductor

Using System Builder

You will be prompted to input the appropriate System Builder install path. Ensure that you have
the required permissions for the install path.

NOTE
There is no uninstall script. To uninstall System Builder you need to remove
the
<systembuilder_install_path>/QorIQ-DPAA-SDK-<yyyymmdd>-systembu
ilder directory manually.

1.2 Set up the host environment
To run System Builder, access the directory in which System Builder is installed and follow these
steps to start using it.

a) Change the directory to where you installed system builder.

cd <system_builder_installation_path>

b) Run the preparation script.

./script/<linux_distribution>-oe.sh

Examples:

For Ubuntu8.04 — ./script/ubuntu804-oe.sh

For Ubuntu9.10 and Ubuntu 10.04 — ./script/ubuntu-oe.sh

For RHEL 5 and CentOS 5 — ./script/rhel5-oe.sh

NOTE
You need to run the preparation script only once for each new installation
and this action requires a sudo permission. This is done to ensure that the
host packages that are required, such as a host compiler are installed and are
of the appropriate version.

1.3 Create a Platform Development Kit (PDK) project
cd <system_builder_installation_path>

./scripts/create-config.py --config-file=fsl-<bsp>/sample-create-config<bit-type>.ini
-j 4 -t 2

Refer to Appendix B/-9 for more information on values for <bsp> for supported targets.

Example:

./scripts/create-config.py --config-file=fsl-p4080ds/sample-create-config.ini -j 4 -t 2

Compiling the Kernel and U-Boot Using System Builder

Freescale Semiconductor 3

Using System Builder

NOTE
You can use the -j and -t parameters to speed up build creation and control
the amount of parallel processing that the build will use. The -j option
determines the number of jobs to have the make program itself spawn
during the compilation stage. Set -j equal to 1.5 * (number of CPU cores),
rounded up to the nearest integer. The -t option specifies the maximum
number of BitBake tasks (or threads) that can be issued in parallel. Set -t
equal to the number of CPU CORES that you have. The default settings are
-j 2 and -t 1. These options set the PARALLEL_MAKE (for -j) and
BB_NUMBER_THREADS (for -t) variables in local.conf.

1.4 Set up cross-compile environment and build images
a) Change the directory to where you installed system builder.

cd <system_builder_installation_path>

b) Setup your shell environment by using the bitbake.rc file. The environment file must be
loaded prior to building a project. Use the appropriate command for your shell to load a file
into the environment.

source build_<bsp><bit-type>_release/bitbake.rc

Example:

source build_p4080ds_release/bitbake.rc

c) Generate images for uboot.bin, uImage, dtb files, FMAN UCODE and rootfs by using the
following command. These images are stored in the
build_<bsp>_release/deploy/glibc/images/ folder.

bitbake standalone-environment-linux

NOTE
The hv.uImage, hv*.dtb and rcw*.bin files are also generated and stored in
the build_<bsp><bit-type>_release/deploy/glibc/images/boot/ folder.

1.5 Building U-Boot for debugging with the CodeWarrior
Debugger

Follow the steps given below to build U-Boot for debugging with the CodeWarrior Debugger:

1. Change the directory to where you installed system builder.

cd <system_builder_installation_path>

2. Create a new custom collection, for example, mycollection/.

mkdir -p mycollection/recipes/u-boot

3. Change the directory to point to the new custom collection.

cd mycollection/recipes/u-boot

4. Create amend.inc file and add following content in the amend.inc file.

EXTRA_OEMAKE += "CONFIG_CW=1"

5. Update the project configuration.

Compiling the Kernel and U-Boot Using System Builder

4 Freescale Semiconductor

Using System Builder

./scripts/create-config.py --config-file=fsl-<bsp>/sample-create-config<bit-type>.ini
--override-collections mycollection –t 2 –j 4

Example:

./scripts/create-config.py --config-file=fsl-p4080ds/sample-create-config.ini
--override-collections mycollection –t 2 –j 4

d) Clean up the existing U-Boot work area and rebuild U-Boot.

bitbake -c clean u-boot

bitbake u-boot

The U-Boot binary image is placed in build_<bsp><bit-type>_release/deploy/glibc/images/.

NOTE
The binary images for kernel and U-Boot, the ramdisk, and the dtb files are
placed in this location.

1.6 Building the Kernel for debugging with the CodeWarrior
Debugger

Follow the steps given below to build kernel for debugging with the CodeWarrior Debugger:

1. Change the directory to where you installed system builder.

cd <system_builder_installation_path>

2. Install kernel source code (if required).

bitbake -c clean virtual/kernel

bitbake -c patch virtual/kernel

3. Configure kernel to enable CodeWarrior support.

bitbake -c menuconfig virtual/kernel

The kernel configuration user interface appears.

4. Scroll down the list and select Enable kernel hacking.

5. Select Include CodeWarrior kernel debugging by pressing Y. Select other desired configuration
options for kernel debug.

Compiling the Kernel and U-Boot Using System Builder

Freescale Semiconductor 5

Configuring Target Hardware to Use the U-Boot Image

Figure 1. Enabling CodeWarrior Kernel Debugging

6. Select Exit.
7. Rebuild kernel.

bitbake virtual/kernel

The vmlinux elf image is placed in
build_<bsp><bit-type>_release/work/<bsp><bit-type>-linux/linux-3.0.6-r1/linux-3.0.6/

2 Configuring Target Hardware to Use the U-Boot Image
To use the target hardware to run and debug U-Boot, you need to burn the U-Boot image to the flash
memory of the hardware. After building U-Boot, you have an ELF-format U-Boot binary executable file
that contains debugger symbolic information. In addition, you have a U-Boot raw binary (.bin) file that
you can write to flash memory on the target board.

2.1 Load XML File
To load a XML file with predefined flash programmer settings, follow these steps:

1. Select Window > Show View > Other from the CodeWarrior Workbench menu bar.

2. The Show View dialog box appears.

3. Expand the Debug tree control and select Target Tasks.

4. Click OK.

The Target Tasks view appears.

5. Select the Root task group.

6. Right-click and select Import from the context menu that appears.

The Open dialog box appears.

7. Select the appropriate xml file corresponding to the board from the following path:

PA\bin\plugins\support\TargetTask\FlashProgrammer\QorIQ_P4\P4080D
S_NOR_FLASH.xml

Compiling the Kernel and U-Boot Using System Builder

6 Freescale Semiconductor

Configuring Target Hardware to Use the U-Boot Image

8. Click Open in the Open dialog box.

9. The target task with predefined flash settings is created and appears in the Tasks panel.

10. Double-click the task.

The task opens in the Flash Programmer Task editor. This editor lets you configure the Flash
Programmer target task.

2.2 Add a program action and a verify action
To add a Program action and a Verify action, follow these steps:

1. Select the predefined Flash Programmer target task.

2. In the Flash Programmer Task editor, click Add Program/Verify Action.

The Add Program/Verify Action dialog box appears listing each flash device in the Flash Devices
table.

3. Select the U-Boot raw binary (.bin) file that contains the data to be written to the flash device.

4. Specify the file path and name in the File text box or click the Workspace, File System, or
Variables buttons to select the u-boot.bin file from the U-Boot folder you copied to your
system.

5. From the File Type drop-down list, select the type of the source file. For u-boot.bin, select
the Binary file type.

6. Check the Erase sectors before program checkbox. This option allows you to erase sectors
before program so you don't need a separate action to erase the region where you will run the
program.

7. Check the Restrict to Addresses in this Range checkbox.

The Start and End text boxes activate.

NOTE
Write actions are permitted only within the specified address range.

8. In the Start text box, enter the start address of the flash memory range to program.

9. In the End text box, enter the end address of the flash memory range to program.

10. Check the Apply Address Offset checkbox.

The Address text box activates. In the Address text box, enter the address offset as the value where
you want U-Boot to be written to the flash device.

11. Click Add Program Action.

The specified Program action is added to the Flash Programmer Actions table.

12. Click Add Verify Action.

The specified Verify action is added to the Flash Programmer Actions table.

13. Click Done.

The Add Program/Verify Action dialog box closes.

Compiling the Kernel and U-Boot Using System Builder

Freescale Semiconductor 7

Creating CodeWarrior Projects to Debug U-Boot and Kernel

2.3 Run the Flash Programmer Target Task
To execute the Flash Programmer Target Task just configured, follow these steps:

1. Select the Flash Programmer Target Task to run from the Target Tasks view.

NOTE
To access the Target Tasks view select Window > Show View > Debug >
Target Tasks from the main menu bar.

2. Start a debug session. For information on how to create a project and start a debug session, refer
to the Quick Start for PA 10 Processors in <CW_Installdir>\PA folder.

NOTE
The run configuration of the Flash Programmer task is set to Active Debug
Context by default so you need a active debug session to execute the task.

To run the target task with a launch configuration without an active debug
session, you can change the run configuration to something different than
"Active Debug Session". To change the default run configuration,
right-click the task and select Change Run Configuration from the context
menu.

3. The Change Run Configuration dialog box appears. From the Run Configuration drop-down
list, select an appropriate run configuration.

4. Click the Execute icon in the Target Task view to run the selected Flash Programmer Target
Task.

NOTE
You can monitor the results of the flash programmer actions in the Console
view. Green indicates success, and red indicates failure. If RCW of the
target board is erased, you can use JTAG configuration files to connect
debugger to the target board. For details on RCW, see the reference manual
for the target processor. For details on JTAG configuration files, refer the
JTAG Configuration Files chapter in the PA Processors Targeting Manual.
(Select Help > Help Contents to access the manual online).

3 Creating CodeWarrior Projects to Debug U-Boot and
Kernel

To create a CodeWarrior Project to Debug U-Boot:

1. Start the CodeWarrior IDE.

2. Select File > Import. The Import wizard appears.

3. From the CodeWarrior container, select Power Architecture ELF Executable.

4. Click Next.
5. Specify the project name in the Project name text box.

6. Click Next.

Compiling the Kernel and U-Boot Using System Builder

8 Freescale Semiconductor

Debugging the U-Boot or Kernel Projects

7. Click Browse next to the Executable text box.

8. Select the U-Boot image or select the vmlinux file.

NOTE
In the Select File dialog box, from the Files of type list, select * to see the
U-Boot and vmlinux executable files.

9. Click Open.

10. From the Toolchain list, select Bareboard Application.

11. Click Next.
12. From the Processor list, expand the processor family and select the required processor.

13. Click Next.
14. From the Debugger Connection Types list, select the required connection type.

15. From the Core index for this project list, select the required cores.

16. Click Next.
17. Specify the hardware settings, such as target hardware, connection type, and TAP address if you

are using Ethernet or Gigabit TAP.

18. Click Finish.

The imported project appears in the CodeWarrior Projects view.

You just finished creating a CodeWarrior project to debug the U-Boot or kernel image.

4 Debugging the U-Boot or Kernel Projects
For information on how to configure and debug the CodeWarrior project you just created for U-Boot or
Kernel images, please refer to the PA Processors Targeting Manual. (Select Help > Help Contents to
access the manual online).

Appendix A Images folder
All images built by System Builder are put in sb_work/
build_<bsp><bit-type>_release/deploy/glibc/images/. Table 1-1 lists the typical directory/image
files:

NOTE
The exact contents of the image files depend on the setting of the
IMAGE_FSTYPES variable.

Table 4-1. System Builder Image Files

Image Files Usage

sb_work/build_<bsp>_release/deploy/glibc/images/ image directory

sb_work/build_<bsp>_release/deploy/glibc/bin/ host scripts/tools directory

Compiling the Kernel and U-Boot Using System Builder

Freescale Semiconductor 9

Values of <bsp> for supported targets

Appendix B Values of <bsp> for supported targets

uImage-<bsp>.bin kernel image that can be loaded with U-Boot

devel-image-<bsp>.ext2.gz.u-boot maximum size ramdisk image that can be loaded with U-Boot

devel-image-<bsp>.ext2.gz gzipped ramdisk image

devel-image-<bsp>.tar.gz gzipped tar archive of the image

u-boot-<bsp>.bin U-Boot binary image that can be programmed into board Flash

<bsp>.dtb device tree binary (dtb)

fsl_fman_ucode_P4080_92_8.bin fman ucode for P4080 rev1 board

fsl_fman_ucode_P3_P4_P5_101_8.bin fman ucode for P3041/P4080 rev2 board/P5020

boot/hv.uImage uImage for hypervisor

hv-cfg/*/*/hv.dtb dtb for hypervisor

rcw/*/rcw_*.bin rcw for hypervisor

Table 4-2. <bsp> values for supported targets

Targets <bsp> Values

P1023RDS p1023rds

P3041DS p3041ds

P4080DS p4080ds

P5020DS-32b p5020ds-32b

Table 4-1. System Builder Image Files

Document Number: AN4436

April 5, 2012

Information in this document is provided solely to enable system and software
implementers to use Freescale Semiconductor products. There are no express or
implied copyright licenses granted hereunder to design or fabricate any integrated
circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to
any products herein. Freescale Semiconductor makes no warranty, representation or
guarantee regarding the suitability of its products for any particular purpose, nor does
Freescale Semiconductor assume any liability arising out of the application or use of
any product or circuit, and specifically disclaims any and all liability, including without
limitation consequential or incidental damages. “Typical” parameters that may be
provided in Freescale Semiconductor data sheets and/or specifications can and do
vary in different applications and actual performance may vary over time. All operating
parameters, including “Typicals”, must be validated for each customer application by
customer’s technical experts. Freescale Semiconductor does not convey any license
under its patent rights nor the rights of others. Freescale Semiconductor products are
not designed, intended, or authorized for use as components in systems intended for
surgical implant into the body, or other applications intended to support or sustain life,
or for any other application in which the failure of the Freescale Semiconductor product
could create a situation where personal injury or death may occur. Should Buyer
purchase or use Freescale Semiconductor products for any such unintended or
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor
and its officers, employees, subsidiaries, affiliates, and distributors harmless against all
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,
directly or indirectly, any claim of personal injury or death associated with such
unintended or unauthorized use, even if such claim alleges that Freescale
Semiconductor was negligent regarding the design or manufacture of the part.

Freescale, the Freescale logo, CodeWarrior, PowerQUICC and QorIQ are trademarks
of Freescale Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. QorIQ Qonverge and
Qorivva are trademarks of Freescale Semiconductor, Inc. All other product or service
names are the property of their respective owners. The Power Architecture and
Power.org word marks and the Power and Power.org logos and related marks are
trademarks and service marks licensed by Power.org.

© 2012 Freescale Semiconductor, Inc.

How to Reach Us:

Home Page:
www.freescale.com

Web Support:
http://www.freescale.com/support

USA/Europe or Locations Not Listed:
Freescale Semiconductor, Inc.
Technical Information Center, EL516
2100 East Elliot Road
Tempe, Arizona 85284
1-800-521-6274 or
+1-480-768-2130
www.freescale.com/support

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
www.freescale.com/support

Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku
Tokyo 153-0064
Japan
0120 191014 or
+81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:
Freescale Semiconductor China Ltd.
Exchange Building 23F
No. 118 Jianguo Road
Chaoyang District
Beijing 100022
China
+86 10 5879 8000
support.asia@freescale.com

	Compiling the Kernel and U-Boot Using System Builder
	1 Using System Builder
	2 Configuring Target Hardware to Use the U-Boot Image
	3 Creating CodeWarrior Projects to Debug U-Boot and Kernel
	4 Debugging the U-Boot or Kernel Projects

