
Freescale Semiconductor Document Number: AN4464
Application Note Rev. 0, 10/2012

© 2012 Freescale Semiconductor, Inc. All rights reserved.

Contents

Digital Filtering with MMA955xL
by: Maureen Helm

This application note introduces digital filtering on the
Freescale Xtrinsic intelligent sensing platforms. It is
divided into two major sections: the first discusses basic
digital filtering theory and general practices, while the
second applies the theory and discusses specific filtering
enablement features available on the MMA955xL
platform.

This document is intended for customers who need to
take advantage of the MMA955xL platform’s digital
filtering enablement features but have little to no
experience in digital signal processing.

1 Digital filter primer

1.1 Introduction
Digital filters are often used to process sampled
continuous-time signals in discrete-time. Unlike analog
filters that typically consist of capacitors and resistors,
digital filters comprise of registers and arithmetic
operators that can be implemented in custom digital logic
or software. MMA9550L, for example, is an intelligent

1 Digital filter primer . 1
1.1 Introduction . 1
1.2 Sampling theory and aliasing 2
1.3 Transfer function and difference equation. 2
1.4 Digital frequency . 3
1.5 Filter realization . 3
1.6 Fixed-point issues . 4
1.7 Hardware acceleration. 5

2 MMA955xL Filter Usage . 6
2.1 Introduction . 6
2.2 Nth order IIR filter . 6
2.3 Configurable cutoff IIR filter 6
2.4 Properties . 8
2.5 Use tips . 8
2.6 Examples. 8
2.7 Frontend anti-aliasing filter 10

3 Goertzel Frequency Analysis. 11
3.1 Introduction . 11
3.2 Algorithm . 12
3.3 Example . 12

4 Appendix . 12
4.1 Nth order IIR filter . 13
4.2 Configurable cutoff IIR filter 16
4.3 Goertzel algorithm . 16

5 Other Resources . 18
5.1 CFDSPLIB: Complimentary ColdFire Digital Signal

Processing Library. 18
6 Definitions and Acronyms . 19
7 Related documentation . 20
8 Revision History. 20

Digital Filtering with MMA955xL, Rev. 0

2 Freescale Semiconductor, Inc.

sensing platform that samples linear acceleration, an inherently analog continuous-time signal, into a
discrete-time sequence of quantized digital samples. Once sampled, these digital signals can be processed
with software on an embedded ColdFire microcontroller. This section provides a basic introduction to
digital filter theory to enable MMA955xL users to understand the capabilities and limitations of the
available filtering tools provided by Freescale, and to use these tools effectively.

1.2 Sampling theory and aliasing
When sampling a signal with an ADC, two important but distinct operations occur: a continuous-time
signal is converted to a discrete-time sequence, and an analog signal is quantized into a digital signal.
Sampling theory addresses the first of these operations. The rate at which an ADC samples in time is called
the sample rate or sample frequency, and half that value defines the Nyquist frequency. The Nyquist
frequency is a fundamental concept in sampling theory because it indicates the point at which frequencies
begin to alias. Frequencies above Nyquist cannot be distinguished from those below and therefore alias to
lower frequencies after sampling. For example, a 60 Hz signal sampled at 100 Hz will alias to 40 Hz. Once
aliasing occurs it cannot be undone, therefore it is important to bandlimit a signal in the analog domain
before sampling. The Analog Front End (AFE) in the MMA955x devices includes a low pass filter with a
bandwidth that adjusts to approximately one quarter the selected sample rate to perform this bandlimiting.
This rule also holds true for any noise above the Nyquist frequency or when downsampling a discrete
signal to a lower rate.

1.3 Transfer function and difference equation
A digital filter is a linear time-invariant system that can be characterized by a discrete transfer function and
a constant coefficient difference equation. The transfer function describes the input-output relationship of
the system in the Z-domain and the difference equation provides a discrete time-domain method to
compute the output of the system given a particular input. A simple relationship exists between the transfer
function and the difference equation in that both use the same set of constant coefficients. A transfer
function can easily be converted into a difference equation by replacing with and

with . Assuming the transfer function’s region of convergence includes the unit circle, it can
also be converted into a Discrete Fourier Transform (DFT) by replacing z with ej.

Transfer function

Eqn. 1

Difference equation

Eqn. 2

bk z
k–

bk x n k–  ak z
k–

ak y n k– 

H z 

bk z
k–

k 0=

N



1 ak z
k–

k 0=

N

+

------------------------------=

y n bkx n k–
k=0

N

 aky n k–
k=1

N

–=

Digital Filtering with MMA955xL, Rev. 0

Freescale Semiconductor, Inc. 3

The difference equation and transfer function can be broken down into several individual terms:

• bk are constant numerator coefficients because they contribute to the numerator of the transfer
function.

• x[n-k] are the current and previous input samples to the filter, whereas k indicates the number of
time delays.

• ak are constant denominator coefficients because they contribute to the denominator of the transfer
function.

• y[n-k] are the current and previous output samples of the filter, whereas k indicates the number of
time delays.

Put together, the difference equation consists of a sum of products:

• bk x[n-k] are the feed-forward terms, each of which is the product of a constant coefficient and a
current or previous input to the filter.

• ak y[n-k] are the feedback terms, each of which is the product of a constant coefficient and a
previous output of the filter. Notice that a0=1, which is the coefficient for the current output. Filters
that contain feedback terms are recursive and have an infinite impulse response (IIR), while filters
that lack feedback terms have a finite impulse response (FIR).

• N is the order of the filter.

1.4 Digital frequency
Because digital filters operate in the discrete-time domain, frequency response is analyzed using digital,
or angular, frequency. When used in a sampled system such as a sensor with an ADC, digital frequency
may also be called normalized frequency since it can be normalized to the Nyquist frequency. Several unit
conventions exist, but the most common are [0,1) radians/sample for normalized frequency, and [0,)
radians for angular frequency. This application note follows the normalized frequency convention also
used in Matlab.

1.5 Filter realization
Digital filters may be realized in a variety of ways, meaning that the difference equation can be computed
differently. The most straightforward implementation of an IIR filter is called Direct Form I, in which the
difference equation is evaluated exactly as written without any intermediate transformations. For an Nth
order IIR filter, a Direct Form I realization requires 2N memory elements (one for each z-1 term), 2N+1
multiplies, and 2N+1 additions.

Digital Filtering with MMA955xL, Rev. 0

4 Freescale Semiconductor, Inc.

Figure 1. Second Order IIR Direct Form I Realization

Another common implementation of an IIR filter is called the Direct Form II, in which the difference
equation is rearranged to minimize the number of memory elements. For an Nth order IIR filter, a Direct
Form II realization requires N memory elements, 2N+1 multiplies, and 2N+1 additions. Although the order
of arithmetic operations is different, both realizations use the same constant coefficients as the difference
equation. By rearranging arithmetic operations, however, different filter realizations suffer from different
fixed-point effects. Many other realizations exist in addition to the two direct forms discussed here.

Figure 2. Second Order IIR Direct Form II Realization

1.6 Fixed-point issues
Converting an ideal digital filter with infinite precision coefficients and arithmetic into a realizable filter
with fixed-point coefficients and arithmetic can be a complex trial-and-error process. Typically,
coefficients are quantized into a fixed-point representation and then simulated with the desired filter
realization to analyze the resulting frequency response. Ideally, the fixed-point frequency response should
match the infinite-precision frequency response, but coefficient and arithmetic roundoff errors often cause
the responses to differ significantly, sometimes even causing the filter to become unstable. There are
several rules of thumb to consider:

• Lower order filters tend to perform better in fixed-point than higher order filters.

• High order filters can be broken up into multiple smaller order filters. Cascaded second-order
sections, or biquads, are often used.

• Extreme frequency cutoffs (<0.1 or >0.9 radians/sample) often do not work in 16-bit fixed-point
representation. One method to achieve an extremely small frequency cutoff is to downsample first

b0

b2 -a2

+

Z-1

Z-1

Z-1

Z-1

b1 -a1

b0

b2-a2

+

Z-1

Z-1

b1-a1

+

Digital Filtering with MMA955xL, Rev. 0

Freescale Semiconductor, Inc. 5

and then apply a filter with a less extreme cutoff. Don’t forget that aliasing concerns require low
pass filtering of the data before downsampling.

• Saturate and round when typecasting down from wider formats (i.e., 32-bit down to 16-bit) to avoid
overflow errors and truncation offsets.

• Limit the range of coefficients. Large ranges (i.e., one very small coefficient and one very large
coefficient) can suffer from significant quantization error.

• Store intermediate results in a wider data format than the coefficients and input/output data. For
example, keep all 32-bits of product when multiplying 16-bit coefficients with 16-bit data. Avoid
casting back down to the input/output format until the entire sum of products has been calculated.

1.7 Hardware acceleration
In general, all realizations of digital filter difference equations evaluate sums of products and therefore
benefit significantly from multiply-accumulate (MAC) acceleration. The ColdFire ISA, for example, has
specialized supplemental instructions and registers that reduce each of the following C snippets into a
single low-latency instruction:

acc += bk*xk; bk = *bk_ptr++; /* multiply accumulate with load */
acc -= ak*yk; /* multiply subtract */

Each of these instructions may be used with 16- or 32-bit signed or unsigned operands to update a 32-bit
running sum. The hardware logic consists of a 3-stage execution pipeline optimized for 16-bit operands
that can issue up to one instruction per cycle, as well as an added architectural accumulator register to store
the running sum. Bare multiply instructions also benefit with lower execution latencies since they can
utilize the accelerated multiplier hardware even if they do not need to update the accumulator.

Figure 3. Multiply accumulate functional diagram

2 MMA955xL Filter Usage

2.1 Introduction
The standard firmware loaded onto all MMA955xL variants contains a configurable IIR filter function
used to execute frontend digital anti-aliasing filters and all application-specific filters. It also includes a

Digital Filtering with MMA955xL, Rev. 0

6 Freescale Semiconductor, Inc.

configurable cutoff IIR filter function that does not require a user to design custom filter coefficients. Both
functions are made available through the Freescale API to allow customer access.

2.2 Nth order IIR filter
The callable filter function implements an IIR Direct Form I realization through efficient use of the
ColdFire MAC. It accepts a variable length array of coefficients as an input argument to enable any filter
of any order. In addition, the function requires a pointer argument to store previous inputs and outputs.
Remember that an Nth order IIR filter in Direct Form I uses N previous inputs and N previous outputs to
compute the current output, therefore the lengths of the buffer and coefficient arrays vary proportionally
with the order of the filter. Since the CodeWarrior IDE C compiler does not use MAC instructions, the filter
function is implemented in assembly for optimal code size and execution speed but maintains a C-callable
interface. It uses a signed 16-bit fixed-point representation for coefficients and input/output data with
32-bit intermediate accumulator results. Numerator and denominator coefficients share a common but
configurable fixed-point scale factor.

2.3 Configurable cutoff IIR filter
A second callable filter function implements a wrapper around the Nth order IIR filter to create a simpler
interface that does not require a user to design his/her own filter coefficients. This function computes a
temporary set of first order high-pass or low-pass filter coefficients with a configurable frequency cutoff
and then calls the generic filter function.

Configurable lowpass filter transfer function

Eqn. 3

Configurable highpass filter transfer function

Eqn. 4

HLPF z  2 k–

1 2 k– 1– z 1–+
------------------------------------=

HLPF z  1 z–
1–

1 2 k– 1– z 1–+
------------------------------------=

Digital Filtering with MMA955xL, Rev. 0

Freescale Semiconductor, Inc. 7

Figure 4. Configurable low-pass filter frequency response

Figure 5. Configurable high-pass filter frequency response

2.4 Properties
Table 1 provides the filter properties for the Nth order IIR filter and the configurable cutoff IIR filter.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-45

-40

-35

-30

-25

-20

-15

-10

-5

0

Normalized Frequency ( radians/sample)

M
ag

ni
tu

de
 (

dB
)

k=1
k=2

k=3

k=4

k=5
k=6

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-70

-60

-50

-40

-30

-20

-10

0

10

Normalized Frequency ( radians/sample)

M
ag

ni
tu

de
 (

dB
)

k=1
k=2

k=3

k=4

k=5
k=6

Digital Filtering with MMA955xL, Rev. 0

8 Freescale Semiconductor, Inc.

2.5 Use tips
Coefficients can be shared among multiple instantiations of the filter function because they are constant
inputs. For example, the same set of coefficients can be used to apply a common filter to X, Y, and Z
acceleration.

Coefficients can be declared as constants to direct the linker to place them in flash memory. If they are not
declared as constants, then two copies of the coefficients will exist, one in flash and one in RAM.

Each instantiation of the filter function requires its own static RAM data buffer. Even if the same
coefficients are used for X, Y, and Z acceleration, each axis requires its own data buffer to store previous
inputs and outputs.

Align coefficients and buffer arrays to longword (4-byte) boundaries to minimize filter execution time.
Although these arrays contain word (2-byte) elements, the filter function accesses them by longword.

2.6 Examples
This section provides examples of the analytical filter equation and susequent frequency response graph.

2.6.1 Analytical filter equations

Table 2 provides the equations for the analytical filter.

Table 1. MMA955xL filter properties

Nth Order IIR Filter Configurable Cutoff IIR Filter

Execution Time (core cycles) 65+10N 144

Code Size (Bytes) 112 82

Buffer Size (Bytes) 4N 4

Coefficients Structure Size (Bytes) 4N+8 12 (stored on stack)

Stack Usage (Bytes) 20 48

Digital Filtering with MMA955xL, Rev. 0

Freescale Semiconductor, Inc. 9

Figure 6 illustrates the analytical filter frequency response.

Table 2. Analytical filter equations

Derivative Leaky Integrator 4-Point Average

Difference
Equation

Transfer
Function

Impulse
Response
Type

Finite (FIR) Infinite (IIR) Finite (FIR)

Order 1 1 3

Numerator
Coefficients [1, -1] [1, 0]

Denominator
Coefficients

[1, 0] [1, -c] [1, 0, 0, 0]

Discrete
Fourier
Transform

Frequency
Response
Magnitude

Frequency
Response
Type

High-pass Low-pass Low-pass

y n  x n  x n 1– –=
y n  cy n 1–  x n +=

0 c 1  y n  1
4
--- x n k– 

k 0=

3

=

H z  1 z
1–

–= H z  1

1 cz
1–

–
-------------------= H z  1

4
--- z

k–

k 0=

3

=

1
4
--- 1

4
--- 1

4
--- 1

4
---  

H e
j  1 e

j–
–= H e

j  1

1 e
j–

–
-------------------= H e

j  1
4
--- e

jk–

k 0=

3

=

H e
j 

2
2 2 cos–= H e

j 
2 1

1 c
2

2c cos–+
--= H e

j 
2 1

16
------ 4 6 cos 4 2cos 2 3cos+ + + =

Digital Filtering with MMA955xL, Rev. 0

10 Freescale Semiconductor, Inc.

Figure 6. Analytical filter frequency response

2.7 Frontend anti-aliasing filter
The frontend module within the standard MMA955xL firmware reads, trims, and filters raw ADC results
before making them available externally or to other internal firmware modules. This digital filter is called
the frontend anti-aliasing filter because it significantly attenuates high frequencies such that
downsampling can occur without aliasing. This is useful for applications such as portrait-landscape and
tilt angle detection that execute at lower rates than the native ADC sample rate. The filter uses a sixth order
Chebyshev Type II design featuring a monotonic passband and equiripple stopband, and the high order
enables a fast rolloff.

The following Matlab commands generate floating-point coefficients, quantize the coefficients into
fixed-point, and construct a data structure string that can be copied into C code and used with the Nth Order
IIR filter function. The first command is built into the Matlab Signal Processing Toolbox and the second
calls a custom function that can be found in Sample coefficients data structures.

[b,a] = cheby2(6,60,.6); % generate floating-point coefficients
[haa,saa] = nth_order_iir_filter(b,a); % create fixed-point model

Compare the frequency response of the Chebyshev design to a simple 4-point average filter: the
Chebyshev is flatter in the passband and attenuates more aggressively in the stopband.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-80

-70

-60

-50

-40

-30

-20

-10

0

10

Normalized Frequency ( radians/sample)

M
ag

ni
tu

de
 (

dB
)

Derivative

Leaky Integrator, c=0.5
4-Point Average

Digital Filtering with MMA955xL, Rev. 0

Freescale Semiconductor, Inc. 11

Figure 7 illustrates the frontend anti-aliasing filter frequency response.

Figure 7. Frontend anti-aliasing filter frequency response

Because the MMA955xL firmware supports multiple simultaneous application rates (488, 244, 122 Hz),
two instances of the same anti-aliasing filter occur in the frontend module for each accelerometer axis.
First, ADC data sampled at 488 Hz is filtered to limit the bandwidth to 100 Hz. Then, the output of the
filter is downsampled by two to achieve a 244 Hz sample rate. Finally, the downsampled data is filtered a
second time with the same set of coefficients to limit the bandwidth to 50 Hz. This demonstrates the
application of several important ideas introduced in previous sections:

1. The frequency response of a digital filter scales with sample rate.

Eqn. 5

2. One copy of the constant coefficients array can be stored exclusively in flash and reused for
multiple instances of a filter. This example uses the same coefficients for
(2 sample rates)  (3 axes) = 6 filter instances.

3 Goertzel Frequency Analysis

3.1 Introduction
In addition to filtering, DSP applications often also require frequency domain analysis, typically achieved
via a Discrete Fourier Transform (DFT) or Fast Fourier Transform (FFT). A third method, called the
Goertzel algorithm, can also be used. The FFT evaluates all frequency components at once, and requires
a significant amount of memory and computational cycles. The DFT and Goertzel algorithm, on the other
hand, can be used to selectively evaluate only the frequency components of interest in a point-by-point
fashion, saving both memory and cycles. Their magnitude outputs are mathematically equivalent to one

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-80

-70

-60

-50

-40

-30

-20

-10

0

10

Normalized Frequency ( radians/sample)

M
ag

ni
tu

de
 (

dB
)

4-Point Average

6th Order Cheby2

fc
100

488 2
---------------- 50

244 2
---------------- 0.4 radians/sample= = =

http://www.freescale.com/webapp/sps/site/prod_summary.jsp?code=CFDSPLIB

Digital Filtering with MMA955xL, Rev. 0

12 Freescale Semiconductor, Inc.

another, but the Goertzel algorithm requires less memory than the DFT and can make better use of the
ColdFire MAC.

3.2 Algorithm
The Goertzel algorithm consists of two parts: an inner loop that computes one output for every input
sample, and an outer loop that computes one output for every N input samples. The parameters k and N
select the frequency component, and their ratio equals the digital frequency (normalized by the sampling
frequency). N corresponds to the length of the DFT, while k corresponds to the bin number and ranges from
zero to N/2-1. Unlike the FFT, N does not need to be a power of two.

The inner loop is a second order IIR filter, but several coefficients are zero so it can be optimized from a
generic implementation. The filter buffer size can also be reduced since x[n-1] and x[n-2] need not be
saved.

Eqn. 6

The outer loop computes the magnitude of the DFT bin after the Nth output of the inner loop:

Eqn. 7

3.3 Example
Consider an engine vibration application that samples an accelerometer at fs=2 kHz and seeks to measure
the magnitude of the fundamental frequency f0=244 Hz over 512 samples.

Set N=512 and, , then compute the value and scale to fixed-point.

goerzel_struct_t goertzel_struct;
N = 512;
coef = 23603; // 2cos(2*pi*k/N) * 2^sf
sf = 14;

For each input sample, invoke the function:

output = goertzel(N,coef,sf,input,&goertzel_struct);

4 Appendix
This appendix provides the example codes for both the Nth order IIR filter and the configuragble cutoff
IIR filter. The example code is provided both in the C source code and the Matlab model.

4.1 Nth order IIR filter
Example 1. Nth order IIR filter—C/assembly source code

typedef struct coef_t {
 uint16 order; // only need uint8 but make uint16 so coef_ary is longword aligned
 uint16 shift; // only need uint8 but make uint16 so coef_ary is longword aligned

y n  x n  2
2k
N

--------- 
  y n 1–  y n 2– –cos+=

X
2k
N

--------- 
  2

y N 2–  2 y N 1–  2 2
2k
N

--------- 
  y N 2– y N 1– cos–+=

k
Nf0

fs
-------- 62= = coef 2

2k
N

--------- 
 cos=

Digital Filtering with MMA955xL, Rev. 0

Freescale Semiconductor, Inc. 13

 int16 coef_ary[]; // empty array must be last struct member
} coef_t;

int16 asm __declspec(register_abi) iir(int16 input, const coef_t *coef, void *buffer) {
 // initialize registers
 lea.l -12(A7),A7; // move stack pointer
 movem.l D4/A2-A3,(A7); // save registers on stack
 mvz.w D0,D0; // load input data and clear upper word {y0,x0}
 lea.l struct(coef_t.coef_ary)(A0),A2; // load address to coefficient array
 move.l A1,A3; // copy address to data buffer
 move.l %0x0080,MACSR; // configure MAC for signed integer with saturate
 move.l %0,ACC; // clear accumulator
 mvz.w struct(coef_t.order)(A0),D4; // initialize inner loop counter

 // iterate i=0:order-1
 loop:
 move.l (A2)+,D1; // load packed coefficients {a0,b0}
 msac.w D0.u,D1.u; // acc -= a0*y0
 mac.w D0.l,D1.l,(A3),D2; // acc += b0*x0, load {y1,x1}
 move.l D0,(A3)+; // shift buffer by writing {y0,x0} to {y1,x1}
 move.l D2,D0; // copy {y1,x1} data for next iteration
 subq.l %1,D4; // decrement inner loop counter
 bgt loop;

 // one more iteration for i=order, but this time do not modify data buffer
 move.l (A2)+,D1; // load packed coefficients {a0,b0}
 msac.w D0.u,D1.u; // acc -= a0*y0
 mac.w D0.l,D1.l; // acc += b0*x0, load {y1,x1}

 // read and shift accumulator
 move.l ACC,D0; // read accumulator
 mvz.w struct(coef_t.shift)(A0),D1; // number of fractional bits in coefficients
 asr.l D1,D0; // shift result
 jsr saturate // saturate word

 // finish up
 move.w D0,(A1); // write output to buffer
 movem.l (A7),D4/A2-A3; // restore registers from stack
 lea.l 12(A7),A7; // restore stack pointer
 rts; // return
}

int16 saturate(int32 input) {
 if (input > (int32) 0x00007fff)
 return((int16) 0x7fff);
 if (input < (int32) 0xffff8000)
 return((int16) 0x8000);
 return((int16) input);
}

4.1.1 Sample coefficients data structures

Example 2. Nth order IIR filter—sample coefficients data structures

const coef_t lowpass1 = {1,14,{16384,8192,-8192,0}};
const coef_t lowpass2 = {1,14,{16384,4096,-12288,0}};
const coef_t lowpass3 = {1,14,{16384,2048,-14336,0}};
const coef_t lowpass4 = {1,14,{16384,1024,-15360,0}};
const coef_t lowpass5 = {1,14,{16384,512,-15872,0}};

Digital Filtering with MMA955xL, Rev. 0

14 Freescale Semiconductor, Inc.

const coef_t lowpass6 = {1,14,{16384,256,-16128,0}};
const coef_t highpass1 = {1,14,{16384,16384,-8192,-16384}};
const coef_t highpass2 = {1,14,{16384,16384,-12288,-16384}};
const coef_t highpass3 = {1,14,{16384,16384,-14336,-16384}};
const coef_t highpass4 = {1,14,{16384,16384,-15360,-16384}};
const coef_t highpass5 = {1,14,{16384,16384,-15872,-16384}};
const coef_t highpass6 = {1,14,{16384,16384,-16128,-16384}};
const coef_t deriv = {1,14,{16384,16384,0,-16384}};
const coef_t leakyint = {1,14,{16384,16384,-8192,0}};
const coef_t avg4 = {3,14,{16384,4096,0,4096,0,4096,0,4096}};
const coef_t lp_cheby2 =
{6,14,{16384,441,-16546,1637,20052,3191,-8837,3925,3957,3191,-624,1637,78,441}};

4.1.2 Matlab model

Example 3. Nth order IIR filter—Matlab model

function [hd,s] = mma955xL_nth_order_iir_filter(b,a);
% Fixed-point model of MMA955xL's Nth order IIR filter
%
% Usage:
% HD = nth_order_iir_filter(B,A) returns a discrete-time filter object with
% numerator and denominator coefficients in vectors B and A respectively.
%
% [HD,S] = nth_order_iir_filter(B,A) also returns a data structure string that
% can be copied directly into C code
%
% Notes:
% 1. Requires Matlab Filter Design and Fixed-Point Toolboxes
% 2. Saturation is not modeled exactly as implemented in ColdFire hardware. The
% hardware accumulator saturation is sticky, meaning that it must be explicitly
% cleared before becoming unsaturated. Matlab does not model this type of
% behavior.
%
% Example:
% [b,a] = butter(2,.5);
% hd = nth_order_iir_filter(b,a);
% y = filter(hd,x);
% freqz(hd);

% create the model
hd = dfilt.df1(b,a); % IIR direct form I realization
f = get(fi([b a]),'FractionLength'); % common fixed-point scale factor
set(hd,...
 'Arithmetic' ,'fixed',...
 'CoeffAutoScale' ,0,...
 'NumFracLength' ,f,...
 'DenFracLength' ,f,...
 'InputFracLength' ,0,...
 'OutputFracLength' ,0,...
 'AccumWordLength' ,32,...

Digital Filtering with MMA955xL, Rev. 0

Freescale Semiconductor, Inc. 15

 'AccumMode' ,'KeepLSB',...
 'RoundMode' ,'floor',...
 'OverflowMode' ,'saturate');

% print a data structure string that can be copied directly into C code
x = [hd.Denominator/2^-hd.DenFracLength; hd.Numerator/2^-hd.NumFracLength];
x = reshape(x,1,numel(x));
s = sprintf('const coef_t coef =
{%g,%g,{%s}};',length(b)-1,f,regexprep(int2str(x),'\s*',','));

4.1.3 Matlab Model—MMA9559L (rounding)

Example 4. Nth order IIR filter—Matlab model: MMA9559L (rounding)

function [hd,s] = mma9559L_nth_order_iir_filter(b,a);
% Fixed-point model of MMA9559L's Nth order IIR filter
%
% Usage:
% HD = nth_order_iir_filter(B,A) returns a discrete-time filter object with
% numerator and denominator coefficients in vectors B and A respectively.
%
% [HD,S] = nth_order_iir_filter(B,A) also returns a data structure string that
% can be copied directly into C code
%
% Notes:
% 1. Requires Matlab Filter Design and Fixed-Point Toolboxes
% 2. Saturation is not modeled exactly as implemented in ColdFire hardware. The
% hardware accumulator saturation is sticky, meaning that it must be explicitly
% cleared before becoming unsaturated. Matlab does not model this type of
% behavior.
%
% Example:
% [b,a] = butter(2,.5);
% hd = nth_order_iir_filter(b,a);
% y = filter(hd,x);
% freqz(hd);

% create the model
hd = dfilt.df1(b,a); % IIR direct form I realization
f = get(fi([b a]),'FractionLength'); % common fixed-point scale factor
set(hd,...
 'Arithmetic' ,'fixed',...
 'CoeffAutoScale' ,0,...
 'NumFracLength' ,f,...
 'DenFracLength' ,f,...
 'InputFracLength' ,0,...
 'OutputFracLength' ,0,...
 'AccumWordLength' ,32,...
 'AccumMode' ,'KeepLSB',...
 'RoundMode' ,'nearest',...
 'OverflowMode' ,'saturate');

Digital Filtering with MMA955xL, Rev. 0

16 Freescale Semiconductor, Inc.

% print a data structure string that can be copied directly into C code
x = [hd.Denominator/2^-hd.DenFracLength; hd.Numerator/2^-hd.NumFracLength];
x = reshape(x,1,numel(x));
s = sprintf('const coef_t coef =
{%g,%g,{%s}};',length(b)-1,f,regexprep(int2str(x),'\s*',','));

4.2 Configurable cutoff IIR filter

4.2.1 C prototypes
typedef enum filter_type_tag {
 LOWPASS = 0,
 HIGHPASS = -32768 /* this is the value of the coefficient for x[n-1] */
} filter_type_t
int16 config_cutoff_filter(int16 input, uint32 k, void *buffer, filter_type_t filter_type);

4.3 Goertzel algorithm

4.3.1 C/assembly source code

Example 5. Configurable cutoff IIR filter—C/assembly source code

/* This is a second-order IIR filter that evaluates the equation:
 *
 * y[n] = x[n] + coef*y[n-1] - y[n-2]
 *
 * Unlike a general IIR filter implementation, this function only accepts only
 * one coefficient as an input argument. The other coefficients of the filter
 * are fixed. To compute bin k of an N-point DFT, coef = 2*cos(2*pi*k/N). The
 * sf input argument is the number of fixed-point scaling bits of coef. Another
 * difference from a general IIR filter implementation is that this function
 * only requires a 2-entry buffer since the coefficients to x[n-1] and x[n-2]
 * are zero. It only needs to store y[n-1] and y[n-2]. */
inline asm __declspec(register_abi) void goertzel_iir(int16 x, const int16 coef, const uint8 sf, int16
buffer[2]) {
 move.l d3,-(sp); // save register to stack
 moveq.l %1,d3; // one
 asl.l d2,d3; // one, scaled
 move.l %0,acc; // clear accumulator
 mac.w d3.l,d0.l,(a0),d0; // acc += 1*x[n]
 mac.w d1.l,d0.u; // acc += coef*y[n-1]
 msac.w d3.l,d0.l; // acc -= 1*y[n-2]
 swap.w d0; // swap y[n-1] into LSByte
 move.w d0,2(a0); // save y[n-1] into buffer
 move.l acc,d0; // read accumulator
 clr.l d1; // clear register for rounding
 asr.l d2,d0; // shift result
 addx.l d1,d0; // round to nearest
 jsr saturate; // saturate word
 move.w d0,(a0); // save y[n] into buffer
 move.l (sp)+,d3; // restore register from stack
}

/* Use the buffer from the second-order IIR filter to compute the magnitude

Digital Filtering with MMA955xL, Rev. 0

Freescale Semiconductor, Inc. 17

 * squared of the DFT bin. This function evaluates the equation:
 *
 * mag_squared = y[n-2]*y[n-2] + y[n-1]*y[n-1] - coef*y[n-1]*y[n-2]
 */
inline asm __declspec(register_abi) int32 dft_magnitude_squared(const int16 coef, const uint8 sf, int16
buffer[2]) {
 move.l (a0),d2; // load {y[n-1], y[n-2]}
 move.l %0,acc; // clear accumulator
 mac.w d2.l,d2.l; // acc += y[n-2]*y[n-2]
 mac.w d2.u,d2.u; // acc += y[n-1]*y[n-1]
 muls.w d2,d0; // y[n-2]*coef
 clr.l d2; // clear register for rounding
 asr.l d1,d0; // shift result
 addx.l d2,d0; // round to nearest
 jsr saturate; // saturate word
 move.l (a0),d2; // reload {y[n-1], y[n-2]}, since saturate() may not preserve d2
 msac.w d2.u,d0.l; // acc -= y[n-1]*(y[n-2]*coef)
 move.l acc,d0; // read accumulator
}

/* Top-level function to execute the goertzel algorithm. The output is updated
 * once every N samples. */
int32 goertzel(const uint32 N, const int16 coef, const uint8 sf, int16 x, goertzel_t * g) {
 asm{move.l %0x0080,MACSR;} // configure MAC for signed integer with saturate
 goertzel_iir(x,coef,sf,g->buffer);
 if (++g->n >= N) {
 g->output = dft_magnitude_squared(coef,sf,g->buffer);
 g->n = 0;
 }
 return(g->output);
}

4.3.2 Matlab model

Example 6. Configurable cutoff IIR filter—Matlab model

function [output,coef,y] = goertzel(k,N,x);
% Fixed-point model of MMA955xL Goertzel algorithm
%
% Usage:
% [OUTPUT,COEF,Y] = goertzel(K,N,X) returns the magnitude squared of the Kth
% bin of the N-point DFT for input vector X. COEF contains the quantized
% coefficient 2*cos(2*pi*k/N), and Y contains the buffer of the intermediate IIR
% filter.

% fixed-point math properties
F =
fimath('ProductMode','KeepLSB','MaxProductWordLength',32,'SumMode','KeepLSB','MaxSum
WordLength',32);

% create the IIR model and filter the data
coef = 2*cos(2*pi*k/N);
[hd,s] = mma955xL_nth_order_iir_filter([1 0 0],[1 -coef 1]);
y = filter(hd,x);

Digital Filtering with MMA955xL, Rev. 0

18 Freescale Semiconductor, Inc.

% compute the magnitude squared of the DFT bin, updating the output once every N
samples
y.fimath = F;
coef = fi(coef,numerictype(1,16,hd.denfraclength),F);
T = numerictype(y(1)*y(1));
output = fi(zeros(size(x)),T);
for n=N:N:length(x)
 output(n:min(length(x),n+N-1)) = y(n-1)*y(n-1) + y(n)*y(n) -
y(n)*fi(y(n-1)*coef,y.numerictype);
end

5 Other Resources

5.1 CFDSPLIB: Complimentary ColdFire Digital Signal Processing
Library

Freescale provides a free library of filter coefficients available for download from the website:

http://www.freescale.com/webapp/sps/site/prod_summary.jsp?code=CFDSPLIB

The web interface allows a user to visually select the type of frequency response desired – lowpass,
highpass, or bandpass—as well as the filter order and normalized frequency cutoff. All of the filters
present in the library have been tested in hardware. Once the desired filters are selected, a user can
download a CodeWarrior project that contains source code for the filter coefficients and implementation.
It is important to note that this filter function interface and implementation differs slightly from the Nth
order IIR filter described in Nth order IIR filter, therefore the coefficients and data structures in are not
directly compatible. The main difference between the two implementations is that the Nth order IIR filter
uses a common fixed-point scale factor for numerator and denominator coefficients, while the CFDSPLIB
implementation allows for different scale factors between the numerator and denominator coefficients.
However, all the filters in CFDSPLIB use a Butterworth design, so they can be regenerated in Matlab with
the built-in butter() command and requantized for use with the Nth order IIR filter. Alternately, the
CFDSPLIB filter implementation can be installed onto the MMA955xL platform as user code.

If desired, coefficients from the CFDSPLIB can be converted into the MMA955xL format by rescaling
and rearranging. First, compare the difference equations evaluated by the CFDSPLIB and MMA955xL IIR
filter implementations:

Eqn. 8

Eqn. 9

yMMA955xL n  2
sf–

bk x n k–  ak y n k– 
k 1=

N

–
k 0=

N


 
 
 
 

=

yCFDSPLIB n  2
num_sf–

dk x n k–  2
den_sf–

ck y n k– 
k 1=

N

+
k 0=

N

=

Digital Filtering with MMA955xL, Rev. 0

Freescale Semiconductor, Inc. 19

These equations can be rearranged to show how to transform coefficients from the CFDSPLIB to the
MMA955xL implementation:

Setting sf=den_sf reduces these transformations further:

As a result, the numerator coefficients must be shifted by the difference in scale factors, while the
denominator coefficients must be inverted.

Finally, the order of the coefficients array is different. The CFDSPLIB coefficients are arranged with the
numerator coefficients in decreasing order first, followed by the denominator coefficients in decreasing
order. The MMA955xL coefficients, on the other hand, are interleaved and in increasing order.

coef_aryCFDSPLIB [] = {dN, …, d0, cN, …, c0}

coef_aryMMA955xL[] = {a0, b0, …aN, bN}

As an example, a fourth order bandpass filter from the CFDSPLIB:

Example 7. Fourth order bandpass filter

/* Butterworth Bandpass Filter, order=4, cutoff frequency=[0.50 0.55]*f_nyquist /
int16 butter4_bp_0_50_0_55_coef[10] = { 11624, 0,-23248, 0,11624, // num
coefficients
 -13120,-4359,-29504,-4872, 0}; // den coefficients
uint8 butter4_bp_0_50_0_55_num_sf = 21; // numerator fixed point scale factor
uint8 butter4_bp_0_50_0_55_den_sf = 14; // denominator fixed point scale factor
uint8 butter4_bp_0_50_0_55_order = 4; // filter order

This filter converted into MMA955xL format:

const coef_t coef = {4,14,{16384,91,4872,0,29504,-182,4359,0,13120,91}};

The conversion results in loss of precision for the numerator coefficients, however, and can adversely
affect the frequency response of the filter.

6 Definitions and Acronyms
Table 3 provides the terms and their descriptions that are used within this document.

bk 2
sf num_sf–

dk=

ak 2
sf den_sf–

ck–=

bk 2
den_sf num_sf–

dk=

ak ck–=

Digital Filtering with MMA955xL, Rev. 0

20 Freescale Semiconductor, Inc.

7 Related documentation
The MMA955xL platform features and operations are described in a variety of reference manuals, user’s
guides, and application notes. To find the most-current versions of these documents:

1. Go to the Freescale homepage at:
http://www.freescale.com/

2. In the Keyword search box at the top of the page, enter the device number MMA955xL.

3. In the Refine Your Result pane on the left, click on the Documentation link.

Table 4 provides the documentation referenced within this document.

8 Revision History
Revision 0 is the initial release of this document.

Table 3. Terms and definitions

Term Description

FIR Finite Impulse Response

IIR Infinite Impulse Response

DFT Discrete Fourier Transform

ADC Analog to Digital Converter

MAC Multiply Accumulator

ISA Instruction Set Architecture

IDE Integrated Development Environment

AFE Analog Front End

FFT Fast Fourier Transform

Table 4. Reference documentation

Description

Discrete-Time Signal Processing, second edition, by A. Oppenheim and R. Schafer
(Upper Saddle River, NJ: Prentice Hall, 1998)

MMA955xL Intelligent Motion-Sensing Platform Data Sheet, Freescale Semiconductor Inc.
(Document number: MMA955XL)

MMA955xL Intelligent Motion-Sensing Platform Software Reference Manual, Freescale Semiconductor Inc.
(Document number: MMA955XLSWRM)

ColdFire DSP Library Reference Manual, Freescale Semiconductor Inc.
(Document number: CFDSPLIBRARYRM)

MCF52223 ColdFire Integrated Microcontroller Reference Manual, Freescale Semiconductor Inc.
(Document number: MCF52223RM)

http://www.freescale.com/

AN4464
Rev. 0
10/2012

How to Reach Us:

Home Page:
freescale.com

Web Support:
freescale.com/support

Information in this document is provided solely to enable system and software

implementers to use Freescale products. There are no express or implied copyright

licenses granted hereunder to design or fabricate any integrated circuits based on the

information in this document.

Freescale reserves the right to make changes without further notice to any products

herein. Freescale makes no warranty, representation, or guarantee regarding the

suitability of its products for any particular purpose, nor does Freescale assume any

liability arising out of the application or use of any product or circuit, and specifically

disclaims any and all liability, including without limitation consequential or incidental

damages. “Typical” parameters that may be provided in Freescale data sheets and/or

specifications can and do vary in different applications, and actual performance may

vary over time. All operating parameters, including “typicals,” must be validated for each

customer application by customer’s technical experts. Freescale does not convey any

license under its patent rights nor the rights of others. Freescale sells products pursuant

to standard terms and conditions of sale, which can be found at the following address:

freescale.com/salestermsandconditions.

Freescale, the Freescale logo, AltiVec, C-5, CodeTest, CodeWarrior, ColdFire, C-Ware,

Energy Efficient Solutions logo, Kinetis, mobileGT, PowerQUICC, Processor Expert,

QorIQ, Qorivva, StarCore, Symphony, and VortiQa are trademarks of Freescale

Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. Airfast, BeeKit, BeeStack, ColdFire+,

CoreNet, Flexis, MagniV, MXC, Platform in a Package, QorIQ Qonverge, QUICC

Engine, Ready Play, SafeAssure, SMARTMOS, TurboLink, Vybrid, and Xtrinsic are

trademarks of Freescale Semiconductor, Inc. All other product or service names are the

property of their respective owners.

© 2012 Freescale Semiconductor, Inc.

http://www.freescale.com/salestermsandconditions

	1 Digital filter primer
	1.1 Introduction
	1.2 Sampling theory and aliasing
	1.3 Transfer function and difference equation
	1.4 Digital frequency
	1.5 Filter realization
	1.6 Fixed-point issues
	1.7 Hardware acceleration

	2 MMA955xL Filter Usage
	2.1 Introduction
	2.2 Nth order IIR filter
	2.3 Configurable cutoff IIR filter
	2.4 Properties
	2.5 Use tips
	2.6 Examples
	2.7 Frontend anti-aliasing filter

	3 Goertzel Frequency Analysis
	3.1 Introduction
	3.2 Algorithm
	3.3 Example

	4 Appendix
	4.1 Nth order IIR filter
	4.2 Configurable cutoff IIR filter
	4.3 Goertzel algorithm

	5 Other Resources
	5.1 CFDSPLIB: Complimentary ColdFire Digital Signal Processing Library

	6 Definitions and Acronyms
	7 Related documentation
	8 Revision History

