
1 Introduction
This application note shows how to build a general Field
Oriented Control (FOC) algorithm code structure, based on the
56F8006 using a Graphic Configuration Tool (GCT) called the
DSP56800E_Quick_Start, integrated in CodeWarrior. The
configuration of the 56F8006 in this document is based on a 3-
Phase BLDC/PMSM Low-Voltage Motor Control Drive
Board together with the MC56F8006 Controller Daughter
Board whose information can be found in the user guide titled
3-Phase BLDC/PMSM Low-Voltage Motor Control Drive
(document number LVMCDBLDCPMSMUG)and the
MC56F8006 Controller Daughter Board for BLDC/PMSM
Motor Control Drive (document number MC56F8006DBUM).

2 Initialize peripherals for
motor control using GCT

Quick Start provides a graphic configuration interface for
users to initialize peripherals in an intuitive way. This graphic
interface helps configure peripheral functions, while users do
not have to memorize all register definitions.

Freescale Semiconductor Document Number: AN4490

Application Note Rev. 0, 3/2012

How to Build an FOC Code
Structure Based on the 56F8006
Using a Quick-Start Tool
by: Xu wei Zhou

Applications Engineer
Shanghai, China

© Original Copyright–2012 Freescale Semiconductor, Inc.

Contents

1 Introduction..1

2 Initialize peripherals for motor control
using GCT...1

3 Build FOC code structure using Quick-
Start API..17

4 Conclusion...24

2.1 About Quick Start
The 56F800E_Quick_Start tool is to the processor expert but dedicated to the DSC series. It provides more compact and fully
debugged peripheral drivers, examples, and interfaces for programmers to create their own C application code while
independent of core architecture. It provides a software infrastructure that allows development of efficient, ready to use high
level software applications that are fully portable and reusable between different core architectures. Maximum portability is
achieved for devices with compatible on-chip peripheral modules. For example, the initialization code of the PWM can be the
same for the 56F8006 and 56F80xx.

NOTE
This quick start tool (the latest version is 2.5) is not integrated in the CodeWarrior
development environment by default. You will have to download it from the Freescale
web page.

After downloaded from the web, install it according to the manual to integrate it into CodeWarrior. The remainder of the
work is focused on only the algorithm.

2.2 Initialization of peripherals for FOC
The 56F8006 is one of the cost-effective chips in the DSC series and has some unique peripheral characteristics compared to
other DSC chips, such as the ADC module and PDB module. This document introduces configurations of motor control
related peripherals using Quick Start’s GCT. Configure the system at 32 MHz using the internal oscillator.The PWM runs at
three times the system clock speed. It uses a PWM internal synchronization signal to trigger the PDB which triggers the ADC
in the middle of a PWM period where a 000 NULL voltage vector occurs. The FOC algorithm is executed in the ADC
interrupt service routine.

2.2.1 Setup a new project
After the quick start tool has been integrated into CodeWarrior, setup a new project based on the quick-start stationery. Click
New from File→New, and select DSP56800E Quick Start r2.5 Stationery from the Project tab. Type a project name and all
project files will be in a folder with the same name as the project. Figure 1 shows the New dialogue.

Initialize peripherals for motor control using GCT

How to Build an FOC Code Structure Based on the 56F8006 Using a Quick-Start Tool, Rev. 0, 3/2012

2 Freescale Semiconductor, Inc.

Figure 1. File->New dialogue

Click OK and a New Project dialogue window opens, see Figure 2. Choose the Standalone_C_application from the
MC56F8006 this means all the files used will be in the project folder. You can move this folder to wherever you want
without having any problems. If you choose the C_application, some of the files used in the project will be in folders where
CodeWarrior is installed.

Figure 2. New Project dialogue

Initialize peripherals for motor control using GCT

How to Build an FOC Code Structure Based on the 56F8006 Using a Quick-Start Tool, Rev. 0, 3/2012

Freescale Semiconductor, Inc. 3

Click OK and then click Make, in the tools bar, to compile and link all the files so the global variables, macros, and functions
turn into the global color which is azury by default. Double click on main.c on the left Files tab, notice all the peripheral head
files have been included. There is a main function definition with a loop inside. All you have to do is add code to this main.c
file with the interfaces the quick start provides.

2.2.2 Peripheral configuration using GCT
Open GCT, check View→Registers Summary and View→Warnings Summary to see the initialization value for module
registers and warnings if any configuration was not done properly. This configuration via the graphic interface is to setup
appropriate values for the registers used in the project.

2.2.2.1 On chip clock configuration
Check the OCCS-On-Chip Clock Synthesis on the left side of GCT, here the internal relaxation oscillator is used with the
factory trim value. Figure 3 shows the configuration.

Figure 3. OCCS configuration

Remember to check the Use Factory Trim Value because the default trimming value 512 is never good enough.

Initialize peripherals for motor control using GCT

How to Build an FOC Code Structure Based on the 56F8006 Using a Quick-Start Tool, Rev. 0, 3/2012

4 Freescale Semiconductor, Inc.

2.2.2.2 COP configuration
The watchdog can be enabled depending on your needs; Here the watchdog is disabled. Check COP-Computer Operating
Properly on the left side of GCT and configure this module as shown in Figure 4. Leave all checkboxes unchecked.

Figure 4. COP configuration

2.2.2.3 IO configuration
Here are some peripherals used:

• SCI for the interface with a PC using FreeMASTER
• SPI for configuring the MC33927 which is the inverter drive
• PWM/PDB/ADC0/ADC1 for FOC algorithm
• Qtimer0 for interface with incremental encoder

Table 1 shows the pin assignment for the 56F8006 daughter board schematic.

Table 1. LV Motor Control Kit pin assignments

Module Name Secondary Function GPIO Pin

PWM PWM0~PWM2 GPIOA0~GPIOA2

PWM3 GPIOB0

PWM4~PWM5 GPIOA4~GPIOA5

FAULT0 GPIOA6

SIM RESET GPIOA7

ADC ANA0~ANA2 GPIOC0~GPIOC2

ANB0~ANB2 GPIOC4~GPIOC6

QTimer0 TIN2 GPIOB2

TIN3 GPIOB3

GPIO UP_SWITCH GPIOB5 (input)

DOWN_SWITCH GPIOB1 (input)

TOGGLE_SWITCH GPIOF0 (input)

Table continues on the next page...

Initialize peripherals for motor control using GCT

How to Build an FOC Code Structure Based on the 56F8006 Using a Quick-Start Tool, Rev. 0, 3/2012

Freescale Semiconductor, Inc. 5

Table 1. LV Motor Control Kit pin assignments (continued)

Module Name Secondary Function GPIO Pin

SPI MISO GPIOB4

MOSI GPIOB3

SCLK GPIOB5

SS (Used as GPIO output) GPIOB1

SCI TXD GPIOB7

RXD GPIOB6

JTAG TDI,TDO,TCK,TMS GPIOD0~GPIOD3

Some of the pins in the SPI module have a functional conflict with the GPIO and QTimer0 module as indicated in Table 1,
but SPI is only for MC33927 initialization. Therefore configure the GPIOB1, GPIOB3, and GPIOB5 an SPI function, change
their function to be QTimer0 and GPIO as shown in Table 1, after the MC33927 has been initialized.

Figure 5 shows the GPIO_B configuration, check GPIO_B-General Purpose I/O Port B on the left side of GCT.

Initialize peripherals for motor control using GCT

How to Build an FOC Code Structure Based on the 56F8006 Using a Quick-Start Tool, Rev. 0, 3/2012

6 Freescale Semiconductor, Inc.

Figure 5. GPIO_B configuration

Notice that the GPIOB1 which is for the SPI SS function is configured as an output GPIO with the initial level being high.

Initialize peripherals for motor control using GCT

How to Build an FOC Code Structure Based on the 56F8006 Using a Quick-Start Tool, Rev. 0, 3/2012

Freescale Semiconductor, Inc. 7

2.2.2.4 System integration module configuration
Check SYS-System Support Control on the left side of the GCT. There are some sections in this configuration interface.
First, enable all peripherals clock you will use. See Figure 6. If the corresponding peripheral clock is not enabled here and
configured in the GCT, there will be warnings in the warning window.

Figure 6. Peripheral clocks checkboxes

There are internal input source selections for the PWM, Comparator and QTimer modules, Figure 7. Default settings are used
here.

Figure 7. Selection of input signals for PWM/Comparator/QTimer

The PWM, QTimer, and SCI module can use a clock which is three times the system clock. Use 96 MHz as PWM clock to
achieve the highest PWM resolution. See Figure 8.

Figure 8. Choose 3x System Clock as PWM clock

Some pins have many functions integrated, for example GPIO_B6 can be RXD, SDA, CMP0_P2/ANA13, and CLKIN.
Registers in the SIM module decide what function uses the GPIO_B6 after being configured as a peripheral pin in the GPIO
module. In fact, you do not have to decide the function here if you have chosen the GPIO configuration interface function.
Figure 5 shows the GPIO_B6 set as the RXD function. In the SIM configuration interface, GPIO_B6 is set as RXD
automatically. See Figure 9.

Initialize peripherals for motor control using GCT

How to Build an FOC Code Structure Based on the 56F8006 Using a Quick-Start Tool, Rev. 0, 3/2012

8 Freescale Semiconductor, Inc.

Figure 9. Selection of peripheral functions for GPIO pin

2.2.2.5 PWM configuration
PWM is an important module in motor control. Figure 10 shows the settings for the 3-Phase BLDC/PMSM Low-Voltage
Motor Control Drive board. PWM frequency, deadtime, and the polarity setting is shown in Figure 10.

Figure 10. Frequency, deadtime, reload mode, and PWM polarity settings

Set the PWM frequency with center-aligned mode at 10 KHz. There is an important relationship between the SYNC signal
and RELOAD signal that needs to be clarified first:

Initialize peripherals for motor control using GCT

How to Build an FOC Code Structure Based on the 56F8006 Using a Quick-Start Tool, Rev. 0, 3/2012

Freescale Semiconductor, Inc. 9

1. If Every opportunity is chosen for PWM Reload Frequency and Half Cycle Reload is not enabled, the RELOAD signal
always appears at the start time of a PWM period. If the Half Cycle Reload is enabled, the RELOAD signal will appear
at both the start time and the midpoint of a PWM period.

2. SYNC signal only comes with the RELOAD signal that occurs at the start time of a PWM period. There will not be any
SYNC signals at midpoint of a PWM period.

3. The PWM Reload Frequency indicates this option is for RELOAD signals. But because the SYNC signal comes with
the RELOAD signal that occurs at the start time of a PWM period, then the SYNC signal frequency can also be
changed if the corresponding RELOAD signal frequency is changed.

The SYNC and RELOAD signals in configuration of Figure 10 is shown in Figure 11 . All the top legs are negative polarity
which means low voltage turns on the top MOSFETs as indicated in Figure 10. The reason why the top MOSFETs are turned
on by low voltage is due to the MC33927. Refer to the datasheet titled Three-Phase Field Effect Transistor Pre-Drive
(document number MC33927) for details.

Figure 11. SYNC and RELOAD signals in configuration of figure 10

Some other examples of SYNC and RELOAD signals are in Figure 12 - Figure 15 where all six switches of the inverter can
be turned on for a general purpose through a high voltage on the gates. Figure 12 shows Every 2 opportunities with half cycle
reload not enabled. Figure 13 shows Every opportunity with half cycle reload enabled. Figure 14 shows every 3 opportunities
with half cycle reload enabled.

Figure 12. SYNC and RELOAD signals in every 2 opportunities with no half cycle reload

Initialize peripherals for motor control using GCT

How to Build an FOC Code Structure Based on the 56F8006 Using a Quick-Start Tool, Rev. 0, 3/2012

10 Freescale Semiconductor, Inc.

Figure 13. SYNC and RELOAD signals in every opportunity with half cycle reload

Figure 14. SYNC and RELOAD signals in every 3 opportunities with half cycle reload

The fault setting of the PWM module is fault0 as a protection signal with high level active,set all initial duties to 50%.
Therefore there will be no line to line voltage even if the PWM outputs are enabled. The configuration is shown Figure 15.

Initialize peripherals for motor control using GCT

How to Build an FOC Code Structure Based on the 56F8006 Using a Quick-Start Tool, Rev. 0, 3/2012

Freescale Semiconductor, Inc. 11

Figure 15. Fault signal configuration

A level 2 interrupt priority is used as the fault interrupt and is defined in the WINTC module. Most peripheral module
interrupt priorities are the lowest which is level 0. To change it, take the fault interrupt and first enable it in the PWM module
and fill the interrupt ISR Name to store the interrupt setting in the WINTC module, then back to WINTC module, fill in the
ISR Name and corresponding interrupt source number in the interrupt levels you want. See in Figure 16.

Figure 16. Change interrupt priority through WINTC

Set the filter time for the fault pin through this GCT interface. The filter time is set to 0.958 us for fault0 signal. See Figure
17.

Initialize peripherals for motor control using GCT

How to Build an FOC Code Structure Based on the 56F8006 Using a Quick-Start Tool, Rev. 0, 3/2012

12 Freescale Semiconductor, Inc.

Figure 17. Fault input filter time setting

2.2.2.6 PDB configuration
This PDB module is used for triggering the ADC module to sample currents of motor windings and DC bus voltage. The
PWM SYNC signal starts the PDB module counter. Phase currents should be sampled at the midpoint of the time interval
where 000 NULL voltage vector lies. This is because the shunt resistor is connected in series with the lower legs. Figure 18
shows the PDB configuration.

Trigger A and Trigger B delay time is important. The SYNC signal is shown in Figure 11 . This is a detailed look of a
complementary PWM signal where you can get the correct value for Trigger A and Trigger B. See Figure 19, because of the
deadtime, the time where the PWM counter reaches the value of the period register (namely Modulus register) it is no longer
at midpoint of the time interval where 000 NULL voltage vector lies. Set Trigger A delay register to pwm period+deadtime/
2, this way when the PDB counter reaches the Trigger A delay value of the register value, two phase currents can be sampled
and converted simultaneously at midpoint of the 000 NULL voltage vector. Use Trigger B to enable the ADC ping pong
mode to have another conversion for the dc bus voltage after two currents have been converted. The value for Trigger B
delay register should be pwm period+deadtime/2+ADC conversion time for one S/C.

Figure 18. PDB configuration

Initialize peripherals for motor control using GCT

How to Build an FOC Code Structure Based on the 56F8006 Using a Quick-Start Tool, Rev. 0, 3/2012

Freescale Semiconductor, Inc. 13

Figure 19. Setup value for Trigger A and Trigger B

The PWM clock is configured to 96MHz while the system clock is 32 MHz. Figure 19 shows 2 phase currents to be Sampled
and Converted (S/C) at the point where delay for Trigger A ends, and the dc bus voltage has started to S/C at the point the
where delay for Trigger B ends. Because the same ADC module is used to convert both 2 phase currents and dc bus voltage,
you must assure the time between those two points is long enough to S/C 2 phase currents. In Figure 21 and Figure 22 it takes
3.03125 us to sample and convert 2 phase currents. The 118 system clock is 118/32=3.6875 us to assure that S/C for 2 phase
currents is larger than 3.03 us.

2.2.2.7 ADC configuration
There are two independent ADC modules in the 56F8006 called ADC0 and ADC1. Each ADC module can convert up to 32
channels. There are a maximum of 14 channels for each ADC module with ANA0~ANA13 for ADC0 and ANB0~ANB13
for ADC1.

There are 2 control registers for each ADC module: ADC0_ADCSC1A and ADC0_ADCSC1B for ADC0,
ADC1_ADCSC1A and ADC1_ADCSC1B for ADC1. For example ADC0, ADC0_ADCSC1A can tell ADC0 to sample and
convert a channel specified in this register and the result is ADC0_ADCRA. ADC0_ADCSC1B can also tell ADC0 to
sample and convert a channel specified in this register and the result is ADC0_ADCRB. ADC0 can be under control by either
ADC0_ADCSC1A or ADC0_ADCSC1B.

Configure both ADC0 and ADC1 to be triggered by the hardware and disable the PGA module, ADC0 and ADC1 are
completely controlled by the PDB trigger signals, see Figure 20.

Initialize peripherals for motor control using GCT

How to Build an FOC Code Structure Based on the 56F8006 Using a Quick-Start Tool, Rev. 0, 3/2012

14 Freescale Semiconductor, Inc.

Figure 20. Ping-Pong mode for ADC0 and ADC1

When Trigger A signal occurs, ADC0 samples and convert (S/C) the channel defined in ADC0_CSC1A while ADC1 will
sample and convert the channel defined in ADC1_CSC1B. Trigger A is used to convert two phase currents as mentioned in
PDB configuration. After ADC0 and ADC1 finish their conversion, Trigger B signal occurs and ADC0 will sample and
convert the channel defined in ADC0_CSC1B, while ADC1 samples and converts the channel defined in ADC1_CSC1A.
Usually Trigger B is used to convert the dc bus voltage and another analog signal.

This mode supported by PDB and ADC0/1 is called Ping-Pong mode.The interrupt enable bit is usually set in ADC0_CSC1A
to be 1, this way the ADC interrupt service routine (ISR) is entered the moment two phase currents are converted. Field
Oriented Control algorithm is executed in this ADC ISR, new duties for three legs must be calculated before the next reload
signal occurs, see Figure 20.

The configuration interface of ADC module are shown in Figure 21 and Figure 22 shows.

Initialize peripherals for motor control using GCT

How to Build an FOC Code Structure Based on the 56F8006 Using a Quick-Start Tool, Rev. 0, 3/2012

Freescale Semiconductor, Inc. 15

Figure 21. ADC0 configuration

Initialize peripherals for motor control using GCT

How to Build an FOC Code Structure Based on the 56F8006 Using a Quick-Start Tool, Rev. 0, 3/2012

16 Freescale Semiconductor, Inc.

Figure 22. ADC1 configuration

3 Build FOC code structure using Quick-Start API
Quick Start provides lots of API (Application Program Interface) functions for every module in the DSC series. These
functions have the same function name and unified parameter style which makes DSC easy to use and makes code easy to
understand, you do not have to memorize the register bit definitions, use this API to configure all the modules.

The unified form of these API functions — ioctl (peripheral_module_identifier, command, command_specific_parameter);

You can find all the reference and detailed information about these APIs in the DSP56800E Quick Start Users Manual after
installing Quick Start.

The code together with this application note provides a general structure and some key functions for the FOC algorithm
based on the 3-Phase BLDC/PMSM Low-Voltage Motor Control Drive board and the MC56F8006 Controller Daughter
Board.

3.1 Code structure
The entire code structure is simple, the motor control related algorithm is executed in ADC ISR. There is a state machine that
makes it easy to add some customized functions. See Figure 23 and Figure 24 for the flowchart structure.

Build FOC code structure using Quick-Start API

How to Build an FOC Code Structure Based on the 56F8006 Using a Quick-Start Tool, Rev. 0, 3/2012

Freescale Semiconductor, Inc. 17

Figure 23. Main structure of the code

Figure 24. ADC ISR

It is important to enter the ADC interrupt the moment two phase currents are converted to make the most of the time
executing algorithm. See Figure 20.

Build FOC code structure using Quick-Start API

How to Build an FOC Code Structure Based on the 56F8006 Using a Quick-Start Tool, Rev. 0, 3/2012

18 Freescale Semiconductor, Inc.

3.2 Key codes explanation
Some important uses for Quick Start API functions are pointed out in the following paragraph which includes module
initialization, clearing fault flags, charging bootstrap capacitors, updating duties, and so on.

3.2.1 Initialize modules as configured in GCT
In Peripheral configuration using GCT, you can configure the modules needed, but it does not generate all the initialization
codes automatically, invoke API to execute initialization as below:

 /* initialize SYS module */
 ioctl(SYS, SYS_INIT, NULL);
 /* configure all GPIO modules */
 ioctl(GPIO, GPIO_INIT_ALL, NULL);
 /* initialize PWM module */
 ioctl(PWM,PWM_INIT,NULL);
 /* initialize SPI module */
 ioctl(SPI,SPI_INIT,NULL);
 /* initialize PDB module */
 ioctl(PDB,PDB_INIT,NULL);
 /* initialize ADC module */
 ioctl(ADC0,ADC_INIT,NULL);
 ioctl(ADC1,ADC_INIT,NULL);

3.2.2 Clear fault flags
Fault flags can be set when the board is powered up. It is best to clear these flags before enabling fault interrupt:

/* enable Fault0's interrupt */
ioctl(PWM,PWM_CLEAR_FAULT_FLAG,PWM_FAULT_0|PWM_FAULT_1|PWM_FAULT_2|PWM_FAULT_3); // Clear
fault flags
ioctl(PWM,PWM_FAULT_INT_ENABLE,PWM_FAULT_0); // enable fault0 interrupt

3.2.3 Charge bootstrap capacitors
Most of the conventional non-isolated inverters for motor control use only one power supply that share the same ground with
the Dc bus voltage to drive all six switches (either IGBT or MOSFET). It has the issue of how to drive the three upper
switches. The bootstrap circuits solve this problem. This circuit is inside of the driving chip MC33927, the bootstrap
capacitor of one switch in the upper leg is charged whenever the corresponding lower leg is on. But, because all switches are
turned off when boards are powered up, it is essential to charge the three bootstrap capacitors before using the inverter.

/* Begin-Charge bootstrap capacitors */
 // A0,A2,A4 are three upper legs controlling pwm io
 // A1,B0,A5 are three lower legs controlling pwm io
 ioctl(GPIO_A,GPIO_SET_PIN,BIT_0|BIT_2|BIT_4); // A0,A2,A4 = 1 to disable
 upper legs
 ioctl(GPIO_A,GPIO_CLEAR_PIN,BIT_1|BIT_5);
 ioctl(GPIO_B,GPIO_CLEAR_PIN,BIT_0); // A1,A5,B0 = 0 to disable
 lower legs
 ioctl(GPIO_A,GPIO_SETAS_OUTPUT,BIT_0|BIT_1|BIT_2|BIT_4|BIT_5);
 ioctl(GPIO_B,GPIO_SETAS_OUTPUT,BIT_0); // set all PWM outputs as outputs
 ioctl(GPIO_A,GPIO_SETAS_GPIO,BIT_0|BIT_1|BIT_2|BIT_4|BIT_5);
 ioctl(GPIO_B,GPIO_SETAS_GPIO,BIT_0); // set all PWM outputs as IO
 // turn on 3 bottom Mos
 ioctl(GPIO_A, GPIO_SET_PIN, BIT_1|BIT_5);
 ioctl(GPIO_B, GPIO_SET_PIN, BIT_0);
 Cpu_Delay(200);
 // turn off 3 bottom Mos
 ioctl(GPIO_A, GPIO_CLEAR_PIN, BIT_1|BIT_5);

Build FOC code structure using Quick-Start API

How to Build an FOC Code Structure Based on the 56F8006 Using a Quick-Start Tool, Rev. 0, 3/2012

Freescale Semiconductor, Inc. 19

 ioctl(GPIO_B, GPIO_CLEAR_PIN, BIT_0);
 Cpu_Delay(200);
 // turn on 3 top Mos
 ioctl(GPIO_A, GPIO_CLEAR_PIN, BIT_0|BIT_2|BIT_4);
 Cpu_Delay(200);
 // turn off 3 top Mos
 ioctl(GPIO_A, GPIO_SET_PIN, BIT_0|BIT_2|BIT_4);
 // change 6 pwm IO back to pwm functions
 ioctl(GPIO_A, GPIO_SETAS_PERIPHERAL, BIT_0|BIT_1|BIT_2|BIT_4|BIT_5);
 ioctl(GPIO_B, GPIO_SETAS_PERIPHERAL, BIT_0); //set all 6 pwm IO as
 peripheral controlled by PWM module
 /* End-Charge bootstrap capacitors */

Configure the 6 PWM outputs to be IO and turn-on the three lower MOSFETs to charge the bootstrap capacitors. It is
intuitive and convenient using API to configure IO.

3.2.4 Update duties
Quick Start provides many APIs and one which is for updating duties in a concise way.

static MCLIB_3_COOR_SYST_T mcDutyABC; // duty
 mcDutyABC.f16A = FRAC16(0.5); // set all duty to be 50%,enable pwm output
 mcDutyABC.f16B = FRAC16(0.5);
 mcDutyABC.f16C = FRAC16(0.5);
 ioctl(PWM,PWM_UPDATE_VALUE_REGS_COMPL,&mcDutyABC);

You should be concerned with the duty percentage, it will calculate three duties according to the percentage and PWM
period, update three duties, and set LDOK to 1.

3.2.5 State machine
All motor control related behaviors are executed using the state machine, see Figure 25.

Build FOC code structure using Quick-Start API

How to Build an FOC Code Structure Based on the 56F8006 Using a Quick-Start Tool, Rev. 0, 3/2012

20 Freescale Semiconductor, Inc.

Figure 25. State machine

Because the PWM is enabled all the time, the ADC is triggered every PWM period at midpoint of the 000 NULL voltage
vector through the PDB. Use ADC ISR to update this state machine.

/* pointer to function */
typedef void (*PFCN_VOID_VOID)(void);
static void TaskFault(void);
static void TaskInit(void);
static void TaskAlignment(void);
static void TaskRun(void);
static void TaskCalibration(void);
static void TaskStart(void);
static void TaskStop(void);
static PFCN_VOID_VOID DispatchTaskFast[] = { TaskFault, TaskInit,
TaskAlignment, TaskRun, TaskCalibration,TaskStart, TaskStop };

The ADC ISR routine is as follows:

#pragma interrupt saveall
void adcIsr(void)
{
 /* Begin - task dispatcher for fast inner control loop */
 DispatchTaskFast[eTASK]();
 /* End - task dispatcher for fast inner control loop */
 /* FreeMASTER recorder engine */

Build FOC code structure using Quick-Start API

How to Build an FOC Code Structure Based on the 56F8006 Using a Quick-Start Tool, Rev. 0, 3/2012

Freescale Semiconductor, Inc. 21

 FMSTR_Recorder();
 ioctl(ADC0,ADC_READ_SAMPLE_B,NULL); // dummy read of ADC results to clear flags
 ioctl(ADC0,ADC_READ_SAMPLE_A,NULL);
 ioctl(ADC1,ADC_READ_SAMPLE_B,NULL);
 ioctl(ADC1,ADC_READ_SAMPLE_A,NULL);
}
#pragma interrupt off

When the board is powered up, it enters a Fault state to check all fault signals and then back to the Init state to initialize all
variables used in the algorithm. Next, calibrate ADC channels for currents. The reason for this calibration is that the current
of –4 A~4 A corresponds to 0~3.3 V in the ADC channel input. There is an offset when current is zero. A 50% duty PWM is
generated to get these offsets because only NULL voltage vectors are applied on the motor. There is no current in the three
phases.

3.2.6 ADC channel mapping
A total of three phase current values are needed in the FOC algorithm, but the sum of these three current values are always
zero at any point, so it is enough to get two phase current values using the ADC module and the other one can be calculated.
There are some extreme circumstances where currents can not be sampled properly if sampling the constant two currents like
phase A and phase B.

Figure 26 shows a voltage vector whose position is near basic vector 100 (in the ABC sequence). This vector lies in sector 1
and is composed of 100 and 110 vectors.The 100 vector lasts a long time while 110 will not. The corresponding PWM
waveform is shown in Figure 27 . The lasting time of 000 NULL vector is short and because there could be spikes
superposed on the current waveform of phase A, current spike could be sampled in phase A instead of the real current value.

To avoid this situation, sample current B and C when the voltage vector lies in sector 1 and 6; sample current A and C when
voltage vector lies in sector 2 and 3; sample current A and B when voltage vector lies in sector 4 and 5.

In the case based on the 3-Phase BLDC/PMSM Low-Voltage Motor Control Drive board together with the MC56F8006
Controller Daughter Board, current of phase A is routed to both ADC0 and ADC1 channels, current of phase C is also routed
to both ADC0 and ADC1 channels, and current of phase B is routed to a channel of ADC1, this setting makes it possible to
sample different two phase currents according to the sector where the voltage vector is in. It is only essential to route one of
the three phase currents to both ADC0 and ADC1 channels, one of the rest two currents to the ADC0 channel and the other
one to the ADC channel. This means at least four ADC channels are in needed

AdcMapping (uw16Sector) changes channels according to the sector.

Build FOC code structure using Quick-Start API

How to Build an FOC Code Structure Based on the 56F8006 Using a Quick-Start Tool, Rev. 0, 3/2012

22 Freescale Semiconductor, Inc.

Figure 26. Voltage vector near basic vector

Figure 27. PWM waveform corresponding to Figure 26

#define ADC0_I_A ADC_AD7
#define ADC0_I_C ADC_AD9
#define ADC0_V_DC ADC_AD5
#define ADC1_I_B ADC_AD6
#define ADC1_I_C ADC_AD8
#define ADC1_I_A ADC_AD4

void AdcMapping(UWord16 uw16Sector)

{

 switch(uw16Sector)

Build FOC code structure using Quick-Start API

How to Build an FOC Code Structure Based on the 56F8006 Using a Quick-Start Tool, Rev. 0, 3/2012

Freescale Semiconductor, Inc. 23

{
 case 1:
 case 6:
 default:
 // measure current C,B
 ioctl(ADC0,ADC_SET_INPUT_CHANNEL_A,ADC0_I_C);
 ioctl(ADC1,ADC_SET_INPUT_CHANNEL_B,ADC1_I_B);
 ioctl(ADC0,ADC_SET_INPUT_CHANNEL_B,ADC0_V_DC);
 ioctl(ADC1,ADC_SET_INPUT_CHANNEL_A,ADC1_I_A);
 break;
 case 2:
 case 3:
 // measure current A,C
 ioctl(ADC0,ADC_SET_INPUT_CHANNEL_A,ADC0_I_A);
 ioctl(ADC1,ADC_SET_INPUT_CHANNEL_B,ADC1_I_C);
 ioctl(ADC0,ADC_SET_INPUT_CHANNEL_B,ADC0_V_DC);
 ioctl(ADC1,ADC_SET_INPUT_CHANNEL_A,ADC1_I_B);
 break;
 case 4:
 case 5:

 // measure current A,B
 ioctl(ADC0,ADC_SET_INPUT_CHANNEL_A,ADC0_I_A);
 ioctl(ADC1,ADC_SET_INPUT_CHANNEL_B,ADC1_I_B);
 ioctl(ADC0,ADC_SET_INPUT_CHANNEL_B,ADC0_V_DC);
 ioctl(ADC1,ADC_SET_INPUT_CHANNEL_A,ADC1_I_C);
 break;

 }
}

4 Conclusion
A tool called Quick Start is introduced for building FOC code structure based on the 56F8006. Detailed settings and codes
are given in this application note. This code structure has proven to be suitable for PMSM field oriented control.

Conclusion

How to Build an FOC Code Structure Based on the 56F8006 Using a Quick-Start Tool, Rev. 0, 3/2012

24 Freescale Semiconductor, Inc.

How to Reach Us:

Home Page:
www.freescale.com

Web Support:
http://www.freescale.com/support

USA/Europe or Locations Not Listed:
Freescale Semiconductor
Technical Information Center, EL516
2100 East Elliot Road
Tempe, Arizona 85284
+1-800-521-6274 or +1-480-768-2130
www.freescale.com/support

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
www.freescale.com/support

Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064
Japan
0120 191014 or +81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:
Freescale Semiconductor China Ltd.
Exchange Building 23F
No. 118 Jianguo Road
Chaoyang District
Beijing 100022
China
+86 10 5879 8000
support.asia@freescale.com

Document Number: AN4490
Rev. 0, 3/2012

Information in this document is provided solely to enable system and software
implementers to use Freescale Semiconductors products. There are no express or implied
copyright licenses granted hereunder to design or fabricate any integrated circuits or
integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any
products herein. Freescale Semiconductor makes no warranty, representation, or
guarantee regarding the suitability of its products for any particular purpose, nor does
Freescale Semiconductor assume any liability arising out of the application or use of any
product or circuit, and specifically disclaims any liability, including without limitation
consequential or incidental damages. "Typical" parameters that may be provided in
Freescale Semiconductor data sheets and/or specifications can and do vary in different
applications and actual performance may vary over time. All operating parameters,
including "Typicals", must be validated for each customer application by customer's
technical experts. Freescale Semiconductor does not convey any license under its patent
rights nor the rights of others. Freescale Semiconductor products are not designed,
intended, or authorized for use as components in systems intended for surgical implant
into the body, or other applications intended to support or sustain life, or for any other
application in which failure of the Freescale Semiconductor product could create a
situation where personal injury or death may occur. Should Buyer purchase or use
Freescale Semiconductor products for any such unintended or unauthorized application,
Buyer shall indemnify Freescale Semiconductor and its officers, employees, subsidiaries,
affiliates, and distributors harmless against all claims, costs, damages, and expenses, and
reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury
or death associated with such unintended or unauthorized use, even if such claims alleges
that Freescale Semiconductor was negligent regarding the design or manufacture of
the part.

RoHS-compliant and/or Pb-free versions of Freescale products have the functionality and
electrical characteristics as their non-RoHS-complaint and/or non-Pb-free counterparts.
For further information, see http://www.freescale.com or contact your Freescale
sales representative.

For information on Freescale's Environmental Products program, go to
http://www.freescale.com/epp.

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.
All other product or service names are the property of their respective owners.

© Original Copyright–2012 Freescale Semiconductor, Inc.

	Introduction
	Initialize peripherals for motor control using GCT
	About Quick Start
	Initialization of peripherals for FOC
	Setup a new project
	Peripheral configuration using GCT
	On chip clock configuration
	COP configuration
	IO configuration
	System integration module configuration
	PWM configuration
	PDB configuration
	ADC configuration

	Build FOC code structure using Quick-Start API
	Code structure
	Key codes explanation
	Initialize modules as configured in GCT
	Clear fault flags
	Charge bootstrap capacitors
	Update duties
	State machine
	ADC channel mapping

	Conclusion

