
Freescale Semiconductor
Application Note

© 2013 Freescale Semiconductor, Inc. All rights reserved.

1 Introduction
The Vybrid family features a heterogeneous dual-core
solution that combines the ARM Cortex® -A5 and ARM
Cortex® -M4 cores. The family also features dual USB 2.0
OTG controllers with integrated PHY, dual 10/100 Ethernet
controllers with L2 switch, 1.5 MB of on-chip SRAM and a
rich suite of communication, connectivity and
human-machine interfaces (HMI). The VF6xx family is pin-
and software-compatible with the VF[3,5,6] families. Vybrid
VF6xx devices include multiple serial interfaces including
UARTs with support for ISO7816 SIM/smart cards, SPI and
I2C and dual CAN modules. VF6xx devices can interface to
a variety of external peripherals and memories for system
expansion and data storage. See the Vybrid factsheet located
at www.freescale.com for complete feature list.

Vybrid family supports the downloading of boot image
through various interfaces e.g., SD/MMC, FlexBus, SPI/I2C
based EEPROM, QuadSPI, CAN, UART, USB. To facilitate
this, a security feature enabled High Assurance Boot (HAB)
code is implemented in the Vybrid boot ROM area. At power
on reset, the program execution starts from the internal boot
ROM area. Depending upon the boot mode and

Document Number: AN4755
Rev. 0, 06/2013

Contents
1. Introduction . 1
2. Hardware setup description . 2
3. Software design . 3
4. References . 11

CAN Booting Procedure for Vybrid
Controller Solutions
By: Biswanath Pal Bhowmick, Khushboo Gupta

Automotive and Industrial Solutions Group

CAN Booting Procedure for Vybrid Controller Solutions, Rev. 0

2 Freescale Semiconductor

Hardware setup description

configuration settings, it can boot through any one out of the aforementioned interfaces.

For automotive use cases, the CAN interface can be used to download a boot image from a host, having
CAN channel connected to Vybrid through a CAN network. This is a suitable way to download a boot
image in the OEM production house (particularly when other conventional serial boot interface like USB
and UART are not available in an embedded system). Using serial CAN boot interface, a host can initially
download and write the final boot image to an on-board resident NVM (non-volatile memory) like
EEPROM connected through Quad-SPI interface. Once the final image is written to the EEPROM, further
booting can occur directly from the EEPROM.

In this application note, the hardware setup and software algorithmic approach to download a boot image
from the CAN-host to Vybrid CAN-device is explained. Various applications using CAN interface to
download boot image can make use of this application note. The following section will describe the details
and the steps for preparing the hardware setup and writing host application to download boot image
through the Vybrid CAN interface.

Readers of this application note should have some basic knowledge of the FlexCAN module and the CAN
standard ISO11898.

2 Hardware setup description
The simple hardware setup for downloading the boot image over Vybrid CAN interface is shown in
Figure 1:

Figure 1. Hardware setup for downloading boot image through Vybrid CAN interface

A CAN-device (or simply “device”) is the board/target where the boot image needs to be downloaded. This
can be done by any embedded CAN-host board (also simply “host”) containing any standard CAN
controller.

In general, there is a very simple CAN hardware interfacing requirement. Vybrid has internal FlexCAN
controller which is connected to a standard CAN PHY interface, typical schematic diagram is shown in
Figure 2. The host may have similar hardware interface, allowing the communication of the host and the
Vybrid device connected over CAN bus.

CAN Booting Procedure for Vybrid Controller Solutions, Rev. 0

Freescale Semiconductor 3

Software design

Figure 2. CAN hardware block schematic

3 Software design

3.1 Baud rate requirements and settings
The FlexCAN module is configured by the boot ROM to operate at 1 Mbps. Table 1 lists the bit timing
parameters which are programmed in FlexCAN during boot process (as part of the boot ROM code).

Table 1. Bit timing parameters in FlexCAN

The baud rate of host and device need to be the same such that their TSEG1:TSEG2 ratio is also as equal
as is possible.

See Figure 3 for details on the parameters being used to configure the baud rate.

FlexCAN
Parameter

Value (in Time
Quanta) CAN2.0 Parameter Value (in Time

Quanta)

SYNC_SEC 1 SYNC_SEC = FlexCAN SYNC_SEC 1

PROP_SEG 3 PROP_SEG = FlexCAN PROP_SEG+1 4

PSEG1 2 PHASE_SEG1 = FlexCXAN PSEG1+1 3

PSEG2 3 PHASE_SEG2 = FlexCAN PSEG2+1 4

CAN Booting Procedure for Vybrid Controller Solutions, Rev. 0

4 Freescale Semiconductor

Software design

Figure 3. Segments within the Bit Time

Table 2 lists the CAN standard TSEG1 and TSEG2 settings.

Vybrid’s FlexCAN module works as a device connected to an external CAN-host. The application
software running in the external CAN-host should follow layered software architecture as described in
Figure 4.

Table 2. CAN standard compliant bit time settings

Time Segment 1 (TSEG1) Time Segment 2 (TSEG2) Resynchronization Jump Width (RJW)

5 .. 10 2 1 .. 2

4 .. 11 3 1 .. 3

5 .. 12 4 1 .. 4

6 .. 13 5 1 .. 4

7 .. 14 6 1 .. 4

8 .. 15 7 1 .. 4

9 .. 16 8 1 .. 4

CAN Booting Procedure for Vybrid Controller Solutions, Rev. 0

Freescale Semiconductor 5

Software design

Figure 4. FlexCAN boot process layered architecture

From the bottom up, the CAN boot architecture is similar to a subset of OSI layer architecture consisting
of physical, data link/flow control, transport and application layers only.

3.2 Serial download protocol
In Vybrid, boot image is downloaded through CAN interface using Serial Download Protocol (SDP).
Using this protocol, the commands are sent from the CAN-host to CAN-device, which are responded by
the device, with (optional) data and response field.

Table 3 lists all the commands used to facilitate serial download over CAN bus.

CAN Booting Procedure for Vybrid Controller Solutions, Rev. 0

6 Freescale Semiconductor

Software design

3.3 Flow control protocol
On top of FlexCAN module, there is an Echo-Retry Flow Control Layer which implements a software
echo-retry flow control mechanism. This mechanism has a concept of echoing back the received data by
the device which has been sent by a host. In this architecture, host sends the data as an originator coming
from the upper layer, which is SDP here, and the SDP responses are sent back by device. This echo back
mechanism ensures that the host doesn’t send the next data to the device until it has received the echo of
the data already transmitted over CAN bus.

Only Echo back mechanism is not enough for stable flow control, as SDP protocol has a
command-response model, i.e. data can flow from host to device and vice-versa. Therefore, to facilitate
the switching between sending and receiving functions without any data/response being missed by either
entity, a Retry mechanism is implemented.

3.4 Host application
The host application to downloading boot image through serial CAN bus should be developed as per the
layered model describe in Figure 4. The following is the sequence to be followed in the host application.

1. Initialize CAN-host interface as per the settings listed in Table 1.

Table 3. 16-Byte SDP Command Structure

BYTE Offset Size Name Description

0 2 COMMAND TYPE Commands supported:
 • 0x0101 READ_REGISTER
 • 0x0202 WRITE_REGISTER
 • 0x0404 WRITE_FILE
 • 0x0505 ERROR_STATUS
 • 0x0A0A DCD_WRITE
 • 0x0B0B JUMP_ADDRESS

2 4 ADDRESS Only relevant for:
READ_REGISTER, WRITE_REGISTER,
WRITE_FILE, DCD_WRITE, and
JUMP_ADDRESS commands.1

1 For READ_REGISTER and WRITE_REGISTER commands, this field is address to a register. For WRITE_FILE and
JUMP_ADDRESS commands, this field is an address to internal or external memory address.

6 1 FORMAT Access format, 0x8 for 8-bit access, 0x10 for
16-bit and 0x20 for 32-bit access.
Only relevant for READ_REGISTER and
WRITE_REGISTER commands.

7 4 DATA COUNT Size of data to read or write. Only relevant for
WRITE_FILE, READ_REGISTER,
WRITE_REGISTER and DCD_WRITE
command. For WRITE_FILE and DCD_WRITE
commands DATA COUNT is in byte units.

11 4 DATA Value to write. Only relevant for
WRITE_REGISTER command.

15 1 RESERVED Not used in Vybrid ROM

CAN Booting Procedure for Vybrid Controller Solutions, Rev. 0

Freescale Semiconductor 7

Software design

2. Set the interface speed to 1 Mbps.
3. Send a packet with pattern 0x67898967 to the CAN-device. While sending any packet to the

device, ensure the host ID is always set as 0x14. After sending the packet, configure the receive
message buffer to receive a response packet from the CAN-device, ensuring that the device ID is
always set to 0x04. Implement the echo-retry flow control mechanism for a system defined retry
count.

4. Once the host receives back the same pattern 0x67898967 from the device, the host reaches a state
called “associated”.

5. At this point, host can start boot image download by sending the SDP commands as stated in
Table 3.

6. Optionally, the host can send a DCD_WRITE SDP command to the device. This is useful if the
host wants to send DCD words to device in order to configure, for example, the SDRAM1 before
the boot image can be written to SDRAM memory in the device/target board. DCD_WRITE
command will send the SDRAM initialization word sequences as per the SDRAM device in the
target board, i.e., the one containing device.

7. Next, the host should send a WRITE_FILE SDP command to the device. The parameters of the
WRITE_FILE command are:
— COMMAND TYPE = 0x0404
— ADDRESS=<an address of SDRAM or internal SRAM>
— FORMAT=0x00
— DATA COUNT=<size of boot image>
— DATA=0x00000000
— RESERVED=0x00

In the following pseudo code, the host application prepares a receive message buffer before preparing and
sending a transmit message buffer (calling function config_rx_buf). This is done in order to keep the host
ready to receive an echo response of WRITE_FILE packet, guaranteeing the reception of echo without fail.
It’s possible that the device will fail to receive WRITE_FILE packet at the first attempt (because of its own
execution context or delay), so a retry mechanism is helpful to take care of the device missing packet.
Instead of an indefinite number of retries, a retry count can be utilized.

step("Configure RX buffer and send 16 bytes of WRITE_FILE command and check for echo.");

/*Transmitting 1st part of the WRITE_FILE command*/

/*Configure and keep ready a RX buffer before transmission is done*/

config_rx_buf(rx_buf, rcv_message_id);

/* Write the sdp_packet (0x0404 3F040000 00 00), for WRITE_FILE packet */

sdp_packet[0] = 0x04; sdp_packet[1] = 0x04; /* COMMAND TYPE */

sdp_packet[2] = 0x3F; sdp_packet[3] = 0x04; sdp_packet[4] = 0x00; sdp_packet[5] = 0x00;
/* ADDRESS */

sdp_packet[6] = 0x00; /* FORMAT */

sdp_packet[7] = 0x0; /* DATA COUNT - 1st byte */

1. DCD is not limited to only SDRAM set‐up.

CAN Booting Procedure for Vybrid Controller Solutions, Rev. 0

8 Freescale Semiconductor

Software design

tx_done=0;

while(tx_done==0) { /*Keep polling until the packet is echoed*

/* Configure MB to transmit to BOOT device (DUT)

config_tx_buf(tx_buf, send_message_id, sdp_packet, 8);

transmit_and_wait_for_tx_flag(tx_buf, 8);

/*Wait to finish the ECHOED RX transfer*/

if(wait_for_rx_flag_and_chk_rcvd_data(rx_buf, sdp_packet, 8))

tx_done=1;

 else

 printf("Retransmitting first part of WRITE FILE command!");

}

/*Transmitting 2nd part of the WRITE_FILE command*/

/*Configure RX buffer again*/

config_rx_buf(rx_buf, rcv_message_id);

/* Write the data (0x001000 00000000 00), for WRITE_FILE packet */

sdp_packet[0] = 0x00; sdp_packet[1] = 0x10; sdp_packet[2] = 0x00; /*DATA COUNT - 2nd
to 4th bytes*/

sdp_packet[3] = 0x00; sdp_packet[4] = 0x00; sdp_packet[5] = 0x00; sdp_packet[6] = 0x00;
/*DATA*/

sdp_packet[7] = 0x00; /* RESERVED */

tx_done=0;

while(tx_done==0) { /*Keep polling untill the packet is echoed*/

/* Configure MB to transmit to BOOT device (DUT)*/

 config_tx_buf(tx_buf, send_message_id, sdp_packet, 8);

 transmit_and_wait_for_tx_flag(tx_buf, 8);

 /*Wait to finish the ECHOED RX transfer*/

 if(wait_for_rx_flag_and_chk_rcvd_data(rx_buf, sdp_packet, 8))

 tx_done=1;

 else

 printf("Retransmitting second part of WRITE FILE command!");

}

Immediately following the WRITE_FILE command, the host should send the entire image data to the
Vybrid device (keeping echo-retry flow control mechanism intact as describe above). In the below case,
the image size is known to be 4 Kbytes only.

step("Send boot image (of size 4Kbytes in this case) data");

for(loop=0; loop<4096; loop=loop+8) {

CAN Booting Procedure for Vybrid Controller Solutions, Rev. 0

Freescale Semiconductor 9

Software design

/* Write the boot image file data to CAN */

/* file_data is the pointer where boot image is preloaded */

 data[0] = file_data[0+loop]; data[1] = file_data[1+loop];

 data[2] = file_data[2+loop]; data[3] = file_data[3+loop];

 data[4] = file_data[4+loop]; data[5] = file_data[5+loop];

 data[6] = file_data[6+loop]; data[7] = file_data[7+loop];

 /*Configure RX buffer again*/

 config_rx_buf(rx_buf, rcv_message_id);

 tx_done=0;

 while(tx_done==0) { /*Keep polling untill the packet is echoed*/

 /* Configure MB to transmit to BOOT device (DUT) */

 config_tx_buf(tx_buf, send_message_id, data, 8);

 transmit_and_wait_for_tx_flag(tx_buf, 8);

 /*Wait to finish the ECHOED RX transfer*/

 if(wait_for_rx_flag_and_chk_rcvd_data(rx_buf, data, 8))

 tx_done=1;

 else

printf("Retransmitting WRITE FILE image data!");

 }

 }

printf("4K data SENT");

After the entire boot image data is successfully sent to the Vybrid device (and being ensured by the
underlying flow control mechanism), host then expects to receive the response packets from the device.

• 4 bytes HAB mode indicating Production/Development part
— 0x56787856 for a development level Vybrid part
— 0x12343412 for a production level Vybrid part

• 4 bytes command complete code 0x88888888
/*Configure RX buffer*/

 config_rx_buf(rx_buf, rcv_message_id);

 step("Expect 16 bytes response to WRITE_FILE and check for echo.");

wait_for_rx_flag_and_chk_response(rx_buf, tx_buf, data, send_message_id, rcv_message_id,
0x56787856, 0x12343412, 0x88888888, 4);

Next, the host should send a JUMP SDP command to the device. The parameters of the WRITE_FILE
command are:

— COMMAND TYPE = 0x0B0B

CAN Booting Procedure for Vybrid Controller Solutions, Rev. 0

10 Freescale Semiconductor

Software design

— ADDRESS=<same address specified in previous WRITE_FILE command>
— FORMAT=0x00
— DATA COUNT=0x00
— DATA=0x00000000
— RESERVED=0x00
printf("Sending JUMP SDP command...");

printf("Sending 1st part of JUMP SDP command...");

step("Configure RX buffer and send 16 bytes of JUMP command and check for echo.");

/*(Configure RX buffer*/

config_rx_buf(rx_buf, rcv_message_id);

/* Write the data (0x0B0B 3F040000 00 00), for a JUMP SDP packet */

sdp_packet[0] = 0x0B; sdp_packet[1] = 0x0B; /* COMMAND */

sdp_packet[2] = 0x3F; sdp_packet[3] = 0x04; sdp_packet[4] = 0x00; sdp_packet[5] = 0x00;
/* ADDRESS */

sdp_packet[6] = 0x00; /* FORMAT */

sdp_packet[7] = 0x0; /* RESERVED */

tx_done=0;

while(tx_done==0) { /*Keep polling untill the packet is echoed*/

/* Configure MB to transmit to BOOT device (DUT)*/

 config_tx_buf(tx_buf, send_message_id, sdp_packet, 8);

 transmit_and_wait_for_tx_flag(tx_buf, 8);

 /*Wait to finish the ECHOED RX transfer*/

 if(wait_for_rx_flag_and_chk_rcvd_data(rx_buf, data, 8))

 tx_done=1;

 else

 printf("Retransmitting first part of JUMP command!");

}

printf("Sending 2nd part of JUMP SDP command...");

/*Configure RX buffer*/

config_rx_buf(rx_buf, rcv_message_id);

/* Write the data (0x00000000 00000000), if the frame is a data frame */

sdp_packet[0] = 0x00; sdp_packet[1] = 0x00; sdp_packet[2] = 0x00; /*DATA COUNT - 2nd
to 4th bytes*/

sdp_packet[3] = 0x00; sdp_packet[4] = 0x00; sdp_packet[5] = 0x0;

sdp_packet[6] = 0x0; /* DATA */

sdp_packet[7] = 0x0; /* RESERVED */

CAN Booting Procedure for Vybrid Controller Solutions, Rev. 0

Freescale Semiconductor 11

References

tx_done=0;

while(tx_done==0) { /*Keep polling untill the packet is echoed*/

/* Configure MB to transmit to BOOT device (DUT)*/

 config_tx_buf(tx_buf, send_message_id, data, 8);

 transmit_and_wait_for_tx_flag(tx_buf, 8);

 /*Wait to finish the ECHOED RX transfer*/

 if(wait_for_rx_flag_and_chk_rcvd_data(rx_buf, data, 8))

 tx_done=1;

 else

 printf("Retransmitting first part of JUMP command!");

}

After receiving the JUMP command correctly, the device sends back a response of command received with
the 4 byte part type:

• 0x56787856 for a development level Vybrid part
• 0x12343412 for a production level Vybrid part

The device then authenticates the image previously received through WRITE_FILE command.

If the authentication is successful, it branches the program execution to the address mentioned in
ADDRESS field.

If the authentication is unsuccessful, device sends back the 4 byte error code to host which comprises 1
byte reserved field, 1 byte context, 1 byte reason and 1 byte of status codes for Vybrid boot ROM code.

config_rx_buf(rx_buf, rcv_message_id);

step("Expect 16 bytes response to JUMP and check for echo.");

wait_for_rx_flag_and_chk_response(rx_buf, tx_buf, data, send_message_id, rcv_message_id,
0x56787856, 0x12343412, 0x0, 4);

printf("FLEXCAN BOOT COMPLETE");

This eventually completes the download and execution of boot image through FlexCAN interface.

4 References
1. Vybrid Reference Manual (VYBRIDRM)

Document Number: AN4755
Rev. 0
06/2013

Information in this document is provided solely to enable system and software

implementers to use Freescale products. There are no express or implied copyright

licenses granted hereunder to design or fabricate any integrated circuits based on the

information in this document.

Freescale reserves the right to make changes without further notice to any products

herein. Freescale makes no warranty, representation, or guarantee regarding the

suitability of its products for any particular purpose, nor does Freescale assume any

liability arising out of the application or use of any product or circuit, and specifically

disclaims any and all liability, including without limitation consequential or incidental

damages. “Typical” parameters that may be provided in Freescale data sheets and/or

specifications can and do vary in different applications, and actual performance may

vary over time. All operating parameters, including “typicals,” must be validated for

each customer application by customer’s technical experts. Freescale does not convey

any license under its patent rights nor the rights of others. Freescale sells products

pursuant to standard terms and conditions of sale, which can be found at the following

address: freescale.com/SalesTermsandConditions.

How to Reach Us:
Home Page:
freescale.com

Web Support:
freescale.com/support

Freescale and the Freescale logo are trademarks of Freescale Semiconductor, Inc.,

Reg. U.S. Pat. & Tm. Off. Vybrid is a trademark of Freescale Semiconductor, Inc. All

other product or service names are the property of their respective owners. ARM is the

registered trademark of ARM Limited. ARM Cortex-A5 and ARM Cortex-M4 are the

trademarks of ARM Limited.

© 2013 Freescale Semiconductor, Inc.

	CAN Booting Procedure for Vybrid Controller Solutions
	1 Introduction
	2 Hardware setup description
	Figure 1. Hardware setup for downloading boot image through Vybrid CAN interface
	Figure 2. CAN hardware block schematic

	3 Software design
	3.1 Baud rate requirements and settings
	Table 1. Bit timing parameters in FlexCAN
	Figure 3. Segments within the Bit Time
	Table 2. CAN standard compliant bit time settings
	Figure 4. FlexCAN boot process layered architecture

	3.2 Serial download protocol
	Table 3. 16-Byte SDP Command Structure

	3.3 Flow control protocol
	3.4 Host application

	4 References

