
Freescale Semiconductor Document Number:AN4775

Application Note Rev 0, 07/2013

IIC Boot Loader Design on the
Kinetis E Series
by: Wang Peng

1 Overview
Many applications or products need to upgrade firmware in
the field to fix some bugs found, or sometimes to improve
performance. Most of them do not use the dedicated debug
interface, but only use the communication interfaces, such as
UART, USB, IIC, and so on. In this case, a serial boot loader
is required to upgrade firmware via one of the communication
interfaces without debugger or dedicated program tools.

This application note guides how to design boot loader on
Kinetis E series MCUs with IIC interface.

2 Introduction
Boot loader is a built-in firmware which is implemented to
program the application code to flash memory via the
communication interface.

This application note introduces how to use KE02Z Freedom
Development (FRDM-KE02Z) board to convert UART data
from PC terminal to the IIC bus, and communicate with the
target board (KE02Z board) to implement update of the target
application code. See the following figure.

© 2013 Freescale Semiconductor, Inc.

Contents

1 Overview..1

2 Introduction..1

3 Software architecture..2

3.1 Convert board..2

3.2 Target board...3

4 Memory allocation...8

5 Conclusion...9

6 References...9

7 Glossary...9

8 Revision history..10

https://www.nxp.com/products/processors-and-microcontrollers/arm-microcontrollers/general-purpose-mcus/ke-series-cortex-m4-m0-plus:KINETIS_E_SERIES?utm_medium=AN-2021

Figure 1. Top level view

The boot loader takes advantage of AN2295SW software tools, available on freescale.com, which is widely used in all
Kinetis products to implement boot loader to update the application code through the UART interface.

The convert board uses the freedom board FRDM-KE02Z to convert UART bus to IIC bus, and repackage data transfer to the
target board.

The target board has built-in boot loader code, which acts as IIC slave device to communicate with the convert board, after
receiving command and data, and program the application code to flash memory on the target board.

The software attached with this application note, AN4775SW.zip, contains the following:
• a sample code, which can directly run on the FRDM-KE02Z board
• “I2C_boot loader” which shall be downloaded to the target board
• “Bridge_UartToIIC” which shall be downloaded to the convert board
• the project “RTC_demo” is for generating S19 file, which can be downloaded using PC software.

3 Software architecture
The software tool attached with this application note, AN4775SW.zip (containing win_hc08sprg.exe) available on
freescale.com, decodes S19 file and communicates with the convert board through FC protocol.

3.1 Convert board
The convert board communicates with PC terminal through the FC protocol. For detail information regarding the FC
protocol, see AN2295: Developer's Serial Bootloader for M68HC08 and HCS08 MCUs, available on freescale.com.

Convert board will be initialized to IIC master and communicates with the target board, in order to receive or transmit data
package with the target board using IIC bus; it repackages data frame with data length and checksum. Below is the format of
the data package.

Data length Original data frame Checksum

The following steps explain the flow chart given in the following figure.
1. The convert board sends FC_CMD_HOOK(0x02) to the target board.
2. Then, it reads status from the target board to check if it works in boot loader mode or user code mode.
3. If the received state is FC_CMD_HOOK|0x80, then it will send 0xFC to start hook up with PC terminal, otherwise, it

will always check state of the target board till it receives FC_CMD_HOOK|0x80.
4. After this, it receives data frame from the target board, repackages it with data length and checksum and sends it

through the IIC bus.

Software architecture

IIC Boot Loader Design on the Kinetis E Series, Rev 0, 07/2013

2 Freescale Semiconductor, Inc.

http://www.freescale.com
http://www.freescale.com
http://www.freescale.com

5. After that, it reads data from slave; the first data received is to determine whether the slave is ready. If it is, (command |
0x80), then it indicates to the receiver that the correct acknowledge is received.

For example, when the command sent to slave is 0x03, the received acknowledge must be 0x03|0x80.

Figure 2. Convert board software flow chart

Convert board functions as a bridge between PC terminal and target board, with which a S19 file can be downloaded to the
target board from PC.

3.2 Target board
The target board contains built-in boot loader code. After power up, it first checks the work mode to know whether it is in
boot mode or user code mode. One of the methods to identify the work mode is by checking the level of an external GPIO.

• If the GPIO pin is low, then it will enter into boot mode to run the boot loader.
• If the GPIO pin is high, then it will enter user code mode to run the application code.

But for some applications, there are limited pin/wires available and no extra GPIO for such purpose. For such cases, the hook
up command is used to determine the work mode.

• If overtime occurs and hook up fails, then the board enters the user mode.
• If hook up succeeds, the board enters the boot loader mode.

This figure presents the flow chart to check the work mode.

Software architecture

IIC Boot Loader Design on the Kinetis E Series, Rev 0, 07/2013

Freescale Semiconductor, Inc. 3

Figure 3. Flow chart to check work mode

3.2.1 IIC slave driver
The target board configures IIC as a slave. It receives and transmits data to the master in IIC interrupt service routine. For
detailed interrupt flow, see KE02Z64P20SF0RM, available on freescale.com. Below is a sample code snippet:

 void I2C_SlaveCallback(void)
 {
 I2C_ClearStatus(I2C0,I2C_S_IICIF_MASK);
 if(I2C_GetStatus(I2C0) & I2C_S_ARBL_MASK)
 {
 I2C_ClearStatus(I2C0,I2C_S_ARBL_MASK);
 if(!(I2C_GetStatus(I2C0) & I2C_S_IAAS_MASK))
 {
 // IIAAS is 0
 return;
 }
 }
 if(I2C_GetStatus(I2C0) & I2C_S_IAAS_MASK)
 {
 I2C_SendAck(I2C0);
 gbI2CRecFrameFlag = 0;
 if(I2C_GetStatus(I2C0)& I2C_S_SRW_MASK)
 {
 // slave send data
 I2C_TxEnable(I2C0);
 u8SendIndex = 0;
 I2C_WriteDataReg(I2C0,u8SendBuff[u8SendIndex++]);
 }
 else
 {

Software architecture

IIC Boot Loader Design on the Kinetis E Series, Rev 0, 07/2013

4 Freescale Semiconductor, Inc.

http://www.freescale.com

 I2C_RxEnable(I2C0);
 I2C_ReadDataReg(I2C0);
 u8RecIndex = 0;
 }
 }
 else
 {
 if(I2C0->S & I2C_S_SRW_MASK)
 {
 // if require ACK from master
 if(I2C0->S & I2C_S_RXAK_MASK)
 {
 // no receive the ACK, switch to RX
 I2C_RxEnable(I2C0);
 I2C_ReadDataReg(I2C0);
 }
 else
 {
 if(u8SendIndex < I2C_TX_BUFF_LENGTH)
 {
 I2C_WriteDataReg(I2C0,u8SendBuff[u8SendIndex++]);
 }
 else
 {
 /* here do nothing, clock stretching or send a 0xff to master. */
 I2C_WriteDataReg(I2C0, 0xff);
 }
 }
 }
 else
 {
 if(u8RecIndex < I2C_RX_BUFF_LENGTH)
 {
 u8RecBuff[u8RecIndex++] = I2C_ReadDataReg(I2C0);
 if(u8RecIndex > sizeof(uint32_t))
 {
 pRxFrameLength = (uint32_t *)&u8RecBuff[0];
 if(u8RecIndex >= (*pRxFrameLength))
 {
 // receive a frame data from master
 gbI2CRecFrameFlag = 1;
 Memcpy_Byte((uint8_t *)&gu8I2CRxFrameBuff[0],
 (uint8_t *)&u8RecBuff[0],u8RecIndex);
 // reset index counter
 u8RecIndex = 0;
 // change MCU state to BUSY
 u8SendBuff[0] = SLAVE_MCU_STATE_BUSY;
 }
 }
 }
 }
 }
 }

After IIC receives a data frame, it will set the flag (g_bIICRecFrameFlag) so that the application code can further process
data frame.

3.2.2 Command description
In boot loader loop, always check the flag (g_bIICRecFrameFlag). When the flag (g_bIICRecFrameFlag) is 1, it will start to
handle the received frame. Initially, use checksum to verify if frame received is correct and after the verification, unpackage
the frame and handle the appropriate command. Below is the format of the received frame.

Total data
length(4 bytes)

Command (1 byte) Address (4 bytes) Number of data (1
byte)

Data Checksum (1
byte)

Software architecture

IIC Boot Loader Design on the Kinetis E Series, Rev 0, 07/2013

Freescale Semiconductor, Inc. 5

A brief summary of commands is given in the following table.

Command function Command Loader positive
acknowledge

Loader negative
acknowledge

Hook up 0x02 0x82, 0xFC 0x82, 0x03

Ident 0x49 0xC9, ident information 0xC9, 0x03

Erase sector 0x45 0xC5, 0xFC 0xC5, 0x03

Write 0x57 0xD7, 0xFC 0xD7, 0x03

Read 0x52 0xD2, data 0xD2, 0x03

Quit 0x51 no acknowledge no acknowledge

• Hook up command

The received data package of Hook up command (coded as 0x02) is as given below.

Total data length
(4 bytes)

Command (1
byte)

Address(4
bytes)

Number of data
(1 byte)

Data Checksum (1
byte)

6 0x02 - - - CS

The Command acknowledge is given below.

Command (1 byte) Data

0x82 0xFC/0x03

• If the status received is 0xFC, it indicates that the target board is working in boot loader mode, and gets ready to
communicate with the convert board.

• If the status received is 0x03, it indicate that it is in the user mode, and can’t receive other command.
• Ident command

The received data package of Ident command (coded as 0x49), is shown in the following table.

Total data length
(4 bytes)

Command (1
byte)

Address (4
bytes)

Number of data
(1 byte)

data Checksum (1
byte)

6 0x49 - - - CS

The required MCU information is given below.

• Protocol version—1 byte
• System Device Identification Register (SDID) content, r(13–16 bits) is the chip revision number reflecting the

current silicon level — 2 bytes
• Number of reprogrammable memory areas—4 bytes
• Start address of the reprogrammable area—4 bytes
• End address of reprogrammable memory area—4 bytes
• Address of the original vector table (1KB)—4 bytes
• Address of the new vector table (1KB)—4 bytes
• Length of the MCU erase blocks—4 bytes
• Length of the MCU write blocks—4 bytes
• Identification string, zero terminated—n bytes

One structure body for ident information is shown in the following code snippet.

Software architecture

IIC Boot Loader Design on the Kinetis E Series, Rev 0, 07/2013

6 Freescale Semiconductor, Inc.

typedef uint32_t addrtype;
typedef struct
{
 unsigned char Reserve ; // reserve bytes for 4 bytes align
 unsigned char Version; /** version */
 uint16_t Sdid; /** Sd Id */
 addrtype BlocksCnt; /** count of flash blocks */
 addrtype FlashStartAddress; /** flash blocks descriptor */
 addrtype FlashEndAddress;
 addrtype RelocatedVectors; /** Relocated interrupts vector
table */
 addrtype InterruptsVectors; /** Interrupts vector table */
 addrtype EraseBlockSize; /** Erase Block Size */
 addrtype WriteBlockSize; /** Write Block Size */
 char IdString[ID_STRING_MAX]; /** Id string */
}FC_IDENT_INFO;

Command acknowledge is shown below.

Command (1 byte) Data

0xC9 Ident information

• Erase command

The received data package of the Erase command (coded as 0x45) is shown in the following table.

Total data length
(4 bytes)

Command (1
byte)

Address (4
bytes)

Number of data
(1 byte)

Data Checksum (1
byte)

10 0x45 Address - - CS

The command acknowledge is given below.

Command (1 byte) Status

0xC5 0xFC/0x03

• Write command

The received data package of the Write command (coded as 0x57), is given below.

Total data length
(4 bytes)

Command (1
byte)

Address (4
bytes)

Number of data
(1 byte)

Data Checksum (1
bytes)

Total length 0x57 Address - - CS

The command acknowledge is shown in the following table.

Command (1 byte) Status

0xD7 0xFC/0x03

• Read command

The received data package of the Read command (coded as 0x52), is given below.

Total data length
(4 bytes)

Command (1
byte)

Address(4
bytes)

Number of data
(1 byte)

Data Checksum (1
byte)

11 0x52 Address Data length
to be read

- CS

Software architecture

IIC Boot Loader Design on the Kinetis E Series, Rev 0, 07/2013

Freescale Semiconductor, Inc. 7

Command acknowledge is given below.

Command (1 byte) Data

0xD2 data

• Quit command

This command does not need any acknowledge.

After receiving this command, it is required to modify flag and jump to the start address of new interrupt vector table.

4 Memory allocation
The boot loader code occupies the first region of the flash memory (the lowest memory address space). See the following
figure. This placement moves the beginning of the available memory space and it is necessary to shift this address in the user
application linker files (ICF file in IAR and in LCF file in CodeWarrior). An example of the ICF linker files modification is
as follows:

Kinetis E KE02Z

An example of modification of ICF file in IAR6.5 is given by the following code snippet.

// default linker file

define symbol __ICFEDIT_region_ROM_start__ = 0x00;

// modified Linker file for KE02Z 64k flash

define symbol __ICFEDIT_region_ROM_start__ = 0x1000;

Memory allocation

IIC Boot Loader Design on the Kinetis E Series, Rev 0, 07/2013

8 Freescale Semiconductor, Inc.

Figure 4. Memory allocation

5 Conclusion
This document introduces a way of implementing IIC boot loader on Kinetis E series MCUs using a bridge board as the
convert board, and the other board as target board (KE02Z-FRDM). The users can also add boot loader by themselves in the
application software.

6 References
The following reference documents are available on freescale.com

• KE02Z64M20SF0RM: KE02 Sub-Family Reference Manual
• AN2295: Developer’s Serial Bootloader for M68HC08 and HCS08 MCUs

7 Glossary
UART Universal Asynchronous Receiver/Transmitter

IIC Inter-Integrated Circuit

FCCOB Flash Common Command OBject

WDOG Watchdog

MCG Multipurpose Clock Generator

Conclusion

IIC Boot Loader Design on the Kinetis E Series, Rev 0, 07/2013

Freescale Semiconductor, Inc. 9

http://www.freescale.com

8 Revision history
Revision number Date Substantial changes

0 07/2013 Initial release

Revision history

IIC Boot Loader Design on the Kinetis E Series, Rev 0, 07/2013

10 Freescale Semiconductor, Inc.

How to Reach Us:

Home Page:
freescale.com

Web Support:
freescale.com/support

Information in this document is provided solely to enable system and
software implementers to use Freescale products. There are no express
or implied copyright licenses granted hereunder to design or fabricate
any integrated circuits based on the information in this document.
Freescale reserves the right to make changes without further notice to
any products herein.

Freescale makes no warranty, representation, or guarantee regarding
the suitability of its products for any particular purpose, nor does
Freescale assume any liability arising out of the application or use of
any product or circuit, and specifically disclaims any and all liability,
including without limitation consequential or incidental damages.
“Typical” parameters that may be provided in Freescale data sheets
and/or specifications can and do vary in different applications, and
actual performance may vary over time. All operating parameters,
including “typicals,” must be validated for each customer application by
customer's technical experts. Freescale does not convey any license
under its patent rights nor the rights of others. Freescale sells products
pursuant to standard terms and conditions of sale, which can be found
at the following address: freescale.com/SalesTermsandConditions.

Freescale, Freescale logo, and Kinetis are trademarks of Freescale
Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. All other product or
service names are the property of their respective owners.

©2013 Freescale Semiconductor, Inc.

Document Number AN4775
Revision 0, 07/2013

http://www.freescale.com
http://www.freescale.com/support
http://freescale.com/SalesTermsandConditions

	Overview
	Introduction
	Software architecture
	Convert board
	Target board
	IIC slave driver
	Command description

	Memory allocation
	Conclusion
	References
	Glossary
	Revision history

