
1 Introduction
This Generic Timer Module (GTM) Inter-Integrated Circuit
(I2C) Bus Emulation application note is intended to provide
details of how to emulate I2C bus Serial Data (SDA) and
Serial Clock (SCK) output signals using the GTM Multi-
Channel Sequencer (MCS) submodule and the ARU
connection Timer Output (ATOM) submodule. The assembly
functions are portable to any product that has a GTM module.
Porting the application code, which configures the chip and
GTM, from one chip to another does require minor changes.
Example code in this application note is based on the
MPC5777M device. This application note should be read in
conjunction with application note AN4351,“MPC57xxM
Generic Timer Module (GTM) Quick Start Guide.”

2 Overview
The I2C bus was designed by Philips (now NXP
Semiconductors®) in the early 1980s to allow easy
communication between components that reside on the same
circuit board. It is now a common communication protocol
used in many embedded applications.

An I2C interface is commonly emulated in software where a
dedicated hardware peripheral is not available. The solution
presented in this application note emulates the interface in the
GTM MCS module with only a small amount of software

Freescale Semiconductor Document Number: AN4789

Application Note Rev 1, 3/2014

Generic Timer Module (GTM) Inter-
Integrated Circuit (I2C) Bus
Emulation
by: Inga Harris

© 2013 Freescale Semiconductor, Inc.

Contents

1 Introduction..1

2 Overview..1

3 Block Diagram..3

4 Chip Level Software Description..............................5

5 MCS Software Description..5

5.1 Set SDA and SCL high..................................8

5.2 Handshake with CPU.....................................8

5.3 Send Start bit...9

5.4 Send repeated Start bit.................................10

5.5 Send message...11

5.6 Acknowledgement from slave.....................14

5.7 Acknowledging data from slave...................15

5.8 Send Stop bit..16

5.9 MCS delay routine.......................................17

A Core Code to Initialize the GTM for I2C................18

B Assembly Code for I2C Example...........................19

running on the chip core, which means that the emulated interface does not consume CPU bandwidth and only consumes one
MCS channel with two ATOM channels.

This example is for a single-master implementation, where the MPC5777M is the single master as the I2C bus does not need
to do arbitration detection. The single-master implementation is often used in chip to external EEPROM memory
configurations. A multi-master system is not implemented because it is more complicated to implement all the bus timing
specifications because start and stop bit detection would be needed, involving the additional of use of a TIM submodule.

The given example transmits a 7-bit address followed by 16 bits of data (divided into 8-bit bytes) with a few control bits for
communication start, end, direction, and acknowledgement as shown in Table 1. The address and data information is stored
in the MCS RAM at compile time for simplicity, but it could also be moved to the RAM through DMA or read by the MCS
through the PSM submodule in a full application environment.

Table 1. Message format

START Slave
address

R/W ACK Data ACK Data ACK STOP

Length 1 bit 7 bits 1 bit 1 bit 8 bits 1 bit 8 bits 1 bit 1 bit

SDA Falling
Edge

ADDR R = High

W = Low

Release /
High

DATA Low DATA Release /
High

Rising
Edge

SCL High Pulse Pulse Pulse Pulse Pulse Pulse Pulse High

The transmission of ADDR and DATA is controlled by the master. The SDA signal can only be changed when the SCL
signal is low. When the master sets the SCL signal high, the slave samples the SDA signal.

The figure below shows an example transmission from the system:

• ADDR = 0x70
• WRITE
• DATA = 0x0114

Overview

Generic Timer Module (GTM) Inter-Integrated Circuit (I2C) Bus Emulation, Rev 1, 3/2014

2 Freescale Semiconductor, Inc.

Figure 1. Example output waveform

NOTE
As this example does not require a slave to be connected to the master, the lack of the
slave driving the SDA line low during the ACK clock is ignored.

3 Block Diagram
The I2C solution given in this application note uses the following GTM104 submodules:

Block Diagram

Generic Timer Module (GTM) Inter-Integrated Circuit (I2C) Bus Emulation, Rev 1, 3/2014

Freescale Semiconductor, Inc. 3

ARU

MCS

ATOM

PSM

CMU

TBU

RAM

SDA

SCL

Figure 2. GTM configuration for I2C

Submodule Purpose Use case

Clock Management Unit (CMU) Generates all of the clocks and counters
for the GTM subsystem.

Controls the system clock speed from
the chip level clocks.

Time Base Unit (TBU) Provides a common timebase that can
be used throughout the GTM subsystem.

TBU_TS0 uses CMU_CLK0 as source
for the GTM global timebase.

Multi Channel Sequencer (MCS) A generic data processing module that is
connected to the ARU. It allows
"programs" to be written to calculate
complex output sequences that depend
on timebase values.

MCS0 software state machine that
calculates the timebase's values and
output states for the ATOM channels.

Advanced Routing Unit (ARU) Provides a mechanism for routing
streams of data between data sources
and transfer it to a destination. This is
the heart of the GTM subsystem.

Complex output waveforms for the SDA
and SCL as instructed by the MCS
through the ARU.

ARU connected Timer Output Module
(ATOM)

Capable of generating complex output
signals through its interconnectivity with
the ARU to other modules in the GTM
subsystem.

ATOM0, channels 4 (SDA) and 5 (SCL)
in SOMC mode reading values from
MCS0.

Figure 2 also shows the Parameter Storage Module (PSM) which could be used to bring in DATA to the MCS from another
peripheral in the MPC5777M device, such as an ADC or sensor. The MCS could also get its data directly from its RAM from
another peripheral through DMA.

Block Diagram

Generic Timer Module (GTM) Inter-Integrated Circuit (I2C) Bus Emulation, Rev 1, 3/2014

4 Freescale Semiconductor, Inc.

4 Chip Level Software Description
The configuration of the chip modes and clocks, and the GTM at a basic initialization is as described in AN4351. The
specific configuration of the GTM submodules (TBU, ATOM, and programming of MCS RAM) is shown in Appendix B.

The MCS array, MCS0_MEM, contains both the data and the software for the I2C bus emulation. Only MCS0 channel 0 is used
for the calculation; however, the channels write to two ARU ports for the SDA and SCL commands to be consumed by two
ATOM channels. To start the I2C bus output after initialization, the MPC5777M core and the MCS do a handshake with the
MCS's trigger mechanism as shown below. The MCS's half of the handshake can be seen in the following section describing
the MCS assembly program operation.

/* Start the MCS Program */
GTM_MCS_0.CH0_CTRL.R = 0x00000001; // Enable Channel 0 of MCS0

/*Check that the ATOM channels are ready, MCS_STRG is set */
while((GTM_MCS_0.STRG.R & 0x2) == 0);

/*Next Trigger for MCS to signal "Port config finished" */
GTM_MCS_0.STRG.R = 0x00000001;

When this handshake is complete, the MCS is running in an infinite loop.

5 MCS Software Description
The MCS's program and data must be written and pre-compiled before loading in to the MCS RAM block.

As described in the "Example 7: Writing, Compiling, and Programming MCS Code" section of the previously mentioned
application note, AN4351, the structure of the assembly code includes some definitions, initialization of start addresses for
each active channel, and initialization of data and stacks, followed by the subroutines themselves.

Figure 3 and Table 2 describe the general functionality of the MCS assembly code.

Chip Level Software Description

Generic Timer Module (GTM) Inter-Integrated Circuit (I2C) Bus Emulation, Rev 1, 3/2014

Freescale Semiconductor, Inc. 5

Figure 3. MCS code flow chart

Table 2. I2C bus emulation code blocks description

Step Operation Description Code example / Section for
further details

1 Start After Reset the MCS channel
program counter is at address 0
and must be moved to the start of
the code.

JMP tsk0_init

2 Init stack pointer Initialize the stack pointer to the
start of the reserved memory
space.

MOVL R7 0x000020

3 Load TBU time stamp Read the current value of the TBU
timestamp in to the MCS register,
R3.

MOV R3 TBU_TS0

4 Set SDA and SCL high Set both ATOM channels high,
which is the I2C bus default state.

Set SDA and SCL high

5 Wait for CPU handshake Handshake with the chip core to
ensure the system is fully
initialized.

Handshake with CPU

6 (start_tx) Load message (index register) Direct the MCS index register, R6,
to the message to be transmitted.

MOVL R6 message_array

7 Initialize loop counter Set the loop counter such that all
the messages in the message
array are sent and then repeated.

MRD R1 tsk0_counter

Table continues on the next page...

MCS Software Description

Generic Timer Module (GTM) Inter-Integrated Circuit (I2C) Bus Emulation, Rev 1, 3/2014

6 Freescale Semiconductor, Inc.

Table 2. I2C bus emulation code blocks description (continued)

Step Operation Description Code example / Section for
further details

8 Send Start Bit Transmit the Start Bit (falling edge)
on ATOM0 CH4 while ATOM0
CH5 is high.

Send Start bit

9 Send ADDR and R/W Send the 8 bit ADDR and R/W
contents of the memory address
pointed by index register.

Send message

10 Wait for ACK Send one clock pulse while the
SDA line is high.

Acknowledgement from slave

11 Send 1st byte of DATA (high) Send the next 8 bits which is the
upper byte of the DATA.

Send message

12 Wait for ACK Send one clock pulse while the
SDA line is high.

Acknowledgement from slave

13 Send 2nd byte of DATA (low) Send the next 8 bits which is the
lower byte of the DATA.

Send message

14 Wait for ACK Send one clock pulse while the
SDA line is high.

Send message

15 Send Stop Bit Transmit the Stop Bit (rising edge)
on ATOM0 CH4 while ATOM0
CH5 is high.

Send Stop bit

16 Delay Routine Pause between data
transmissions.

MCS delay routine

17 Increment index register Move the index register to the next
message to be transmitted.

ADDL R6 0x000004

18 Decrement loop counter Adjust the loop counter for the
completed message.

SUBL R1 0x000001

19 Loop Completed? Test R1 for zero. JBC STA Z next_message

20 End In this example the message array
repeats from the start.

JMP start_tx

The Acknowledging data from slave and Send repeated Start bit routines described in this application note are not used in this
basic example, which does not assume that any slaves or other masters are connected to the I2C bus.

The routines can be configured to use different ARU ports and ATOM channels, to send different ARU commands, and to
point to different message address spaces by altering the definitions at the start of the assembly file. This examples uses the
configuration listed below.

.set ARU_PORT0, 0x0000

.set ARU_PORT1, 0x0001

.set PIN_HI, 0x000009

.set PIN_LO, 0x00000A

.set ATOM0_CH4, 0x0123

.set ATOM0_CH5, 0x0124

.set message_array, 0x70

There are also variables that are set up in the assembly code and referred to through the routine for the number of messages to
be transmitted, the clock rate, and the length of the delay between messages as shown below. The clock is four times the
tsk0_clock because it is used four times for each bit transmitted: three for the SCL clock timing and once for the SDA
transition.

MCS Software Description

Generic Timer Module (GTM) Inter-Integrated Circuit (I2C) Bus Emulation, Rev 1, 3/2014

Freescale Semiconductor, Inc. 7

tsk0_counter: .lit24 68 # number of messages to transmit
tsk0_clock: .lit24 62 # clock rate / 4
tsk0_delay: .lit24 250 # length of delay between messages

The full assembly code in the Hightec™ format is provided in Appendix A. To modify the assembly code for the CASPR-
MCS assembler, refer to AN4351.

5.1 Set SDA and SCL high
The default state of the I2C bus SDA and SCL transmission lines are "pulled up" and undriven. To emulate this pre-driven
state, the ATOM channels must be set to output 1.

Table 3. Set SDA and SCL high

Step Operation Description Parameters Code snippet

1 Configure the ACB for
SCL

Set on match event
(Compare in CCU0 only,
use timebase TBU_TS0).

ACB = 0x09 MOVL ACB PIN_HI

2 Place the data for the
ATOM channel associated
with SDA into the ACBO
register

Move R3 to the ARU port. ARU Read port = 0x0000 AWR R3 R3 ARU_PORT0

3 Read the ATOM channel
to reactivate it after the
match

In SOMC mode the
channel is disabled after
the match event.

ARU Read address =
0x0124

ARD R0 R4 ATOM0_CH5

4 Configure the ACB for
SDA

See step 2. ACB = 0x09 MOVL ACB PIN_HI

5 Place the data for the
ATOM channel associated
with SDA into the ACBO
register

See step 3. ARU Read port = 0x0001 AWR R3 R3 ARU_PORT1

6 Read the ATOM channel
to reactive it after the
match

See step 4. ARU Read address =
0x0123

ARD R0 R4 ATOM0_CH4

5.2 Handshake with CPU
To ensure that both the CPU and the GTM are in the initialized state and ready to start the I2C communication, a handshake
routine can be used. Both the CPU and the GTM MCS have access to the STRG and CTRG registers inside the MCS
memory map.

The description of the assembly routine that runs inside of the GTM is described below in Table 4.

Table 4. Handshake with CPU

Step Operation Description Code Snippet

1 Set the Channel 1 trigger Set the trigger bit to indicate the
routine has started to the CPU

MOVL STRG 0x000002

2 Load R0 with 1 — MOVL R0 0x000001

Table continues on the next page...

MCS Software Description

Generic Timer Module (GTM) Inter-Integrated Circuit (I2C) Bus Emulation, Rev 1, 3/2014

8 Freescale Semiconductor, Inc.

Table 4. Handshake with CPU (continued)

Step Operation Description Code Snippet

3 Wait until bit 0 of the STRG
register is same as R0

Wait until the CPU signals back
that the handshake was seen

WURM R0 STRG 0x0001

4 Load R3 with the current timebase
value

— MOV R3 TBU_TS0

5 Load R0 with 25,000 — MOVL R0 0x0061A8

6 Add R0 and R3 in R0 — ADD R0 R3

7 Wait until TS0 == R0 — WURM R0 TBU_TS0 0xFFFF

8 Clear the triggers — MOVL CTRG 0x000003

The code below is the CPU's side of the handshake code.

/*Check that the ATOM channels are ready, MCS_STRG is set */
while((GTM_MCS_0.STRG.R & 0x2) == 0);

/*Next Trigger for MCS to signal "Port config finished" */
GTM_MCS_0.STRG.R = 0x00000001;

5.3 Send Start bit
Before any message contents can be transmitted on the I2C bus, the start condition needs to be issued on the bus. A start bit is
a high-to-low transmission on the SDA line while the SCL is high.

Table 5. Load message and send start bit

Step Operation Description Parameters Code snippet

1 Load TBU timestamp Read the current value of
the TBU timestamp in to
the MCS register, R3.

n/a MOV R3 TBU_TS0

2 Load R2 with the I2C clock
speed

The I2C baud rate is
controlled using the value
stored at address 0x68.

n/a MRD R2 tsk0_clock

3 Move index register to R5 Load the full message to
be transmitted in to R5

n/a MRDI R5 R6

4 Add R2 and R3 in R2 Set the match value at
0x68 from the current
timestamp.

n/a ADD R3 R2

5 Configure the ACB for
SDA

Clear on match event
(Compare in CCU0 only,
use time base TBU_TS0).

ACB = 0x0A MOVL ACB PIN_LO

6 Place the data for the
ATOM channel associated
with SDA into the ACBO
registerCH4

Move R3 to the ARU port. ARU Read port = 0x0001 AWR R3 R3 ARU_PORT1

7 Read the ATOM channel
to reactivate it after the
match

In SOMC mode the
channel is disabled after
the match event.

ARU Read address =
0x0123

ARD R0 R4 ATOM0_CH4

8 Add R2 and R3 in R2 See step 4. n/a ADD R3 R2

Table continues on the next page...

MCS Software Description

Generic Timer Module (GTM) Inter-Integrated Circuit (I2C) Bus Emulation, Rev 1, 3/2014

Freescale Semiconductor, Inc. 9

Table 5. Load message and send start bit (continued)

Step Operation Description Parameters Code snippet

9 Configure the ACB for
SCL

See step 5. ACB = 0x0A MOVL ACB PIN_LO

10 Place the data for the
ATOM channel associated
with SDA into the ACBO
register

See step 6. ARU Read port = 0x0000 AWR R3 R3 ARU_PORT0

11 Read the ATOM channel
to reactivate it after the
match

See step 7. ARU Read address =
0x0124

ARD R0 R4 ATOM0_CH5

12 Return from subprogram The program counter PC
is loaded with current
value on the top of the
stack.

n/a RET

5.4 Send repeated Start bit
During an I2C transmission there is often the need to send a command and then immediately read back an answer. This has to
be done without the risk of another device interrupting this atomic operation. The I2C protocol defines a repeated start
condition. After having sent the address byte (address and read/write bit), the master may send any number of bytes followed
by a stop condition. Instead of sending the stop condition it is also allowed to send another start condition again, followed by
an address (and of course including a read/write bit) and more data.

Table 6. Send repeated start bit

Step Operation Description Parameters Code snippet

1 Move index register to R5 Load the full message to
be transmitted in to R5

n/a MRDI R5 R6

2 Add R2 and R3 in R2 Set the match value at
0x68 from the current
timestamp.

n/a ADD R3 R2

3 Configure the ACB for
SDA

Set on match event
(Compare in CCU0 only,
use time base TBU_TS0).

ACB = 0x09 MOVL ACB PIN_HI

4 Place the data for the
ATOM channel associated
with SDA into the ACBO
register

Move R3 to the ARU port. ARU Read port = 0x0001 AWR R3 R3 ARU_PORT1

5 Read the ATOM channel
to reactivate it after the
match

In SOMC mode the
channel is disabled after
the match event.

ARU Read address =
0x0123

ARD R0 R4 ATOM0_CH4

6 Add R2 and R3 in R2 See step 2. n/a ADD R3 R2

7 Configure the ACB for
SCL

See step 3. ACB = 0x09 MOVL ACB PIN_HI

8 Place the data for the
ATOM channel associated

See step 4. ARU Read port = 0x0000 AWR R3 R3 ARU_PORT0

Table continues on the next page...

MCS Software Description

Generic Timer Module (GTM) Inter-Integrated Circuit (I2C) Bus Emulation, Rev 1, 3/2014

10 Freescale Semiconductor, Inc.

Table 6. Send repeated start bit (continued)

Step Operation Description Parameters Code snippet

with SDA into the ACBO
register

9 Read the ATOM channel
to reactive it after the
match

See step 5. ARU Read address =
0x0124

ARD R0 R4 ATOM0_CH5

10 Add R2 and R3 in R2 See step 2. n/a ADD R3 R2

11 Configure the ACB for
SDA

See step 3. ACB = 0x0A MOVL ACB PIN_LO

12 Place the data for the
ATOM channel associated
with SDA into the ACBO
register

See step 4. ARU Read port = 0x0001 AWR R3 R3 ARU_PORT1

13 Read the ATOM channel
to reactivate it after the
match

See step 5. ARU Read address =
0x0123

ARD R0 R4 ATOM0_CH4

14 Add R2 and R3 in R2 See step 2. n/a ADD R3 R2

15 Configure the ACB for
SCL

See step 3. ACB = 0x0A MOVL ACB PIN_LO

16 Place the data for the
ATOM channel associated
with SDA into the ACBO
register

See step 4. ARU Read port = 0x0000 AWR R3 R3 ARU_PORT0

17 Read the ATOM channel
to reactivate it after the
match

See step 5. ARU Read address =
0x0124

ARD R0 R4 ATOM0_CH5

18 Return from subroutine The program counter PC
is loaded with current
value on the top of the
stack.

n/a RET

5.5 Send message
The message to be transmitted consists of 3 bytes: 7 bits of address, 1 bit R/W, and 2 bytes of data.

The messages in this example are stored in the MCS RAM in the format 0x00aadddd, where 'aa' is the address and the R/W
bit, and 'dddd' is the 16-bit data. For example, 0x00e00114 is the address 0x70, with the R/W clear (indicating a write), the
high byte data is 0x01, with the low byte data is 0x14 as shown in Figure 1.

As the message is transmitted MSB first, the message in memory must be shifted to get the bits out in the correct order.

The routine is designed to be run multiple times for each message, it preserves and moves the bits around so that each major
and minor loop transmits the correct byte, and bit, in the correct order, using the MCS channel's R0 and R5 registers as
illustrated in Figure 5.

Figure 4 shows the flow of the assembly routine that is executed to calculate the ATOM and timing of the ATOM channels
for each byte. This routine is run once for each byte: ADDR and R/W, high DATA, and low DATA.

MCS Software Description

Generic Timer Module (GTM) Inter-Integrated Circuit (I2C) Bus Emulation, Rev 1, 3/2014

Freescale Semiconductor, Inc. 11

Figure 4. Flow Chart

Table 7. Send byte (minor loop)

Step Operation Description Parameters Code snippet

1 Configure counter for loop Set up a loop counter
of 8 for the full 8-bit
transmission, using R0.

Copy the counter value
to memory address
0x60.

n/a MOVL R0 0x000008

MWR R0 0x0060

2 (loop) Load message to transmit
from R5

R5 was loaded with the
message to be transmitted
before the start bit was
sent. Read it in to R0.

n/a MOV R0 R5

3 Shift left the message in
R5 once

Shift the message left so
that the next shift right
(step 6) accesses the
correct bit each loop
rotation.

n/a SHL R5 0x0001

4 Configure the ACB for
SDA

Clear on match event
(Compare in CCU0 only,
use time base TBU_TS0).

ACB = 0x0A MOVL ACB PIN_LO

5 Move the byte MSB to the
LSB position

Shift right the message in
R0 23 spaces.

n/a SHR R0 0x0017

6 Clear all bits except LSB
bits in R0

Only interested in the LSB,
and if it's zero.

n/a ANDL R0 0x000001

7 If R0 is zero jump to step
10

Test R0 for zero. n/a JBS STA Z tx_low

8 Reconfigure the ACB for
SDA

Set on match event
(Compare in CCU0 only,
use time base TBU_TS0)
because a 1 is to be
transmitted.

ACB = 0x09 MOVL ACB PIN_HI

Table continues on the next page...

MCS Software Description

Generic Timer Module (GTM) Inter-Integrated Circuit (I2C) Bus Emulation, Rev 1, 3/2014

12 Freescale Semiconductor, Inc.

Table 7. Send byte (minor loop) (continued)

Step Operation Description Parameters Code snippet

9 (tx_low) Add R2 and R3 in R2 Set the match value at
0x68 from the current
timestamp.

n/a ADD R3 R2

10 Place the data for the
ATOM channel associated
with SDA into the ACBO
register

Move R3 to the ARU port. ARU Read port = 0x0001 AWR R3 R3 ARU_PORT1

11 Read the ATOM channel
to reactive it after the
match

In SOMC mode the
channel is disabled after
the match event.

ARU Read address =
0x0123

ARD R0 R4 ATOM0_CH4

12 Add R2 and R3 in R2 See step 10. n/a ADD R3 R2

13 Reconfigure the ACB for
SCL

See step 9. ACB = 0x09 MOVL ACB PIN_HI

14 Place the data for the
ATOM channel associated
with SDA into the ACBO
register

See step 11. ARU Read port = 0x0000 AWR R3 R3 ARU_PORT0

15 Read the ATOM channel
to reactive it after the
match

See step 12. ARU Read address =
0x0124

ARD R0 R4 ATOM0_CH5

16 Add R2 and R3 in R2 See step 10. n/a ADD R3 R2

17 Add R2 and R3 in R2 See step 10. n/a ADD R3 R2

18 Reconfigure the ACB for
SCL

See step 9. ACB = 0x0A MOVL ACB PIN_LO

19 Place the data for the
ATOM channel associated
with SDA into the ACBO
register

See step 11. ARU Read port = 0x0000 AWR R3 R3 ARU_PORT0

20 Read the ATOM channel
to reactivate it after the
match

See step 12. ARU Read address =
0x0124

ARD R0 R4 ATOM0_CH5

21 Read and decrement the
counter value.

Then save it back.

Move the counter value
from the RAM storage
area to R0.

Subtract 1 from the
loop counter.

Copy the counter value
to memory address
0x60.

n/a MRD R0 0x0060

SUBL R0 0x000001

MWR R0 0x0060

22 Test loop count Jump back to step 3 is not
complete.

n/a JBC STA Z loop

23 Return from subprogram. The program counter PC
is loaded with current
value on the top of the
stack.

n/a RET

MCS Software Description

Generic Timer Module (GTM) Inter-Integrated Circuit (I2C) Bus Emulation, Rev 1, 3/2014

Freescale Semiconductor, Inc. 13

Figure 5. Message manipulation

5.6 Acknowledgement from slave
An I2C bus master releases the SDA line (high) and provides a pulse on the clock line straight after transmitting the last bit of
the byte to allow a slave to acknowledge (pull low) the SDA line.

Table 8. Release Bus for ACK from slave

Step Operation Description Parameters Code snippet

1 Add R2 and R3 in R2 Set the match value at
0x68 from the current
timestamp.

n/a ADD R3 R2

2 Configure the ACB for
SDA

Set on match event
(Compare in CCU0 only,
use time base TBU_TS0).

ACB = 0x09 MOVL ACB PIN_HI

3 Place the data for the
ATOM channel associated
with SDA into the ACBO
register

Move R3 to the ARU port. ARU Read port = 0x0001 AWR R3 R3 ARU_PORT1

4 Read the ATOM channel
to reactivate it after the
match

In SOMC mode the
channel is disabled after
the match event.

ARU Read address =
0x0123

ARD R0 R4 ATOM0_CH4

5 Add R2 and R3 in R2 See step 1. n/a ADD R3 R2

6 Configure the ACB for
SCL

See step 2. ACB = 0x09 MOVL ACB PIN_HI

7 Place the data for the
ATOM channel associated
with SDA into the ACBO
register

See step 3. ARU Read port = 0x0000 AWR R3 R3 ARU_PORT0

Table continues on the next page...

MCS Software Description

Generic Timer Module (GTM) Inter-Integrated Circuit (I2C) Bus Emulation, Rev 1, 3/2014

14 Freescale Semiconductor, Inc.

Table 8. Release Bus for ACK from slave (continued)

Step Operation Description Parameters Code snippet

8 Read the ATOM channel
to reactivate it after the
match

See step 4. ARU Read address =
0x0124

ARD R0 R4 ATOM0_CH5

9 Add R2 and R3 in R2
(twice)

See step 1. n/a ADD R3 R2

ADD R3 R2

10 Configure the ACB for
SCL

See step 2. ACB = 0x0A MOVL ACB PIN_LO

11 Place the data for the
ATOM channel associated
with SDA into the ACBO
register

See step 3. ARU Read port = 0x0000 AWR R3 R3 ARU_PORT0

12 Read the ATOM channel
to reactivate it after the
match

See step 4. ARU Read address =
0x0124

ARD R0 R4 ATOM0_CH5

13 Return from subprogram. The program counter PC
is loaded with current
value on the top of the
stack.

n/a RET

5.7 Acknowledging data from slave
An I2C slave releases the SDA line (high) while the master provides a pulse on the clock line after transmitting (slave)/
receiving (master) the last bit of the byte.

Step 2 is the only step that is different from the routine described in Acknowledgement from slave.

Table 9. Send ACK

Step Operation Description Parameters Code snippet

1 Add R2 and R3 in R2 Set the match value at
0x68 from the current
timestamp.

n/a ADD R3 R2

2 Configure the ACB for
SDA

Clear on match event
(Compare in CCU0 only,
use time base TBU_TS0).

ACB = 0x0A MOVL ACB PIN_LO

3 Place the data for the
ATOM channel associated
with SDA into the ACBO
register

Move R3 to the ARU port. ARU Read port = 0x0001 AWR R3 R3 ARU_PORT1

4 Read the ATOM channel
to reactivate it after the
match

In SOMC mode the
channel is disabled after
the match event.

ARU Read address =
0x0123

ARD R0 R4 ATOM0_CH4

5 Add R2 and R3 in R2 See step 1. n/a ADD R3 R2

6 Configure the ACB for
SCL

See step 2. ACB = 0x09 MOVL ACB PIN_HI

Table continues on the next page...

MCS Software Description

Generic Timer Module (GTM) Inter-Integrated Circuit (I2C) Bus Emulation, Rev 1, 3/2014

Freescale Semiconductor, Inc. 15

Table 9. Send ACK (continued)

Step Operation Description Parameters Code snippet

7 Place the data for the
ATOM channel associated
with SDA into the ACBO
register

See step 3. ARU Read port = 0x0000 AWR R3 R3 ARU_PORT0

8 Read the ATOM channel
to reactivate it after the
match

See step 4. ARU Read address =
0x0124

ARD R0 R4 ATOM0_CH5

9 Add R2 and R3 in R2
(twice)

See step 1. n/a ADD R3 R2

ADD R3 R2

10 Configure the ACB for
SCL

See step 2. ACB = 0x0A MOVL ACB PIN_LO

11 Place the data for the
ATOM channel associated
with SDA into the ACBO
register

See step 3. ARU Read port = 0x0000 AWR R3 R3 ARU_PORT0

12 Read the ATOM channel
to reactivate it after the
match

See step 4. ARU Read address =
0x0124

ARD R0 R4 ATOM0_CH5

13 Return from subprogram. The program counter PC
is loaded with current
value on the top of the
stack.

n/a RET

5.8 Send Stop bit
To completed transmission of the message, the stop condition needs to be issued on the bus. A stop bit is a low-to-high
transmission on the SDA line while the SCL is high.

Table 10. Send stop bit

Step Operation Description Parameters Code snippet

1 Add R2 and R3 in R2 Set the match value at
0x68 from the current
timestamp.

n/a ADD R3 R2

2 Configure the ACB for
SDA

Clear on match event
(Compare in CCU0 only,
use time base TBU_TS0).

ACB = 0x0A MOVL ACB PIN_LO

3 Place the data for the
ATOM channel associated
with SDA into the ACBO
register

Move R3 to the ARU port. ARU Read port = 0x0001 AWR R3 R3 ARU_PORT1

4 Read the ATOM channel
to reactivate it after the
match

In SOMC mode the
channel is disabled after
the match event.

ARU Read address =
0x0123

ARD R0 R4 ATOM0_CH4

5 Add R2 and R3 in R2 See step 1. n/a ADD R3 R2

Table continues on the next page...

MCS Software Description

Generic Timer Module (GTM) Inter-Integrated Circuit (I2C) Bus Emulation, Rev 1, 3/2014

16 Freescale Semiconductor, Inc.

Table 10. Send stop bit (continued)

Step Operation Description Parameters Code snippet

6 Configure the ACB for
SCL

See step 2. ACB = 0x09 MOVL ACB PIN_HI

7 Place the data for the
ATOM channel associated
with SDA into the ACBO
register

See step 3. ARU Read port = 0x0000 AWR R3 R3 ARU_PORT0

8 Read the ATOM channel
to reactivate it after the
match

See step 4. ARU Read address =
0x0124

ARD R0 R4 ATOM0_CH5

9 Add R2 and R3 in R2 See step 1. n/a ADD R3 R2

10 Configure the ACB for
SDA

See step 2. ACB = 0x09 MOVL ACB PIN_HI

11 Place the data for the
ATOM channel associated
with SDA into the ACBO
register

See step 3. ARU Read port = 0x0001 AWR R3 R3 ARU_PORT1

12 Read the ATOM channel
to reactivate it after the
match

See step 4. ARU Read address =
0x0123

ARD R0 R4 ATOM0_CH4

13 Return from subprogram. The program counter PC
is loaded with current
value on the top of the
stack.

n/a RET

5.9 MCS delay routine
A delay routine is a useful code snippet to have for any software development. In this example, a delay is used to create a
time space between messages.

The MCS has direct access to the TBU timestamp counter and also has a "wait until register match" instruction, WURM,
which can be used to hold the MCS program counter for a predetermined amount of time or to wait until a trigger event from
another channel occurs. WURM suspends the MCS channel until the two registers (with a bit mask) match.

WURM A B C

Wait until A = (B & C)

A commonly used delay routine often involves a variable "duration" that is decremented in a loop, until it is zero. Within that
loop, a known finite time can be included by using a wait operation.

In the example given in this application note, the "duration" variable is stored in the MCS RAM with other data such as the
clock frequency and message loop counter at address 0x6C (0xFA = 250 in this particular case).

The timebase value is read and the match value is set at 2,500 clocks after "now." If the GTM TBU is running from an
80 MHz clock, the delay is 31.25 µs around each loop, 7.8125 ms in total.

delay:
 MOV R3 TBU_TS0 # Load timestamp to R3
 MRD R4 0x006C # Load loop counter to R4
 ATUL R4 0x000000 # Is R4 Zero?
 JBS STA Z exit # If R4 is Zero jump to exit
 MOVL R0 0x0009C4 # Load R0 with 2,500

MCS Software Description

Generic Timer Module (GTM) Inter-Integrated Circuit (I2C) Bus Emulation, Rev 1, 3/2014

Freescale Semiconductor, Inc. 17

 continue: ADD R3 R0 # Add R0 to the Timebase saved in R3
 WURM R3 TBU_TS0 0xFFFF # Wait until the timebase matches R3
 SUBL R4 0x000001 # Decrement the loop counter in R4
 JBC STA Z continue # If not zero continue
 exit: RET # Exit subroutine

Appendix A Core Code to Initialize the GTM for I2C
The C code below configures the TBU, the ATOM channels, and then loads the MCS software and message array into MCS
RAM memory and the handshake with the MCS itself.

The MCS software is compiled in to a binary file and loaded into the MCS RAM as described in AN4351. The MCS message
array is given as an array of integers and copied into RAM at the specified location so that it is easier to manipulate without
the need to reassemble the MCS software each time.

unsigned int * dest, src;
extern int __MCS0_ADDR; /* Label of location of the raw data set in the linker */

void memcpy_swap_word(unsigned int *, unsigned int *, signed int);
void I2C()
{
int i;
gtm_ptr p;

// Configure TBU
GTM_TBU.CH0_CTRL.R = 0x00000000;// Select CMU_CLK0
GTM_TBU.CHEN.R = 0x00000002;// Switch on TBU0

/**
*ATOM0 CH5 = SCL
*ATOM0 CH4 = SDA
**/

/* Program MCS. First check whether the RAM RESET is complete.
WAIT until RAM_RST == 0, wait RAM Reset after startup. */
while(GTM_MCS_0.CTRL.R == 0x00010000);

GTM_ATOM_0.CH5_RDADDR.R = MCS0_WRADDR0;// used for reading
GTM_ATOM_0.CH4_RDADDR.R = MCS0_WRADDR1; // used for reading
GTM_ATOM_0.CH5_CTRL.R = 0x00000009;// SOMC, ARU_EN=1, SL=0
GTM_ATOM_0.CH4_CTRL.R = 0x00000009;// SOMC, ARU_EN=1, SL=0

/*ATOM0_CH4 + CH5 switch on*/
GTM_ATOM_0.AGC_OUTEN_CTRL.R = 0x00000A00;
GTM_ATOM_0.AGC_ENDIS_CTRL.R = 0x00000A00;

GTM_ATOM_0.AGC_FUPD_CTRL.R = 0x00000000;
GTM_ATOM_0.AGC_INT_TRIG.R = 0x00000000;

GTM_ATOM_0.AGC_GLB_CTRL.R = 0xAAAA0001;// Host Trigger to start ATOM

// load raw bin data in to MCS0 RAM = 0xFFD38000
dest = (int)&MCS0_MEM; /* CPU view of the address of the MCS memory space */
src = (int)&__MCS0_ADDR; /* Label of location of the raw data set in the linker */
memcpy_swap_word(dest, src, 270);

p = &MCS0_MEM + 0x1C;
for(i=0;i<=67;i++)
{
/* Copying the content of the array mcs0i2c_messages[i] into MCS0 RAM0 */
p[i]=mcs0i2c_messages[i];
}

/* Start the MCS Program */
GTM_MCS_0.CH0_CTRL.r = 0x00000001;// Enable Channel 0 of MCS module 0

/*Check if the Channel program is ready and MCS_STRG is set, then start configure the Ports.

MCS Software Description

Generic Timer Module (GTM) Inter-Integrated Circuit (I2C) Bus Emulation, Rev 1, 3/2014

18 Freescale Semiconductor, Inc.

WAIT until STRG == 0x00000002
MCS --> ATOM Output finished when STRG == h#00000002 */
while((GTM_MCS_0.STRG.R & 0x2) == 0); // STRG != 2

/*Next Trigger for MCS to signalize "Port config finished" */
GTM_MCS_0.STRG.R = 0x00000001;// Port configuration finished, MCS running
/*Now the MCS is running in a infinite loop. */

}/*END of function I2C()*/

void memcpy_swap_word(unsigned int * dst, unsigned int * src, signed int size)
{
while (size-- > 0)
{
*dst++ = SWAPW(*src);
src++;
}
}

Below is the I2C message array used in this example.

int mcs0i2c_messages[68] = {0x00e00101, 0x00e00102, 0x00e00104, 0x00e00108, 0x00e00110,
0x00e00120, 0x00e00140, 0x00e00180, 0x00e00101, 0x00e00102, 0x00e00104, 0x00e00108,
0x00e00110, 0x00e00120, 0x00e00140, 0x00e00180, 0x00e00101, 0x00e00102, 0x00e00104,
0x00e00108, 0x00e00110, 0x00e00120, 0x00e00140, 0x00e00180, 0x00e00155, 0x00e001aa,
0x00e00155, 0x00e001aa, 0x00e00155, 0x00e001aa, 0x00e00100, 0x00e001ff, 0x00e00100,
0x00e001ff, 0x00e00100, 0x00e001ff, 0x00e00180, 0x00e00141, 0x00e00122, 0x00e00114,
0x00e00108, 0x00e00114, 0x00e00122, 0x00e00141, 0x00e00180, 0x00e00141,
0x00e00122, 0x00e00114, 0x00e00108, 0x00e00114, 0x00e00122, 0x00e00141, 0x00e00180,
0x00e00141, 0x00e00122, 0x00e00114, 0x00e00108, 0x00e00114, 0x00e00122, 0x00e00141,
0x00e00180, 0x00e00141, 0x00e00122, 0x00e00114, 0x00e00108, 0x00e00114, 0x00e00122,
0x00e00141};

The Hightec assembler generates the binary in the little endian, whereas the MPC57xx is big endian. The endianness can be
swapped using the following macro.

#define SWAPW(w) \
(((w & 0xff) << 24) | ((w & 0xff00) << 8) \
| ((w & 0xff0000) >> 8) | ((w & 0xff000000) >> 24)) /* change endianness */

Appendix B Assembly Code for I2C Example

#==
Project Name : AN4789
Company : Freescale
Author : Inga Harris
#==
.section .mcs.text,"axw",@progbits
.include "mcs.inc"
.set memid, 0
.set memsize, 0x1800

Define the values of the symbols used
.set ARU_PORT0, 0x0000 # MCS ARU port number 0
.set ARU_PORT1, 0x0001 # MCS ARU port number 0
.set PIN_HI, 0x000009 # ACB = 0x09 set high when compare in CCU0 with TBU_TS0
.set PIN_LO, 0x00000A # ACB = 0x0A clear high when compare in CCU0 with TBU_TS0
.set ATOM0_CH4, 0x0123 # ATOM0_CH4 ARU write address
.set ATOM0_CH5, 0x0124 # ATOM0_CH5 ARU write address
.set message_array, 0x70 # offset address of the I2C messages

initialize reset vectors of different tasks

.org 0x0
jmp tsk0_init

Generic Timer Module (GTM) Inter-Integrated Circuit (I2C) Bus Emulation, Rev 1, 3/2014

Freescale Semiconductor, Inc. 19

allocate stack frames (each task has 16 memory locations)

.org 0x20
tsk0_stack:.lit24 0

allocate and initialize memory variables
--
.org 0x64
tsk0_counter: .lit24 68 # number of messages to transmit
tsk0_clock: .lit24 62 # clock rate / 4
tsk0_delay: .lit24 250 # length of delay between messages

#**
tsk0: I2C master
#**
.org 0x180
tsk0_init:
movl R7, 0x000020 # Init stack pointer
mov R3, TBU_TS0 # Load timestamp
movl ACB, PIN_HI # Set ACB value
awr R3, R3, ARU_PORT0 # Send timestamp and ACB to ARU
ard R0, R4, ATOM0_CH5 # Read ATOM channel
movl ACB, PIN_HI # Set ACB value
awr R3, R3, ARU_PORT1 # Send timestamp and ACB to ARU
ard R0, R4, ATOM0_CH4 # Read ATOM channel
movl STRG, 0x000002 # Set channel 1 trigger
movl R0, 0x000001 # Load R0 with 1
wurm R0, STRG, 0x0001 # Wait until channel 0 trigger is set by core
mov R3, TBU_TS0 # reload the current timestamp
movl R0, 0x0061A8 # Set R0 to 25,000
add R0, R3 # Add R0 and R3
wurm R0, TBU_TS0, 0xFFFF # Wait until the timstamp reaches that value
movl CTRG, 0x000003 # Clear the triggers
start_tx: movl R6, message_array # Initialize index register
mrd R1, tsk0_counter # Initialise loop counter
next_message: call start_bit # Send Start Bit
call byte_tx # Send ADDR and R/W
call wait_for_ack # Release SDA for ACK
call byte_tx # Send DATA high byte
call wait_for_ack # Release SDA for ACK
call byte_tx # Send DATA low byte
call wait_for_ack # Release SDA for ACK
call stop_bit # Send Stop Bit
call delay # Wait tsk0_delay * 2,500 clocks
addl R6, 0x000004 # Increment index register
subl R1, 0x000001 # Deccrement loop counter
jbc STA, Z, next_message # Is the loop counter zero? No = next_message
jmp start_tx # Loop ended. Start from beginning

#**
start_bit
#**
start_bit:
mov R3, TBU_TS0 # Load timestamp
mrd R2, tsk0_clock # Load clock rate
mrdi R5, R6 # Read index register
add R3, R2 # Add clock rate to timestamp
movl ACB, PIN_LO # Set ACB value
awr R3, R3, ARU_PORT1 # Send timestamp and ACB to ARU
ard R0, R4, ATOM0_CH4 # Read ATOM channel
add R3, R2 # Add clock rate to timestamp
movl ACB, PIN_LO # Set ACB value
awr R3, R3, ARU_PORT0 # Send timestamp and ACB to ARU
ard R0, R4, ATOM0_CH5 # Read ATOM channel
ret # Return from subroutine

#**

Generic Timer Module (GTM) Inter-Integrated Circuit (I2C) Bus Emulation, Rev 1, 3/2014

20 Freescale Semiconductor, Inc.

repeated_start
#**
repeated_start:
mrdi R5, R6
add R3, R2 # Add clock rate to timestamp
movl ACB, PIN_HI # Set ACB value
awr R3, R3, ARU_PORT1 # Send timestamp and ACB to ARU
ard R0, R4, ATOM0_CH4 # Read ATOM channel
add R3, R2 # Add clock rate to timestamp
movl ACB, PIN_HI # Set ACB value
awr R3, R3, ARU_PORT0 # Send timestamp and ACB to ARU
ard R0, R4, ATOM0_CH5 # Read ATOM channel
add R3, R2 # Add clock rate to timestamp
movl ACB, PIN_LO # Set ACB value
awr R3, R3, ARU_PORT1 # Send timestamp and ACB to ARU
ard R0, R4, ATOM0_CH4 # Read ATOM channel
add R3, R2 # Add clock rate to timestamp
movl ACB, PIN_LO # Set ACB value
awr R3, R3, ARU_PORT0 # Send timestamp and ACB to ARU
ard R0, R4, ATOM0_CH5 # Read ATOM channel
ret # Return from subroutine

#**
byte_tx
#**
byte_tx:
movl R0, 0x000008 # Set loop counter for 8 bits
mwr R0, 0x0060 # Copy back to address 0x60
loop: mov R0, R5 # Load message frpm R5 to R0
shl R5, 0x0001 # Shift message left once in R5
movl ACB, PIN_LO # Set ACB value
shr R0, 0x0017 # Shift R0 right 23 times
andl R0, 0x000001 # Clear all bit LSB
jbs STA, Z, tx_low # If result is zero jump next instruction
movl ACB, PIN_HI # Set ACB value
tx_low: add R3, R2 # Add clock rate to timestamp
awr R3, R3, ARU_PORT1 # Send timestamp and ACB to ARU
ard R0, R4, ATOM0_CH4 # Read ATOM channel
add R3, R2 # Add clock rate to timestamp
movl ACB, PIN_HI # Set ACB value
awr R3, R3, ARU_PORT0 # Send timestamp and ACB to ARU
ard R0, R4, ATOM0_CH5 # Read ATOM channel
add R3, R2 # Add clock rate to timestamp
add R3, R2 # Add clock rate to timestamp
movl ACB, PIN_LO # Set ACB value
awr R3, R3, ARU_PORT0 # Send timestamp and ACB to ARU
ard R0, R4, ATOM0_CH5 # Read ATOM channel
mrd R0, 0x0060 # Move bit counter to R0
subl R0, 0x000001 # Decrement bit counter
mwr R0, 0x0060 # Save back to R0
jbc STA, Z, loop # If bit counter is zero jump back to loop
ret # Return from subroutine

#**
send_ack
#**
send_ack:
add R3, R2 # Add clock rate to timestamp
movl ACB, PIN_LO # Set ACB value
awr R3, R3, ARU_PORT1 # Send timestamp and ACB to ARU
ard R0, R4, ATOM0_CH4 # Read ATOM channel
add R3, R2 # Add clock rate to timestamp
movl ACB, PIN_HI # Set ACB value
awr R3, R3, ARU_PORT0 # Send timestamp and ACB to ARU
ard R0, R4, ATOM0_CH5 # Read ATOM channel
add R3, R2 # Add clock rate to timestamp
add R3, R2 # Add clock rate to timestamp
movl ACB, PIN_LO # Set ACB value
awr R3, R3, ARU_PORT0 # Send timestamp and ACB to ARU
ard R0, R4, ATOM0_CH5 # Read ATOM channel

Generic Timer Module (GTM) Inter-Integrated Circuit (I2C) Bus Emulation, Rev 1, 3/2014

Freescale Semiconductor, Inc. 21

ret # Return from subroutine

#**
wait_for_ack
#**
wait_for_ack:
add R3, R2 # Add clock rate to timestamp
movl ACB, PIN_HI # Set ACB value
awr R3, R3, ARU_PORT1 # Send timestamp and ACB to ARU
ard R0, R4, ATOM0_CH4 # Read ATOM channel
add R3, R2 # Add clock rate to timestamp
movl ACB, PIN_HI # Set ACB value
awr R3, R3, ARU_PORT0 # Send timestamp and ACB to ARU
ard R0, R4, ATOM0_CH5 # Read ATOM channel
add R3, R2 # Add clock rate to timestamp
add R3, R2 # Add clock rate to timestamp
movl ACB, PIN_LO # Set ACB value
awr R3, R3, ARU_PORT0 # Send timestamp and ACB to ARU
ard R0, R4, ATOM0_CH5 # Read ATOM channel
ret # Return from subroutine

#**
stop_bit
#**
stop_bit:
add R3, R2 # Add clock rate to timestamp
movl ACB, PIN_LO # Set ACB value
awr R3, R3, ARU_PORT1 # Send timestamp and ACB to ARU
ard R0, R4, ATOM0_CH4 # Read ATOM channel
add R3, R2 # Add clock rate to timestamp
movl ACB, PIN_HI # Set ACB value
awr R3, R3, ARU_PORT0 # Send timestamp and ACB to ARU
ard R0, R4, ATOM0_CH5 # Read ATOM channel
add R3, R2 # Add clock rate to timestamp
movl ACB, PIN_HI # Set ACB value
awr R3, R3, ARU_PORT1 # Send timestamp and ACB to ARU
ard R0, R4, ATOM0_CH4 # Read ATOM channel
ret # Return from subroutine

#**
delay
#**
delay:
mov R3, TBU_TS0 # Load timestamp
mrd R4, tsk0_delay # Load loop counter
atul R4, 0x000000 # Is it zero?
jbs STA, Z, exit # If zero exit subroutine
movl R0, 0x0009c4 # Load R0 with 2,500
continue: add R3, R0 # Add 2,500 to timestamp
wurm R3, TBU_TS0, 0xFFFF # Wait until timebase matches R3
subl R4, 0x000001 # Decrement loop counter
jbc STA, Z, continue # If not zero jump to continue
exit: ret # return from subroutine

Generic Timer Module (GTM) Inter-Integrated Circuit (I2C) Bus Emulation, Rev 1, 3/2014

22 Freescale Semiconductor, Inc.

How to Reach Us:

Home Page:
freescale.com

Web Support:
freescale.com/support

Information in this document is provided solely to enable system and
software implementers to use Freescale products. There are no express
or implied copyright licenses granted hereunder to design or fabricate
any integrated circuits based on the information in this document.
Freescale reserves the right to make changes without further notice to
any products herein.

Freescale makes no warranty, representation, or guarantee regarding
the suitability of its products for any particular purpose, nor does
Freescale assume any liability arising out of the application or use of
any product or circuit, and specifically disclaims any and all liability,
including without limitation consequential or incidental damages.
“Typical” parameters that may be provided in Freescale data sheets
and/or specifications can and do vary in different applications, and
actual performance may vary over time. All operating parameters,
including “typicals,” must be validated for each customer application by
customer's technical experts. Freescale does not convey any license
under its patent rights nor the rights of others. Freescale sells products
pursuant to standard terms and conditions of sale, which can be found
at the following address: freescale.com/SalesTermsandConditions.

Freescale, the Freescale logo, and Qorivva are trademarks of Freescale
Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. All other product or
service names are the property of their respective owners. The Power
Architecture and Power.org word marks and the Power and Power.org
logos and related marks are trademarks and service marks licensed by
Power.org.

© 2014 Freescale Semiconductor, Inc.

Document Number AN4789
Revision 1, 3/2014

http://www.freescale.com
http://www.freescale.com/support
http://freescale.com/SalesTermsandConditions

	Introduction
	Overview
	Block Diagram
	Chip Level Software Description
	MCS Software Description
	Set SDA and SCL high
	Handshake with CPU
	Send Start bit
	Send repeated Start bit
	Send message
	Acknowledgement from slave
	Acknowledging data from slave
	Send Stop bit
	MCS delay routine

	Appendix A: Core Code to Initialize the GTM for I2C
	Appendix B: Assembly Code for I2C Example

