

Freescale Semiconductor Document Number: AN4813
Application Note Rev 0, 10/2013

© 2013 Freescale Semiconductor, Inc.

Encoder Position and Speed Sensing
Utilizing the Quad Timer on the
MC56F827xx DSCs
by: Libor Prokop

1 Introduction
Incremental encoders are used by various motor
control applications for rotor position and speed
sensing; so the decoding of incremental encoder
signals is an essential task for the controller
devices. The Freescale Digital Signal
Controllers (DSC), dedicated to motor control
are equipped with Quad Timer TMR module(s).
This timer supports incremental encoder signal
decoding.

This application note explains and shows how to
set and use the Quad Timer TMR module for
position and speed sensing to get a high
resolution over a wide speed range.

The MC56F827xx family is a new Freescale
DSC dedicated to motor control. This
application note focuses on the encoder
implementation on MC56F827xx Freescale
DSC. However the solution, with more or less
changes, can be used on any Freescale device
with a Quad Timer TMR module.

Contents
1 Introduction ..1

2 Digital signal controllers2

3 Quad timers and encoder signal detection
system ...2

4 Position detection using encoder3

5 Speed measurement ..6

5.1 Capturing the time of the secondary input
signal edges ..7

5.2 Quad Timer and periodical interrupt
generation ...9

5.3 Quad Timer and rotor speed measurement
 11

6 Application example15

7 Application example code16

8 Definitions and acronyms21

9 Revision history ..22

 Encoder Position and Speed Sensing Utilizing the Quad Timer on the MC56F827xx, Rev 0, 10/2013
2 Freescale Semiconductor, Inc.

2 Digital signal controllers
One suitable DSC for a motor control application is MC56F827xx. The implementation of the
quadrature encoder can benefit from the following processor features:

• Core and peripheral clock 50 MHz (Core clock can be set to 100 MHz in the Fast mode)
• Quad Timer TMR with four 16-bit counter/timer groups
• Input signal multiplexing (SIM_GPS registers)
• Two crossbar units to interconnect signals between the peripherals

3 Quad timers and encoder signal detection system
The quadrature encoder Phase A and Phase B signals are depicted in Figure 1. The task of the motor
control applications is to get the position and speed from these signals. The encoder signal detection
described in this application note utilizes two sub-modules of the Quad Timer module.

The block diagram of position and speed detection of the quadrature encoder signals using the Quad
Timer is shown in Figure 1.

Because of the flexibility of the Quad Timer module, any of the four timer sub-modules can be used for
rotor position detection from the quadrature encoder signals. Likewise, any of the sub-modules can be
used for any timer input edge time capturing. Each of the Quad Timer sub-modules has one primary
input and one secondary input. The inputs can be multiplexed using the GPIO Peripheral Select register
(GPS) of the SIM module (SIM_GPS) and the Crossbar module XBARA. However in the final example,
the sub-modules TMR 0 and TMR 1 are chosen.

 Encoder Position and Speed Sensing Utilizing the Quad Timer on the MC56F827xx, Rev 0, 10/2013
Freescale Semiconductor, Inc.

 3

Figure 1. Quad Timer and encoder signal detection system

4 Position detection using encoder
The most important task when utilizing an encoder is to detect the relative rotor position from the
quadrature signals.
Because of the flexibility of the Quad Timer module, any of the four timer sub-modules can be used for
rotor position detection.

 Encoder Position and Speed Sensing Utilizing the Quad Timer on the MC56F827xx, Rev 0, 10/2013
4 Freescale Semiconductor, Inc.

Now, mark the Timer m sub-module (where m can be 0, 1, 2 or 3) for position detection as shown in this
figure.

Figure 2. Position up counting using TMR m submodule

The encoder signals can be simply detected using the Quadrature count mode of the Quad Timer
module. This mode uses primary and secondary sources connected to encoder Phase A and Phase B
signals respectively. The Quadrature count mode is set in Timer Channel Control register
(TMR_m_CTRL), with the following fields of this register:

Register fields Value Description

TMR_m_CTRL[CM] 100 Determines the Quadrature
count mode.
The Timer Channel Counter
register (TMR_m_CNTR) is
updated according to the
primary and secondary input
quadrature encoder signals.

TMR_m_CTRL[PCS] 0000 The primary timer source is
timer input 0 (encoder Phase A).

TMR_m_CTRL[SCS] 01 The secondary timer source is
timer input 1 (encoder Phase B).

 Encoder Position and Speed Sensing Utilizing the Quad Timer on the MC56F827xx, Rev 0, 10/2013
Freescale Semiconductor, Inc.

 5

TMR_m_CTRL[LENGTH] 1 Determines that the counter
TMR_m_CNTR will be
reloaded at Timer Channel
Compare Register 1
(TMR_m_COMP1).

The syntax is as follows:
TMR_m_CTRL = TMR_m_CTRL_CM_2|TMR_m_CTRL_SCS_0|TMR_m_CTRL_LENGTH;

Set TMR_m_COMP1 = (Number of the encoder edges per one revolution - 1), as shown in this code
line.
TMR_m_COMP1 = (ENC_NU_EDGES_REV-1);

In this way the counter counts from 0 up to one encoder revolution (TMR_m_COMP1) and then is reset
to 0, defined by the initialization of Timer Channel Load register (TMR_m_LOAD) as per this code
line:
TMR_m_LOAD = 0;

The functionality is displayed in Figure 2.

In the case of a counter rotation, the encoder pulses are processed in the Quadrature count mode as a
down counting TMR_m_CNTR. Here, set TMR_m_COMP1 = (a negative number of encoder edges per
one revolution + 1), using this code line.

TMR_m_COMP2 = -(ENC_NU_EDGES_REV-1);

This functionality can be seen in Figure 3.

Figure 3. Position down counting using the TMR m sub-module

For the speed measurement, also capture the position of the TMR_m_CNTR to the TMR_m_CAPT
register. This requires the following initialization:

 Encoder Position and Speed Sensing Utilizing the Quad Timer on the MC56F827xx, Rev 0, 10/2013
6 Freescale Semiconductor, Inc.

• TMR_m_SCTRL[CAPTURE_MODE] = 11 = Load capture register on both edges of the
secondary input

This code is used to initialize the capture setting:

TMR_m_SCTRL = TMR_m_SCTRL_CAPTURE_MODE_1|TMR_m_SCTRL_CAPTURE_MODE_0;

With this setting, the position will be captured to TMR_1_CAPT at both edges of the encoder Phase B
signal.

The required mechanical rotor position is usually scaled to the fractional number. So the system range is
<–1 to 1) which represents the physical range of <–180 to 180) degrees.

 Fractional number thetaKMechanical, which is scaled;

𝑡ℎ𝑒𝑡𝑎𝐾𝑀𝑒𝑐ℎ𝑎𝑛𝑖𝑐𝑎𝑙 = 𝑇𝑀𝑅_𝑚_𝐶𝑁𝑇𝑅 ∗ 𝑡ℎ𝑒𝑡𝑎𝑆𝑐𝑎𝑙𝑒 << 𝑡ℎ𝑒𝑡𝑎𝑆𝑐𝑎𝑙𝑒𝑆ℎ𝑖𝑓𝑡

which is equivalent to:
𝑡ℎ𝑒𝑡𝑎𝐾𝑀𝑒𝑐ℎ𝑎𝑛𝑖𝑐𝑎𝑙 = 𝑇𝑀𝑅_𝑚_𝐶𝑁𝑇𝑅 ∗ 𝑡ℎ𝑒𝑡𝑎𝑆𝑐𝑎𝑙𝑒 ∗ 2^𝑡ℎ𝑒𝑡𝑎𝑆𝑐𝑎𝑙𝑒𝑆ℎ𝑖𝑓𝑡

where:

thetaKMechanical Mechanical angle variable scaled as a fractional
number

* Fractional multiplication

<< Determines the number of left shifts

thetaScaleShift Shift scale coefficient

In this simple way, using the Timer_0 submodule in Quadrature Count mode, and with fractional
multiplication and shifts, the rotor position thetaKMechanical in the fractional scale can be obtained.

5 Speed measurement
To measure the rotor speed, the position difference during the time difference must be known.

A simple way for a high rotor speed is to count the position difference using the position counter
described in Position detection using encoder, within a defined time period. Thus, the speed can be
easily calculated because it is related to the position difference. Since this measurement resolution
depends on the number of the encoder pulses over the defined period, the resolution is low and fails in
the low speed region.

So, to measure the rotor speed at a low speed range, measure the time difference between two encoder
edges. The speed is then inversely related to the measured time difference. But this technique requires a
high-frequency clock for timing, and the resolution over a high speed range is low. Therefore, a

 Encoder Position and Speed Sensing Utilizing the Quad Timer on the MC56F827xx, Rev 0, 10/2013
Freescale Semiconductor, Inc.

 7

technique is used which calculates the speed as a division of the number of encoder pulses and the
precisely measured time duration between these pulses. This technique gives a very good speed
resolution over the entire speed range.

5.1 Capturing the time of the secondary input signal edges
The time duration between encoder phase pulses can be simply measured by a Quad Timer with the IP
bus clock time base. Because of the flexibility of the Quad Timer module, any of the four timer sub-
modules can be used in this mode.
Mark the Timer n sub-module (where n can be 0, 1, 2 or 3) for the time capture, as shown in this figure.

Figure 4. Time capture at the encoder Phase B edges using TMR n sub-module

The timer primary input is the IP bus clock. The secondary input utilizes the encoder phase B signal.
The time is measured using the mode: count rising edges of the primary IP bus clock input. So the
TMR_n_CTRL register needs to be initialized with the following bit groups:

 Encoder Position and Speed Sensing Utilizing the Quad Timer on the MC56F827xx, Rev 0, 10/2013
8 Freescale Semiconductor, Inc.

Register fields Value Description

TMR_n_CTRL[CM] 001 Determines a count of the rising
edges of the primary source,
where the counter TMR_n_CNTR
is updated according to the
primary input signals.

TMR_n_CTRL[PCS] 1010 The primary timer source, the IP
bus clock is divided by a
prescaler, 4.

TMR_n_CTRL[SCS] 01 The secondary timer source is
timer input 1 (encoder Phase B).

TMR_n_CTRL[LENGTH] 0 The counter TMR_n_CNTR
counts until a roll over at 0xFFFF
and continues from 0x0000.

This code line is used to initialize TMR_n_CTRL.

TMR_n_CTRL=(TMR_n_CTRL_CM_0|TMR_n_CTRL_PCS3|TMR_n_CTRL_PCS1|TMR_n_CTRL_SCS0)

The encoder phase B secondary source is used as the capture event to load the TMR_n_CAPT with the
TMR_n_CNTR counter. This is determined by setting the Timer Channel Status and Control register
(TMR_n_SCTRL) as follows.

• TMR_n_SCTRL[CAPTURE_MODE] = 11 = Load capture register on both edges of the
secondary input

The syntax is:
TMR_n_SCTRL = TMR_n_SCTRL_CAPTURE_MODE_1|TMR_n_SCTRL_CAPTURE_MODE_0;

Now, the Sampling Event must be introduced. In control systems, there is usually a periodical event
with a constant period Ts. This is asynchronous to the encoder signals of Phase B. The Sampling Event
is usually provided as an interrupt, which calls an interrupt service subroutine with a constant sampling
period. This interrupt can be generated with any periphery, but the most elegant solution is to use the
Timer n sub-module compare functionality as will be described in Quad Timer and periodical interrupt
generation. At the Sampling Event, the software provides reading of the capture registers
TMR_n_CAPT. This means, we get the time of the last Phase B signal edge before the Sampling Event.

 Encoder Position and Speed Sensing Utilizing the Quad Timer on the MC56F827xx, Rev 0, 10/2013
Freescale Semiconductor, Inc.

 9

The time difference between the Phase B signal edges of the sampling events k and k–1 then needs to be
calculated by the software. The time difference can be calculated by subtracting the value of
TMR_n_CAPT at (k–1)th Sampling Event from the value of TMR_n_CAPT at kth Sampling Event.
Therefore the software process needs to save the previously captured time to a variable, at the Sampling
Event:

𝑜𝑙𝑑𝑇𝑖𝑚𝑒𝐴𝑡𝐶𝑎𝑝𝑡𝑢𝑟𝑒 = 𝑛𝑒𝑤𝑇𝑖𝑚𝑒𝐴𝑡𝐶𝑎𝑝𝑡𝑢𝑟𝑒;
𝑛𝑒𝑤𝑇𝑖𝑚𝑒𝐴𝑡𝐶𝑎𝑝𝑡𝑢𝑟𝑒 = 𝑇𝑀𝑅_𝑛_𝐶𝐴𝑃𝑇;

Therefore,
𝑜𝑙𝑑𝑇𝑖𝑚𝑒𝐴𝑡𝐶𝑎𝑝𝑡𝑢𝑟𝑒 = 𝑇𝑀𝑅_𝑛_𝐶𝐴𝑃𝑇(𝑘 − 1);
𝑛𝑒𝑤𝑇𝑖𝑚𝑒𝐴𝑡𝐶𝑎𝑝𝑡𝑢𝑟𝑒 = 𝑇𝑀𝑅_𝑛_𝐶𝐴𝑃𝑇(𝑘);

and finally, the difference can be calculated using the following equation:

𝑑𝑖𝑓𝑇𝑖𝑚𝑒 = 𝑛𝑒𝑤𝑇𝑖𝑚𝑒𝐴𝑡𝐶𝑎𝑝𝑡𝑢𝑟𝑒 − 𝑜𝑙𝑑𝑇𝑖𝑚𝑒𝐴𝑡𝐶𝑎𝑝𝑡𝑢𝑟𝑒;
Note: A subtraction function with no saturation must be used for proper functionality.

5.2 Quad Timer and periodical interrupt generation
Together with the measurement of the duration between secondary input edges, the sub-module for time
capture can also be used to provide the Sampling Event time base as shown in the following figure.

 Encoder Position and Speed Sensing Utilizing the Quad Timer on the MC56F827xx, Rev 0, 10/2013
10 Freescale Semiconductor, Inc.

Figure 5. Time capture at the encoder Phase B edges and compare interrupt using TMR n sub-module

The Sampling Event with period Ts will be generated using the Output Compare register
TMR_n_COMP1. TMR_n_COMP1 needs to be updated on each compare event to provide a periodical
interrupt. So, the value of TMR_n_COMP1 at the kth sample is given by this equation.

𝑇𝑀𝑅_𝑛_𝐶𝑂𝑀𝑃1(𝑘 + 1) = 𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 𝑇𝑠 + 𝑇𝑀𝑅_𝑛_𝐶𝑂𝑀𝑃1(𝑘)

The loading of TMR_n_COMP1 can be double-buffered in the Timer Comparator Load Control
(TMR_n_CMPLD1) register, by using the Compare Load Control (CL) field in the Comparator Status
and Control register (TMR_n_CSCTRL) as follows.

• When TMR_n_CSCTRL[CL1] = 01, the COMP1 will be preloaded with the value from
TMR_n_CMPLD1 upon successful TMR_n_COMP1 compare event.

The following code line is used.

 Encoder Position and Speed Sensing Utilizing the Quad Timer on the MC56F827xx, Rev 0, 10/2013
Freescale Semiconductor, Inc.

 11

TMR_n_CSCTRL = TMR_n_CSCTRL_CL1_0;

At a TMR_n_COMP1 compare event, the TMR n interrupt subroutine is called. In this sampling routine,
the software needs to update the TMR_n_CMPLD1 using this code line.

#define ENC_COMPARE_PERIOD /* sampling time Ts in system units */
TMR_n_CMPLD1 = (TMR_n_COMP1+ENC_COMPARE_PERIOD);

The compare interrupt needs to be enabled in TMR_n_SCTRL using the following code line.

TMR_n_SCTRL |= TMR_n_SCTRL_TCFIE;

The functionality is displayed in Figure 5.

5.3 Quad Timer and rotor speed measurement
As already mentioned, speed measurement (which is suitable over a broad speed range) requires
detection of the position and time differences between any of two encoder signal edges.

Because of the flexibility of the Quad Timer module, any of the four timer sub-modules can be used for
the rotor position or time differences. Let’s use the timer TMR 0 (position measurement) and TMR 1
(time measurement) sub-modules.

In the interrupt subroutine, the processor will read the last encoder phase B (or phase A) edge position
from the TMR 0 Capture register TMR_0_CAPT. It will also read the edge time from the TMR 1
Capture register TMR_1_CAPT.

 Encoder Position and Speed Sensing Utilizing the Quad Timer on the MC56F827xx, Rev 0, 10/2013
12 Freescale Semiconductor, Inc.

Figure 6. Position and time difference of the encoder Phase B edges using the TMR_0 and TMR_1 sub-

modules

For the speed measurement, also capture the position of the TMR_0_CNTR to the TMR_0_CAPT
register. This is provided by initialization of the TMR_0_SCTRL register with:

• When TMR_0_SCTRL[CAPTURE_MODE] = 11, the TMR_n_CAPT register is loaded on
both edges of the secondary input.

This is the final code line to initialize TMR_0_SCTRL.

TMR_0_SCTRL = TMR_0_SCTRL_CAPTURE_MODE_1|TMR_0_SCTRL_CAPTURE_MODE_0;

With this setting, the position will be captured to TMR_1_CAPT at both edges of the encoder Phase B
signal.
The differences between the previous sampling step (k–1) and current sampling step (k) edges will then
be calculated by the software:

 Encoder Position and Speed Sensing Utilizing the Quad Timer on the MC56F827xx, Rev 0, 10/2013
Freescale Semiconductor, Inc.

 13

𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 (𝑘) = 𝑇𝑀𝑅_0_𝐶𝐴𝑃𝑇(𝑘) − 𝑇𝑀𝑅_0_𝐶𝐴𝑃𝑇(𝑘 − 1)

𝑇𝑖𝑚𝑒 𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒(𝑘) = 𝑇𝑀𝑅_1_𝐶𝐴𝑃𝑇(𝑘) − 𝑇𝑀𝑅_1_𝐶𝐴𝑃𝑇(𝑘 − 1)

So, on each sampling interrupt, the system variables must be loaded.

 𝑜𝑙𝑑𝑁𝑢𝐸𝑑𝑔𝑒𝑠𝐴𝑡𝐶𝑎𝑝𝑡𝑢𝑟𝑒 = 𝑛𝑒𝑤𝑁𝑢𝐸𝑑𝑔𝑒𝑠𝐴𝑡𝐶𝑎𝑝𝑡𝑢𝑟𝑒

𝑛𝑒𝑤𝑁𝑢𝐸𝑑𝑔𝑒𝑠𝐴𝑡𝐶𝑎𝑝𝑡𝑢𝑟𝑒 = 𝑇𝑀𝑅_0_𝐶𝐴𝑃𝑇

𝑑𝑖𝑓𝑁𝑢𝐸𝑑𝑔𝑒𝑠 = 𝑜𝑙𝑑𝑁𝑢𝐸𝑑𝑔𝑒𝐴𝑡𝐶𝑎𝑝𝑡𝑢𝑟𝑒 − 𝑁𝑒𝑤𝑁𝑢𝐸𝑑𝑔𝑒𝑠𝐴𝑡𝐶𝑎𝑝𝑡𝑢𝑟𝑒

𝑜𝑙𝑑𝑇𝑖𝑚𝑒𝐴𝑡𝐶𝑎𝑝𝑡𝑢𝑟𝑒 = 𝑛𝑒𝑤𝑇𝑖𝑚𝑒𝐴𝑡𝐶𝑎𝑝𝑡𝑢𝑟𝑒

𝑛𝑒𝑤𝑇𝑖𝑚𝑒𝐴𝑡𝐶𝑎𝑝𝑡𝑢𝑟𝑒 = 𝑇𝑀𝑅_1_𝐶𝐴𝑃𝑇

𝑑𝑖𝑓𝑇𝑖𝑚𝑒 = 𝑛𝑒𝑤𝑇𝑖𝑚𝑒𝐴𝑡𝐶𝑎𝑝𝑡𝑢𝑟𝑒 – 𝑜𝑙𝑑𝑇𝑖𝑚𝑒𝐴𝑡𝐶𝑎𝑝𝑡𝑢𝑟𝑒

Thus, the Position Difference and Time Difference can be obtained as the value of difNuEdges and
difTime respectively.
The functionality is displayed in Figure 6.

The speed is calculated using the Position Difference and Time Difference variables:
𝑆𝑝𝑒𝑒𝑑 = ((𝑆𝑝𝑒𝑒𝑑 𝑆𝑐𝑎𝑙𝑒 ∗ 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒) << 𝑆𝑝𝑒𝑒𝑑 𝑆𝑐𝑎𝑙𝑒 𝑆ℎ𝑖𝑓𝑡) / 𝑇𝑖𝑚𝑒 𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒

Which is equivalent to:
𝑆𝑝𝑒𝑒𝑑 = ((𝑆𝑝𝑒𝑒𝑑 𝑆𝑐𝑎𝑙𝑒 ∗ 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒) ∗ 2^𝑆𝑝𝑒𝑒𝑑 𝑆𝑐𝑎𝑙𝑒 𝑆ℎ𝑖𝑓𝑡)/ 𝑇𝑖𝑚𝑒 𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒

Speed Mechanical speed variable scaled as a fractional

number
(variable angularSpeed)

Position Difference The position difference between the previous
sampling step (k-1) and current sampling step (k)
edges (variable difNuEdges)

Time Difference The time difference between the previous
sampling step (k-1) and current sampling step (k)
edges (variable difTime)

* fractional multiplication

/ Four-quadrant division

Speed Scale Speed scale fractional coefficient (variable
angularSpeedScale)

 Encoder Position and Speed Sensing Utilizing the Quad Timer on the MC56F827xx, Rev 0, 10/2013
14 Freescale Semiconductor, Inc.

<< Determines the number of left shifts

Speed Scale Shift Speed scale shift coefficient (variable
angularSpeedScaleShift)

So at each sampling time (ISR/Read event in Figure 6), the DSC will calculate the rotor speed with a
defined scaling, using intrinsic functions for multiplication (L_mult), shift left (L_shlfts) and division
(div_ls4q). The syntax is as follows.

TempF32 = L_mult(difNuEdges, angularSpeedScale);

TempF32 = L_shlfts(TempF32, angularSpeedScaleShift);

angularSpeed = div_ls4q(TempF32,difTime);

Figure 6 shows a solution where the Sampling Event is provided by any module or event
(synchronisation with PWM, PIT timer or other timing module). This is because sometimes, the
sampling is already defined in the application before the encoder implementation.

However the TMR 1 can also be used to generate the required sampling interrupt. This is described in
Quad Timer and periodical interrupt generation. The time diagram for this Quad timer setting is shown
in the following figure. The speed calculation is the same and is provided in the TMR 1 Compare
Interrupt Subroutine.

 Encoder Position and Speed Sensing Utilizing the Quad Timer on the MC56F827xx, Rev 0, 10/2013
Freescale Semiconductor, Inc.

 15

Figure 7. Position and time difference of the encoder edges with the TMR 1 Compare ISR

6 Application example
The following sections elaborate an example software for the speed and position detection using the
MC56F82xxx DSC.
The connectivity of the Freescale MC56F82xxx DSC is very universal due to input signal multiplexing,
a SIM module with internal peripheral multiplexing control, and the crossbar module XBARA.
Therefore, the encoder phase signal can be possibly connected to any Tx_IN (timer input pin) or
XB_INy (universal crossbar input) capable input pin.

This example elaborates on the position and speed measurement using the following device and signal
connections:

 Encoder Position and Speed Sensing Utilizing the Quad Timer on the MC56F827xx, Rev 0, 10/2013
16 Freescale Semiconductor, Inc.

• MC56F82723VLC device
• 32-pin LQFP package
• Core frequency 50 MHz
• An encoder device with 1024 inc/rev
• Encoder Phase A signal connected to pin 15 (GPIOC6) and Crossbar input 3 (XB_IN3).
• Encoder Phase B signal connected to pin 18 (GPIOC10) and Crossbar input 5 (XB_IN5).
• The XBARA module provides connection of XB_IN3 to T0_IN and XB_IN5 to T1_IN
• TMR 0 and TMR 1 are used for position and time detection.

The signal configuration is also shown in Figure 1. The example signals are in brackets.

7 Application example code
All the code lines used in the context of this application are given below. The code incorporates input
settings, crossbar settings, interrupt vectors, and first of all, the timer settings. The final code is more
complex than the previous samples, since it incorporates hazard states and limitations. Using a smart
scaling technique, the mechanical and electrical rotor positions can be scaled to the fractional variables
thetaKMechanical and thetaKElectrical respectively.

Interrupt Vector Table

The file MC56F827xx_vector.asm is located in Project_Settings\Startup_Code.

JSR >TimeBaseISR ; /* 0x36 Interrupt no. 27 */

Included Header Files

The most important headers used in the following code:

#include "MC56F82723.h" /* MC56F82723 Peripheral description header */
#include <intrinsics_56800E.h> /* intrinsics arithmetic header */

Constants and definitions

/* Encoder position scale */
#define ENC_EL_POSITION_SCALE (0.500)
#define ENC_EL_POSITION_SCALE_SHIFT (7)

/* Encoder position scale */
#define ENC_MECH_POSITION_SCALE (0.500)
#define ENC_MECH_POSITION_SCALE_SHIFT (5)

/* Encoder speed scale (speed calculated from position derivation) */
#define ENC_SPEED_SCALE (0.6357829)
#define ENC_SPEED_SCALE_SHIFT (4)

/* QTimer A1 compare register #1 sampling time Ts in IP bus clock */
#define ENC_COMPARE_PERIOD (12500)

/* Number of encoder edges per mechanical revolution */
#define ENC_NU_EDGES_REV (4096)

/* Modulo division of encoder edges counter */

 Encoder Position and Speed Sensing Utilizing the Quad Timer on the MC56F827xx, Rev 0, 10/2013
Freescale Semiconductor, Inc.

 17

#define ENC_BI_MODULO (ENC_NU_EDGES_REV-1)
/* QTimer A0 - max. number of edges between two consecutive readings */

#define ENC_NU_EDGES_LIMIT ((ENC_NU_EDGES_REV)/2-1)

/** Other System Values (NOT USED IN THIS APPLICATION EXAMPLE) **/

/* All parameters calculated for bus clock frequency [Hz]*/
#define IPBUS_CLOCK_FREQ_HZ 50000000.0

/* Application speed maximal range [rpm] */
#define APP_SPEED_MAX_RPM 18000.0

/* Number of motor pole pairs */
#define MOTOR_NUMBER_OF_POLE_PAIRS 4

/* Period of encoder speed sampling [s] */
#define PER_ENCODER_SPEED_SAMP_S (0.001)

/* Encoder position range maximum [Degree] */
#define ENC_MAX_POSITION_DEG 180

typedef struct
{
 Word16 prevCaptureOKFlag;
 Word16 newNuEdgesAtCapture; /* number of edges at new capture */
 UWord16 newTimeAtCapture; /* time instant at new capture */
 Word16 oldNuEdgesAtCapture; /* number of edges previous edge */
 UWord16 oldTimeAtCapture; /* time instant at previous capture */
 Word16 difNuEdges; /* difference of edges between captures */
 UWord16 difTime; /* difference of time between captures */
 Frac16 tmpAngularSpeed; /* Angular Speed */

 Frac16 angularSpeedScale; /* Speed scale */
 Frac16 angularSpeedScaleShift; /* Speed scale shift */

 Word16 maxNuEdges; /* encoder max. possible edges difference
 between captures */
 Frac16 encNuEdgesRev; /* encoder pulses per revolution */
}ENC_SPEED_STRUCT;

typedef struct
{
 Frac16 positionCounter; /* Timer A0 counter reg. */
 Frac16 thetaScale; /* position scale */
 Int16 thetaScaleShift; /* position scale shift */
}ENC_POSITION_STRUCT;

Variables

/* encoder electrical position sensing parameters */
static ENC_POSITION_STRUCT encElPosParam;

/* encoder mechanical position sensing parameters */
static ENC_POSITION_STRUCT encMechPosParam;

/* encoder speed sensing parameters */
static ENC_SPEED_STRUCT encSpeedParam;

/* Motor speed Sensed with encoder */
static Frac16 speedMotorSens;

/* actual motor electrical position from encoder */
static Frac16 thetaKElectrical;

/* actual motor mechanical position from encoder */
static Frac16 thetaKMechanical;

Prototypes

 Encoder Position and Speed Sensing Utilizing the Quad Timer on the MC56F827xx, Rev 0, 10/2013
18 Freescale Semiconductor, Inc.

static void GPIOC_Init(void);
static void XBAR_Init(void);
static void ENC_PositionTimer0Init (void);
static void ENC_TimeBaseTimer1Init (void);

Frac16 ENC_PositionGet(ENC_POSITION_STRUCT *ptr);
void ENC_TimeBaseNew(void);
Frac16 ENC_AngularSpeed(ENC_SPEED_STRUCT *ptr);

void TimeBaseISR (void);

Functions

static void GPIOC_Init(void)
{
 /* Enable GPIOC clock */
 SIM_PCE0 |= SIM_PCE0_GPIOC;
 /* Encoder Phase A – C6, Phase A – C10 set as peripheral */

GPIOC_PER |= (GPIOA_PER_PE_10 | GPIOA_PER_PE_6);
 /* Select TMR0 Input from XBAR XB_OUT34 TMR1 Input from XBAR XB_OUT35 */

/* otherwise the PIOC3 and PIOC4 peripheral inputs are used */
SIM_IPSn |= (SIM_IPSn_TA0 | SIM_IPSn_TA1);

/* Set C6 as XB_IN3 XBAR input ALT = 01 */
SIM_GPSCL &= ~(SIM_GPSCL_C6_1);
SIM_GPSCL |= (SIM_GPSCL_C6_0);

/* Set C10 as XB_IN5 XBAR input ALT = 01 */
SIM_GPSCH &= ~(SIM_GPSCH_C10_1);
SIM_GPSCH |= (SIM_GPSCH_C10_0);

}

static void XBAR_Init(void)
{

/* XB_IN3 XBAR A input to T0_IN
 XBARA_SEL17 = (XBARA_SEL17_SEL34_1|XBARA_SEL17_SEL34_0)|\

(XBARA_SEL17_SEL35_2|XBARA_SEL17_SEL35_0); */
/* XB_IN3 (Encoder Phase A) muxed to Timer 0 input T1_IN

 XB_IN5 (Encoder Phase B) muxed to Timer 1 input T1_IN */
 XBARA_SEL17 = (3 << 5) | 3;
}

static void ENC_PositionTimer0Init(void)
{

/* Enable TMR0 clock */
SIM_PCE0 |= SIM_PCE0_TA0;
TMR_0_CTRL = TMR_0_CTRL_CM_2|TMR_0_CTRL_SCS_0|TMR_0_CTRL_LENGTH;
TMR_0_SCTRL = TMR_0_SCTRL_CAPTURE_MODE_1|TMR_0_SCTRL_CAPTURE_MODE_0;
TMR_0_CSCTRL = 0;
TMR_0_COMP1 = (ENC_NU_EDGES_REV-1);
TMR_0_COMP2 = (-(ENC_NU_EDGES_REV-1));
TMR_0_CMPLD1 = 0;
TMR_0_CMPLD2 = 0;
TMR_0_LOAD = 0;
TMR_0_CNTR = 0;

}

static void ENC_TimeBaseTimer1Init(void)
{
 /* Initialization of QTA1 is to be called in main

 Encoder Position and Speed Sensing Utilizing the Quad Timer on the MC56F827xx, Rev 0, 10/2013
Freescale Semiconductor, Inc.

 19

 The user should define the QTA1 Compare Interrupt function */
/* Enable TMR1 clock */

SIM_PCE0 |= SIM_PCE0_TA1;
TMR_1_SCTRL = TMR_1_SCTRL_TCFIE|TMR_1_SCTRL_CAPTURE_MODE_1|TMR_1_SCTRL_CAPTURE_MODE_0;
TMR_1_CSCTRL = TMR_1_CSCTRL_CL1_0;
TMR_1_CTRL = (TMR_1_CTRL_CM_0|TMR_1_CTRL_PCS3|TMR_1_CTRL_PCS1| TMR_1_CTRL_SCS0);
TMR_1_COMP1 = (ENC_COMPARE_PERIOD-1);
TMR_1_COMP2 = 0;
TMR_1_CMPLD1 = (2*(ENC_COMPARE_PERIOD)-1);
TMR_1_CMPLD2 = 0;
TMR_1_LOAD = 0;
TMR_1_CNTR = 0;

}

Frac16 ENC_PositionGet(ENC_POSITION_STRUCT *ptr)
{
 ptr->positionCounter = (Frac16)TMR_0_CNTR;
 return((Frac16)extract_h((L_mult(ptr->positionCounter,ptr->thetaScale))\

<<(ptr->thetaScaleShift)));
}

void ENC_TimeBaseNew(void)
{
/************ INTERRUPT ON QT1 COMPARE ***************/
 /* Calculate the new compare value for QTA1 */
 TMR_1_CMPLD1 = (TMR_1_COMP1+ ENC_COMPARE_PERIOD);
 TMR_1_SCTRL &= ~(TMR_1_SCTRL_TCF);
/************ INTERRUPT ON QT1 COMPARE ***************/
}

Frac16 ENC_AngularSpeed(ENC_SPEED_STRUCT *ptr)
{
 register Frac32 TempF32;
 if (TMR_1_SCTRL & TMR_1_SCTRL_IEF) /* CAPTURE OCCURED */
 {
/************* READ CAPTURE REGISTERS *****************/
 /* read Number of Encoder Pulses stored in QT0_Capture register */
 ptr->newNuEdgesAtCapture = (Word16)TMR_0_CAPT;
 /* read Exact time of encoder pulses stored QT1_Capture register */
 ptr->newTimeAtCapture = (Word16)TMR_1_CAPT;
/************* READ CAPTURE REGISTERS *****************/
 /* Clear capture flag */
 TMR_0_SCTRL &= ~(TMR_0_SCTRL_IEF);
 TMR_1_SCTRL &= ~(TMR_1_SCTRL_IEF);
 /* Avoid a hardware hazard, when capture event occurs
 only in one timer. This can happen when a capture
 edge comes in the middle of the flags clear procedure */
 if ((TMR_0_SCTRL & TMR_0_SCTRL_IEF)\
 || (TMR_1_SCTRL & TMR_1_SCTRL_IEF))
 {
 TMR_0_SCTRL &= ~(TMR_0_SCTRL_IEF);
 TMR_1_SCTRL &= ~(TMR_1_SCTRL_IEF);
 }
 if(ptr->prevCaptureOKFlag)
 {
 ptr->difNuEdges=ptr->newNuEdgesAtCapture-ptr->oldNuEdgesAtCapture;
 ptr->difTime =ptr->newTimeAtCapture-ptr->oldTimeAtCapture;
/******************* REMOVE ERROR *********************/
 /* Remove error in difNuEdges created by wrong subtraction
 A wrong subtraction occurs when QT0 passes the ENC_PULSES_REV value
 because a wrap-around subtraction doesn't work with the ENC_PULSES_REV
 value*/

 Encoder Position and Speed Sensing Utilizing the Quad Timer on the MC56F827xx, Rev 0, 10/2013
20 Freescale Semiconductor, Inc.

 if (ptr->difNuEdges>ptr->maxNuEdges)
 {
 ptr->difNuEdges = ptr->difNuEdges - ptr->encNuEdgesRev;
 }
 else if (ptr->difNuEdges<(-ptr->maxNuEdges))
 {
 ptr->difNuEdges = ptr->difNuEdges + ptr->encNuEdgesRev;
 }
/******************* REMOVE ERROR *********************/
/***************** SPEED CALCULATION ******************/
 turn_on_sat();
 if ((ptr->difTime<=(UWord16)MAX_16))
 {
 TempF32 = L_shlfts(L_mult((Frac16)ptr->difNuEdges,\

 (Frac16)ptr->angularSpeedScale),\
 ptr->angularSpeedScaleShift);

 if (extract_h(TempF32)>=(Frac16)ptr->difTime)
 {
 ptr->tmpAngularSpeed=MAX_16;
 }
 else if (extract_h(-TempF32)>=(Frac16)ptr->difTime)
 {
 ptr->tmpAngularSpeed = MIN_16;
 }
 else
 {

ptr->tmpAngularSpeed = ((div_ls4q(TempF32,
 ((Frac16)(ptr->difTime))));
 }
 }
 else
 {
 ptr->tmpAngularSpeed = 0;
 }
 turn_off_sat();
 }
/***************** SPEED CALCULATION ******************/

/************ STORE NEWLY CAPTURED VALUES ***************/
 ptr->oldNuEdgesAtCapture = ptr->newNuEdgesAtCapture;
 ptr->oldTimeAtCapture = ptr->newTimeAtCapture;
 ptr->prevCaptureOKFlag = 1;//Debug 08.11.19
/************ STORE NEWLY CAPTURED VALUES ***************/
 }
 else /* CAPTURE DID NOT OCCUR */
 {
 ptr->newTimeAtCapture = (UWord16)TMR_1_CNTR;
 ptr->difTime = ptr->newTimeAtCapture - ptr->oldTimeAtCapture;

 if (ptr->difTime>(UWord16)MAX_16)
 {
 /* Set calculated speed to zero,

 and wait for the next two successive captures */
 ptr->prevCaptureOKFlag = 0;
 ptr->tmpAngularSpeed = 0;
 }
 }
 return(ptr->tmpAngularSpeed);
}

Main function and initializations

 Encoder Position and Speed Sensing Utilizing the Quad Timer on the MC56F827xx, Rev 0, 10/2013
Freescale Semiconductor, Inc.

 21

In our example, the position is periodically read in the s/w main loop, but the position can be read from
any interrupt subroutine (for example from TimeBaseISR):

thetaKElectrical = ENC_PositionGet(&encElPosParam);
thetaKMechanical = ENC_PositionGet(&encMechPosParam);

The initialization and main s/w loop is below:

void main (void)
{

GPIOC_Init();
XBAR_Init();
ENC_PositionTimer0Init();
ENC_TimeBaseTimer1Init();

 encElPosParam.thetaScale = FRAC16(ENC_EL_POSITION_SCALE);
 encElPosParam.thetaScaleShift = ENC_EL_POSITION_SCALE_SHIFT;

 encMechPosParam.thetaScale = FRAC16(ENC_MECH_POSITION_SCALE);
 encMechPosParam.thetaScaleShift = ENC_MECH_POSITION_SCALE_SHIFT;

 encSpeedParam.encNuEdgesRev = ENC_NU_EDGES_REV;
 encSpeedParam.maxNuEdges = ENC_NU_EDGES_LIMIT;
 encSpeedParam.angularSpeedScale = FRAC16(ENC_SPEED_SCALE);
 encSpeedParam.angularSpeedScaleShift = ENC_SPEED_SCALE_SHIFT;

 while(1)
 {
 /* get the electrical position using the ENC_PositionGet function */
 thetaKElectrical = ENC_PositionGet(&encElPosParam);
 /* get the mechanical position using the ENC_PositionGet function */
 thetaKMechanical = ENC_PositionGet(&encMechPosParam);
 }
}

Time base interrupt subroutine

#pragma interrupt saveall
void TimeBaseISR(void)
{
 /* Calculate mechanical motor speed */
 ENC_TimeBaseNew();

 /* Calculate mechanical motor speed */
 speedMotorSens = ENC_AngularSpeed(&encSpeedParam);
}

8 Definitions and acronyms

ADC Analogue-to-Digital Converter

AOI And/Or/Invert Module

CW CodeWarrior

 Encoder Position and Speed Sensing Utilizing the Quad Timer on the MC56F827xx, Rev 0, 10/2013
22 Freescale Semiconductor, Inc.

DSC Digital Signal Controller

FOC Field Oriented Control

GPIO General Port Input Output

ISR Interrupt Service Routine

(k-1) Previous Sampling Step

k Sampling Step

(k+1) Next Sampling Step

PWM Pulse-Width Modulation

SIM System Integration Module

Motor control In this application note, this means a process
which controls an electrical motor such as a
BLDC PMSM, AC-induction or other

XBAR Cross-Bar Switch

Ts The time base - sampling period

9 Revision history

Revision number Date Substantial changes

0 10/2013 Initial release

How to Reach Us:

Home Page:
freescale.com

Web Support:
freescale.com/support

Information in this document is provided solely to enable system and software
implementers to use Freescale products. There are no express or implied copyright
licenses granted hereunder to design or fabricate any integrated circuits based on the
information in this document.
Freescale reserves the right to make changes without further notice to any products
herein. Freescale makes no warranty, representation, or guarantee regarding the
suitability of its products for any particular purpose, nor does Freescale assume any
liability arising out of the application or use of any product or circuit, and specifically
disclaims any and all liability, including without limitation consequential or incidental
damages. “Typical” parameters that may be provided in Freescale data sheets and/or
specifications can and do vary in different applications, and actual performance may vary
over time. All operating parameters, including “typicals,” must be validated for each
customer application by customer’s technical experts. Freescale does not convey any
license under its patent rights nor the rights of others. Freescale sells products pursuant
to standard terms and conditions of sale, which can be found at the following address:
freescale.com/SalesTermsandConditions.
Freescale, the Freescale logo, and CodeWarrior are trademarks of Freescale
Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. All other product or service names are the
property of their respective owners.

© 2013 Freescale Semiconductor, Inc.

 Document Number AN4813
 Revision 0, October 2013

http://www.freescale.com/�
http://www.freescale.com/support�
http://www.freescale.com/SalesTermsandConditions�

	1 Introduction
	Digital signal controllers
	3 Quad timers and encoder signal detection system
	4 Position detection using encoder
	5 Speed measurement
	5.1 Capturing the time of the secondary input signal edges
	5.2 Quad Timer and periodical interrupt generation
	5.3 Quad Timer and rotor speed measurement
	6 Application example
	7 Application example code
	8 Definitions and acronyms
	9 Revision history

