
1 Introduction
This Generic Timer Module (GTM) Serial Peripheral Interface
(SPI) Bus Emulation application note is intended to provide
details of how to emulate an SPI bus master Slave Select (SS),
Serial Clock (SCK), Master Output Slave Input (MOSI), and
Master Input Slave Output (MISO) signals using the GTM
Multi-Channel Sequencer (MCS) submodule, Timer Input
Module (TIM) and the ARU connected Timer Output Module
(ATOM) submodules. The assembly functions are portable to
any product that has a GTM module. Porting the application
code which configures the chip and GTM from one chip to
another does require minor changes. Example code in this
application note is based on the MPC5777M device. This
application note should be read in conjunction with
application note AN4351,“MPC57xxM Generic Timer
Module (GTM) Quick Start Guide” available at freescale.com

2 Overview
The SPI bus is a full duplex synchronous serial data link
between a master and slave devices, where the master initiates
the data transmission. It is a common communication protocol
used in many embedded applications.

An SPI interface is commonly emulated in software where a
dedicated hardware peripheral is not available. The solution
presented in this application note emulates the interface

Freescale Semiconductor Document Number: AN4864

Application Note Rev 1, 04/2014

Generic Timer Module (GTM) Serial
Peripheral Interface (SPI) Bus
Emulation
by: Inga Harris

© 2014 Freescale Semiconductor, Inc.

Contents

1 Introduction..1

2 Overview..1

3 Block diagram...3

4 Chip level software description.................................4

4.1 ATOM operating as SS..................................4

4.2 ATOM operating as MOSI and
SCK..5

4.2.1 Jitter observed on MOSI.5

4.3 TIM and input port operating as
MISO..5

5 MCS software description...6

5.1 Handshake with CPU.....................................9

5.2 Lower SS signal..10

5.3 Send message...10

5.4 Raise SS signal...11

5.5 MCS delay routine.......................................12

6 Core code to initialize the GTM for SPI.................13

7 Assembly code for SPI example.............................15

http://www.freescale.com

outputs and input in the GTM MCS module with only a small amount of software running on the chip core for configuration
and MISO reception, which means that the emulated interface does not consume a lot of CPU bandwidth and only consumes
two MCS channels, with three ATOM channels, a TIM channel, and a GPIO.

The given example transmits 8 bits of data (synchronous to SCK) and a single SS control line. The example can receive the
same message by connecting SCK to a TIM channel, and the MOSI connected to an input port (MISO). The data is stored in
the MCS RAM at compile time for simplicity, but it could also be moved to the RAM through DMA or read by the MCS
through the PSM submodule in a full application environment. The received data is presented back to the GTM through the
PSM FIFO RAM.

The transmission of SS, SCK, and MOSI is controlled by the master. In this example the SPI is operating in mode 0 (CPOL =
0, CPHA = 0).

Figure 1 shows an example transmission from the system where the data is captured on a clock rising edge and the data is
propagated on a clock falling edge:

Figure 1. Example output waveform

Table 1. Signal details

SPI Signal Channel Color X Scale Y Scale Characteristics

MOSI 1 Yellow 5 µs 2 V Transmitting 0xA5

SCK 2 Blue 5 µs 2 V 500 KHz

SS 3 Purple 5 µs 5 V Active low

Overview

Generic Timer Module (GTM) Serial Peripheral Interface (SPI) Bus Emulation, Rev 1, 04/2014

2 Freescale Semiconductor, Inc.

3 Block diagram
The SPI solution given in this application note uses the following GTM104 submodules:

ARU

MCS

ATOM

PSM

CMU

TBU

RAM

MOSI

SCK

SS

TIM SS

Figure 2. GTM configuration for SPI

Table 2. Submodule functionality

Submodule Purpose Use case

Clock Management Unit (CMU) Generates all of the clocks and counters
for the GTM subsystem.

Controls the system clock speed from
the chip level clocks.

TimeBase Unit (TBU) Provides a common timebase that can
be used throughout the GTM subsystem.

TBU_TS0 uses CMU_CLK0 as source
for the GTM global timebase.

Multi Channel Sequencer (MCS) A generic data processing module that is
connected to the ARU. It allows
"programs" to be written to calculate
complex output sequences that depend
on timebase values.

MCS0 software state machine that
controls the data to be driven out of the
ATOM channels.

Advanced Routing Unit (ARU) Provides a mechanism for routing
streams of data between data sources

Complex output waveforms for the SS,
MOSI, and SCK as instructed by the
MCS through the ARU.

Table continues on the next page...

Block diagram

Generic Timer Module (GTM) Serial Peripheral Interface (SPI) Bus Emulation, Rev 1, 04/2014

Freescale Semiconductor, Inc. 3

Table 2. Submodule functionality (continued)

Submodule Purpose Use case

and transfer it to a destination. This is
the heart of the GTM subsystem.

ARU connected Timer Output Module
(ATOM)

Capable of generating complex output
signals through its interconnectivity with
the ARU to other modules in the GTM
subsystem.

ATOM0 channel 0 (MOSI), channel 1
(SCK) and channel 2 (SS) in SOMS and
SOMI modes reading values from
MCS0.

Timer Input Module (TIM) Captures input signals. Raises an interrupt request on each
rising clock edge (SCK) which captures
the state of the MISO pin.

Figure 2 also shows the Parameter Storage Module (PSM) which is used to bring in the MISO data to the GTM from the IO
processor of the MPC5777M device, as generated in the interrupt request. Another PSM channel could be used to bring in the
data to be transmitted by MOSI.

4 Chip level software description
The configuration of the chip modes and clocks, and the GTM at a basic initialization is as described in AN4351 available at
freescale.com. The specific configuration of the GTM submodules (TBU, TIM, FIFO, ATOM, and programming of MCS
RAM) is shown in Core code to initialize the GTM for SPI.

The MCS array, MCS0_MEM, contains both the data and the software for the SPI bus emulation. MCS0 channel 0 and channel
1 are used for the calculations. However, the channels write to three ARU ports for the SS, MOSI, and SCK commands to be
consumed by three ATOM channels. To start the SPI bus output after initialization, the MPC5777M core and the MCS do a
handshake with the MCS's trigger mechanism as shown below. The MCS's half of the handshake can be seen in MCS
software description describing the MCS assembly program operation.

/* Start the MCS Program */
GTM_MCS_0.CH0_CTRL.R = 0x00000001;// Enable Channel 0 of MCS0
GTM_MCS_0.CH1_CTRL.R = 0x00000001;// Enable Channel 1 of MCS0

/*Check that the ATOM channels are ready, STRG is set */
while ((GTM_MCS_0.STRG.R & 0x4) == 0);

/*Next Trigger for MCS to signal "Port config finished" */
GTM_MCS_0.STRG.R = 0x00000001;

When this handshake is complete, the MCS is running in an infinite loop.

4.1 ATOM operating as SS
ATOM0 CH2 is the SS output. The Slave Select is an active low output from the master. A low level on SS activates the
connected slave.

The ATOM is configured in Signal Output Mode Immediate (SOMI) where an ATOM channel generates an output signal
immediately after an update of bit zero of the ATOM[i]_CHn_STAT[ACBI] field when the ARU is enabled.

The MCS channel controls the SS ATOM channel by either sending a High or Low command to the ATOM channel. As the
SS is active low the ATOM channel is configured with ATOM[i]_CHn_CTRL[SL] as zero. So that, if the channel is disabled
or the output is disabled, the output is set to inverse value of SL, high.

Chip level software description

Generic Timer Module (GTM) Serial Peripheral Interface (SPI) Bus Emulation, Rev 1, 04/2014

4 Freescale Semiconductor, Inc.

http://www.freescale.com

4.2 ATOM operating as MOSI and SCK
Both the MOSI and SCK SPI signals are controlled by ATOM channels running in Signal Output Mode Serial (SOMS)
mode.

In this mode the channel acts as a serial output shift register where the content of the CM1 register is shifted to the output
whenever the CM1 register is triggered by the configured CMU_CLKn input clock signal. The shift direction is configurable
by writing to bit zero of the ATOM[i]_CHn_STAT[ACBI] field when the ARU connection is enabled. The CCU0 runs in
counter/compare mode and counts the number of bits that have been shifted. The total number of bits that are to be shifted is
defined by the value in the CM0 register.

Table 3. MCS values delivered to ATOM by ARU

SPI signal Data -> CM1 Shift direction -> ACBI Shift number -> CM0

SCK 0x005555 Right Minimum 16

MOSI For example, 0x0000A5 Right Minimum 8

4.2.1 Jitter observed on MOSI
The MOSI output is moving by one CMU_CLK6 period relative to the SCK output. This is because the ARU is operating in
a round robin path and the order in which the ATOM information is received at channel 0 and channel 1 is not fixed.

Depending upon when the ARU services the data streams on ATOM channels 0 and 1 there will be a worst case scenario of
113 system clock between the channels. As the channels are running at an 80th and a 160th of the system clock frequency
this has only a small impact to the data reception at the ATOM channel.

The location of the ARUs 'eyes' is not visible to the GTM, or the chip, so there is no way to fix this delivery order. In SOMS
mode the neighboring channels cannot trigger each other.

The clock speeds are slow enough such that the data is still received correctly even with the MOSI jitter with respect to the
SCK. Placing the MCS is accelerated scheduling mode helps to minimize the delays between the two channels providing new
data to the ARU for delivery to the ATOM channels.

4.3 TIM and input port operating as MISO
The MISO signal is captured on a GPIO input port on each clock rising edge. The clock rising edge is captured by a TIM
channel in TIM Input Event Mode (TIEM). The TIM[i]_NEWVALn_IRQ interrupt is enabled and this interrupt captures the
input value on the input pin (GPDI[35] in the example code).

void IRQ_GTM_TIM0_CH0(void)
{
 extern int MISO, i;

 i++; // increment counter
 MISO = (MISO<<1)+ SIUL2.GPDI[35].B.PDI; // Capture next bit of MISO
 GTM_TIM_0.CH0_IRQ_NOTIFY.R = 0x0000003F; // Clear all interrupts
 if (i==8){ //when 8 bits are received
 GTM_AFD_0.CH[0].BUF_ACC.R = MISO; // place MISO byte in GTM FIFO
 MISO = 0; // clear MISO
 i=0; // reset counter
 }
}

Chip level software description

Generic Timer Module (GTM) Serial Peripheral Interface (SPI) Bus Emulation, Rev 1, 04/2014

Freescale Semiconductor, Inc. 5

The interrupt captures the pin state at the time of the SCK event and appends it on to the previous level from the last clock
edge. When eight clocks have been received the interrupt sends the MISO data back to the GTM through the PSM
mechanism which can be seen at the address 0xFFD19000.

NOTE

This example does not monitor the SS signal for MISO reception. To add this validity
check to the MISO functionality the interrupt could check at pin level too and flag an
error, if it were found to be high.

5 MCS software description
The MCS's program and data must be written and pre-compiled before loading in to the MCS RAM block.

As described in the "Example 7: Writing, Compiling, and Programming MCS Code" section of the previously mentioned
application note, AN4351 available at freescale.com, the structure of the assembly code includes some definitions,
initialization of start addresses for each active channel, and initialization of data and stacks, followed by the subroutines
themselves.

Figure 3 and Table 4 describe the general functionality of the MCS assembly code.

MCS software description

Generic Timer Module (GTM) Serial Peripheral Interface (SPI) Bus Emulation, Rev 1, 04/2014

6 Freescale Semiconductor, Inc.

http://www.freescale.com

Figure 3. MCS code flow chart

MCS software description

Generic Timer Module (GTM) Serial Peripheral Interface (SPI) Bus Emulation, Rev 1, 04/2014

Freescale Semiconductor, Inc. 7

Table 4. SPI bus emulation code blocks description for MCS channel 0

Step Operation Description Code example / Section for
further details

1 Start After reset the MCS channel
program counter is at address 0
and must be moved to the start of
the code.

JMP tsk0_init

2 (tsk0_init) Init stack pointer Initialize the stack pointer to the
start of the reserved memory
space.

MOVL R7 0x000020

3 Wait for CPU handshake Handshake with the chip core to
ensure the system is fully
initialized.

Handshake with CPU

4 (start_tx) Load message (index register) Direct the MCS index register, R6,
to the message to be transmitted.

MOVL R6 message_array

5 Initialize loop counter Set the loop counter such that all
the messages in the message
array are sent and then repeated.

MRD R1 tsk0_counter

6
(next_message
)

Lower SS Transition SS (falling edge) on
ATOM0 CH3.

send Start bit

7 Transmit data and trigger clock Send the 8 bit data of the memory
address pointed by index register.

Send message

8 Delay routine Pause between data
transmissions.

MCS delay routine

9 Raise SS Transition SS (rising edge) on
ATOM0 CH3.

send Stop bit

10 Delay routine Pause between data
transmissions.

MCS delay routine

11 Increment index register Move the index register to the next
message to be transmitted.

ADDL R6 0x000004

12 Decrement loop counter Adjust the loop counter for the
completed message.

SUBL R1 0x000001

13 Loop Completed? Test R1 for zero. JBC STA Z next_message

14 End In this example the message array
repeats from the start.

JMP start_tx

Table 5. SPI clock emulation code blocks description for MCS channel 1

Step Operation Description Code example / Section for
further details

1 (tsk1_init) Start After reset the MCS channel
program counter is at address 4
and must be moved to the start of
the code.

JMP tsk1_init

2 Init stack pointer Initialize the stack pointer to the
start of the reserved memory
space.

MOVL R7 0x000024

3 Configure clock signal and send Set up the clock toggles, shift
direct and number of shifts.

Send message

MCS software description

Generic Timer Module (GTM) Serial Peripheral Interface (SPI) Bus Emulation, Rev 1, 04/2014

8 Freescale Semiconductor, Inc.

The routines can be configured to use different ARU ports and ATOM channels, to send different commands, and to point to
different message address spaces by altering the definitions at the start of the assembly file. This examples uses the
configuration listed below.

.set ARU_PORT0, 0x0000

.set ARU_PORT1, 0x0001

.set ARU_PORT2, 0x0002

.set PIN_HI, 0x000009

.set PIN_LO, 0x00000A

.set ATOM0_CH0, 0x011F

.set ATOM0_CH1, 0x0120

.set ATOM0_CH2, 0x0121

.set message_array, 0x70

There are also variables that are set up in the assembly code and referred to through the routine for the number of messages to
be transmitted and the length of the delay between messages as shown below.

tsk0_counter: .lit24 68 # number of messages to transmit
tsk0_delay: .lit24 1 # length of delay between messages

The full assembly code in the Hightec™ format is provided in Assembly code for SPI example. To modify the assembly code
for the CASPR-MCS assembler, refer to AN4351 available at freescale.com.

5.1 Handshake with CPU
To ensure that both the CPU and the GTM are in the initialized state and ready to start the SPI communication, a handshake
routine can be used. Both the CPU and the GTM MCS have access to the STRG and CTRG registers inside the MCS
memory map.

The description of the assembly routine that runs inside of the GTM is described below in Table 6.

Table 6. Handshake with CPU

Step Operation Description Code snippet

1 Set the Channel 2 trigger Set the trigger bit to indicate the
routine has started to the CPU

MOVL STRG 0x000004

2 Load R0 with 1 — MOVL R0 0x000001

3 Wait until bit 0 of the STRG
register is same as R0

Wait until the CPU signals back
that the handshake was seen

WURM R0 STRG 0x0001

4 Load R3 with the current timebase
value

— MOV R3 TBU_TS0

5 Load R0 with 25,000 — MOVL R0 0x0061A8

6 Add R0 and R3 in R0 — ADD R0 R3

7 Wait until TS0 == R0 — WURM R0 TBU_TS0 0xFFFF

8 Clear the triggers — MOVL CTRG 0x000003

The code below is the CPU's side of the handshake code.

MCS software description

Generic Timer Module (GTM) Serial Peripheral Interface (SPI) Bus Emulation, Rev 1, 04/2014

Freescale Semiconductor, Inc. 9

http://www.freescale.com

/*Check that the ATOM channels are ready, STRG is set */
while((GTM_MCS_0.STRG.R & 0x4) == 0);

/*Next Trigger for MCS to signal "Port config finished" */
GTM_MCS_0.STRG.R = 0x00000001;

5.2 Lower SS signal
Before any synchronous message can be transmitted on the SPI bus, the start condition needs to be issued on the bus which is
a falling edge on the SS pin to activate the slave.

Table 7. Transition SS for communication to commence

Step Operation Description Parameters Code snippet

1 Load TBU timestamp Read the current value of
the TBU timestamp in to
the MCS register, R3.

n/a MOV R3 TBU_TS0

2 Load R2 a small value The SS transition is
controlled using the value
stored at address 0x68.

n/a MRD R2 64

3 Add R2 and R3 in R2 Set the match value at
0x68 from the current
timestamp.

n/a ADD R3 R2

4 Configure the ACB for SS Set on match event
(Compare in CCU0 only,
use timebase TBU_TS0).
The ATOM channel for SS
is configures as active low.

ACB = 0x09 MOVL ACB PIN_HI

5 Place the data for the
ATOM channel associated
with SS into the ARU port

Move R3 to the ARU port. ARU Read port = 0x0002 AWR R3 R3 ARU_PORT2

6 Return from subprogram The program counter PC
is loaded with current
value on the top of the
stack.

n/a RET

5.3 Send message
The messages in this example are stored in the MCS RAM (copied in by the core at the same time as the MCS code is moved
in to the MCS RAM), before the SPI routines are started.

Table 8. Send data byte

Step Operation Description Parameters Code snippet

1 Move index register to R5 Load the data to be
transmitted in to R5

n/a MRDI R5 R6

2 Load R3 with number of
shifts the ATOM is to
perform

R3 is loaded with number
of clock transitions
required to clock out the
MOSI data.

All 24 bits. MOVL R3 0x000017

Table continues on the next page...

MCS software description

Generic Timer Module (GTM) Serial Peripheral Interface (SPI) Bus Emulation, Rev 1, 04/2014

10 Freescale Semiconductor, Inc.

Table 8. Send data byte (continued)

Step Operation Description Parameters Code snippet

3 Load ACB with the shift
direction

Shift the message left so
that the next shift right
(step 6) accesses the
correct bit each loop
rotation.

Shift right (0) MOVL ACB 0

4 Initiate channel 1 (SCK) Set bit 1 of STRG register n/a MOVL STRG 0x000002

5 Write data and shift value
to the ARU port

Move R3 and R5 to the
ARU port

ARU read port = 0 AWR R3 R5 ARU_PORT0

6 Return from function The program counter PC
is loaded with the current
value of the top of the
stack

n/a RET

Table 9. Send clock

Step Operation Description Parameters Code snippet

1 Move clock signal to R5 Load the clock signal to be
transmitted in to R5

n/a MOVL R5 0x00AAAA

2 Load R3 with number of
shifts the ATOM is to
perform

R3 is loaded with number
of clock transitions
required to clock out the
MOSI data.

All 24 bits. MOVL R3 0x000017

3 Load ACB with the shift
direction

Shift the message left so
that the next shift right
(step 6) accesses the
correct bit each loop
rotation.

Shift right (0) MOVL ACB 0

4 (loop) Wait for trigger Wait for bit 1 of STRG
register to be set by
channel 0

n/a MOVL R0 0x000002

WURM R0 STRG
0x00002

5 Clear the trigger Write 0x2 to the CTRG
register

n/a MOVL CTRG 0x000002

6 Write data and shift value
to the ARU port

Move R3 and R5 to the
ARU port

ARU read port = 1 AWR R3 R5 ARU_PORT1

7 Return from function The program counter PC
is loaded with the current
value of the top of the
stack

n/a JMP loop

NOTE
Steps 5 and 6 in Table 8 and steps 5 to 7 in Table 9 operate in parallel on separate set of
local MCS channel registers.

MCS software description

Generic Timer Module (GTM) Serial Peripheral Interface (SPI) Bus Emulation, Rev 1, 04/2014

Freescale Semiconductor, Inc. 11

5.4 Raise SS signal
To complete transmission of the message, the stop condition needs to be issued on the bus which is a positive edge on the
active low SS pin.

Table 10. Transition SS for communication to conclude

Step Operation Description Parameters Code snippet

1 Load TBU timestamp Read the current value of
the TBU timestamp in to
the MCS register, R3.

n/a MOV R3 TBU_TS0

3 Add R2 and R3 in R2 Set the match value at
0x68 from the current
timestamp.

n/a ADD R3 R2

4 Configure the ACB for SS Set on match event
(Compare in CCU0 only,
use timebase TBU_TS0).
The ATOM channel for SS
is configures as active low.

ACB = 0x0A MOVL ACB PIN_LO

5 Place the data for the
ATOM channel associated
with SS into the ARU port

Move R3 to the ARU port. ARU Read port = 0x0002 AWR R3 R3 ARU_PORT2

6 Return from subprogram The program counter PC
is loaded with current
value on the top of the
stack.

n/a RET

5.5 MCS delay routine
A delay routine is a useful code snippet to have for any software development. In this example, a delay is used to create a
time space between messages.

The MCS has direct access to the TBU timestamp counter and also has a "wait until register match" instruction, WURM,
which can be used to hold the MCS program counter for a predetermined amount of time or to wait until a trigger event from
another channel occurs. WURM suspends the MCS channel until the two registers (with a bit mask) match.

WURM A B C

Wait until A = (B & C)

A commonly used delay routine often involves a variable "duration" that is decremented in a loop, until it is zero. Within that
loop, a known finite time can be included by using a wait operation.

In the example given in this application note, the "duration" variable is stored in the MCS RAM with other data such as the
message loop counter at address 0x68 (0x1 in this particular case).

The timebase value is read and the match value is set at 2,500 clocks after "now." If the GTM TBU is running from an
80 MHz clock, the delay is 31.25 µs around each loop.

delay:
 MOV R3 TBU_TS0 # Load timestamp to R3
 MRD R4 tsk0_delay # Load loop counter to R4
 ATUL R4 0x000000 # Is R4 Zero?
 JBS STA Z exit # If R4 is Zero jump to exit
 MOVL R0 0x0009C4 # Load R0 with 2,500
 continue: ADD R3 R0 # Add R0 to the Timebase saved in R3

MCS software description

Generic Timer Module (GTM) Serial Peripheral Interface (SPI) Bus Emulation, Rev 1, 04/2014

12 Freescale Semiconductor, Inc.

 WURM R3 TBU_TS0 0xFFFF # Wait until the timebase matches R3
 SUBL R4 0x000001 # Decrement the loop counter in R4
 JBC STA Z continue # If not zero continue
 exit: RET # Exit subroutine

6 Core code to initialize the GTM for SPI
The C code below configures the TBU, the ATOM channels, loads the MCS software and message array into MCS RAM
memory, sets up the MISO input pin, TIM channel and FIFO channel, and the handshake with the MCS itself.

The MCS software is compiled in to a binary file and loaded into the MCS RAM as described in AN4351 available at
freescale.com. The MCS message array is given as an array of integers and copied into RAM at the specified location so that
it is easier to manipulate without the need to reassemble the MCS software each time.

// ARU Write Addresses from GTM104 Specification
#define MCS0_WRADDR0 0x077
#define MCS0_WRADDR1 0x078
#define MCS0_WRADDR2 0x079

unsigned int * dest, src;
extern int __MCS0_ADDR; /* Label of location of the raw data set in the linker */

void memcpy_swap_word(unsigned int *, unsigned int *, signed int);

void SPI()
{
int i;
gtm_ptr p;

// Configure TBU
GTM_TBU.CH0_CTRL.R = 0x00000000;// Select CMU_CLK0
GTM_TBU.CHEN.R = 0x00000002;// Switch on TBU0

/***
* ATOM0_CH2 = SS
* ATOM0_CH1 = SCK
* ATOM0_CH0 = MOSI
* GPIO PC3 = MISO & connect SCK to TIM0_CH0 = PF1
**/

/* Program MCS. First check whether the RAM RESET is complete.
WAIT until RAM_RST == 0, wait RAM Reset after startup. */
while(GTM_MCS_0.CTRL.R == 0x00010000);

GTM_ATOM_0.CH2_RDADDR.R = MCS0_WRADDR2;// used for reading
GTM_ATOM_0.CH1_RDADDR.R = MCS0_WRADDR1;// used for reading
GTM_ATOM_0.CH0_RDADDR.R = MCS0_WRADDR0; // used for reading
GTM_ATOM_0.CH2_CTRL.R = 0x00000008;// SOMI, ARU_EN=1, SL=0
GTM_ATOM_0.CH1_CTRL.R = 0x0400500B;// SOMS, CLK5, ARU_EN=1, OSM=1, UPEN_CTRL=1, ACB0=0, SL=0
GTM_ATOM_0.CH0_CTRL.R = 0x0400600B;// SOMS, CLK6, ARU_EN=1, OSM=1, UPEN_CTRL=1, ACB0=0, SL=0

/*ATOM0_CH0-2 switch on*/
GTM_ATOM_0.AGC_OUTEN_CTRL.R = 0x0000002A;
GTM_ATOM_0.AGC_ENDIS_CTRL.R = 0x0000002A;

GTM_ATOM_0.AGC_FUPD_CTRL.R = 0x0000002A;
GTM_ATOM_0.AGC_INT_TRIG.R = 0x00000015;

GTM_ATOM_0.AGC_GLB_CTRL.R = 0x002A0001;// Host Trigger to start ATOM

// load raw bin data in to MCS0 RAM = 0xFFD38000
dest = (int)&MCS0_MEM; /* CPU view of the address of the MCS memory space */
src = (int)&__MCS0_ADDR; /* Label of location of the raw data set in the linker */
memcpy_swap_word(dest, src, 270);

Core code to initialize the GTM for SPI

Generic Timer Module (GTM) Serial Peripheral Interface (SPI) Bus Emulation, Rev 1, 04/2014

Freescale Semiconductor, Inc. 13

http://www.freescale.com

p = &MCS0_MEM + 0x1C;
for(i=0;i<=67;i++)
{
/* Copying the content of the array mcs0spi_messages[i] into MCS0 RAM0 */
p[i]=mcs0SPI_messages[i];
}

/* Use PC[3] as an input pin */
SIUL2.MSCR_IO[35].B.SSS = 0;
SIUL2.MSCR_IO[35].B.ODC = 0;
SIUL2.MSCR_IO[35].B.IBE = 1;

/* Configure the TIM for MISO reception */
/* Channel 0 captures the edge event of the clock */
GTM_TIM_0.CH0_CTRL.R = 0x00002c05; //configure TIM0 CH0 to interrupt on every rising edge
while(GTM_TIM_0.CH0_CTRL.R!=0x00002c05); //confirm the configuration is effective
GTM_TIM_0.CH0_IRQ_EN.R = 1; //NEWVAL_IRQ Enabled

/* Configure FIFO0 CH0 */
GTM_FIFO_0.CHANNEL[0].CTRL.R = 0x0000000D; // RAM write unlocked, FIFO flushed and Ring
Buffer Mode
GTM_FIFO_0.CHANNEL[0].IRQ_EN.R = 0x00000002; //Enable Full interrupt

/* Start the MCS Program */
GTM_MCS_0.CH0_CTRL.R = 0x00000001;// Enable Channel 0 of MCS module 0
GTM_MCS_0.CH1_CTRL.R = 0x00000001;// Enable Channel 1 of MCS module 0

/*Check if the Channel program is ready and MCS_STRG is set, then start configure the Ports.
WAIT until MCS0 STRG == 0x00000004
MCS --> ATOM Output finished when MCS0_STRG == h#00000004 */
while((GTM_MCS_0.STRG.R & 0x4) == 0); // MCS0_STRG != 4

/*Next Trigger for MCS to signalize "Port config finished" */
GTM_MCS_0.STRG.R = 0x00000001; // Port configuration finished, MCS running
/*Now the MCS is running in a infinite loop. */

}/*END of function SPI()*/

void memcpy_swap_word(unsigned int * dst, unsigned int * src, signed int size)
{
while (size-- > 0)
{
*dst++ = SWAPW(*src);
src++;
}
}

Below is the SPI message array used in this example.

int mcs0spi_messages[68] = {0x0000005a, 0x00000001, 0x00000002, 0x00000004, 0x00000008,
0x00000010, 0x00000020, 0x00000040, 0x00000080, 0x00000040, 0x00000020, 0x00000010,
0x00000008, 0x00000004, 0x00000002, 0x00000001, 0x00000055, 0x000000aa, 0x000000a5,
0x0000005a, 0x00000001, 0x00000002, 0x00000004, 0x00000008, 0x00000010, 0x00000020,
0x00000040, 0x00000080, 0x00000040, 0x00000020, 0x00000010, 0x00000008, 0x00000004,
0x00000002, 0x00000001, 0x00000055, 0x000000aa, 0x000000a5, 0x0000005a, 0x00000001,
0x00000002, 0x00000004, 0x00000008, 0x00000010, 0x00000020, 0x00000040, 0x00000080,
0x00000040, 0x00000020, 0x00000010, 0x00000008, 0x00000004, 0x00000002, 0x00000001,
0x00000055, 0x000000aa, 0x000000a5, 0x0000005a, 0x00000001, 0x00000002, 0x00000004,
0x00000008, 0x00000010, 0x00000020, 0x00000040, 0x00000080, 0x00000040, 0x00000020};

The Hightec assembler generates the binary in the little endian, whereas the MPC57xx is big endian. The endianness can be
swapped using the following macro.

#define SWAPW(w) \
(((w & 0xff) << 24) | ((w & 0xff00) << 8) \
| ((w & 0xff0000) >> 8) | ((w & 0xff000000) >> 24)) /* change endianness */

The MOSI and SCK ATOM ports use a slower clock source which means that the CMU clocks used (CLK_5 and CLK_6)
should be set for larger dividers inside the GTM initialization function.

Core code to initialize the GTM for SPI

Generic Timer Module (GTM) Serial Peripheral Interface (SPI) Bus Emulation, Rev 1, 04/2014

14 Freescale Semiconductor, Inc.

GTM_CMU.CLK_CTRL[5].R = 0x4F; // define CMU_GCLK_EN/80 clock
GTM_CMU.CLK_6_CTRL.R = 0x9F; // define CMU_GCLK_EN/160 clock

7 Assembly code for SPI example
#==
Project Name : AN 4864
Company : Freescale
Author : Inga Harris
#==
.section .mcs.text,"axw",@progbits
.include "mcs.inc"
.set memid, 0
.set memsize, 0x1800

Define the values of the symbols used
.set ARU_PORT0, 0x0000 # MCS ARU port number 0
.set ARU_PORT1, 0x0001 # MCS ARU port number 1
.set ARU_PORT1, 0x0002 # MCS ARU port number 2
.set PIN_HI, 0x000009 # ACB = 0x09 set high when compare in CCU0 with TBU_TS0
.set PIN_LO, 0x00000A # ACB = 0x0A clear high when compare in CCU0 with TBU_TS0
.set ATOM0_CH0, 0x011F # ATOM0_CH0 ARU write address
.set ATOM0_CH1, 0x0120 # ATOM0_CH1 ARU write address
.set ATOM0_CH2, 0x0121 # ATOM0_CH2 ARU write address
.set message_array, 0x70 # offset address of the SPI messages

initialize reset vectors of different tasks

.org 0x0
jmp tsk0_init
jmp tsk1_init

allocate stack frames (each task has 16 memory locations)

.org 0x20
tsk0_stack:.lit24 0
tsk1_stack:.lit24 0

allocate and initialize memory variables
--
.org 0x64
tsk0_counter: .lit24 68 # number of messages to transmit
tsk0_delay: .lit24 1 # length of delay between messages

#**
tsk0: SPI master
#**
.org 0x180
tsk0_init:
movl R7, 0x000020 # Init stack pointer
movl STRG, 0x000004 # Set channel 2 trigger
movl R0, 0x000001 # Load R0 with 1
wurm R0, STRG, 0x0001 # Wait until channel 0 trigger is set by core
mov R3, TBU_TS0 # Load the current timestamp
movl R0, 0x0061A8 # Set R0 to 25,000
add R0, R3 # Add R0 and R3
wurm R0, TBU_TS0, 0xFFFF # Wait until the timstamp reaches that value
movl CTRG, 0x000007 # Clear the triggers
start_tx: movl R6, message_array # Initialize index register
mrd R1, tsk0_counter # Initialize loop counter

Assembly code for SPI example

Generic Timer Module (GTM) Serial Peripheral Interface (SPI) Bus Emulation, Rev 1, 04/2014

Freescale Semiconductor, Inc. 15

next_message: call ss_low # Lower the SS pin
call byte_tx # Send the data and clock
call delay # Wait tsk0_delay * 2,500 clocks
call ss_high # Raise the SS pin
call delay # Wait tsk0_delay * 2,500 clocks
addl R6, 0x000004 # Increment index register
subl R1, 0x000001 # Decrement loop counter
jbc STA, Z, next_message # Is the loop counter zero? No = next_message
jmp start_tx # Loop ended. Start from beginning

#**
ss_low
#**
ss_low:
mov R3, TBU_TS0 # Reload the current timestamp
mrd R2, 64 # Load the value from tsk0_counter
add R3, R2 # Add tsk0_counter to the timestamp
movl ACB, PIN_HI # Set ACB value
awr R3, R3, ARU_PORT2 # Send data, shift counter and ACB to ARU
ret # Return from subroutine

#**
byte_tx
#**
byte_tx:
mrdi R5, R6 # Set data to be sent
movl R3, 0x000017 # Set number of bits to shift
movl ACB, 0 # Set shift direction
movl STRG, 0x000002 # Set channel 1 trigger to initiate clock
awr R3, R5, ARU_PORT0 # Send data, shift counter and ACB to ARU
ret # Return from subroutine

#**
ss_high
#**
ss_high:
mov R3, TBU_TS0 # Reload the current timestamp
add R3, R2 # Add tsk0_counter to the timestamp
movl ACB, PIN_LO # Set ACB value
awr R3, R3, ARU_PORT2 # Send data, shift counter and ACB to ARU
ret

#**
delay
#**
delay:
mov R3, TBU_TS0 # Load timestamp
mrd R4, tsk0_delay # Load loop counter
atul R4, 0x000000 # Is it zero?
jbs STA, Z, exit # If zero exit subroutine
movl R0, 0x0009c4 # Load R0 with 2,500
continue: add R3, R0 # Add 2,500 to timestamp
wurm R3, TBU_TS0, 0xFFFF # Wait until timebase matches R3
subl R4, 0x000001 # Decrement loop counter
jbc STA, Z, continue # If not zero jump to continue
exit: ret # return from subroutine

#**
tsk1: SCK
#**
.org 0x250
tsk1_init:
movl R7, 0x000024 # Init stack pointer
movl R0, 0x000002 # Load R0 with 2
movl R5, 0x00AAAA # Set data to be sent

Assembly code for SPI example

Generic Timer Module (GTM) Serial Peripheral Interface (SPI) Bus Emulation, Rev 1, 04/2014

16 Freescale Semiconductor, Inc.

movl R3, 0x000017 # Set number of bits to shift
movl ACB, 0 # Set shift direction
loop: wurm R0, STRG, 0x00002 # Wait until channel 0 triggers the clock
movl CTRG, 0x000002 # Clear the trigger
awr R3, R5, ARU_PORT1 # Send data, shift counter and ACB to ARU
jmp loop # Loop ended. Wait for next trigger

Assembly code for SPI example

Generic Timer Module (GTM) Serial Peripheral Interface (SPI) Bus Emulation, Rev 1, 04/2014

Freescale Semiconductor, Inc. 17

How to Reach Us:

Home Page:
freescale.com

Web Support:
freescale.com/support

Information in this document is provided solely to enable system and
software implementers to use Freescale products. There are no express
or implied copyright licenses granted hereunder to design or fabricate
any integrated circuits based on the information in this document.
Freescale reserves the right to make changes without further notice to
any products herein.

Freescale makes no warranty, representation, or guarantee regarding
the suitability of its products for any particular purpose, nor does
Freescale assume any liability arising out of the application or use of
any product or circuit, and specifically disclaims any and all liability,
including without limitation consequential or incidental damages.
“Typical” parameters that may be provided in Freescale data sheets
and/or specifications can and do vary in different applications, and
actual performance may vary over time. All operating parameters,
including “typicals,” must be validated for each customer application by
customer's technical experts. Freescale does not convey any license
under its patent rights nor the rights of others. Freescale sells products
pursuant to standard terms and conditions of sale, which can be found
at the following address: freescale.com/SalesTermsandConditions.

Freescale, the Freescale logo, and Qorivva are trademarks of Freescale
Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. All other product or
service names are the property of their respective owners. The Power
Architecture and Power.org word marks and the Power and Power.org
logos and related marks are trademarks and service marks licensed by
Power.org.

© 2014 Freescale Semiconductor, Inc.

Document Number AN4864
Revision 1, 04/2014

http://www.freescale.com
http://www.freescale.com/support
http://freescale.com/SalesTermsandConditions

	Introduction
	Overview
	Block diagram
	Chip level software description
	ATOM operating as SS
	ATOM operating as MOSI and SCK
	Jitter observed on MOSI

	TIM and input port operating as MISO

	MCS software description
	Handshake with CPU
	Lower SS signal
	Send message
	Raise SS signal
	MCS delay routine

	Core code to initialize the GTM for SPI
	Assembly code for SPI example

