
Freescale Semiconductor, Inc. Document Number: AN4874
Application Note Rev. 0, 03/2014

© 2014 Freescale Semiconductor, Inc.

KE06 CAN Boot Loader Design
by: Jonson Chen

1 Overview

There are many applications or products need to
upgrade firmware in field to fix some bugs or
sometimes to improve the performance. Most of
these applications and products do not use the
dedicated debug interface, but only use the
communication interfaces, such as UART, USB,
I2C, and so on. In this case, a serial boot loader
is required to perform firware upgrade via one
of the communication interfaces without
debugger or dedicated program tools.

This application note provides the guidelines to
design boot loader on KE06 MCU with CAN
interface.

Contents
1 Overview ... 1

2 Introduction ... 2

3 Software architecture 2

3.1 Convert board 2

3.2 Target board 4

4 Memory allocation 9

5 Conclusion ... 10

6 References ... 10

7 Acronyms and abbreviations 10

8 Revision history 11

 KE06 CAN Boot Loader Design, Rev. 0, 03/2014
2 Freescale Semiconductor, Inc.

2 Introduction
Boot loader is a built-in firmware, which is implemented to program the application code to flash
through the communication interface. This application note describes the procedure to use FRDM-
KE06Z board to convert the UART data from PC terminal to CAN bus. In addition, it explains the
procedure to communicate with the target board, FRDM-KE06Z, to implement the updates of target
application code.

Figure 1. Top-level view

The boot loader is using the features of AN2295SW_Rev1 software tool, which is widely used in all the
Kinetis devices to update application code through an UART interface.

The convert board uses freedom board, FRDM-KE06Z, to convert the UART bus to CAN bus and to
repackage the data transfer to the target board. The target board will program the application code to
flash.

The CAN boot loader sample code can directly run on the FRDM-KE06Z board, and it will be
downloaded to the target board, “Bridge_UARTToCAN” to Convert board, and project “RTC_demo” is
for generating S19 file, which can be downloaded using PC software.

3 Software architecture
Win_hc08sprg.exe software decodes S19 file and communicate with convert board through FC protocol.

3.1 Convert board
The PC cannot communicate with the target board via CAN directly, for this, we need a convert board to
transfer the UART signal (PC end) into CAN signal (target board). Therefore, the convert board
communicates with PC terminal through FC protocol. The convert board repackages data frame with
data length and checksum to receive or transmit data package with target board using CAN bus.

 KE06 CAN Boot Loader Design, Rev. 0, 03/2014
Freescale Semiconductor, Inc. 3

Table 1. Package content

Then it reads data from the target board. The first data received determines if the target board is ready or
not. If it is ready (command |0x80), then it indicates correct acknowledge is received to the receiver, for
example, the command send to the target board is 0x03 and the received ACK should be 0x03|0x80.

At first, it will send FC_CMD_HOOK (0x02) to the target board and then read status from the target
board to check if it works in boot loader mode or user code mode. If the received state is
FC_CMD_HOOK|0x80, then it will send 0xFC to start hook with PC terminal, otherwise, it will always
check state of target board till receiving FC_CMD_HOOK|0x80. The software flowchart of convert
board is as follows:

Figure 2. Software flowchart of convert board

The convert board functions as a bridge between PC terminal and target board, using that the S19 file
can be downloaded to the target board from PC.

Data length Original data frame Checksum

 KE06 CAN Boot Loader Design, Rev. 0, 03/2014
4 Freescale Semiconductor, Inc.

3.2 Target board
The target board contains built-in boot loader code. After startup, the target board first checks the work
mode of the boot loader code, that is, whether it is in boot mode or user code mode. There are various
methods to perform this check. For example, check the level of an external GPIO, if the GPIO pin is
low, then it will enter into boot mode to run boot loader and if the GPIO pin is high, then it will enter
user code mode to run application code.
Because of the limited GPIO resources in MCU, the GPIO pins might not be available for the boot
loader detecting mode. In this case, a different method is introduced to determine work mode through
hook up command. If overtime occurs and hook up fails, then the GPIO enter into user mode, and if it
succeeds, then the GPIO enter into boot loader mode.

Figure 3. Check flag flowchart

3.2.1 CAN node driver
The target board configures CAN as a CAN node. It receives and transmits data in CAN interrupt
service routine. For more information on CAN interrupt flow, see KE06Z reference manual. The sample
code snippet of CAN driver, for CAN communication processing, is as follows:

void MSCAN_RxProcessing(void)
{
 u32RxInterruptCounter ++;
 if(CAN_IsRxBuffFull(MSCAN))
 {

 KE06 CAN Boot Loader Design, Rev. 0, 03/2014
Freescale Semiconductor, Inc. 5

 if(u8RxFrameBufferFreeLength!=0)
 {
 CAN_ReadOneFrameFromBuff(MSCAN,&sRxFrame[u8RxFrameBufferIndex++]);
 if(u8RxFrameBufferIndex>=CAN_BUFFER_LENGTH)
 {
 u8RxFrameBufferIndex = 0;
 }
 u8RxFrameBufferFreeLength--;
 }
 else
 {
 //receive frame buffer is full, clear buffer in MSCAN
 // clear receiver full flag
 CAN_ClearRXF_Flag(MSCAN);
}
 }
}

void MSCAN_TxProcessing(void)
{
 if(CAN_IsOverRunFlag(MSCAN))
 {
 // overrun error occur
 CAN_ClearOVRIF_Flag(MSCAN);
 }
 if(CAN_IsWakeUpIntFlag(MSCAN))
 {
 CAN_ClearWUPIF_Flag(MSCAN);
 }
 if(CAN_IsStatusChangeFlag(MSCAN))
 {
 CAN_ClearCSCIF_Flag(MSCAN);
 // Get currently status
 CAN_GetReceiverStatus(MSCAN);
 CAN_GetReceiveErrorCount(MSCAN);
 }
 if(!CAN_CheckSendBufferFrame(MSCAN,&sCAN_TxBuff))
 {
 // no data in transmitting buffer,disbale interrupt
 CAN_TransmitterEmptyIntDisable(MSCAN);
 }
}

CAN set gbI2CRecFrameFlag flag after it receives data frame so that the application code can further
process data frame.

3.2.2 Command description
Always check gbI2CRecFrameFlag flag in boot loader loop, the boot loader starts to process the
received frame when the flag is 1. First of all, use checksum to verify if received frame is correct or not.
After verifying, unpack the frame and process the appropriate command.

 KE06 CAN Boot Loader Design, Rev. 0, 03/2014
6 Freescale Semiconductor, Inc.

Table 2. Command package
Total data

length(4 bytes)
Command
(1 bytes) Address(4 bytes) Number of data(1

bytes) Data
Checksum
(1 bytes)

The overview of all the commands is described in the following table:

Table 3. Command list

Command function Command Loader positive
acknowledge Loader negative acknowledge

Hook up 0x02 0x82,0xFC 0x82,0x03

Ident 0x49 0xc9,ident information 0xc9,0x03

Erase sector 0x45 0xc5,0xfc 0xc5,0x03

Write 0x57 0xd7,0xfc 0xd7,0x03

Read 0x52 0xd2,data 0xd2,0x03

Quit 0x51 No ack No ack

3.2.2.1 Hook up
The data package received by hook up command (coded as 0x02) is as follows:

Table 4. Hook up command package

Total data
length(4 bytes)

Command
(1 byte) Address(4 bytes) Number of

data(1 byte) Data Checksum
(1 byte)

6 0x02 - - - CS

The following table represents the command acknowledged by Hook up command:

Table 5. Hook up command acknowledge
Command
(1 bytes) Status

0x82 0xFC/0x03

If the status code received is 0xFC it indicates the target board works in boot loader mode, and is ready
to communication with the convert board.

If the status code is 0x03, is the target board is in user mode, and can’t receive any other commands.

3.2.2.2 Ident Command
The data package received by Ident command (coded as 0x49) is as follows:

 KE06 CAN Boot Loader Design, Rev. 0, 03/2014
Freescale Semiconductor, Inc. 7

Table 6. Ident command package
Total data

length(4 bytes)
Command
(1 bytes) Address(4 bytes) Number of

data(1 bytes) Data Checksum
(1 bytes)

6 0x49 - - - CS

The information required for MCU is as follows:
• Protocol version – 1 bytes
• System Device Identification Register (SDID) content (0x06080000) for the KE06 80LQFP,

r(23-20 bits) is the chip revision number reflecting the current silicon level – 2 bytes
• Number of reprogrammable memory areas – 4 bytes
• Start address of the reprogrammable area – 4 bytes
• End address of reprogrammable memory area – 4 bytes
• Address of the original vector table (1 KB) – 4 bytes
• Address of the new vector table (1 KB) – 4 bytes
• Length of the MCU erase blocks – 4 bytes
• Length of the MCU write blocks – 4 bytes
• Identification string, zero terminated – n bytes

The following structure is used to identify the MCU information:

typedef uint32_t addrtype;
typedef struct
{
 unsigned char Reserve ; // reserve bytes for 4 bytes allign
 unsigned char Version; // version
 uint16_t Sdid; // Sd Id */
 addrtype BlocksCnt; // count of flash blocks
 addrtype FlashStartAddress; // flash blocks descriptor
 addrtype FlashEndAddress;
 addrtype RelocatedVectors; // Relocated interrupts vector table
 addrtype InterruptsVectors; // Interrupts vector table
 addrtype EraseBlockSize; // Erase Block Size
 addrtype WriteBlockSize; // Write Block Size
 char IdString[ID_STRING_MAX]; // Id string
}FC_IDENT_INFO;

The following table represents the command acknowledged by Ident command:

Table 7. Ident command acknowledge

Command
(1 bytes) Data

0xc9 Ident information

 KE06 CAN Boot Loader Design, Rev. 0, 03/2014
8 Freescale Semiconductor, Inc.

3.2.2.3 Erase command
The data package received by Erase command (coded as 0x45) is as follows:

Table 8. Erase command package
Total data

length(4 bytes)
Command
(1 bytes) Address(4 bytes) Number of

data(1 bytes) Data Checksum
(1 bytes)

10 0x45 Address - - CS

The following table represents the command acknowledged by Erase command:

Table 9. Erase command acknowledge
Command
(1 bytes) Status

0xc5 0xFC/0x03

3.2.2.4 Write command
The data package received by Write command (coded as 0x57) is as follows:

Table 10. Write command package

Total data
length(4 bytes)

Command
(1 bytes) Address(4 bytes) Number of

data(1 bytes) Data Checksum
(1 bytes)

Total length 0x57 Address Data length Data CS

The following table represents the command acknowledged by Write command:

Table 11. Erase command acknowledge
Command
(1 bytes) Status

0xd7 0xFC/0x03

3.2.2.5 Read command
The data package received by Read command (coded as 0x52) is as follows:

Table 12. Read command package
Total data

length(4 bytes)
Command
(1 bytes) Address(4 bytes) Number of

data(1 bytes) Data Checksum
(1 bytes)

11 0x52 Address Data length to be
read - CS

 KE06 CAN Boot Loader Design, Rev. 0, 03/2014
Freescale Semiconductor, Inc. 9

The following table represents the command acknowledged by Read command:

Table 13. Read command acknowledge
Command
(1 bytes) Data

0xd2 Data

3.2.2.6 Quit command
Acknowledgement for this command is not required.

After the Quit command is received, the target board will quit the boot loader mode and enter the user
mode.

4 Memory allocation
The boot loader code occupies the first region of the FLASH memory (the lowest memory address
space).This placement moves the beginning of the available memory space and it is necessary to shift
this address in the user application linker files (ICF file in IAR and in LCF file in CodeWarrior). The
following code snippet demonstrates the method to modify the ICF linker file in IAR6.5:

// default linker file
define symbol __ICFEDIT_region_ROM_start__ = 0x00;
// modified Linker file for KE06Z 128KB flash
define symbol __ICFEDIT_region_ROM_start__ = 0x1000;

 KE06 CAN Boot Loader Design, Rev. 0, 03/2014
10 Freescale Semiconductor, Inc.

Figure 4. Memory allocation

5 Conclusion
This application note describes the procedure to implement CAN boat loader by using a bridge board as
a convert board and other board as target board. Users can also add boot loader functionality by in the
application software.

6 References
Following references are available on freescale.com:

• Developer’s Serial Bootloader application note (document AN2295)

7 Acronyms and abbreviations
Table 14. Acronyms

Term Meaning

UART Universal Asynchronous Receiver/Transmitter

CAN Controller Area Network

FCCOB Flash Common Command Object

WDOG Watchdog

http://www.freescale.com/�

 KE06 CAN Boot Loader Design, Rev. 0, 03/2014
Freescale Semiconductor, Inc. 11

Table 14. Acronyms

Term Meaning

MCG Multipurpose Clock Generator

8 Revision history
Table 15. Revision history

Revision number Date Substantial changes

0 03/2014 Initial release

How to Reach Us:

Home Page:
freescale.com

Web Support:
freescale.com/support

Information in this document is provided solely to enable system and software
implementers to use Freescale products. There are no express or implied copyright
licenses granted hereunder to design or fabricate any integrated circuits based on the
information in this document.

Freescale reserves the right to make changes without further notice to any products
herein. Freescale makes no warranty, representation, or guarantee regarding the
suitability of its products for any particular purpose, nor does Freescale assume any
liability arising out of the application or use of any product or circuit, and specifically
disclaims any and all liability, including without limitation consequential or incidental
damages. “Typical” parameters that may be provided in Freescale data sheets and/or
specifications can and do vary in different applications, and actual performance may vary
over time. All operating parameters, including “typicals,” must be validated for each
customer application by customer’s technical experts. Freescale does not convey any
license under its patent rights nor the rights of others. Freescale sells products pursuant
to standard terms and conditions of sale, which can be found at the following address:
freescale.com/SalesTermsandConditions.

Freescale, the Freescale logo, and Kinetis are trademarks of Freescale Semiconductor,
Inc., Reg. U.S. Pat. & Tm. Off. All other product or service names are the property of their
respective owners. ARM and Cortex are registered trademarks of ARM Limited (or its
subsidiaries) in the EU and/or elsewhere. All rights reserved.
© 2014 Freescale Semiconductor, Inc.

 Document Number: AN4874
 Rev. 0
 03/2014

http://www.freescale.com/�
http://www.freescale.com/�
http://www.freescale.com/�

	1 Overview
	2 Introduction
	3 Software architecture
	3.1 Convert board
	3.2 Target board

	4 Memory allocation
	5 Conclusion
	6 References
	7 Acronyms and abbreviations
	8 Revision history

