Free_sca_le Semiconductor Document Number: AN4903
Application Note Rev. 0, 03/2014

EEPROM Emulation Driver for the
Kinetis E Series Microcontrollers

by Wang Peng

Electrically erasable, programmable, read-only memory Contents
(EEPROM), which can be byte- or word-programmed and Isnmdumon T :
i i . . . oftware Architecture 2
erased, is often used in automotive electronic control units EEPROM emulation driver example 3
(ECUs). This flexibility for program and erase operations CONCIUSION ..ottt et 9
makes it suitable for data storage of application variables
that must be maintained when power is removed and needs
to be updated individually during run-time. For the devices
without EEPROM memory, the page-erasable Flash memory
can be used to emulate the EEPROM through EEPROM
emulation software.

The demo code shows how to emulate EEPROM on Flash.

Referencescoiiiiiiiinnnn.. 9
GlOSSATY oot 9
Revision history i, 9

Nk L=

1 Introduction

The Kinetis E series microcontrollers (except KE02) do not
have an on-chip EEPROM, however, the devices can store
non-volatile data in the on-chip Flash memory using the
software described in this application note, thus saving the
cost of an external EEPROM.

One erasable Flash unit is equivalent to one sector. Because
the Flash programming only works on an erased address, the
Flash memory must be erased before programming. Directly
programming data to Flash without the software algorithm

\J

© 2014 Freescale Semiconductor, Inc. All rights reserved. -
C 4

A XY

freescale"

Software Architecture
results in frequent erasing of the Flash. This frequent erasing reduces the life of the Flash and increases the
writing time of data.

The EEPROM emulation driver for the Kinetis E series implements the fixed-length data record scheme
on Flash and includes the following features:

* organizing data items
* initializing EEPROM
* checking EEPROM status
» reading, writing and deleting data items;
including an algorithm to save data to avoid directly and frequently writing to Flash

2 Software Architecture

Figure 1 illustrates a simple API function for customers to implement an EEPROM emulation driver from

Flash memory.
API| Function EEPROM driver

o Initialize flash
Initialize

EEPROM

Find the valid data
information

U ; Read the current valid
ser Reading data information by
Interface Data address

Write data to flash

Write the previous data

information to invalid
flag

Figure 1. Timing diagram elements

API functions are listed as follows:
uint8 t EE Init(uint32 t *pCurrentAddress,uint32 t u32BusClock);
uint8 t EE Write(EE ItemInfoPtr pWrItemInfo,uint32 t *p32CurrentAddress);
uint8 t EE Read(EE ItemInfoPtr pRdItemInfo,uint32 t u32CurrentAddress);

uint8 t EE SearchIndex (uint32 t *pCurrentAddress);

EEPROM Emulation Driver for the Kinetis E Series Microcontrollers, Rev. 0

2 Freescale Semiconductor

Software Architecture

In the EEPROM driver, four states are defined. Each state is referred to as an item in the following and
throughout this document:

#define EE ITEM INFO NULL Oxff
#define EE ITEM INFO PROCESSING Oxe7
#define EE ITEM INFO VALID 0xa5

#define EE ITEM INFO INVALID 0x00

The description of each of the four states follows. Use this information to implement a state machine to
identify valid information.

2.1

EE_ITEM_INFO NULL

Indicates that the current data item is NULL. The data item is valid and is programmable to write
new data to the current address.

EE_ITEM INFO PROCESSING

Indicates that the current data item is in process. The processes can be that the current item is being
written, that the current item is not complete for the entire updated sequence, or that the power is
removed when the current item is being written to Flash.

EE _ITEM_INFO_VALID

Indicates that the current data item is valid. In this state, the data item is good for use.
EE ITEM_ INFO INVALID

Indicates that the current data item is invalid. The data item is old and has been replaced.

Memory map

This EEPROM emulation algorithm saves the data item. Users can also define the length of each data item.
Refer to the following macro definition in file “ee_emulation.h” for programming instructions.

/* here ensure length divide 4 equal to 0, so that flash operation aligns with 4 bytes */
#define EE ITEM INFO LENGTH 16

#if ((EE_ITEM INFO LENGTH%4) != 0)

#error "please ensure EE information length is align with 4 bytes"

#endif

To save the Flash memory space and facilitate the code, the defined length must be divided by four.

Figure 2 illustrates the default memory map of Kinetis E series with a typical allocation of resources for
non-volatile data storage.

One data item contains a structure body as follows:

typedef struct
{
uint8 t u8Flag; // indicates item status
uint8 t uBInfoBuff [EE_ITEM INFO LENGTH - 1]; // data item buffer

}EE ItemInfoType, *EE ItemInfoPtr;

EEPROM Emulation Driver for the Kinetis E Series Microcontrollers, Rev. 0

Freescale Semiconductor 3

\
4

(

Software Architecture

Here the u8Flag indicates the item’s status.

Write a new item
data to flash

OWfeminale) EEPROM

Old item(invalid)

Next item(n+1)(NULL,erased)
Next item(NULL,erased)
" Next item(NULL erased)

Flash Space

Flash_EEPROM

User Code

Old item(invalid)

Currentitemn(invalid) ~ — >

Current item
Next item(NULL,erased)
Next item(NULL,erased)

Figure 2. Memory allocation in Flash

2.2 EEPROM life time optimization

Users must specify the start address and end address for the EEPROM emulation driver. It is also necessary
to reserve enough space for the EEPROM emulation driver, EEPROM size, and each data item’s length.

#define EE_START ADDRESS 0xC000 // start address

#define FLASH PAGE SIZE 512 // number bytes of each page or sector
#define EE_PAGE NUMBER 2 // reserved pages for EEPROM

#define EE END ADDRESS EE_START ADDRESS +FLASH PAGE SIZE*EE_PAGE_NUMBER-1

The previous macros define the start address, the number of pages used for the EEPROM, the number of
bytes per page—that is, sector, as well as the end address used for EEPROM emulation driver.

The optimal EEPROM life time was evaluated by the formula in Equation 1.
Lift time = Fc x EE_size/ltem_length Eqn. 1

Where:

Fc—Indicates the Flash programming cycle. For Kinetis E series the typical cycle number is 100K.
EE size—Indicates the Flash space reserved for the EEPROM.

Item_length—Indicates the data length for each item.

EEPROM Emulation Driver for the Kinetis E Series Microcontrollers, Rev. 0

4 Freescale Semiconductor

Software Architecture

2.3 EEPROM initialization

To use the EEPROM emulation driver, it is necessary to call the “EE_Init” function to complete EEPROM
initialization. This function performs Flash initialization and searches for the valid Flash address. It will
search the entire Flash space assigned to EEPROM, find and return the valid data item’s address, or if no
valid data item is found, return a NULL data item address.

For the Kinetis E series microcontrollers, it is necessary to initialize the Flash to configure the Flash clock
to about 1 MHz, otherwise a Flash operation error occurs. After the Flash clock is initialized, then the Flash
can be erased or programmed.

After calling the initialization function, a valid data item can be informed by “EE_Read” and a new data
item can be written to Flash.

Figure 3 provides a detailed initialization flow chart.

Initialize Flash

If all item are

invalid, erase the 2 \
sector of start Get the address of Skip currentitem,
N(from O start) item i
addressand return N) J | checknextitem(n+1) |

start address

N\
Currentdatais invalid,
or processing

Read the data flag,
check status

: 1
Currentdatais NULL K is valid

Currentdata]

If next item : : Next
flagis NULL Next item(n+1) Next item(n+1) is et
is NULL others(except item(n+1) is
NULL and valid) is valid
A
Erase the sector of
startaddress)
- ~ Return Return Updated item
the the information to valid
) address and return
Return the start :zx: C;;rent this address
address adaress

Figure 3. Initialization flow chart

2.4 Writing data to EEPROM

To update a new data item with the EEPROM emulation driver, call the “EE_Write” function. The write
function updates the new data to next data item’s address and then changes the current data item’s flag to
invalid. This prevents the new data item from being corrupted during the Flash write process due to

EEPROM Emulation Driver for the Kinetis E Series Microcontrollers, Rev. 0

Freescale Semiconductor 5

Software Architecture

unexpected causes such as power removal. The state machine provides an algorithm to enable restoration
of data information—that is, old valid information. Figure 4 illustrates writing data to the EEPROM
emulation driver.

item address

A
Read the currentitem Updated date to start
information

Write data to next
item address

N
Erase the start sector
of EEPROM

Check the current
item state

Current state is Current state is VALID ~
NULL or PROCESSING

If next item

Updated

p If next item space is address has
ate tot the same sector with reach to end
curren currentone address of

address EEPROM

\
Updated date to next
item address

\l, Erase the next sector
A
Write currentitem to

invalid state

.

Figure 4. Writing to EEPROM flow chart

The EEPROM emulation driver first checks the current data item’s state and then determines how to
update a new data item to the next address:

» If the current state is NULL, then it directly updates the next data item’s address.

o Ifthe current state is VALID, then it determines the next data item’s state, and if that state is NULL,
it saves the new data item to next address, and then changes the current data item’s flag to
INVALID.

When the data item is updated to Flash, it first writes the flag of “EE_ITEM_INFO_PROCESSING” to
the new data item. After the data item update completes, it changes the flag to
“EE_ITEM INFO VALID”. If the power is removed during the “EE_ITEM_INFO PROCESSING”
updating process, the flag of the current data item is updated to “EE_ITEM INFO INVALID”. When
powered resumes, the flag of the previous data item shows “EE_ITEM_INFO_ VALID” first, and then
restores to the new address. It changes the used data item’s address to “EE_ITEM INFO INVALID” by
using the “EE_Init()”. Figure 5 illustrates how to restore a data item’s information from a bad update.

EEPROM Emulation Driver for the Kinetis E Series Microcontrollers, Rev. 0

6 Freescale Semiconductor

oditemfinvalid) L

Old item(invalid) Old item(invalid)

new data

Next item(n+1)(NULL, erased)

Next item(n+2)(NULL, erased) Next item(n+2)(NULL, erased)

Next item (NULL, erased) Next item (NULL, erased)

Olditemfinvalia)

Old item(invalid) “EE Init”

Next item (NULL, erased) Next item (NULL, erased)

Old item(invalid)

Next item(n+2)(NULL, erased)

Copythe itemn to here

Figure 5. Restore Data from a old data item

2.5 Reading data from EEPROM

Software Architecture

Poweris
removed,

and
power on
next time

This API function reads the current data item from Flash and copies it to the RAM address specified by

user.
uint8 t EE Read(EE ItemInfoPtr pRdItemInfo,uint32 t u32CurrentAddress)
{
if (pRdItemInfo->u8Flag == EE ITEM INFO INVALID)
{
return FALSE;
}
memcpy ((void *)pRdItemInfo,
(uint8 t *)u32CurrentAddress, sizeof (EE_ItemInfoType))

return TRUE;

EEPROM Emulation Driver for the Kinetis E Series Microcontrollers, Rev. 0

Freescale Semiconductor

EEPROM emulation driver example

3 EEPROM emulation driver example
Figure 6 shows how to add the files in this project to use the EEPROM emulation driver.

Files 2N

E (F EEPROM_Emulation_de... v
& (] comman EEPROM
HE CJepu .
o D drvers drivers
HE AR

& (1 platorms

= (1 project

E] ee_emulation.c
——] ee_ermulation.h
[c] EEPROM_Emulation_d...
L— R isrh

—E (7 Cutput

Figure 6. EEPROM drivers
Both the EEPROM emulation drivers and the non-volatile memory drivers are necessary. The following
API functions are required for the Flash operations, including the initialization, programming, and erasing.
uintl6 t FLASH Init (uint32 t BusClock);
uintl6 t FLASH Program(uint32 t wNVMTargetAddress, uint8 t *pData, uintl6 t sizeBytes);
uintl6 t EEPROM EraseSector (uint32 t wNVMTargetAddress);

Figure 7 illustrates the basic flow of using EEPROM emulation driver.

Modify the
MACRO of EE_Read(&sEE_

EEPROM Get current ItemInfo,u32EE
emulation item data _CurrentAddres

s)

EEPROM
initialization

EE_Write(&sEE

User update |:> _ItemInfo,&u32
data EE_CurrentAdd

EE_Init(&u32EE ress)

_CurrentAddres
s,BUS_CLK_HZ);

Figure 7. Flow chart to use EEPROM emulation driver

A software demo using the EEPROM emulation driver on the Kinetis KEO6 is available in the
accompanying AN4903SW. The software driver runs on the FRDM-KE06Z board. The demo shows a
simple application to write new data to the EEPROM.

EEPROM Emulation Driver for the Kinetis E Series Microcontrollers, Rev. 0

8 Freescale Semiconductor

Conclusion

4 Conclusion

This document introduces a way to implement EEPROM on Flash. It enables users to rapidly establish the
EEPROM function on the Kinetis E series microcontrollers and to integrate software algorithms to
increase access speed and optimize the life of non-volatile memory. It also describes the features of the
restore machine when unexpected conditions occur such as power removal during the update operation. In
summary, it is easy for customers to use and migrate to different platforms.

5 References

« EEPROM Emulation Driver for the Kinetis E Series Microcontrollers Software (Document
number: AN4903SW)

» KEO04 Sub-Family Reference Manual (Document number: MKE04P24M48SFORM)
» KEO06 Sub-Family Reference Manual (Document number: MKEO6P80OM48SFORM)
+ KEO04 Sub-Family Data Sheet (Document number: MKE04P24M48SFO0)

» KEO06 Sub-Family Data Sheet (Document number: MKEO6P80M48SF0)

* AN2302 EEPROM Emulation for the MC9S12C32

* AN3040 EEPROM Emulation Driver for M68HC908 Microcontrollers

6 Glossary

NVM Non-Volatile Memory

EEPROM Electrically Erasable Programmable Read-Only Memory
FCCOB Flash Common Command OBject

WDOG Watchdog

MCG Multipurpose Clock Generator

7 Revision history

Revision 0 is the initial release of this document.

EEPROM Emulation Driver for the Kinetis E Series Microcontrollers, Rev. 0

Freescale Semiconductor 9

How to Reach Us:

Home Page:
freescale.com

Web Support:
freescale.com/support

Document Number: AN4903
Rev. 0
03/2014

Information in this document is provided solely to enable system and software
implementers to use Freescale products. There are no express or implied copyright
licenses granted hereunder to design or fabricate any integrated circuits based on the
information in this document.

Freescale reserves the right to make changes without further notice to any products
herein. Freescale makes no warranty, representation, or guarantee regarding the
suitability of its products for any particular purpose, nor does Freescale assume any
liability arising out of the application or use of any product or circuit, and specifically
disclaims any and all liability, including without limitation consequential or incidental
damages. “Typical” parameters that may be provided in Freescale data sheets and/or
specifications can and do vary in different applications, and actual performance may
vary over time. All operating parameters, including “typicals,” must be validated for each
customer application by customer’s technical experts. Freescale does not convey any
license under its patent rights nor the rights of others. Freescale sells products pursuant
to standard terms and conditions of sale, which can be found at the following address:

freescale.com/SalesTermsandConditions.

Freescale, the Freescale logo, and Kinetis are trademarks of Freescale Semiconductor,
Inc., Reg. U.S. Pat. & Tm. Off. All other product or service names are the property of
their respective owners. ARM and and the ARM Power logo are the registered
trademarks of ARM Limited.

© 2014 Freescale Semiconductor, Inc.

a
v}
o
w
=
S
&
|

ARM

> freescale"

	EEPROM Emulation Driver for the Kinetis E Series Microcontrollers Application Note

	1 Introduction
	2 Software Architecture
	Figure 1. Timing diagram elements
	2.1 Memory map
	Figure 2. Memory allocation in Flash

	2.2 EEPROM life time optimization
	2.3 EEPROM initialization
	Figure 3. Initialization flow chart

	2.4 Writing data to EEPROM
	Figure 4. Writing to EEPROM flow chart
	Figure 5. Restore Data from a old data item

	2.5 Reading data from EEPROM

	3 EEPROM emulation driver example
	Figure 6. EEPROM drivers
	Figure 7. Flow chart to use EEPROM emulation driver

	4 Conclusion
	5 References
	6 Glossary
	7 Revision history
	Contact Information

