
Freescale Semiconductor
Application Note

© 2014 Freescale Semiconductor, Inc. All rights reserved.

Electrically erasable, programmable, read-only memory
(EEPROM), which can be byte- or word-programmed and
erased, is often used in automotive electronic control units
(ECUs). This flexibility for program and erase operations
makes it suitable for data storage of application variables
that must be maintained when power is removed and needs
to be updated individually during run-time. For the devices
without EEPROM memory, the page-erasable Flash memory
can be used to emulate the EEPROM through EEPROM
emulation software.

The demo code shows how to emulate EEPROM on Flash.

1 Introduction
The Kinetis E series microcontrollers (except KE02) do not
have an on-chip EEPROM, however, the devices can store
non-volatile data in the on-chip Flash memory using the
software described in this application note, thus saving the
cost of an external EEPROM.

One erasable Flash unit is equivalent to one sector. Because
the Flash programming only works on an erased address, the
Flash memory must be erased before programming. Directly
programming data to Flash without the software algorithm

Document Number: AN4903
Rev. 0, 03/2014

Contents
1. Introduction . 1
2. Software Architecture . 2
3. EEPROM emulation driver example 8
4. Conclusion . 9
5. References . 9
6. Glossary . 9
7. Revision history . 9

EEPROM Emulation Driver for the
Kinetis E Series Microcontrollers
by Wang Peng

EEPROM Emulation Driver for the Kinetis E Series Microcontrollers, Rev. 0

2 Freescale Semiconductor

Software Architecture

results in frequent erasing of the Flash. This frequent erasing reduces the life of the Flash and increases the
writing time of data.

The EEPROM emulation driver for the Kinetis E series implements the fixed-length data record scheme
on Flash and includes the following features:

• organizing data items

• initializing EEPROM

• checking EEPROM status

• reading, writing and deleting data items;

including an algorithm to save data to avoid directly and frequently writing to Flash

2 Software Architecture
Figure 1 illustrates a simple API function for customers to implement an EEPROM emulation driver from
Flash memory.

Figure 1. Timing diagram elements

API functions are listed as follows:

uint8_t EE_Init(uint32_t *pCurrentAddress,uint32_t u32BusClock);

uint8_t EE_Write(EE_ItemInfoPtr pWrItemInfo,uint32_t *p32CurrentAddress);

uint8_t EE_Read(EE_ItemInfoPtr pRdItemInfo,uint32_t u32CurrentAddress);

uint8_t EE_SearchIndex(uint32_t *pCurrentAddress);

EEPROM Emulation Driver for the Kinetis E Series Microcontrollers, Rev. 0

Freescale Semiconductor 3

Software Architecture

In the EEPROM driver, four states are defined. Each state is referred to as an item in the following and
throughout this document:

#define EE_ITEM_INFO_NULL 0xff

#define EE_ITEM_INFO_PROCESSING 0xe7

#define EE_ITEM_INFO_VALID 0xa5

#define EE_ITEM_INFO_INVALID 0x00

The description of each of the four states follows. Use this information to implement a state machine to
identify valid information.

• EE_ITEM_INFO_NULL

Indicates that the current data item is NULL. The data item is valid and is programmable to write
new data to the current address.

• EE_ITEM_INFO_PROCESSING

Indicates that the current data item is in process. The processes can be that the current item is being
written, that the current item is not complete for the entire updated sequence, or that the power is
removed when the current item is being written to Flash.

• EE_ITEM_INFO_VALID

Indicates that the current data item is valid. In this state, the data item is good for use.

• EE_ITEM_INFO_INVALID

Indicates that the current data item is invalid. The data item is old and has been replaced.

2.1 Memory map
This EEPROM emulation algorithm saves the data item. Users can also define the length of each data item.
Refer to the following macro definition in file “ee_emulation.h” for programming instructions.

/* here ensure length divide 4 equal to 0, so that flash operation aligns with 4 bytes */

#define EE_ITEM_INFO_LENGTH 16

#if ((EE_ITEM_INFO_LENGTH%4) != 0)

#error "please ensure EE information length is align with 4 bytes"

#endif

To save the Flash memory space and facilitate the code, the defined length must be divided by four.

Figure 2 illustrates the default memory map of Kinetis E series with a typical allocation of resources for
non-volatile data storage.

One data item contains a structure body as follows:

typedef struct

{

uint8_t u8Flag; // indicates item status

uint8_t u8InfoBuff[EE_ITEM_INFO_LENGTH - 1]; // data item buffer

}EE_ItemInfoType,*EE_ItemInfoPtr;

EEPROM Emulation Driver for the Kinetis E Series Microcontrollers, Rev. 0

4 Freescale Semiconductor

Software Architecture

Here the u8Flag indicates the item’s status.

Figure 2. Memory allocation in Flash

2.2 EEPROM life time optimization
Users must specify the start address and end address for the EEPROM emulation driver. It is also necessary
to reserve enough space for the EEPROM emulation driver, EEPROM size, and each data item’s length.

#define EE_START_ADDRESS 0xC000 // start address

#define FLASH_PAGE_SIZE 512 // number bytes of each page or sector

#define EE_PAGE_NUMBER 2 // reserved pages for EEPROM

#define EE_END_ADDRESS EE_START_ADDRESS +FLASH_PAGE_SIZE*EE_PAGE_NUMBER-1

The previous macros define the start address, the number of pages used for the EEPROM, the number of
bytes per page—that is, sector, as well as the end address used for EEPROM emulation driver.

The optimal EEPROM life time was evaluated by the formula in Equation 1.

Lift time = Fc  EE_size/Item_length Eqn. 1

Where:

Fc—Indicates the Flash programming cycle. For Kinetis E series the typical cycle number is 100K.

EE_size—Indicates the Flash space reserved for the EEPROM.

Item_length—Indicates the data length for each item.

EEPROM Emulation Driver for the Kinetis E Series Microcontrollers, Rev. 0

Freescale Semiconductor 5

Software Architecture

2.3 EEPROM initialization
To use the EEPROM emulation driver, it is necessary to call the “EE_Init” function to complete EEPROM
initialization. This function performs Flash initialization and searches for the valid Flash address. It will
search the entire Flash space assigned to EEPROM, find and return the valid data item’s address, or if no
valid data item is found, return a NULL data item address.

For the Kinetis E series microcontrollers, it is necessary to initialize the Flash to configure the Flash clock
to about 1 MHz, otherwise a Flash operation error occurs. After the Flash clock is initialized, then the Flash
can be erased or programmed.

After calling the initialization function, a valid data item can be informed by “EE_Read” and a new data
item can be written to Flash.

Figure 3 provides a detailed initialization flow chart.

Figure 3. Initialization flow chart

2.4 Writing data to EEPROM
To update a new data item with the EEPROM emulation driver, call the “EE_Write” function. The write
function updates the new data to next data item’s address and then changes the current data item’s flag to
invalid. This prevents the new data item from being corrupted during the Flash write process due to

Initialize Flash

Get the address of
N(from 0 start) item

Read the data flag,
check status

Current data is NULL
Current data

is valid

Current data is invalid,
or processing

If next item
flag is NULL

Erase the sector of
start address

Return the start
address

Return
the

current
address

Updated item
information to valid
address and return

this address

Return
the

current
address

Skip current item,
check next item(n+1)

Next item(n+1)
is NULL

Next item(n+1) is
others(except
NULL and valid)

Next
item(n+1) is
is valid

Y

N

If all item are
invalid, erase the
sector of start

address and return
start address

EEPROM Emulation Driver for the Kinetis E Series Microcontrollers, Rev. 0

6 Freescale Semiconductor

Software Architecture

unexpected causes such as power removal. The state machine provides an algorithm to enable restoration
of data information—that is, old valid information. Figure 4 illustrates writing data to the EEPROM
emulation driver.

Figure 4. Writing to EEPROM flow chart

The EEPROM emulation driver first checks the current data item’s state and then determines how to
update a new data item to the next address:

• If the current state is NULL, then it directly updates the next data item’s address.

• If the current state is VALID, then it determines the next data item’s state, and if that state is NULL,
it saves the new data item to next address, and then changes the current data item’s flag to
INVALID.

When the data item is updated to Flash, it first writes the flag of “EE_ITEM_INFO_PROCESSING” to
the new data item. After the data item update completes, it changes the flag to
“EE_ITEM_INFO_VALID”. If the power is removed during the “EE_ITEM_INFO_PROCESSING”
updating process, the flag of the current data item is updated to “EE_ITEM_INFO_INVALID”. When
powered resumes, the flag of the previous data item shows “EE_ITEM_INFO_VALID” first, and then
restores to the new address. It changes the used data item’s address to “EE_ITEM_INFO_INVALID” by
using the “EE_Init()”. Figure 5 illustrates how to restore a data item’s information from a bad update.

Read the current item
information

Check the current
item state

Current state is
NULL

Current state is VALID
or PROCESSING

Write data to next
item address

If next item space is
the same sector with

current one

If next item
address has
reach to end
address of
EEPROM

Erase the next sector

Erase the start sector
of EEPROM

Updated date to next
item address

Updated date to start
item address

Updated
date to
current
address

Write current item to
invalid state

Y

N

N

Y

EEPROM Emulation Driver for the Kinetis E Series Microcontrollers, Rev. 0

Freescale Semiconductor 7

Software Architecture

Figure 5. Restore Data from a old data item

2.5 Reading data from EEPROM
This API function reads the current data item from Flash and copies it to the RAM address specified by
user.

uint8_t EE_Read(EE_ItemInfoPtr pRdItemInfo,uint32_t u32CurrentAddress)

 {

if(pRdItemInfo->u8Flag == EE_ITEM_INFO_INVALID)

{

return FALSE;

}

memcpy((void *)pRdItemInfo,

(uint8_t *)u32CurrentAddress,sizeof(EE_ItemInfoType));

return TRUE;

 }

Old item(invalid)

Old item(invalid)

...

Current item n(valid)

Next item(n+1)(NULL, erased)

Next item(n+2)(NULL, erased)

Next item (NULL, erased)

Old item(invalid)

Old item(invalid)

...

Current item n(valid)

Next item(n+1)(processing)

Next item(n+2)(NULL, erased)

Next item (NULL, erased)

Write a
new data

Old item(invalid)

Old item(invalid)

...

Current item n(valid)

Next item(n+1)(processing)

Next item(n+2)(NULL, erased)

Next item (NULL, erased)

Power is
removed,

and
power on
next time

Old item(invalid)

Old item(invalid)

...

Current item n(invalid)

Next item(n+1)(invalid)

Next item(n+2)(valid)

Next item (NULL, erased)

Function
“EE_Init”

Copy the item n to here

EEPROM Emulation Driver for the Kinetis E Series Microcontrollers, Rev. 0

8 Freescale Semiconductor

EEPROM emulation driver example

3 EEPROM emulation driver example
Figure 6 shows how to add the files in this project to use the EEPROM emulation driver.

Figure 6. EEPROM drivers

Both the EEPROM emulation drivers and the non-volatile memory drivers are necessary. The following
API functions are required for the Flash operations, including the initialization, programming, and erasing.

uint16_t FLASH_Init(uint32_t BusClock);

uint16_t FLASH_Program(uint32_t wNVMTargetAddress, uint8_t *pData, uint16_t sizeBytes);

uint16_t EEPROM_EraseSector(uint32_t wNVMTargetAddress);

Figure 7 illustrates the basic flow of using EEPROM emulation driver.

Figure 7. Flow chart to use EEPROM emulation driver

A software demo using the EEPROM emulation driver on the Kinetis KE06 is available in the
accompanying AN4903SW. The software driver runs on the FRDM-KE06Z board. The demo shows a
simple application to write new data to the EEPROM.

EEPROM
drivers

EE_Init(&u32EE
_CurrentAddres
s,BUS_CLK_HZ);

EEPROM
initialization

User update
data

Get current
item data

EE_Read(&sEE_
ItemInfo,u32EE
_CurrentAddres

s)

EE_Write(&sEE
_ItemInfo,&u32
EE_CurrentAdd

ress)

Modify the
MACRO of
EEPROM
emulation

EEPROM Emulation Driver for the Kinetis E Series Microcontrollers, Rev. 0

Freescale Semiconductor 9

Conclusion

4 Conclusion
This document introduces a way to implement EEPROM on Flash. It enables users to rapidly establish the
EEPROM function on the Kinetis E series microcontrollers and to integrate software algorithms to
increase access speed and optimize the life of non-volatile memory. It also describes the features of the
restore machine when unexpected conditions occur such as power removal during the update operation. In
summary, it is easy for customers to use and migrate to different platforms.

5 References
• EEPROM Emulation Driver for the Kinetis E Series Microcontrollers Software (Document

number: AN4903SW)

• KE04 Sub-Family Reference Manual (Document number: MKE04P24M48SF0RM)

• KE06 Sub-Family Reference Manual (Document number: MKE06P80M48SF0RM)

• KE04 Sub-Family Data Sheet (Document number: MKE04P24M48SF0)

• KE06 Sub-Family Data Sheet (Document number: MKE06P80M48SF0)

• AN2302 EEPROM Emulation for the MC9S12C32

• AN3040 EEPROM Emulation Driver for M68HC908 Microcontrollers

6 Glossary
NVM Non-Volatile Memory

EEPROM Electrically Erasable Programmable Read-Only Memory

FCCOB Flash Common Command OBject

WDOG Watchdog

MCG Multipurpose Clock Generator

7 Revision history
Revision 0 is the initial release of this document.

Document Number: AN4903
Rev. 0
03/2014

Information in this document is provided solely to enable system and software

implementers to use Freescale products. There are no express or implied copyright

licenses granted hereunder to design or fabricate any integrated circuits based on the

information in this document.

Freescale reserves the right to make changes without further notice to any products

herein. Freescale makes no warranty, representation, or guarantee regarding the

suitability of its products for any particular purpose, nor does Freescale assume any

liability arising out of the application or use of any product or circuit, and specifically

disclaims any and all liability, including without limitation consequential or incidental

damages. “Typical” parameters that may be provided in Freescale data sheets and/or

specifications can and do vary in different applications, and actual performance may

vary over time. All operating parameters, including “typicals,” must be validated for each

customer application by customer’s technical experts. Freescale does not convey any

license under its patent rights nor the rights of others. Freescale sells products pursuant

to standard terms and conditions of sale, which can be found at the following address:

freescale.com/SalesTermsandConditions.

How to Reach Us:

Home Page:
freescale.com

Web Support:
freescale.com/support

Freescale, the Freescale logo, and Kinetis are trademarks of Freescale Semiconductor,

Inc., Reg. U.S. Pat. & Tm. Off. All other product or service names are the property of

their respective owners. ARM and and the ARM Power logo are the registered

trademarks of ARM Limited.

© 2014 Freescale Semiconductor, Inc.

	EEPROM Emulation Driver for the Kinetis E Series Microcontrollers Application Note

	1 Introduction
	2 Software Architecture
	Figure 1. Timing diagram elements
	2.1 Memory map
	Figure 2. Memory allocation in Flash

	2.2 EEPROM life time optimization
	2.3 EEPROM initialization
	Figure 3. Initialization flow chart

	2.4 Writing data to EEPROM
	Figure 4. Writing to EEPROM flow chart
	Figure 5. Restore Data from a old data item

	2.5 Reading data from EEPROM

	3 EEPROM emulation driver example
	Figure 6. EEPROM drivers
	Figure 7. Flow chart to use EEPROM emulation driver

	4 Conclusion
	5 References
	6 Glossary
	7 Revision history
	Contact Information

