

© Freescale Semiconductor, Inc., 2015. All rights reserved.

Freescale Semiconductor
Document Number: AN4956

Application Note

U-Boot/Barebox Debug using CodeWarrior

for QorIQ LS series - ARM V7 ISA

1. Introduction

This document describes the steps required for U-
Boot/Barebox debugging using CodeWarrior
Development Studio for QorIQ LS series - ARM V7
ISA.

This document includes the following sections:

• Preliminary background

• Creating an ARMv7 project

• Debugging U-Boot

• Debugging U-Boot SPL

• Debugging Barebox

• Downloading U-Boot/Barebox binary on target

board

• Calculating PIC load address for U-Boot DDR

relocation

2. Preliminary background

This section describes the steps required to compile U-
Boot/Barebox for the LS1 boards.

Contents

1. Introduction ... 1
2. Preliminary background 1
3. Creating an ARMv7 project 2
4. Debugging U-Boot .. 6
5. Debugging U-Boot SPL 13
6. Debugging Barebox .. 13
7. Downloading U-Boot/Barebox binary on target

board .. 16
8. Calculating PIC load address for U-Boot DDR

relocation .. 18

Creating an ARMv7 project

U-Boot/Barebox Debug using CodeWarrior for QorIQ LS series - ARM V7 ISA Application Note

2 Freescale Semiconductor

2.1. Download SDK

To debug U-Boot/Barebox using CodeWarrior, download the latest SDK for QorIQ from
www.freescale.com.

2.2. Compile U-Boot/Barebox

U-Boot/Barebox binary must be built with debug information to be debugged using CodeWarrior.

Also, U-Boot/Barebox binary must be downloaded on the target board and must be from the same build
as U-Boot/Barebox image. See Downloading U-Boot/Barebox binary on target board for details on how
to download U-Boot/Barebox binary on the target board.

3. Creating an ARMv7 project

To create an ARMv7 bare-metal project for U-Boot/Barebox debug, follow these steps:

1. Start CodeWarrior for QorIQ LS series - ARM V7 ISA.

2. Choose File > Import to import the U-Boot/Barebox executable file generated during the U-
Boot/Barebox compilation. It can be found in the folder.

Figure 1. CodeWarrior File menu

3. Choose the source to import and click Next.

http://www.freescale.com/infocenter/topic/QORIQSDK/3069706.html

 Creating an ARMv7 project

U-Boot/Barebox Debug using CodeWarrior for QorIQ LS series - ARM V7 ISA Application Note

Freescale Semiconductor 3

Figure 2. Import dialog

The Import a CodeWarrior Executable file wizard starts, as shown in the figure below.

4. Specify project name and location, or use the default location and click Next.

Figure 3. Import a CodeWarrior Executable file page

5. Browse to the U-Boot/Barebox executable file and click Open. By default, CodeWarrior looks

for an extension; therefore, change the file type in the lower-right corner of the Select file

dialog.

Creating an ARMv7 project

U-Boot/Barebox Debug using CodeWarrior for QorIQ LS series - ARM V7 ISA Application Note

4 Freescale Semiconductor

Figure 4. Select U-Boot executable file

6. Select processor type for the project and click Next.

Figure 5. Processor page

7. Select the debugger connection type, board, launch configuration, and connection type, and click

Next.

 Creating an ARMv7 project

U-Boot/Barebox Debug using CodeWarrior for QorIQ LS series - ARM V7 ISA Application Note

Freescale Semiconductor 5

Figure 6. Debug Target Settings page

NOTE By default, U-Boot is generated as a shared object file, and not as an executable file.
In this case, the Download launch configuration does not work; therefore, you need
to use the Attach launch configuration.
If U-Boot is not available on the target board, then Flash Programmer should be used
to program U-Boot on the target board.

8. Choose the configurations you want to create, and then click Finish to close the wizard.

Figure 7. Configurations page

Debugging U-Boot

U-Boot/Barebox Debug using CodeWarrior for QorIQ LS series - ARM V7 ISA Application Note

6 Freescale Semiconductor

4. Debugging U-Boot

When U-Boot starts, it is running from ROM space. However, running from flash would make it almost
impossible to read from flash while executing code from flash, not to mention updating the U-Boot
image in flash itself. To be able to do that, U-Boot relocates itself into RAM. Because of this, we have
two phases with different program addresses. The following sections show how to debug U-Boot in both
phases.

4.1. U-Boot debug before relocation

Before U-Boot relocation, the addresses from the ELF file can be used as it is.

The U-Boot executable file generated during the U-Boot compilation should be imported as a
CodeWarrior project (for more information, see Creating an ARMv7 project).

After the CodeWarrior project is created, perform these steps to start U-Boot debug:

1. Choose Run > Debug configurations to open the Debug Configurations dialog, and click

Debug (see figure below).

Figure 8. Debug Configurations dialog

 Debugging U-Boot

U-Boot/Barebox Debug using CodeWarrior for QorIQ LS series - ARM V7 ISA Application Note

Freescale Semiconductor 7

The connection initializes and configures the TAP, and then it will attach to the board (see figure
below).

Figure 9. Debug view

2. To reinitialize the target from CodeWarrior, click the Reset icon in the Debug view toolbar.

The Reset dialog opens (see figure below).

3. Ensure that no initialization file is selected in the Reset dialog and click Reset.

Figure 10. Reset dialog

After reset, debugger will prompt for source location, as shown in the figure below.

4. Click Locate File and specify file path.

Debugging U-Boot

U-Boot/Barebox Debug using CodeWarrior for QorIQ LS series - ARM V7 ISA Application Note

8 Freescale Semiconductor

Figure 11. Specify file location

After the path is provided, source will become available in CodeWarrior.

Figure 12. File editor

 Debugging U-Boot

U-Boot/Barebox Debug using CodeWarrior for QorIQ LS series - ARM V7 ISA Application Note

Freescale Semiconductor 9

5. Set a hardware breakpoint at , using Debugger Shell command .

Figure 13. Set a hardware breakpoint at _start

NOTE Hardware breakpoint must be used before DDR initialization.

6. Resume debugging using F8 or Debugger Shell command .

Figure 14. Perform debugging

7. Breakpoint will be hit and U-Boot debugging can be performed from .

Debugging U-Boot

U-Boot/Barebox Debug using CodeWarrior for QorIQ LS series - ARM V7 ISA Application Note

10 Freescale Semiconductor

Figure 15. File editor

The next section describes how to perform U-Boot debug after relocation in RAM.

NOTE If you encounter reset skid issue, the program will not stop at symbol. As a

workaround, you can set a hardware breakpoint at , and move PC to

 symbol address. This issue has been resolved in FPGA v11 image for the

LS1 QDS board, but it is present for the LS1 TWR board using CMSIS-DAP probe.

4.2. U-Boot debug after relocation

For U-Boot debugging after relocation, you need to know the address U-Boot relocates itself to. Perform
these steps to find out the relocation address:

1. Set a hardware breakpoint at Resume debugging using F8 or Debugger Shell command

.

2. Debug until (see figure below).

 Debugging U-Boot

U-Boot/Barebox Debug using CodeWarrior for QorIQ LS series - ARM V7 ISA Application Note

Freescale Semiconductor 11

Figure 16. Perform debugging

3. The relocation address is stored in R0 register. Open Registers view and read the value for R0
register (see figure below).

Figure 17. Registers view

For U-Boot debug after relocation, perform these steps:

1. Open the file. In this file, the last instruction before completion of U-Boot

relocation is .

Debugging U-Boot

U-Boot/Barebox Debug using CodeWarrior for QorIQ LS series - ARM V7 ISA Application Note

12 Freescale Semiconductor

Figure 18. File editor

2. Step into . Only disassembly will be available.

3. Instruct the debugger to reload the symbols with position independent code (PIC) load address.

4. Set the PIC load address to using the Debugger Shell command

.

Figure 19. Debugger Shell view

The symbols are loaded and debugging (step, run, or breakpoint) can be done until the U-Boot
boots up (see figure below).

 Debugging U-Boot SPL

U-Boot/Barebox Debug using CodeWarrior for QorIQ LS series - ARM V7 ISA Application Note

Freescale Semiconductor 13

Figure 20. File editor and Disassembly view

NOTE The relocation address can be read from U-Boot prompt using command. In

case the relocation address is not correct when reading R0, then to calculate the PIC
load address after U-Boot relocation, see Calculating PIC load address for U-Boot
DDR relocation.

5. Debugging U-Boot SPL

For the situations when U-Boot is located in the NAND/SPI/SD card (flash devices that are not memory
mapped), first load U-Boot SPL to initialize the hardware, and then load the U-Boot image. The U-Boot
SPL executable file generated during U-Boot compilation should be imported as a CodeWarrior project
(for more information, see Creating an ARMv7 project).

After creating the CodeWarrior project, debug U-Boot SPL using the steps provided in U-Boot debug
before relocation.

6. Debugging Barebox

Barebox is an alternative bootloader supported by LS1024A target. The Barebox executable file
generated during Barebox compilation should be imported as a CodeWarrior project (for more
information, see Creating an ARMv7 project).

After the CodeWarrior project is created, perform these steps to start Barebox debug:

1. Choose Run > Debug configurations to open the Debug Configurations dialog, and click

Debug.
2. To debug Barebox from reset address, reinitialize the target from CodeWarrior by clicking the

Reset icon in the Debug view toolbar.

Debugging Barebox

U-Boot/Barebox Debug using CodeWarrior for QorIQ LS series - ARM V7 ISA Application Note

14 Freescale Semiconductor

3. Find the reset address of the microloader. To do this, first import the microloader image in
CodeWarrior and disassemble it, and then search for in the disassemble file (see

figure below).

Figure 21. Find reset address of microloader

4. Set a hardware breakpoint at the reset address of the microloader, as shown in the figure below.

Figure 22. Set a hardware breakpoint at reset address

5. Resume debugging using F8 or Debugger Shell command

Breakpoint will be hit and only disassembly will be available.

NOTE To have the mapping between the sources and the code, debugger must be instructed
to reload the symbols with position independent code (PIC) load address.
To calculate the PIC load address, disassemble Barebox executable to obtain the
reset address. Calculate the difference between reset address from microloader
executable and reset address from Barebox executable.

5. Set the PIC load address to using the Debugger Shell command

, as shown in the figure below.

 Debugging Barebox

U-Boot/Barebox Debug using CodeWarrior for QorIQ LS series - ARM V7 ISA Application Note

Freescale Semiconductor 15

Figure 23. Set PIC load address

The symbols are loaded and debugging (step, run, or breakpoint) can be done until the Barebox
DDR relocation.

6. To continue debugging after DDR relocation, reset the PIC load address using the Debugger
Shell command , and set a hardware breakpoint at

, as shown in the figure below.

Figure 24. Set a hardware breakpoint at start_barebox

7. Resume debugging using F8 or Debugger Shell command

Breakpoint will be hit and debugging (step, run, or breakpoint) can be done until the Barebox
boots up.

Downloading U-Boot/Barebox binary on target board

U-Boot/Barebox Debug using CodeWarrior for QorIQ LS series - ARM V7 ISA Application Note

16 Freescale Semiconductor

Figure 25. Perform debugging

7. Downloading U-Boot/Barebox binary on target board

U-Boot/Barebox binary must be downloaded into the flash device on the target board, and must be from
the same build as the U-Boot/Barebox image that is imported as a CodeWarrior project.

Perform these steps to download the U-Boot binary on the target board (the steps to download Barebox
binary are similar, only the addresses may differ):

1. With the board in debug, open the Target Tasks view.

Figure 26. Target Tasks view

2. Click the Import icon, and import the target task (see figure below).

 Downloading U-Boot/Barebox binary on target board

U-Boot/Barebox Debug using CodeWarrior for QorIQ LS series - ARM V7 ISA Application Note

Freescale Semiconductor 17

Figure 27. Import target task

3. Open the imported target task in the ARM Flash Programmer Task window.

4. Click the Add Action down arrow and choose Program / Verify.

The Add Program / Verify Action dialog opens.

5. Browse for the U-Boot binary. In addition, ensure that the Erase sectors before program and

Apply Address Offset checkboxes are selected, and correct address is specified for the Apply

Address Offset option.

6. Click Add Program Action, and then click Done.

Figure 28. Add Program / Verify Action dialog

7. Execute the target task, as shown in the figure below.

Calculating PIC load address for U-Boot DDR relocation

U-Boot/Barebox Debug using CodeWarrior for QorIQ LS series - ARM V7 ISA Application Note

18 Freescale Semiconductor

Figure 29. Execute target task

8. After the downloading is complete on the target board, the U-Boot binary will be available that is
in sync with the U-Boot image.

NOTE The example was done for downloading U-Boot binary to the NOR flash. If the
NAND flash is used, ensure that correct target task address is specified for the flash
device, specific U-Boot binary is used, and correct offset address is set.
For more details about Flash Programmer, see Chapter 11 of CodeWarrior
Development Studio for QorIQ LS series - ARM V7 ISA Targeting Manual.

8. Calculating PIC load address for U-Boot DDR relocation

To calculate the new PIC load address, after U-Boot relocation, apply this formula:

After step into , in Debugger Shell, perform these operations:

1. Set PIC load address to , using Debugger Shell command . It tells

the debugger that the main executables are loaded at .

NOTE This is not the same as command, which tells the

debugger that the main executables are loaded at the address set in the ELF file.

2. Set a hardware breakpoint at the function code will jump to. In our case, this is
. It shows the compile-time symbol address.

 Calculating PIC load address for U-Boot DDR relocation

U-Boot/Barebox Debug using CodeWarrior for QorIQ LS series - ARM V7 ISA Application Note

Freescale Semiconductor 19

Figure 30. Set a hardware breakpoint

3. Calculate the difference between the runtime symbol address (single step after

instruction, using the address will jump to) and compile-time symbol

address:

Figure 31. Calculate PIC load address

5. Set the PIC load address to using the Debugger Shell command

.

Figure 32. Set PIC load address

www.freescale.com

support@freescale.com

Document Number: AN4956

7 July 2015

Information in this document is provided solely to enable system and software implementers to use
Freescale Semiconductor products. There are no express or implied copyright licenses granted
hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in
this document.

Freescale reserves the right to make changes without further notice to any products herein. Freescale
makes no warranty, representation, or guarantee regarding the suitability of its products for any
particular purpose, nor does Freescale assume any liability arising out of the application or use of any
product or circuit, and specifically disclaims any and all liability, including without limitation
consequential or incidental damages. “Typical” parameters that may be provided in Freescale data
sheets and/or specifications can and do vary in different applications, and actual performance may vary
over time. All operating parameters, including “typicals,” must be validated for each customer application
by customer's technical experts. Freescale does not convey any license under its patent rights nor the
rights of others. Freescale sells products pursuant to standard terms and conditions of sale, which
can be found at the following address: freescale.com/SalesTermsandConditions.

Freescale, the Freescale logo, CodeWarrior, and QorIQ are trademarks of Freescale Semiconductor,
Inc., Reg. U.S. Pat. & Tm. Off. Layerscape is trademark of Freescale Semiconductor,
Inc. All other product or service names are the property of their respective owners. ARM, Cortex, and
TrustZone are trademarks or registered trademarks of ARM Ltd or its subsidiaries in the EU and/or
elsewhere. All rights reserved.

© 2015 Freescale Semiconductor, Inc.

http://www.freescale.com/SalesTermsandConditions

