Freescale Semiconductor
Application Note

Document Number: AN4956

U-Boot/Barebox Debug using CodeWarrior
for QorlQ LS series - ARM V7 ISA

1.Introduction

This document describes the steps required for U-
Boot/Barebox debugging using CodeWarrior
Development Studio for QorIQ LS series - ARM V7

ISA.

This document includes the following sections:

Preliminary background
Creating an ARMvV7 project
Debugging U-Boot
Debugging U-Boot SPL
Debugging Barebox

Downloading U-Boot/Barebox binary on target
board

Calculating PIC load address for U-Boot DDR
relocation

2. Preliminary background

This section describes the steps required to compile U-
Boot/Barebox for the LS1 boards.

© Freescale Semiconductor, Inc., 2015. All rights reserved.

Contents

NogokwbdpE

INErOAUCTION ..o
Preliminary background...........cccccoiieininnne
Creating an ARMv7 project
Debugging U-Boot...............
Debugging U-Boot SPL

Debugging BareboX........cccocevviiiiiniiiicininen,
Downloading U-Boot/Barebox binary on target

board........cooi i, 16
Calculating PIC load address for U-Boot DDR
relocationcccceei 18

&

Z“ freescale

Creating an ARMv7 project

2.1. Download SDK

To debug U-Boot/Barebox using CodeWarrior, download the latest SDK for QorlQ from
www.freescale.com.

2.2. Compile U-Boot/Barebox

U-Boot/Barebox binary must be built with debug information to be debugged using CodeWarrior.

Also, U-Boot/Barebox binary must be downloaded on the target board and must be from the same build
as U-Boot/Barebox image. See Downloading U-Boot/Barebox binary on target board for details on how
to download U-Boot/Barebox binary on the target board.

3. Creating an ARMv7 project

To create an ARMv7 bare-metal project for U-Boot/Barebox debug, follow these steps:

1. Start CodeWarrior for QorIQ LS series - ARM V7 ISA.

2. Choose File > Import to import the U-Boot/Barebox executable file generated during the U-
Boot/Barebox compilation. It can be found in the U-Boot /Barebox folder.

Figure 1. CodeWarrior File menu

¥4 C/C++ - CodeWarrior Development Studio
Edit Source Refactor MNavigate Search Pi

New
Open Path...
Open File...

Move..

Rename.

2| Refresh

Convert Line Delimiters To
Print.

Switch Workspace
Restart

Alt+Shift+N »
Ctrl+Shift+A

Ctrl+W

Ctrl+Shift+W

Ctrl+S

Ctrl+Shift+S

F5

Ctrl+P

[N |14

Import...

X

Export...
Properties

Exit

Alt+Enter

3. Choose the source to import and click Next.

U-Boot/Barebox Debug using CodeWarrior for QorlQ LS series

- ARM V7 ISA Application Note

Freescale Semiconductor

http://www.freescale.com/infocenter/topic/QORIQSDK/3069706.html

4
Creating an ARMv7 project

Figure 2. Import dialog

¥ Import o @@=
Select Ny
Import a CodeWarrior Executable file and create project H

Select an import source:

[type filter text

(= General
& C/C++

i ¥ CodeWarrior Executable Importer I

2.+ bxample Project
= Install
= Run/Debug
> Team

®

The Import a CodeWarrior Executable file wizard starts, as shown in the figure below.

4. Specify project name and location, or use the default location and click Next.

Figure 3. Import a CodeWarrior Executable file page

2 Import a CodeWarrior Executable file =
Import a CodeWarrior Executable file
Choose the location for the new project
Project name: LS1021AQDS
Use default location
cation: | D:\workspace\arm7 140516\LS1021AQDS Browse..,
@ =]

5. Browse to the U-Boot/Barebox executable file and click Open. By default, CodeWarrior looks
for an . elf extension; therefore, change the file type in the lower-right corner of the Select file

dialog.

U-Boot/Barebox Debug using CodeWarrior for QorlQ LS series - ARM V7 ISA Application Note

Freescale Semiconductor 3

< ——
Creating an ARMv7 project

Figure 4. Select U-Boot executable file

¥ Import a CodeWarrior Executable file [=e=@][=

Import C/C++/Assembler Executable Files
@ File or folder not specified

File to import Browse...

Copy the selected file to current project folder %
¥ Select file Y ==
6@v| L. « armv] » Isl-uboot » - | 6,” Search Is1-uboot P‘
Organize v New folder = 0 ®
4 Neme ’ Date modified Type 4
9 Libraries || Makefile 07-May-1411:53... File
[Documents [} iconfig 07-May-1411552 .. File
o Music || README 07-May-1411:53... File
[&=] Pictures || rules.mk 07-May-1411:52 ..., MKFile
B# videos £ |_] snapshot.commit 07-May-1411:52 .. COMMIT
System.ma 07-May-1412:08 P... CodeWa
8 Computer |_| u-boot 07-May-1412:08P... File
G Primary (C) || u-boot.bin 07-May-14 1208 P... BINFile ﬂ
&5 DATA (D) || u-boot.lds 07-May-1412:08 P... LDS File
% marius_home (\\ BB u-boot.map 07-May-1412:08 P... CodeWai +
-] &8 sdk (10471720 « ¢ | i] »
File name: u-boot - L -

1 Open Cancel

6. Select processor type for the project and click Next.

Figure 5. Processor page

8 Tmport s CodeWarrior Executable file = |]
Processor

Chaose the processor for this project

Processor

type filter text

Layerscape Family
QoilQ LS
1510204

L510224

Toolchain
(@) Bareboard Application
) Linux Application

Target 05
@ None

(@) Linux Kernel

@ <Back [Nea> J[Fnisn][Cancel

7. Select the debugger connection type, board, launch configuration, and connection type, and click
Next.

U-Boot/Barebox Debug using CodeWarrior for QorlQ LS series - ARM V7 ISA Application Note
4 Freescale Semiconductor

PR 4

Creating an ARMv7 project

Figure 6. Debug Target Settings page

= =
1 Import 5 CodeWarrior Executable file = (=[]
Debug Target Settings
Target Settings

Debugger Connection Types

(©) Emulator
Board LS1021AQDS =

Launch Connection

[FDownload | 4 Defautt -

[¥] Attach & Default A

IConne:tlon Type [CodeWamorTAP (over USB) ']I

TAP address

@ <Back | Net> J[Finish |[Concel

NOTE By default, U-Boot is generated as a shared object file, and not as an executable file.
In this case, the Download launch configuration does not work; therefore, you need
to use the Attach launch configuration.

If U-Boot is not available on the target board, then Flash Programmer should be used
to program U-Boot on the target board.

8. Choose the configurations you want to create, and then click Finish to close the wizard.

Figure 7. Configurations page

}3 Import a CodeWarrior Executable file = EXT]
Configurations

Choose the configurations you want to create

Core index

Corel

®@ Next> I Finish I Cancel

U-Boot/Barebox Debug using CodeWarrior for QorlQ LS series - ARM V7 ISA Application Note
Freescale Semiconductor

h

< ——
Debugging U-Boot

4. Debugging U-Boot

When U-Boot starts, it is running from ROM space. However, running from flash would make it almost
impossible to read from flash while executing code from flash, not to mention updating the U-Boot
image in flash itself. To be able to do that, U-Boot relocates itself into RAM. Because of this, we have
two phases with different program addresses. The following sections show how to debug U-Boot in both
phases.

4.1. U-Boot debug before relocation

Before U-Boot relocation, the addresses from the ELF file can be used as it is.

The U-Boot executable file generated during the U-Boot compilation should be imported as a
CodeWarrior project (for more information, see Creating an ARMv7 project).

After the CodeWarrior project is created, perform these steps to start U-Boot debug:

1. Choose Run > Debug configurations to open the Debug Configurations dialog, and click
Debug (see figure below).

Figure 8. Debug Configurations dialog

¥ C/C++ - CodeWarrior Development Studio
File Edit Source Refactor Navigate Search Project Run Window Help

i~ | &~/ -% F-i-R-m
(B CodeWarrior Projec{
laz H=R-Y

=
File Name

Sy [E~v@v~

po-a-i®a- Bl - 5l vt oo~

33 Debug Configurations %

)
= @

g

Create, and run

S 1S1021AQDS :
%;? Binaries
(= Debug
4:} u-boot

Debug or run an application to a target.

CEx| B3~

type filter text

[€] CodeWarrior

Launch Group
Target Communication Frameworl

| T
‘Q Commander &3

~ Project Creation
g2 Import project
9 Import example g
¥ CodeWarrior Barg
v Build/Debug
& Build (All)
 Clean (All)
%5 Debug

v Settings

< i »

Filter matched 4 of 4 items
Filter by Project:
= LS1021AQDS

G Project settings
%S Build settings @
K\?,v Debug settings

[€] LS1021AQDS_Debug_LS1021A , |

Name: LS1021AQDS_Debug_LS1021A_Attach

i mn 9= Arguments | %5 Debugger| &/ Source| B Environment| = Common
| Debug session type
Choose a predefined debug session type or custom type for maximum flexibility
© Download
@ Attach

© Connect
(©) Custom

| b C/C++ application

|
| + Build (if required) before launching
Build (if required) before launching

Build configuration: [Dabug v]

[7] Select configuration using 'C/C++ Application’
() Enable auto build © Disable auto build

() Use workspace settings Configure Workspace Settings...

|~ Target settings

Eonnection: 4 LSI021AQDS Debug LSI021A Attach ~
Execute reset sequence
[7] Execute initialization script(s)
The connection is for a multicore target. Please select a core, or multiple cores in the case of SMP:
Target
[LS1021A
[¥] Cortex-A7-0
[Cortex-A7-1

Apply Revert

U-Boot/Barebox Debug using CodeWarrior for QorlQ LS series - ARM V7 ISA Application Note

Freescale Semiconductor

Debugging U-Boot

The connection initializes and configures the TAP, and then it will attach to the board (see figure

below).

Figure 9. Debug view

=]

RDPDENS 2 S

BPR|ISBNEm| 5T

4 [C] LS1021AQDS_Debug_LS1021A_Attach [CodeWarrior]
4 |&® CodeWarrior ARM V7 Debugger, u-boot, core0 |
@ Thread [ID: 0x0] (Running)

s D:\workspace\arm7 140516\L51021 AQDS\Debug\u-boot (5/28/14 2:43 PM)

2. To reinitialize the target from CodeWarrior, click the Reset icon in the Debug view toolbar.

The Reset dialog opens (see figure below).

3. Ensure that no initialization file is selected in the Reset dialog and click Reset.

Figure 10. Reset dialog

% Debug &3

03 |/6d+ Variables | %0 Breakpoints

[€] LS1021AQDS_Debug_LS1021A_Attach [CodeWamior]
@ CodeWarrior ARM V7 Debugger, u-boct, cored
+@ Theead (ID: 0:0] (Runaing)
oI DAworkspace\arm7 18051611021 AQDS\Debuglu-boot (5/28/14 2:43 PM)

bl B B SV I

Name

0 Cache | ifit Registers |

Context

Execute a target reset:

Target

LSI021A
Contex-A70
Cortex-A7-1

®

Runcut of reset Initialize target Initialize target script

™

Note: Target mtiakzation files cnly apply to debugged cores.
Reload settings from the target configuration: | Refoad |

[t)
[ereBown
=

|m|’c«¢

After reset, debugger will prompt for source location, as shown in the figure below.

4. Click Locate File and specify file path.

U-Boot/Barebox Debug using CodeWarrior for QorlQ LS series - ARM V7 ISA Application Note

Freescale Semiconductor

N

Debugging U-Boot

Figure 11. Specify file location
I qixis_write() at/SDldkl-uboot/board/freescale/common/qixis.c: 41 23\

Can't find a source file at "/SDK/lIs1-uboot/board/freescale/common/qgixis.c”
Locate the file or edit the source lookup path to include its location.

View Disassembly...

[F.dit Source Lookup Path...]

Apply to Common Source Lookup Path

After the path is provided, source will become available in CodeWarrior.

Figure 12. File editor

5 qgidis.c 52N
}

void qixis_write{unsigned int reg, ud value)

{
void *p = (void *)QIXIS_BASE;

out_8(p + reg, value);

ul6 gixis_read_minor(void)
ule minor;

/* this data is in little endian */
QIXIS WRITE(tagdata, 5);

minor = QIXIS_READ(tagdata);

QIXIS WRITE(tagdata, &);

minor += QIXIS_READ(tagdata) << 8;

return minor;

U-Boot/Barebox Debug using CodeWarrior for QorlQ LS series - ARM V7 ISA Application Note
8 Freescale Semiconductor

) 4

5. Set a hardware breakpoint at _start, using Debugger Shell command bp -hw _start.

Figure 13. Set a hardware breakpoint at _start

@ Debugger Shell 52 N RS 8]

CodeWarrior Debugger Shell vi.@
%>bp -hw _start

id instance address type enabled? process

description

#3 #1 x:0x67f80000 -hw ENABLED $@ start.S,

line 23 [u-boot]
%>

NOTE Hardware breakpoint must be used before DDR initialization.

6. Resume debugging using F8 or Debugger Shell command go.

Figure 14. Perform debugging

(B Debugger Shell 52

giﬁ;}.@;“ﬁ\

CodeWarrior Debugger Shell vl1.@
%¥>bp -hw _start
id instance

description
#3 #1 x:0x67f30000
line 23 [u-boot]

#>go

%>

address type enabled?

-hw ENABLED

process

$0 start.S,

7. Breakpoint will be hit and U-Boot debugging can be performed from _start.

U-Boot/Barebox Debug using CodeWarrior for QorlQ LS series - ARM V7 ISA Application Note

Freescale Semiconductor

Debugging U-Boot

< ——
Debugging U-Boot

Figure 15. File editor

[8) start:s 52\ =5

/
* armboot - Startup Code for OMAP353@/ARM Cortex CPU-core

[»

* Copyright (c) 2004 Texas Instruments <r-woodruff2@ti.com>

* Copyright (c) 2001 Marius GrAfger <mag@sysgo.de>

* Copyright (c) 202 Alex ZAXpke <azu@sysgo.de>

* Copyright (c) 2002 Gary Jennejohn <garyj@denx.de>

* Copyright (c) 2003 Richard Woodruff <r-woodruff2@ti.com>

* Copyright (c) 2003 Kshitij <kshitij@ti.com>

* Copyright (c) 2006-2008 Syed Mohammed Khasim <x@khasim@ti.com>

* SPDX-License-Identifier: GPL-2.0+
*/

#include <asm-offsets.h>
#include <config.h>
#include <version.h>
#include <asm/system.h>
#include <linux/linkage.h>

.globl _start
% _start: b reset
ldr pc, _undefined_instruction
1dr pc, _software_interrupt
1dr pc, _prefetch_abort
1dr pc, _data_abort
1dr pc, _not_used
ldr pc, _irq
1ldr pc, fiq il

|

The next section describes how to perform U-Boot debug after relocation in RAM.

NOTE If you encounter reset skid issue, the program will not stop at _stazrt symbol. As a
workaround, you can set a hardware breakpoint at _start, and move PC to
_start symbol address. This issue has been resolved in FPGA v11 image for the
LS1 QDS board, but it is present for the LS1 TWR board using CMSIS-DAP probe.

4.2. U-Boot debug after relocation

For U-Boot debugging after relocation, you need to know the address U-Boot relocates itself to. Perform
these steps to find out the relocation address:

1. Set a hardware breakpoint at _main. Resume debugging using F8 or Debugger Shell command
go.

2. Debuguntil b relocate_code (see figure below).

U-Boot/Barebox Debug using CodeWarrior for QorlQ LS series - ARM V7 ISA Application Note
10 Freescale Semiconductor

4
Debugging U-Boot

Figure 16. Perform debugging

8] cri.S 2 -0
T
* Set up intermediate envirenment (new sp and gd) and call
* relocate_code(addr_moni). Trick here is that we'll return
* 'here' but relocated.

*/

ldr sp, [r9, #GD_START_ADDR_SP] /* sp = gd-»start_addr_sp */
bic sp, sp, #7 /* 8-byte alignment for ABI compliance */
ldr r9, [r9, #GD_BD] /* r9 = gd->bd */

sub r9, r9, #GD_SIZE /* new GD is below bd */

adr lr, here

ldr r@, [r9, #GD_RELOC_OFF] /* r@ = gd->reloc_off */
add 1r, 1lr, r@ H
ldr ré, [ro, #G0 RELOCADDR] /* ré = gd->relocaddr */

J,-’*

* now releocate vectors

*‘,-' -
4 ¥

3. The relocation address is stored in RO register. Open Registers view and read the value for R0
register (see figure below).

Figure 17. Registers view

(%)= Variables (oo Breakpoints (ﬂ Cache (HH' Registers 1 =i Moduleq =8
Lot B v |gom| s ¥
Mame Value Location -
A2 e Registers D
35 RO Oxbff46000 ISRU
i TTO0TTTe SR1
W R2 000000000 SR2
ied R3 0:01ee0200 SR3 -
4 L1} 2
4 m L3

For U-Boot debug after relocation, perform these steps:

1. Openthe relocate. S file. In this file, the last instruction before completion of U-Boot
relocation is bx Ir.

U-Boot/Barebox Debug using CodeWarrior for QorlQ LS series - ARM V7 ISA Application Note

Freescale Semiconductor 11

< ——
Debugging U-Boot

Figure 18. File editor
[8] relocates &3 =08

s ey 6o

blo fixloo 0

#ifdef _ XSCALE__

* 0On xscale, icache must be invalidated and write buffers drained,
* even with cache disabled - 4.2.7 of xscale core developer's manual
*/

mcr pl5, @, r@, c7, 7, @ /¥ invalidate icache */

mcr pl5, @, r@, c7, cle, 4 /¥ drain write buffer */

#ifdef _ ARM_ARCH 4

mow pc, 1r
#else

bx 1r
#endif

ENDPROC (relocate_code)

4 S

2. Step into bx 1r. Only disassembly will be available.

Instruct the debugger to reload the symbols with position independent code (PIC) load address.

4. Set the PIC load address to 0xBFF46000 using the Debugger Shell command
setpicloadaddr OxBFF46000.

Figure 19. Debugger Shell view
%% Debugger Shell &1 EEECO

#rsetpicleoadaddr @xbff46eeae
Debugger now assumes 'u-boot.elf' is loaded at the specified address.
%>

The symbols are loaded and debugging (step, run, or breakpoint) can be done until the U-Boot
boots up (see figure below).

U-Boot/Barebox Debug using CodeWarrior for QorlQ LS series - ARM V7 ISA Application Note
12 Freescale Semiconductor

Debugging U-Boot SPL

Figure 20. File editor and Disassembly view

[El sd_uboot_debug5416814461025796368.txt crt).s = O | [z Disassembly 22 ™. OF Outline =0
add 1r, 1r, re o Enter location here laaEBE) s T
édr ::qu;ié iSSERELOCADDR] e = serelossdr o bffsb3ac: ldr r@,[r9,#48] a
here: - bff5h3b@: b BXBFFSB3FS (@xbffSb3f8) ; Bxbffsb3fs

bffsh3ba: bl @xBFF5A338 (@xbff5a338) ; e@xbff5a33s
bffsbbs: ldr r@,[pc,#44]
bffshabc: 1dr ri,[pc,#a4]
bffsh3ce: mov r2,#8x8

* Set up final (full) environment */

i /* we sti routi re *
bl c_runtime_cpu_setup /* we still call old routine here */ [— cmp rorl
o . . bffsbics: strcc r2,[r8]
= /* this is auto-relocated! */ ’
e e e
== o T - . bffsb3da: bcc @xBFFSB3C4 (@xbffSb3c4) ; @xbffSbicd
e e s e T . bffsb3d4: bl @xBFFSES6SE (@xbff5e868) ; @xbff5es6s
mov r2, #Bx20000000 prepare zero to clear ESS bffshads: bl BxBFFSEBEC (@xbifseBGc) : Bxbifsesbe
. e i 1e e e . bffshidc: cpy ré,rd
clbss_l:cmp r@, rl /* while not at end of BSS ¥ btrsbzee: | 1o 1 [r0, 48]
strlo r2, [re] clear 32-bit BSS word
addle r@, re, #4 /* move to next */ ffShied: 1dr pe,[pe,#3]
o e - bffsh3e8: andne pe,rl,r@,lsr #38
blo clbss_1

bffsb3ec: svclt @xfab6ed

m

bffsbzfe: svclt exfefads

bffsh3fa: svclt @xfSebld

bffs5b3fs: ldr ri,[pc,#76]

bffsb3fc: subs r4,r@,rl

hffshann: hen AxRFESRA4R (AxhffSha4’) : Axhffshass
] m

m

bl coloured_LED_init
b1 red_led_on

/* call board_init _r(gd t *id, ulong dest_addr) */ JH

NOTE The relocation address can be read from U-Boot prompt using bdinfo command. In
case the relocation address is not correct when reading RO, then to calculate the PIC

load address after U-Boot relocation, see Calculating PIC load address for U-Boot
DDR relocation.

5.Debugging U-Boot SPL

For the situations when U-Boot is located in the NAND/SPI/SD card (flash devices that are not memory
mapped), first load U-Boot SPL to initialize the hardware, and then load the U-Boot image. The U-Boot
SPL executable file generated during U-Boot compilation should be imported as a CodeWarrior project
(for more information, see Creating an ARMv7 project).

After creating the CodeWarrior project, debug U-Boot SPL using the steps provided in U-Boot debug
before relocation.

6. Debugging Barebox

Barebox is an alternative bootloader supported by LS1024A target. The Barebox executable file
generated during Barebox compilation should be imported as a CodeWarrior project (for more
information, see Creating an ARMvV7 project).

After the CodeWarrior project is created, perform these steps to start Barebox debug:

1. Choose Run > Debug configurations to open the Debug Configurations dialog, and click
Debug.

2. To debug Barebox from reset address, reinitialize the target from CodeWarrior by clicking the
Reset icon in the Debug view toolbar.

13

h

< ——
Debugging Barebox

3. Find the reset address of the microloader. To do this, first import the microloader image in
CodeWarrior and disassemble it, and then search for <reset> in the disassemble file (see

figure below).
Figure 21. Find reset address of microloader

barebox7524042954909774475. b 52 =0
83000674: elabfees mov pc, r3 -
83000678 apoeeaz4 .word axbeaaaazs
83008687 epeeafce .word axeeseafce
83000680: 83889fce .word @x83e8afce
83000054 8388b7a4 .word @x8388b7ad
830006388 83881b14 .word @x83881b14

EELEleelcE T eldT snaae mrs r3, CPSR

838088698 : e3c33e1f bic r3, r3, #31

8306860894 : e38338d3 orr r3, r3, #211 3 Bxd3
83000093 el29fea3 msr CPSR_fec, r3

8300009c: eb8812ae bl 83@@4bSc <arch_init_lowlevel:
830000a0: ebeeaaa’ bl 83@@aec4 <_ mmu_cache_flush:
830686824 : eell3fie mrc 15, @, r3, crl, cr@, {8}
8306868a38: e3c33dse bic r3, r3, #9888 3 Bx2388
830868ac: e3c33885 bic r3, r3, #5

8306868ba: e3833a01 orr r3, r3, #1896 3 Bxlese
8306868b4: e3833e82 orr r3, r3, #2

8306868b3: eedl13f1e mcr 15, @, r3, crl, cr@, {8}
83eeeebc: fsiffesf ish sy

830000800: eaffffdb b 83@@@@34 <board_init_lowlevel_return:

4. Set a hardware breakpoint at the reset address of the microloader, as shown in the figure below.

Figure 22. Set a hardware breakpoint at reset address

[%% Debugger Shell &3 mEE—O

¥xbp -hw 8308083c

id 1instance address type enabled? process descripticon
#34 #1 x:0x3300008c -hw ENABLED ex2 [barebox.elf]
*>rgo
thread break: Stopped, ©x@, @x@, cpuARMLittle, barebox.elf (state, tid, pid, cpu,
target)

>

5. Resume debugging using F8 or Debugger Shell command go.

Breakpoint will be hit and only disassembly will be available.

NOTE To have the mapping between the sources and the code, debugger must be instructed
to reload the symbols with position independent code (PIC) load address.
To calculate the PIC load address, disassemble Barebox executable to obtain the
reset address. Calculate the difference between reset address from microloader
executable and reset address from Barebox executable.

5. Set the PIC load address to 0x82FFFFES8 using the Debugger Shell command
setpicloadaddr 0x82FFFFES, as shown in the figure below.

U-Boot/Barebox Debug using CodeWarrior for QorlQ LS series - ARM V7 ISA Application Note
14 Freescale Semiconductor

Debugging Barebox
Figure 23. Set PIC load address

[% Debugger Shell &3

N

¥rsetpicloadaddr @x82FFFFES

Debugger now assumes 'barebox.elf' is loaded at the specified address.
>

The symbols are loaded and debugging (step, run, or breakpoint) can be done until the Barebox
DDR relocation.

6. To continue debugging after DDR relocation, reset the PIC load address using the Debugger
Shell command setpicloadaddress reset, and set a hardware breakpoint at

start_barebox, as shown in the figure below.

Figure 24. Set a hardware breakpoint at start_barebox

%2 Debugger Shell &2 CHE R

H>setpicloadaddr reset

Debugger now assumes 'barebox.elf' is leaded at its link-time address.
%>bp -hw start_barebox

id instance address type enabled? process description

#35 #1 x:8x@epa49bc -hw ENABLED @x@ startup.c, line 118,
start_barebox [barebox.elf]
%>

7. Resume debugging using F8 or Debugger Shell command go.

Breakpoint will be hit and debugging (step, run, or breakpoint) can be done until the Barebox
boots up.

U-Boot/Barebox Debug using CodeWarrior for QorlQ LS series - ARM V7 ISA Application Note
Freescale Semiconductor

15

< ——
Downloading U-Boot/Barebox binary on target board

Figure 25. Perform debugging

&) startup.c 53 = O[22 Disassembly 32 B Outline| Enter location here Yo nEEcis T -0
mount(“none”, “devfs®, "/dev"); ~ |l @118 { -
return @; % 228840bc: stmfd sp!,{r4-r5,1r} -

2808849ca: sub sp,sp,#8x4@
fs_initcall(mount_root); 008849c4: ldr r4,[pc,#208]
#endif 135 for (initcall = _ barebox_initcalls_start;
080849c8: ldr rS,[pc,#208] L
void start_barebox (void) BBea40cc: b start_barebox+@x28 (@x40e4); exes2e4ded I
i 139 result = (*initcall)();
initeall t *initcall; ooee4ada: ldr r3,[ra],#4
int result; 286043d4: blx r3
#ifdef CONFIG_COMMAND_SUPPORT 148 if (result)
struct stat s; 200049d3: cmp ro,#exe
#endif E 888849dc: beq start_barebox+@x28 (@x49e4); BxBAG049ed
H 141 hang();
#ifdef CONFIG _HAS EARLY INIT BBeR40=0: bl hang (@x49a4) 3 BxBRee4dad
/* We are running from RAM now, copy early initdata from 135 for (initcall = _ barebox_initcalls_start;
* early RAM to RAM 000B49e4d cmp r4,rs
= 0E@BA%=E: bec start_barebox+@x14 (@x49de); 8xe@ee049de
memcpy (&__early_init_data_begin, init_data_ptr, 58 ulong mstart = mem_malloc_start();
(ulong)& early init data end - BBea40ec: bl mem _mallec_start (@x28e8); @x@00028e8
(ulong)&_early init_data begin); eeepsIfa: cpy rs,rd
init data ptr - & early init data begin; < 51 ulong mend = mem_malloc_end(); -
7 » I »

7.Downloading U-Boot/Barebox binary on target board

U-Boot/Barebox binary must be downloaded into the flash device on the target board, and must be from
the same build as the U-Boot/Barebox image that is imported as a CodeWarrior project.

Perform these steps to download the U-Boot binary on the target board (the steps to download Barebox
binary are similar, only the addresses may differ):

1. With the board in debug, open the Target Tasks view.

Figure 26. Target Tasks view

&l Console (E. Tasks (u Memory (Jﬁ Remote System;rq@ Target Tasks &1 IE,_-, Problems} ﬁ Executables} =g

+ 0% %E T 0| mea”

Arrange By: Task Groups = = = &
&= Root MName Task Type Run Configuration

2. Click the Import icon, and import the target task (see figure below).

U-Boot/Barebox Debug using CodeWarrior for QorlQ LS series - ARM V7 ISA Application Note
16 Freescale Semiconductor

Downloading U-Boot/Barebox binary on target board

Figure 27. Import target task

& Console |] Tasks D Memory ,,!ﬁRemote Systems {@TargetTasks &5 ! Problems @ Executables =8
+E0* % -
+ =] Tasks

Arrange By:Task Groups
Mame Taszk Type Run Configuration

f 51510244005 .. Flash Programm... Active Debug Co... |

= Root

3. Open the imported target task in the ARM Flash Programmer Task window.
4. Click the Add Action down arrow and choose Program / Verify.
The Add Program / Verify Action dialog opens.

5. Browse for the U-Boot binary. In addition, ensure that the Erase sectors before program and
Apply Address Offset checkboxes are selected, and correct address is specified for the Apply
Address Offset option.

6. Click Add Program Action, and then click Done.

Figure 28. Add Program / Verify Action dialog

Add Program / Verify Action 2
Flash Devices Use File from Launch Configuration
e e File: 3:\Layerscapel -SDK-20140626-yocto\build_ls1021agds_release\tmpiworkilsl —=
529GLO1GS (G4Med 6) (03450000000 - - p
File Type: |Aute = |W0rkspace..‘ |IFiIe System... I‘ Variables...
Target RAM
I B [ErechScin DR DIEPInG I I Yy i e gem Address: 0x 10000000
Restrict to Addresses in this Range |[7] Apply Address Offset Size: Ox 00020000
60000000 Address: D 67F80000 Verify Target Memory Writes | =
67FFFFFF
IAdd Program Action I| Add Verify Action | M
iption AddAcion ¥

7. Execute the target task, as shown in the figure below.

17

b -

Calculating PIC load address for U-Boot DDR relocation

Figure 29. Execute target task

onscle Z asks Ermo emote Systermns | @] Target Tasks .. Preblems ecutables =
El Consel Tasks | @ Memory | B R Sy ‘8] Target Tasks &7 2 Probl 2 Executabl i
+cfOofs %2 ¢ lmw~
Arrange By: Task Groups = = = &
&= Root MName Task Type Run Configuration

T@LSIUMQDS_... Flash Programm... Active Debug Co...

8. After the downloading is complete on the target board, the U-Boot binary will be available that is
in sync with the U-Boot image.

NOTE The example was done for downloading U-Boot binary to the NOR flash. If the
NAND flash is used, ensure that correct target task address is specified for the flash
device, specific U-Boot binary is used, and correct offset address is set.

For more details about Flash Programmer, see Chapter 11 of CodeWarrior
Development Studio for QorlQ LS series - ARM V7 ISA Targeting Manual.

8. Calculating PIC load address for U-Boot DDR relocation

To calculate the new PIC load address, after U-Boot relocation, apply this formula:

PIC address = Runtime symbol address (RAM symbol address in our case)
- Compile time symbol address

After step into bx 1z, in Debugger Shell, perform these operations:

1. Set PIC load address to 0x0, using Debugger Shell command setpicloadaddr 0x0. It tells
the debugger that the main executables are loaded at 0x0.

NOTE This is not the same as setpicloadaddr reset command, which tells the
debugger that the main executables are loaded at the address set in the ELF file.

2. Set a hardware breakpoint at the function code will jump to. In our case, this is
relocate_vectors. It shows the compile-time symbol address.

U-Boot/Barebox Debug using CodeWarrior for QorlQ LS series - ARM V7 ISA Application Note

18 Freescale Semiconductor

PR 4

4
Calculating PIC load address for U-Boot DDR relocation

Figure 30. Set a hardware breakpoint

[%% Debugger Shell &3 mE®==—O

¥rsetpicloadaddr @x@
Debugger now assumes "u-boot.elf' is loaded at the specified address.
¥>bp -hw relocate_vectors

id instance address type enabled? process description
#29 #1 x:@x@eeelslc -hw EMABLED @x@ relocate.5, line 31
[u-boot.elf]

>

3. Calculate the difference between the runtime symbol address (single step after bx Ir
instruction, using the address relocate vectors will jump to) and compile-time symbol
address:

PIC address = 0xBFF4751c (relocate_vectors jump address) -
0x0000151c (relocate_vectors breakpoint address) = O0xBFF46000

Figure 31. Calculate PIC load address

[5] 0xBFFA74D4 (0xBFFA74D4)() uboot 18635882175560003198 L bt &2 = 0|22 Disassembly 32 . 5% Outline| Enter location here -l wEBEcies T 0
67f314c4: e5990044 ldr ro, [r9, #68] ; @x44 ~ ||# bffazada: | bl 6xBFF4751C (Gxbifa751c) ; @xbifa7sid .
67f814c8: e0Bee00@ add 1r, lr, ro - bFf474d8: X B B
67f8ldcc: e599603@ ldr r8, [rd, #48] ; Ox30] bffa7adc: 1dr r,[pc,#44]
67f814de: ead@@@l4 b 67731528 crelocate_code> bff474e8: ldr rl,[pe,#44]

bff474e4: mov r2,#8x8
67f814d4 <heres: bff474e8: cmp r@,rl
67f814d4: ebl@es1s bl 67f8151c <relocate_vectors> bff474ec: stree r2,[re]
67814d8: ebfffb9s bl 67788338 <c_runtime_cpu_setup> bffazafe: addcc re,re,#oxd
67faladc: e59fep2c ldr re, [pc, #44] ; 67781518 <clbss l+8x28> bffa7afa: bcc @xBFFA74E8 (@xbffa74e8) ; exbffa7des
67fg14e0: e50fle2c ldr r1, [pc, #44] ; 67f81514 <clbss l+ex2c> bff474f8: bl @xBFF4BACO (@xbffibac@) ; @xbffibace
67f814e4: €3a02000 mov r2, #B bff474fc: bl OxBFF4BACA (Bxbffabacd) ; exbffsbacs
bff47508: epy r@,rd
67f814e8 <clbss_L>: bffa75ed: ldr r1,[r9,#48]
67f314e8: e1500001 cmp r@, rl bffa75e8: 1dr pe, [pe,#8]
67f8ldec: 35882000 strcc r2, [r0] bff4758c: andne pc,rl,rd,1sl pc E|
67814f0: 32800004 addcc r8, ro, #4 bff47518: svclt @xfa3e20 H
67f814f4: 3afffffb bcc 67f814e8 <clbss 1> bff47514: svclt @xfeflac
67814f8: eb@@117@ bl 67f85ac@ <coloured LED init> bff47518: svclt @xfabdes
67f814fc: eb@@117@ bl 67f85acd <red_led_on> i bffa751c: 1dr r@,[r9,#48]
£7€R1508- 21208000 mew -8 0 : S SILI T e - -

5. Set the PIC load address to 0xBFF4600 0 using the Debugger Shell command
setpicloadaddr O0xBFF46000.

Figure 32. Set PIC load address

@Debugger Shell &3 mEmETO

%>setpicloadaddr @xbfficese
Debugger now assumes "u-boot.elf' is loaded at the specified address.
%>

U-Boot/Barebox Debug using CodeWarrior for QorlQ LS series - ARM V7 ISA Application Note

Freescale Semiconductor 19

How to Reach Us:

Home Page:
www.freescale.com

E-mail:
support@freescale.com

Document Number: AN4956
7 July 2015

Information in this document is provided solely to enable system and software implementers to use
Freescale Semiconductor products. There are no express or implied copyright licenses granted
hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in
this document.

Freescale reserves the right to make changes without further notice to any products herein. Freescale
makes no warranty, representation, or guarantee regarding the suitability of its products for any
particular purpose, nor does Freescale assume any liability arising out of the application or use of any
product or circuit, and specifically disclaims any and all liability, including without limitation
consequential or incidental damages. “Typical” parameters that may be provided in Freescale data
sheets and/or specifications can and do vary in different applications, and actual performance may vary
over time. All operating parameters, including “typicals,” must be validated for each customer application
by customer's technical experts. Freescale does not convey any license under its patent rights nor the
rights of others. Freescale sells products pursuant to standard terms and conditions of sale, which

can be found at the following address: freescale.com/SalesTermsandConditions.

Freescale, the Freescale logo, CodeWarrior, and QorlQ are trademarks of Freescale Semiconductor,
Inc., Reg. U.S. Pat. & Tm. Off. Layerscape is trademark of Freescale Semiconductor,

Inc. All other product or service names are the property of their respective owners. ARM, Cortex, and
TrustZone are trademarks or registered trademarks of ARM Ltd or its subsidiaries in the EU and/or
elsewhere. All rights reserved.

© 2015 Freescale Semiconductor, Inc.

“freescale

http://www.freescale.com/SalesTermsandConditions

