Freescale Semiconductor Document Number: AN4980
Application Note

Debugging Linux Kernel and Modules
using CodeWarrior for QorlQ LS series -
ARM V7 ISA

Contents
1 1. INtrodUCtioN ...ceeiiiiic et 1
1' IntrOdUCtlon 2. Preliminary background.........cccccooeiiiieiiennnnnns 1
. . . 3. Creating an ARMV7 project.......ccccccveevcvirennnne 3
This dOFument dpscnbes the steps reqmred for 4. Linux kgrnel debug gupjport 9
debugging the Linux kernel and modules using the 5. Debugging Linux kernel and modules.......... 12

CodeWarrior for QorlQ LS series - ARM V7 ISA.

This document includes the following sections:
¢ Preliminary background
¢ (Creating an ARMv7 project
¢ Linux kernel debug support

¢ Debugging Linux kernel and modules

2. Preliminary background

This section describes the steps required to compile
Linux image for the LS1 boards.

L

Z“ freescale

© Freescale Semiconductor, Inc., 2015. All rights reserved.

Preliminary background

2.1. Download SDK

To debug Linux kernel and modules using CodeWarrior, download the latest QorIQ SDK from
www.freescale.com.

2.2. Install SDK

To install SDK on the host machine, perform these steps:
1. Mount the ISO on your machine as illustrated below:

$ sudo mount -o loop LS1021A-SDK-<version>-<target>-<yyyymmdd>-
yocto.iso /mnt/cdrom

2. Install the SDK as a non-root user, using the following commands:

S cd /mnt/cdrom
S ./install

3. On seeing the prompt to input the install path, check and ensure that the current user has the
appropriate permissions for the installation path.

NOTE There are no uninstall scripts. To uninstall Yocto, you need to remove the
<yocto_install path>/LS1021A-SDK-<version>-<target>-
<yyyymmdd>-yocto folder manually.

2.3. Prepare host environment for Yocto

Yocto requires some packages to be installed on the host folder. Prepare Yocto for the host environment
using the commands below:

S cd <yocto_install_ path>
S ./scripts/host-prepare.sh
S source ./fsl-setup-poky -m <machine>

Below is an illustration of this command:

For example, for LS1021AQDS board, the above command will be:

S source ./fsl-setup-poky -m 1sl102laqds -j 4 -t 4,where —7 isthe number of
jobs to spawn during the compilation stage and —t 1s the number of BitBake tasks that can be issued in
parallel.

2.4. Build Packages

To build various packages, run the following commands:

Debugging Linux Kernel and Modules using CodeWarrior for QorlQ LS series - ARM V7 ISA Application Note

2 Freescale Semiconductor

http://www.freescale.com/webapp/sps/site/prod_summary.jsp?code=SDKLINUX&nodeId=0152109D3F

b -

g |

Creating an ARMv7 project

S cd <yocto_install_path>/
S source ./build <machine> release/SOURCE_THIS
S bitbake <package-recipe>

NOTE U-Boot, RCW, kernel, DTB, and rootfs images can be found in:
build <machine>_ release/tmp/deploy/images/<machine>

2.5. Configure and rebuild Linux kernel

In some cases, it is necessary to configure and rebuild the Linux kernel. In this case, it is necessary for
adding the debug symbols. To configure and rebuild the Linux kernel:

1. Run the bitbake command with menuconfig:
S bitbake -c¢ menuconfig virtual/kernel
2. On the kernel configuration window that opens, go to Kernel hacking > Compile-time checks

and compiler option and select the Compile the kernel with debug info checkbox.
3. Save the new configuration and rebuild the Linux kernel using the command below:

S bitbake virtual/kernel

NOTE You can find the vim1 inux image, with debug symbols, in the following folder:
build <machine>_release/tmp/work/<machine>-fsl-1linux-
gnueabi/ linux-layerscape-sdk/3.12-r0/git/

The vmlinux ELF file will be imported into CodeWarrior for QorlQ LS series - ARM V7 ISA.

3. Creating an ARMv7 project

To create an ARMv7 project for debugging the Linux kernel, follow these steps:

1. Start CodeWarrior for QorIQ LS series - ARM V7 ISA.

2. Select File > Import to import the vinlinux executable file generated during the Linux kernel
compilation. For details, see Configure and rebuild Linux kernel.

Debugging Linux Kernel and Modules using CodeWarrior for QorlQ LS series - ARM V7 ISA Application Note
Freescale Semiconductor 3

I
Creating an ARMvV7 project

Figure 1. CodeWarrior File menu

File | Edit Source Refactor Navigate Search Pi

New Alt+Shift+N »
Open Path... Ctrl+Shift+A
Open File...
Close Ctrl+W
Close All Ctrl+Shift+ W
Save Ctrl+S
Save As...
Save All Ctrl+Shift+S
Revert
Move...
Rename... F2

& Refresh F5
Convert Line Delimiters To »
Print... Ctrl+P
Switch Workspace »
Restart

g2y Import... R

4 Export.
Properties Alt+Enter
Exit

3. On the Select page of the Import wizard, choose the source to be imported and click Next.

Figure 2. Import wizard

-

b Import = [@]=]
Select \
Import a CodeWarrior Executable file and create a project I‘—dl)]

Select an import source:

ltypefilter text —‘
(= General
= C/C++
oo CodeWattio
» + example Project
= Install
(= Run/Debug
> Team
@ | <Back [Net> | Finish } [Cancel]

Debugging Linux Kernel and Modules using CodeWarrior for QorlQ LS series - ARM V7 ISA Application Note
4 Freescale Semiconductor

PR 4

4
Creating an ARMv7 project

4. On the Import a CodeWarrior Executable file page, specify the project name.
5. Specify a location for the new project in the Location field or choose to use the default location.
6. Click Next.

Figure 3. Import a CodeWarrior Executable file page

¥ Import a CodeWarrior Executable file =N =
Import a CodeWarrior Executable file

Choose the location for the new project

Project name: | LinuxKernelDebug

Use default location

Location: | C\Users\b11883\workspacelarmvT 140707\ LinuxKernelDebug Browse...

@ T e [

7. Browse to the vm1 inux executable file and select Open.
8. By default, CodeWarrior looks for an . el f extension. Therefore, change the file type in the
lower right corner of the Select file dialog, as shown in the figure below.

Debugging Linux Kernel and Modules using CodeWarrior for QorlQ LS series - ARM V7 ISA Application Note

Freescale Semiconductor 5

Creating an ARMvV7 project

Figure 4. Select a vmlinux executable file

-

ﬁ' Import a CodeWarrior Executable file = @

Import C/C++/Assembler Executable Files
@ File or folder not specified

File to import Browse...
Copy the selected file to current project folder ! !
b
1 Select file ==
@C)v| < linux-layerscape-sdk » 312-f) » git » - | +y | | Search git 2 |
Organize = MNew folder =« i @
Y Favorites * Mame : Date modified Type i
B Desktop VErsion 7/4/2014 3:46 AM VERSIOM File
I8 Downloads 5 wmlinux 7/4/2014 9:47 AM Windows Co
®E) Recent Places || COPYING 7/4/2014 9:19 AM File
o L | CREDITS 7/4/2014 9:19 AM File
4l Libraries || Kbuild 7/4/2014 9:19 AM File
@ Documents || Kconfig 7/4/2014 819 AM File
J’ Music L || MAINTAIMERS 7/4/2014 9:19 AM File
& Pictures [| Makefile 7/4/2014 9:19 AM File
B Videos | Medule.symvers 7/4/2014 5:47 AM SYMVERS File
o | medules.builtin 7/4/2014 9:47 AM BUILTIM File
18 Computer || modules.order 7/4/2014 9:47 AM ORDER File
|| README 7/4/2014 9:19 AM File

ﬁ Primary (C:)

— 5 sdk (\1\10.171.72.1 || REPORTING-BUGS 7/4/2014 919 AM File
58 space (\zro04file | | Systern.map 7/4/2014 947 AM MAP File
3 engdata (Warold 7/4/2014 947 AM File
— | vmlinux.o 7/4/2014 3:46 AM O File -
“‘tl; [S r— hal LUl | [
o File name: - I * - I
I Open I ’ Cancel]

9. On the Processor page that appears, select the processor type.
10. Under Target OS, choose Linux Kernel and click Next.

Debugging Linux Kernel and Modules using CodeWarrior for QorlQ LS series - ARM V7 ISA Application Note

6 Freescale Semiconductor

4
Creating an ARMv7 project

Figure 5. Processor page

¥3 Import a CodeWarrior Executable file

Processor
Choose the processor for this project

Processor

type filter text

4 Layerscape Family
a QorlQ_L51
L5102MA
L510204
L510224
L510244

Toolchain
(@ Bareboard Application

() Linux Application

Target 05
) None

@) Linux Kernel

Finsh | [Cencel

@ <Back | Nea> ||

11. On the Debug Target Settings page that appears, select debugger connection type, board, launch
configuration, and connection type, and click Next.

Debugging Linux Kernel and Modules using CodeWarrior for QorlQ LS series - ARM V7 ISA Application Note

Freescale Semiconductor

I
Creating an ARMvV7 project

Figure 6. Debug Target Settings page

¥ Import a CodeWarrior Executable file

Debug Target Settings
Target Settings

Debugger Connection Types
@ Hardware

() Emulator

Board [Lsto21aqDs -

Launch Connecticn

Download | 4 Default ¥ |

[¥] Attach |=ﬁ Default v|

N

Connection Type [CodeWanim TAP (over USB) v]

TAP address |

@ <Back [N Net> J[Finsh || Cancel

12. On the Configurations page that appears, select the configurations that you want to create and
click Finish to close the wizard.

Debugging Linux Kernel and Modules using CodeWarrior for QorlQ LS series - ARM V7 ISA Application Note
8 Freescale Semiconductor

Linux kernel debug support

Figure 7. Configurations page

1 Import a CodeWarrior Erecutele ile = ===

Configurations

Cheose the configurations you want to create

Core index

Corel

@ nee> L Finsh J[cancel

4.Linux kernel debug support

This section describes the debugger settings for Linux kernel debugging.
The vm1inux executable file generated during the Linux kernel compilation should be imported as
CodeWarrior project (for more information, see Creating an ARMv7 project).

After the CodeWarrior project is created, perform these steps to start Linux kernel debugging:

1. Select Run > Debug configurations to open the Debug configurations dialog and click Debug.

Debugging Linux Kernel and Modules using CodeWarrior for QorlQ LS series - ARM V7 ISA Application Note

Freescale Semiconductor

PR 4

Linux kernel debug support

Figure 8. Debug Configurations dialog

¥ C/Cs+ - CodeWarrior Development Studio [
File Edit Source Refactor MNavigate Search Project Run Processor Expert Window Help
S~ ‘@vﬁv% gv:‘}];vam Qﬁv@v@vl#&vk}v(&v - =ML 5 - 5 - % =1 A= ﬁ%gc4
0 CodeWan ¥ Debug Configurations ==
laz‘ E " 3
Create, and run fi
lolamy Debug or run an application to a target.
=% Linux
i&:Bl — =
(= Li T Ex ‘ = S~ Name: LinuxKernelDebug_Linux_Kernel L51021AQDS_Linux_Kernel_Attach
[type filter tesxt | Main (- Arguments| 35 Debugger| = Trace and Profile| % Source | g, Environment | = Common|
4 [£] CodeWarrior Debug session type B
|[£] LinuxKernelDebug_Linux_Kernel_L Choose a predefined debug session type or custom type for maximum flexibility
 Launch Group ©) Download ©) Connect
[Target Communication Framework @ Attach ® Custom
~ €/C++ application
Project: LinuxKernelDebug Browse...
Application: Linux_Kernel/vmlinux Search PleeCl...I [Browse...] [Variables...]
b Build (if required) before launching |
« Target settings
Connection: & LinuxKemelDebug_Linue_Kemel_LS1021AQDS_Linuw Kemel_Attach v‘ [Edte][New. |
Execute reset sequence
bl
[7] Execute initialization script(s)
#4 Command The connection is for a multicore target. Please select a core, or multiple cores in the case of SMP:
9 P!
+ Frojectd|| | ¢ P [Target B
o Import Filter matched 4 of 4 items LS10214
< ———————— L
O3 Import 4| piprey by Project: Cortex-A7-0
ﬁ‘ CodeW, Cortex-A7-1
v BuigDe| || & LinuKemeDebug 2
& Build Apply Revert
& Clean |
%5 Debug
~ Settings | (2 | I
&g Project

NOTE

Ensure that no initialization file is used.

(98]

running Linux kernel.

i

On the Debugger tab, open the OS Awareness tab.
Deselect all the checkboxes, because an Attach launch configuration is used to attach to a

On the Debug tab, select the Enable Memory Translation checkbox.
Configure the remaining settings as shown in the figure below.

Debugging Linux Kernel and Modules using CodeWarrior for QorlQ LS series - ARM V7 ISA Application Note

10

Freescale Semiconductor

PR 4

Debugging Linux kernel and modules
Figure 9.0S Awareness — Debug tab

Marme!

LinuxKernelDebug_Linux_Kernel_L51021AQDS_Linux_Kernel_Attach
Main ﬁx)= Arguments [’9‘3# Debugger . = Trace and Profile] Ey Sourcgl B Environmenﬂ B Common)
Debugger options

| Debug | Exceptions | Interrupts I Download | PIC

| Other Executables | Symbolics | 05 Awareness
Target 05:

| Boot Palameters| Debug | Modulﬁl

Enable Memaory Translation

Physical Base Address 0x80000000

Virtual Base Address 0x80000000

Mermory Size 0x6f800000

Enable Threaded Debugging Support
[7] Update Background Threads on Stop

Enable Delayed Software Breakpoint Support

6. On the Modules tab, select the checkboxes labeled “Detect module loading” and “Prompt for
symbolics path if not found”.

NOTE

These options are required for detecting automatic insertion/removal of kernel
modules.

If multiple modules are inserted at Linux boot, then you are recommended to

activate these options only when connecting to Linux for module debugging.
Figure 10. OS Awareness — Modules tab

Mame: LinuxKernelDebug_Linux_Kernel_L51021AQD5_Linux_Kernel_Attach
Main [9= Arguments | %% Debugger

= Trace and Prof\le} B Sourcew B Enwronmenq =] Commorq
Debugger opticns

Debug | Exceptions [Interrupts | Downlosd | PIC_ | Other Executables | Symbolics | 05 Awareness |
Target O:

[Boot Parameters | Debug | Modules |
[¥] Detect module loading

Modules' symbolics mappings

Module

Symbolics Path Add

Scan
Remove

Remove All

Prompt for symbolics path if not feund

Keep target suspended

Debugging Linux Kernel and Modules using CodeWarrior for QorlQ LS series - ARM V7 ISA Application Note
Freescale Semiconductor

11

Debugging Linux kernel and modules

5.Debugging Linux kernel and modules

This section explains how to debug Linux kernel and Linux modules.

5.1. Debugging Linux kernel

1. Power on the board and stop at the U-Boot console.

Figure 11. Target stopped at U-Boot prompt

2. Attach to U-Boot using Attach launch configuration, as shown in the figure below.

Figure 12. Attach launch configuration

Name: LinuxKernelDebug_Linux_Kernel _L51021A0D5 Linux_Kernel_Attach

[£] Main . 09~ Arguments| %5 Debugger| & Trace and Profile Ey Source | B§ Environment | =] Common

Debug session type =
Choose a predefined debug session type or custom type for maximum flexibility

Download Connect
@ Attach Custom

~ {fC++ application

Project: LinuxkemnelDebug | Browse... |

Application: Linux_Kernelvmlinux Search Prnject..‘| | Browse... | | Variables... |

» Build (if required) before launching

m

~ Target settings

Connection: - LinuxKernelDebug_Linux_Kernel_L51021AQDS_Linux_Kernel_Attach - Edit... | | Mew...

Execute reset sequence
Execute initialization script(s)
The connection is for a multicore target. Please select a core, or multiple cores in the case of SMP:
Target
V| LS10214

V| Cortex-A7-0
V| Cortex-A7-1

I Debug I| Close

3. Set a breakpoint at kernel entry point, using Debugger Shell command bp —-hw 0x80008000

Debugging Linux Kernel and Modules using CodeWarrior for QorlQ LS series - ARM V7 ISA Application Note

12 Freescale Semiconductor

Debugging Linux kernel and modules

Figure 13. Set breakpoint at entry point in Debugger Shell

%% Debugger Shell &2 B System Browser w = - O

¥>bp -hw @xseea3e60

id instance address type enabled? process
description
#36 #1 w:@xBpoEBERR -hw ENABLED e

head.S, line 87, (AsmSectien) [wmlinux]
x>

NOTE This example was created on an LS1021ATWR board. For other LS1 boards, the
kernel entry point address may differ.

4. Start kernel from the U-Boot console.

Figure 14. U-Boot log - Prepare images for starting Linux kernel

The breakpoint set above will be hit and CodeWarrior will prompt for the location of the Linux
kernel sources to make a path mapping between the original location of the sources and the new
location.

For example, in the illustration below, the Linux kernel sources were copied from a Linux
machine to a Windows machine.

I ——————
Debugging Linux kernel and modules

Figure 15. Source file not found when target is stopped at kernel entry point

[can't find a source file at "/sdk/Layerscapel -SDK-20140626-yocto/build_ls1021agds_release/tmp/work/1s1021agds-fsl-linux-gnueabi/linu-layerscape-sdk/3.12-
0/ git/arch/arm/kernel/head 5"

Locate the file or edit the source lookup path to include its location,

View Disassembly...

’ Edit Source Lockup Pa’(h...l

Apply to Cemmeoen Seurce Lockup Path

After the missing file is located, the actual source file will open in CodeWarrior.

NOTE This example was created on an LS1021ATWR board. For other LS1 boards, you
may need to instruct the debugger to reload the symbols with the position
independent code (PIC) load address.

Figure 16. Target stopped at entry point, after path mapping was performed

=0
THUMB(adr r9, BSYM(1f)) @ Kernel is always entered in ARM. -
THUMB(bx r9) @ If this is a Thumb-2 kernel,
THUMB(.thumb) @ switch to Thumb now.
THUMB(1:) D
#ifdef CONFIG_ARM VIRT EXT
125 bl _ hyp_stub_install
#endif
@ ensure svc mode and all interrupts masked
sate_svcmode_maskall r9
mrc pl5, @, r9, c@, c@ @ get processer id
bl _ lookup_processor_type @@ rS5=procinfo r9=cpuid
movs rl@, rs @ invalid processor (r5=e)?
THUMB(it eq) @ force fixup-able long branch encoding
beq _ error_p @ yes, error 'p’
#ifdef CONFIG_ARM_LPAE
mrc pls, @, r3, c@, cl, 4 @ read ID_MMFRE
and r3, r3, #@xf @ extract VMSA support
rmn r3. #5 il Tone-descrintnr translation tahle format? i
4 b

5. To start kernel debug from start_kernel symbol, set a breakpoint at start_kernel,
using Debugger Shell command bp start_kernel.

Debugging Linux Kernel and Modules using CodeWarrior for QorlQ LS series - ARM V7 ISA Application Note
Freescale Semiconductor

14

N

Figure 17. Set a breakpoint from Debugger Shell at “start_kernel” method

(T NG i 1R

s

Debugging Linux kernel and modules

CodeWarrior Debugger Shell vl1.8
#xbp start_kernel
id instance address type
#4 #1 x:BxBB58e82c -auto ENABLED

enabled? process description
%2 main.c, line 475, start_kernel

[vmlinux]
%3

This example was created on an LSI021ATWR board. For other LS1 boards, you

NOTE
may need to use a different command for starting the kernel.

6. Resume debugging using F8 or the Debugger Shell command go.
The breakpoint will be hit and you can perform kernel debugging from start_kernel.

Debugging Linux Kernel and Modules using CodeWarrior for QorlQ LS series - ARM V7 ISA Application Note

15

Freescale Semiconductor

Debugging Linux kernel and modules

Figure 18. Target stopped at “start_kernel” method

& main.c 22 =0

percpu_init_late();
pgtable_cache_init();
vmalloc_init();

}

asmlinkage wvoid _ init start_kernel(wvoid)
L
char * command_line;
extern const struct kernel_param _ start_ param[], _ stop_ param[];

* Meed to run as early as possible, to initialize the
* lockdep hash:

lockdep_init();

smp_setup_processor_1id();

debug_chjects_early init();

* Set up the the initial canary ASAP:

At this point, you can perform a full Linux kernel debug using run control (step/run/suspend),
set/remove breakpoints, read/write memory/registers/variables, and so on.

5.2. Debugging Linux modules

To debug the Linux modules, perform the following steps:
1. Login to Linux.

Figure 19. Linux prompt after login

2. Check to see if debugger is already attached to the target. If not, attach it to Linux using the
Attach launch configuration.

Debugging Linux Kernel and Modules using CodeWarrior for QorlQ LS series - ARM V7 ISA Application Note
Freescale Semiconductor

16

Debugging Linux kernel and modules

Figure 20. CodeWarrior attached to two running cores

ﬁ Debug & =0
':D 00 m &Y | | i= _ﬁz | -"-'W u‘g m - | ~
4 E LinuxKernelDebug_Linux_Kernel_L51021AQDS_Linux_Kernel_Attach [CodeWarrior]
a ARM VT, wmlinux, core 0
2 Thread [swapper/0: 0] (Running)
4 ARMVT, wmlinux, corel
& Thread [kthreadd: 2] (Running)
gl Ch\Users\bl1883\workspacelarmvy 140707\ LinuxkKernelDebug\Linux_Kernelwmlinux (7/8/14 5:35 PM)
gl ChUsers\b11883\workspace\armv7 140707\ LinuxKernelDebug\Linux_Kernelwmlinux (7/8/14 5:35 PM)

3. Insert a module into Linux.

CodeWarrior will automatically detect any insmod/modprobe/rmmod operation. A pop-up
window appears for locating the module debug symbols.

NOTE To detect insertion/removal of kernel modules, CodeWarrior needs to be
configured accordingly in the Debug Configurations dialog (on Modules tab
under Debugger tab > OS Awareness tab).

I ——————
Debugging Linux kernel and modules

Figure 21. Locate “isofs” symbolics file

¥ Locate symbolics file for isofs (==
@@v| 1« 3120 ¥ git b f5 b isofs « [4 || search isofs r)
Organize « New folder ==« [l @
Y Favorites “* Name Date modified Type
B Desktop || isofs.ko /472014 9:47 AM KO File
4 Downloads

U
‘£l Recent Places

4 Libraries
@ Documents I}
J1 Music
[E5] Pictures

B Vvideos

m

18 Computer
ﬂ Primary (C:)
5 sdk (1017172
5 space (\zroO4dfile |
5® engdata (\\zro04

f- Blmdsam el S| | LU b

File name: isofs.ko - ’*.ko v]

I Open I [Cancel]

NOTE It is mandatory that the kernel image running on the target is the same as the
vmlinux image on debugger, to have the kernel modules insertion/removal
detection enabled.

Figure 22. Target stopped at do_init_module after detection that an insmod/modprobe was performed

@ medulec &2 =0

blocking notifier call chain(&module_notify list,
MODULE_STATE_COMING, mod);

/* Set RO and NX regions for core */

set_section_ro_nx(mod->module_core,
mod->core_text_size,
mod->core_ro_size,
mod->core_size);

/* Set RO and NX regions fer init */

set_section_re_nx(mod-»module_init,
mod->init_text size,
mod->init_ro_size,
mod->init_size);

do_mod_ctors(mod); D
/* Start the module */
if (mod-»init != NULL)
ret = do_one_initcall{med->init);
if (ret ¢ @) {
/* Init routine failed: abort. Trv to porotect us from

Debugging Linux Kernel and Modules using CodeWarrior for QorlQ LS series - ARM V7 ISA Application Note
18 Freescale Semiconductor

) 4

4
Debugging Linux kernel and modules

4. Use the System Browser view to see the information about kernel version, modules, and threads
running on each core.

Figure 23. Kernel modules list displayed in System Browser

%% Debugger Shell |/=3 Progress M

Q Linux Kernel Awareness aRM V7, vmlinux, core 0 (Supervisor mode/Secure)

Information MName Kernel Address Text Address Core Size Symbolics Loaded
Threads | isofs 0x7f005238 0x7000000 29503 True
[@ Modules

5. For module debug, open the module’s sources in CodeWarrior. Debugging (step, run, or
breakpoint) can be done for the inserted modules.

NOTE Sometimes when the remove module command is executed, CodeWarrior may
lose connection to the target. In such a case, ensure that all breakpoints are
removed.

Debugging Linux Kernel and Modules using CodeWarrior for QorlQ LS series - ARM V7 ISA Application Note
Freescale Semiconductor 19

How to Reach Us:

Home Page:
www.freescale.com

E-mail:
support@freescale.com

Document Number: AN4980
8 July 2015

Information in this document is provided solely to enable system and software implementers to use
Freescale Semiconductor products. There are no express or implied copyright licenses granted
hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in
this document.

Freescale reserves the right to make changes without further notice to any products herein. Freescale
makes no warranty, representation, or guarantee regarding the suitability of its products for any
particular purpose, nor does Freescale assume any liability arising out of the application or use of any
product or circuit, and specifically disclaims any and all liability, including without limitation
consequential or incidental damages. “Typical” parameters that may be provided in Freescale data
sheets and/or specifications can and do vary in different applications, and actual performance may vary
over time. All operating parameters, including “typicals,” must be validated for each customer application
by customer's technical experts. Freescale does not convey any license under its patent rights nor the
rights of others. Freescale sells products pursuant to standard terms and conditions of sale, which

can be found at the following address: freescale.com/SalesTermsandConditions.

Freescale, the Freescale logo, CodeWarrior, and QorlQ are trademarks of Freescale Semiconductor,
Inc., Reg. U.S. Pat. & Tm. Off. Layerscape is trademark of Freescale Semiconductor,

Inc. All other product or service names are the property of their respective owners. ARM, Cortex and
TrustZone are trademarks or registered trademarks of ARM Ltd or its subsidiaries in the EU and/or
elsewhere. All rights reserved.

© 2015 Freescale Semiconductor, Inc.

“freescale

http://www.freescale.com/SalesTermsandConditions

