

© Freescale Semiconductor, Inc., 2015. All rights reserved.

Freescale Semiconductor
Document Number: AN4980

Application Note

Debugging Linux Kernel and Modules

using CodeWarrior for QorIQ LS series -

ARM V7 ISA

1. Introduction

This document describes the steps required for
debugging the Linux kernel and modules using the
CodeWarrior for QorIQ LS series - ARM V7 ISA.

This document includes the following sections:

• Preliminary background

• Creating an ARMv7 project

• Linux kernel debug support

• Debugging Linux kernel and modules

2. Preliminary background

This section describes the steps required to compile
Linux image for the LS1 boards.

Contents

1. Introduction ... 1
2. Preliminary background 1
3. Creating an ARMv7 project 3
4. Linux kernel debug support 9
5. Debugging Linux kernel and modules 12

Preliminary background

Debugging Linux Kernel and Modules using CodeWarrior for QorIQ LS series - ARM V7 ISA Application Note

2 Freescale Semiconductor

2.1. Download SDK

To debug Linux kernel and modules using CodeWarrior, download the latest QorIQ SDK from
www.freescale.com.

2.2. Install SDK

To install SDK on the host machine, perform these steps:

1. Mount the ISO on your machine as illustrated below:

2. Install the SDK as a non-root user, using the following commands:

3. On seeing the prompt to input the install path, check and ensure that the current user has the
appropriate permissions for the installation path.

NOTE There are no uninstall scripts. To uninstall Yocto, you need to remove the

 folder manually.

2.3. Prepare host environment for Yocto

Yocto requires some packages to be installed on the host folder. Prepare Yocto for the host environment
using the commands below:

Below is an illustration of this command:
For example, for LS1021AQDS board, the above command will be:

, where is the number of
jobs to spawn during the compilation stage and is the number of BitBake tasks that can be issued in
parallel.

2.4. Build Packages

To build various packages, run the following commands:

http://www.freescale.com/webapp/sps/site/prod_summary.jsp?code=SDKLINUX&nodeId=0152109D3F

 Creating an ARMv7 project

Debugging Linux Kernel and Modules using CodeWarrior for QorIQ LS series - ARM V7 ISA Application Note

Freescale Semiconductor 3

NOTE U-Boot, RCW, kernel, DTB, and rootfs images can be found in:

2.5. Configure and rebuild Linux kernel

In some cases, it is necessary to configure and rebuild the Linux kernel. In this case, it is necessary for
adding the debug symbols. To configure and rebuild the Linux kernel:

1. Run the command with :

2. On the kernel configuration window that opens, go to Kernel hacking > Compile-time checks

and compiler option and select the Compile the kernel with debug info checkbox.
3. Save the new configuration and rebuild the Linux kernel using the command below:

NOTE You can find the image, with debug symbols, in the following folder:

The ELF file will be imported into CodeWarrior for QorIQ LS series - ARM V7 ISA.

3. Creating an ARMv7 project

To create an ARMv7 project for debugging the Linux kernel, follow these steps:

1. Start CodeWarrior for QorIQ LS series - ARM V7 ISA.

2. Select File > Import to import the executable file generated during the Linux kernel
compilation. For details, see Configure and rebuild Linux kernel.

Creating an ARMv7 project

Debugging Linux Kernel and Modules using CodeWarrior for QorIQ LS series - ARM V7 ISA Application Note

4 Freescale Semiconductor

Figure 1. CodeWarrior File menu

3. On the Select page of the Import wizard, choose the source to be imported and click Next.

Figure 2. Import wizard

 Creating an ARMv7 project

Debugging Linux Kernel and Modules using CodeWarrior for QorIQ LS series - ARM V7 ISA Application Note

Freescale Semiconductor 5

4. On the Import a CodeWarrior Executable file page, specify the project name.

5. Specify a location for the new project in the Location field or choose to use the default location.

6. Click Next.

Figure 3. Import a CodeWarrior Executable file page

7. Browse to the executable file and select Open.
8. By default, CodeWarrior looks for an extension. Therefore, change the file type in the

lower right corner of the Select file dialog, as shown in the figure below.

Creating an ARMv7 project

Debugging Linux Kernel and Modules using CodeWarrior for QorIQ LS series - ARM V7 ISA Application Note

6 Freescale Semiconductor

Figure 4. Select a vmlinux executable file

9. On the Processor page that appears, select the processor type.

10. Under Target OS, choose Linux Kernel and click Next.

 Creating an ARMv7 project

Debugging Linux Kernel and Modules using CodeWarrior for QorIQ LS series - ARM V7 ISA Application Note

Freescale Semiconductor 7

Figure 5. Processor page

11. On the Debug Target Settings page that appears, select debugger connection type, board, launch

configuration, and connection type, and click Next.

Creating an ARMv7 project

Debugging Linux Kernel and Modules using CodeWarrior for QorIQ LS series - ARM V7 ISA Application Note

8 Freescale Semiconductor

Figure 6. Debug Target Settings page

12. On the Configurations page that appears, select the configurations that you want to create and

click Finish to close the wizard.

 Linux kernel debug support

Debugging Linux Kernel and Modules using CodeWarrior for QorIQ LS series - ARM V7 ISA Application Note

Freescale Semiconductor 9

Figure 7. Configurations page

4. Linux kernel debug support

This section describes the debugger settings for Linux kernel debugging.
The executable file generated during the Linux kernel compilation should be imported as
CodeWarrior project (for more information, see Creating an ARMv7 project).

After the CodeWarrior project is created, perform these steps to start Linux kernel debugging:

1. Select Run > Debug configurations to open the Debug configurations dialog and click Debug.

Linux kernel debug support

Debugging Linux Kernel and Modules using CodeWarrior for QorIQ LS series - ARM V7 ISA Application Note

10 Freescale Semiconductor

Figure 8. Debug Configurations dialog

NOTE Ensure that no initialization file is used.

2. On the Debugger tab, open the OS Awareness tab.
3. Deselect all the checkboxes, because an Attach launch configuration is used to attach to a

running Linux kernel.

4. On the Debug tab, select the Enable Memory Translation checkbox.
5. Configure the remaining settings as shown in the figure below.

 Debugging Linux kernel and modules

Debugging Linux Kernel and Modules using CodeWarrior for QorIQ LS series - ARM V7 ISA Application Note

Freescale Semiconductor 11

Figure 9. OS Awareness – Debug tab

6. On the Modules tab, select the checkboxes labeled “Detect module loading” and “Prompt for
symbolics path if not found”.

NOTE These options are required for detecting automatic insertion/removal of kernel
modules.
If multiple modules are inserted at Linux boot, then you are recommended to
activate these options only when connecting to Linux for module debugging.

Figure 10. OS Awareness – Modules tab

Debugging Linux kernel and modules

Debugging Linux Kernel and Modules using CodeWarrior for QorIQ LS series - ARM V7 ISA Application Note

12 Freescale Semiconductor

5. Debugging Linux kernel and modules

This section explains how to debug Linux kernel and Linux modules.

5.1. Debugging Linux kernel

1. Power on the board and stop at the U-Boot console.

Figure 11. Target stopped at U-Boot prompt

2. Attach to U-Boot using Attach launch configuration, as shown in the figure below.

Figure 12. Attach launch configuration

3. Set a breakpoint at kernel entry point, using Debugger Shell command

 Debugging Linux kernel and modules

Debugging Linux Kernel and Modules using CodeWarrior for QorIQ LS series - ARM V7 ISA Application Note

Freescale Semiconductor 13

Figure 13. Set breakpoint at entry point in Debugger Shell

NOTE This example was created on an LS1021ATWR board. For other LS1 boards, the
kernel entry point address may differ.

4. Start kernel from the U-Boot console.

Figure 14. U-Boot log - Prepare images for starting Linux kernel

The breakpoint set above will be hit and CodeWarrior will prompt for the location of the Linux
kernel sources to make a path mapping between the original location of the sources and the new
location.
For example, in the illustration below, the Linux kernel sources were copied from a Linux
machine to a Windows machine.

Debugging Linux kernel and modules

Debugging Linux Kernel and Modules using CodeWarrior for QorIQ LS series - ARM V7 ISA Application Note

14 Freescale Semiconductor

Figure 15. Source file not found when target is stopped at kernel entry point

After the missing file is located, the actual source file will open in CodeWarrior.

NOTE This example was created on an LS1021ATWR board. For other LS1 boards, you
may need to instruct the debugger to reload the symbols with the position
independent code (PIC) load address.

Figure 16. Target stopped at entry point, after path mapping was performed

5. To start kernel debug from symbol, set a breakpoint at ,

using Debugger Shell command .

 Debugging Linux kernel and modules

Debugging Linux Kernel and Modules using CodeWarrior for QorIQ LS series - ARM V7 ISA Application Note

Freescale Semiconductor 15

Figure 17. Set a breakpoint from Debugger Shell at “start_kernel” method

NOTE This example was created on an LS1021ATWR board. For other LS1 boards, you
may need to use a different command for starting the kernel.

6. Resume debugging using F8 or the Debugger Shell command .
The breakpoint will be hit and you can perform kernel debugging from .

Debugging Linux kernel and modules

Debugging Linux Kernel and Modules using CodeWarrior for QorIQ LS series - ARM V7 ISA Application Note

16 Freescale Semiconductor

Figure 18. Target stopped at “start_kernel” method

At this point, you can perform a full Linux kernel debug using run control (step/run/suspend),
set/remove breakpoints, read/write memory/registers/variables, and so on.

5.2. Debugging Linux modules

To debug the Linux modules, perform the following steps:
1. Log in to Linux.

Figure 19. Linux prompt after login

2. Check to see if debugger is already attached to the target. If not, attach it to Linux using the
Attach launch configuration.

 Debugging Linux kernel and modules

Debugging Linux Kernel and Modules using CodeWarrior for QorIQ LS series - ARM V7 ISA Application Note

Freescale Semiconductor 17

Figure 20. CodeWarrior attached to two running cores

3. Insert a module into Linux.

CodeWarrior will automatically detect any operation. A pop-up
window appears for locating the module debug symbols.

NOTE To detect insertion/removal of kernel modules, CodeWarrior needs to be

configured accordingly in the Debug Configurations dialog (on Modules tab

under Debugger tab > OS Awareness tab).

Debugging Linux kernel and modules

Debugging Linux Kernel and Modules using CodeWarrior for QorIQ LS series - ARM V7 ISA Application Note

18 Freescale Semiconductor

Figure 21. Locate “isofs” symbolics file

NOTE It is mandatory that the kernel image running on the target is the same as the
vmlinux image on debugger, to have the kernel modules insertion/removal
detection enabled.

Figure 22. Target stopped at do_init_module after detection that an insmod/modprobe was performed

 Debugging Linux kernel and modules

Debugging Linux Kernel and Modules using CodeWarrior for QorIQ LS series - ARM V7 ISA Application Note

Freescale Semiconductor 19

4. Use the System Browser view to see the information about kernel version, modules, and threads
running on each core.

Figure 23. Kernel modules list displayed in System Browser

5. For module debug, open the module’s sources in CodeWarrior. Debugging (step, run, or
breakpoint) can be done for the inserted modules.

NOTE Sometimes when the command is executed, CodeWarrior may
lose connection to the target. In such a case, ensure that all breakpoints are
removed.

www.freescale.com

support@freescale.com

Document Number: AN4980

8 July 2015

Information in this document is provided solely to enable system and software implementers to use
Freescale Semiconductor products. There are no express or implied copyright licenses granted
hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in
this document.

Freescale reserves the right to make changes without further notice to any products herein. Freescale
makes no warranty, representation, or guarantee regarding the suitability of its products for any
particular purpose, nor does Freescale assume any liability arising out of the application or use of any
product or circuit, and specifically disclaims any and all liability, including without limitation
consequential or incidental damages. “Typical” parameters that may be provided in Freescale data
sheets and/or specifications can and do vary in different applications, and actual performance may vary
over time. All operating parameters, including “typicals,” must be validated for each customer application
by customer's technical experts. Freescale does not convey any license under its patent rights nor the
rights of others. Freescale sells products pursuant to standard terms and conditions of sale, which
can be found at the following address: freescale.com/SalesTermsandConditions.

Freescale, the Freescale logo, CodeWarrior, and QorIQ are trademarks of Freescale Semiconductor,
Inc., Reg. U.S. Pat. & Tm. Off. Layerscape is trademark of Freescale Semiconductor,
Inc. All other product or service names are the property of their respective owners. ARM, Cortex and
TrustZone are trademarks or registered trademarks of ARM Ltd or its subsidiaries in the EU and/or
elsewhere. All rights reserved.

© 2015 Freescale Semiconductor, Inc.

http://www.freescale.com/SalesTermsandConditions

