

© Freescale Semiconductor, Inc., 2015. All rights reserved.

Freescale Semiconductor
Document Number: AN5001

Application Note

Collecting Linux Trace without using

CodeWarrior

1. Introduction

This document guides you how to collect Linux

trace directly from QDS or TWR board without

using CodeWarrior. The tool encapsulates the trace

configurator and probe into one small and cross-

compiled component that is uploaded on the target

machine. Its main use is to collect the trace of a

program and also it is used for profiling the

application.

2. Overview

The Linux trace mechanism is independent of

CodeWarrior. The trace data is collected using a

QorIQ LS1021A or LS1024A Linux board.

The advantages of the ARMv7 standalone tracing

tool are:

• Size: Contains only what is needed

• Speed: All services are hosted on target machine

and there are no delays caused by

communication between multiple workstations

or languages

Contents

1. Introduction ... 1
2. Overview ... 1
3. Execution flow .. 2
4. User space trace... 3
5. Kernel space trace ... 8
6. Conclusion .. 10

Execution flow

Collecting Linux Trace without using CodeWarrior Application Note

2 Freescale Semiconductor

• Nonintrusive: No need to instrument the target application

• Easy to use: Collects all required/available information for decoding

• Simple API: Can be easily integrated into any testing framework

• Data-driven: The platform and probe configuration can be easily tuned up and scaled to user needs

3. Execution flow

The execution flow is described below:

Figure 1. Flowchart for ARMv7 standalone Linux trace

You can configure the Layerscape platform and probe in file, and then

specify the launch configuration options in executable. Run the executable with

user space commands, it will generate the relocation support file and the trace file for the application that
is being traced.

The root folder of the package will have the following file structure:

• folder: Binary files are needed for trace session; it will have

executable

• folder: Platform configuration files; it will have file

• folder: Library files

Below are the listed options with a short description.

 User space trace

Collecting Linux Trace without using CodeWarrior Application Note

Freescale Semiconductor 3

Usage:

Table 1. General command description - Options

Command Description

 Verbose mode

 Product version

 Displays the help message

Table 2. User space command description - Options

Command Description

 Path of the generated archive

 Shows backtrace on SEGFAULT

Attach to a process giving a PID

Table 3. Kernel space command description - Options

Command Description

 Path of the generated kernel archive

 vmlinux image path

Name of the traced module

Table 4. System trace command description - Options

Command Description

 Path of the generated archive

 vmlinux image path

Attach to a process giving a PID

Shows backtrace on SEGFAULT

4. User space trace

The relocation file contains a list of libraries linked with the traced application with their load addresses.
This list also contains libraries injected through variable.

The trace file incorporates the raw trace collected by Embedded Trace Buffer (ETB) and Trace Memory
Controller (TMC) probes from the location specified in the probe configuration file.

User space trace

Collecting Linux Trace without using CodeWarrior Application Note

4 Freescale Semiconductor

The option is the most verbose. It archives the applications, all its dependencies (shared libraries),

trace file, the configuration file, and relocation support. This is the default option. Its use increases the
time and file-system space required for archiving. The main advantage is the generated file. It

is an archive file that can be imported and fully decoded using ARMv7 decoder or ARMv7
CodeWarrior.

The option will generate a more detailed output at standard output. The is a signal

triggered by the kernel to a user space application when a memory access violation is made. Usually, the
 signal is the main reason for the crash of C/C++ applications. Thus, a backtrace on

 is important where each byte of file system matters. The option will dump all known

stack frames without having support from a debugger. Before using this option, you must ensure that the
traced application has been compiled with debug information (for GCC) and extra code for exception

propagation (for GCC) and all symbols are added to the dynamic symbol table (

 for GCC).

Before running any examples, make sure that your kernel is already compiled with enabled

 configuration option. All the steps mentioned below are done on the target

machine.

Create a small program that computes the sum of elements from to and crashes due to a

segmentation fault.

 User space trace

Collecting Linux Trace without using CodeWarrior Application Note

Freescale Semiconductor 5

After saving the above program in a file, , you should compile it with debugging symbols

as shown below:

Now, try to figure out which line caused the crash. Launch the executable using

.

User space trace

Collecting Linux Trace without using CodeWarrior Application Note

6 Freescale Semiconductor

 /

Collecting Linux Trace without using CodeWarrior Application Note

Freescale Semiconductor 7

The executable collects trace and archives all dependencies into archive.

You can view the generated archive in CW ARMv7 with a drag-and-drop action. As a result, the Import
wizard starts, as shown in the figure below.

Figure 2. Import wizard – user space

Click Finish to end the Import wizard. The file is imported and it is displayed in the Analysis Results
view.

Click the Trace link under the Trace column in the Analysis Results view to view the trace data, as
shown in the figure below.

Figure 3. Analysis Results view – user space

Kernel space trace

Collecting Linux Trace without using CodeWarrior Application Note

8 Freescale Semiconductor

The trace data file opens in the Trace viewer showing the trace results, as shown in the figure below.

Figure 4. Trace viewer – user space

5. Kernel space trace

The same executable can be used for kernel space tracing without using a dedicated hardware probe. For
this type of trace, the following three kernel space options are used:

• : Starts a kernel space trace session and also specifies the name of the generated archive

• : It is optional. It points to the vmlinux image of the system. This option is useful only when the

kernel image contains debug information; otherwise, option is more convenient to use.

• : Traces the code generated from a kernel module

Run the with and options. After few seconds, send a signal by pressing

on your keyboard.

 /

Collecting Linux Trace without using CodeWarrior Application Note

Freescale Semiconductor 9

The generated archive can be opened in CW ARMv7 with a drag-and-drop action. As a result, the

Import wizard starts, as shown in the figure below.

Figure 5. Import wizard – kernel space

Click Finish to end the Import wizard. The file is imported and it is displayed in the Analysis Results
view.

Click the Trace link under the Trace column in the Analysis Results view to view the trace data, as
shown in the figure below.

Figure 6. Analysis Results view – kernel space

Conclusion

Collecting Linux Trace without using CodeWarrior Application Note

10 Freescale Semiconductor

The trace data file opens in the Trace viewer showing the trace results, as shown in the figure below.

Figure 7. Trace viewer – kernel space

The offers the possibility to trace a kernel module using option. The trace will be started

after loading the module in kernel using or .

For example, to start a kernel session for a module, , you should run the following

command:

Use a kernel space/user space application that calls functions defined into the loaded module
(), otherwise the trace will be empty. The trace session ends after hitting CTRL+C. The

collected trace will be stored into an archive placed in the current working directory. It can be decoded
and analyzed using CodeWarrior or Trace Complex 1 (TC1) command line utility.

6. Conclusion

The executable can be used by Linux user who wants to know the reason for crash

or wants to follow the function calls or needs to evaluate the software without any hardware probe. After
saving the trace file into an archive that contains all required files for a full decoding, can be viewed in
CodeWarrior. The user is benefited from all advantages offered by CW ARMv7. You can have the
profiling data code coverage, call tree, performance analysis as well.

www.freescale.com

support@freescale.com

Document Number: AN5001

27 August 2015

Information in this document is provided solely to enable system and software implementers to use
Freescale Semiconductor products. There are no express or implied copyright licenses granted
hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in
this document.

Freescale reserves the right to make changes without further notice to any products herein. Freescale
makes no warranty, representation, or guarantee regarding the suitability of its products for any
particular purpose, nor does Freescale assume any liability arising out of the application or use of any
product or circuit, and specifically disclaims any and all liability, including without limitation
consequential or incidental damages. “Typical” parameters that may be provided in Freescale data
sheets and/or specifications can and do vary in different applications, and actual performance may vary
over time. All operating parameters, including “typicals,” must be validated for each customer application
by customer's technical experts. Freescale does not convey any license under its patent rights nor the
rights of others. Freescale sells products pursuant to standard terms and conditions of sale, which
can be found at the following address: freescale.com/SalesTermsandConditions.

Freescale, the Freescale logo, CodeWarrior, and QorIQ are trademarks of Freescale Semiconductor,
Inc., Reg. U.S. Pat. & Tm. Off. Layerscape is trademark of Freescale Semiconductor, Inc. All other
product or service names are the property of their respective owners. ARM, Cortex, Cortex-A7,
TrustZone are trademarks of ARM Limited (or its subsidiaries) in the EU and/or elsewhere. All rights
reserved.

 © 2015 Freescale Semiconductor, Inc.

