
Freescale Semiconductor, Inc.
Application Note

© 2015 Freescale Semiconductor, Inc. All rights reserved.

 

1 Introduction
This application note shows how to use the universal 
peripheral module FlexIO for emulating the UART bus. The 
FlexIO peripheral was initially introduced on the Freescale 
Kinetis KL43 family.

FlexIO is a highly configurable module capable of emulating 
a wide range of different communication protocols: UART, 
I2C, SPI, I2S, etc. 

Standalone peripheral module FlexIO is not used for 
replacement of the UART peripheral, but as an additional 
peripheral module of the MCU. The important feature of this 
peripheral is that it enables the user to build their own 
peripheral directly in the MCU. 

This use case for the UART module creates a simple 
software driver based on the independent receiver and 
transceiver. For this demonstration, we have used the 
Freescale Tower system. The maximum tested baud rate of 
the emulated UART bus is 115200 baud.

Document Number: AN5034
Rev. 0, 01/2015

Contents
1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1
2. Main features of the FlexIO peripheral module  . . . . .  2
3. Required hardware  . . . . . . . . . . . . . . . . . . . . . . . . . . .  2
4. UART in general . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3
5. UART emulation by FlexIO module  . . . . . . . . . . . . .  3
6. Software implementation  . . . . . . . . . . . . . . . . . . . . . .  5
7. Conclusion  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  8
8. References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  8

Emulating UART by Using FlexIO
by Pavel Krenek, Application Engineer

Freescale Roznov, Czech Republic



Emulating UART by Using FlexIO, Application Note, Rev. 0, 01/2015

2 Freescale Semiconductor, Inc.

Main features of the FlexIO peripheral module

2 Main features of the FlexIO peripheral module
• FlexIO means flexible input and output peripheral.

• Highly configurable module with wide range functionality.

• Allows emulation of standard communication interfaces.

• Supports a wide range of protocols and peripherals including:

— UART

— I2C 

— SPI

— I2S

— LCD RGB

— CMT (carrier modulator transmitter) 

— PWM/waveform generation

— SWD (single wire debug)

• Creates an interlink between GPIO method of  software emulation and exact hardware peripheral 
module.  

3 Required hardware
This document describes the example application based on the Freescale Tower system. The basic concept 
can be easily implemented on the customized hardware as well.

The application can be easily set up using the following Tower system boards:

• TWR-KL43Z48M

• TWR-ELEV (primary and secondary)

• Optionally, TWR-SER

The example shows the UART communication using the FlexIO module with following parameters:

• 8-bit communication

• One stop bit 

• No parity

• No hardware flow control

Easy communication with the PC can be achieved with an OpenSDA interface using virtual CDC layer of 
USB standard. The TWR-SER card can also be used with the direct RS232 connection with the PC. The 
UART data frame emulated by FlexIO is shown in Figure 1. 



Emulating UART by Using FlexIO, Application Note, Rev. 0, 01/2015

Freescale Semiconductor, Inc. 3

UART in general

Figure 1. UART 8-bit data frame

4 UART in general
A universal asynchronous receiver/transmitter is a piece of computer hardware that translates data 
between parallel and serial forms. UARTs are commonly used in conjunction with communication 
standards such as EIA, RS-232, RS-422 or RS-485. The universal designation indicates that the data 
format and transmission speeds are configurable. The electric signaling levels and methods (such 
as differential signaling etc.) are handled by a driver circuit external to the UART.

A UART is usually an individual (or part of an) integrated circuit used for serial communications over a 
computer or peripheral device serial port.

Transmitting and receiving UARTs must be set for the same bit speed, character length, parity and stop bits 
for proper operation. The receiving UART may detect some mismatched settings and set a "framing error" 
flag bit for the host system; in exceptional cases the receiving UART will produce an erratic stream of 
mutilated characters and transfer them to the host system.

Typical serial ports used with personal computers connected to modems use eight data bits, no parity, and 
one stop bit; for this configuration the number of ASCII characters per second equals the bit rate divided 
by 10.

5 UART emulation by FlexIO module
UART bus can be supported by using two timers, two shifters and two pins. The transmitter is supported 
by using one timer, one shifter and one pin. One timer, one shifter and one pin are used for the receiver 
part. Both transmitter and receiver parts can be used independently. The start and stop bit insertion is 
handled automatically by FlexIO peripheral. The maximum baud rate of the emulated peripheral is 115200 
baud. Software implementation allows use UART in interrupt or polling modes. 

Break and idle characters require software intervention and are not implemented in the example 
application. Configurable bit order (bit swapped buffer MSB first), and multiple transfers can be supported 
using DMA controller. FlexIO module does not allow automatic insertion of parity bits. Figure 2 shows 
internal connection of FlexIO emulated UART.



Emulating UART by Using FlexIO, Application Note, Rev. 0, 01/2015

4 Freescale Semiconductor, Inc.

UART emulation by FlexIO module

Figure 2. UART emulation block diagram

5.1 Transmitter

Transmitting procedure includes the following steps:

• Set the shifter to transmit mode

• Shift loaded data from the shifter buffer

• Shift the data to the pin output  

• Start and stop bits are automatically loaded before or after data

• Use the timer status flag to send the next data frame

Figure 3 shows the principle of UART transmitter emulation. Timer status flag is checked in the polling 
mode and the module generates interrupt when the interrupt setting is enabled.



Emulating UART by Using FlexIO, Application Note, Rev. 0, 01/2015

Freescale Semiconductor, Inc. 5

Software implementation

Figure 3. Block diagram of the UART transmitter on FlexIO module

5.2 Receiver

Receiving procedure includes the following steps:

• Set the shifter to receiver mode

• The data is shifted in when the store event is signaled

• The status flag indicates when data can be read (generate interrupt) 

• Wait for the shifter status flag in polling mode

• Store into the shifter buffer

• Reading bit swaps the shifter buffer (without any logical operation) 

Figure 4 shows the principle of UART receiver emulation. Shifter status flag is checked in the polling 
mode and the module generates interrupt when the interrupt setting is enabled.

Figure 4. Block diagram of the UART receiver on FlexIO module

6 Software implementation
This example application is built by using software bare metal drivers. The driver is divided in two  
separate parts: The main low level driver is for initialization of peripherals, basic setting of the shifters and 
timers, and enables the user to read and write to the peripheral register. The sublayer of the bare metal 
driver is focused on the emulation of the current peripheral (UART). This driver can be used in other 



Emulating UART by Using FlexIO, Application Note, Rev. 0, 01/2015

6 Freescale Semiconductor, Inc.

Software implementation

instances. The application can use functions from both of the driver layers. Callback functionality is also 
implemented. Figure 5 shows the structure of the bare metal driver with all of drivers implemented for 
FlexIO peripheral module.

Figure 5. Block diagram of the FlexIO bare metal drivers

6.1 Software settings

The clocks are enabled for all required peripherals in SIM (system integration module). A high-frequency 
internal reference clock (HIRC) is used as a clock source, which gives 48 MHz to the system. 

Initialization of the driver includes two functions. The first is for transmitting side FLEXIO_UART_TxInit  
and the second one for receiving side FLEXIO_UART_RxInit. 

All configuration values are given from the file “appconfig.h”. These values are used for the calculation 
of the UART baudrate, but can be replaced by user definitions.

Example of macro definition in “appconfig.h”:

6.2 API of FlexIO high level driver

FLEXIO_UART_RESULT FLEXIO_UART_TxInit(FLEXIO_UART_CONFIG * pConfig,

uint32_t shifterOutIx,  uint32_t timerOutIx, uint32_t pinTxIx, uint32_t baudRateTx,

uint32_t flexioClk);

#define FLEXIO_UART_RX_BAUDRATE 9600

#define FLEXIO_UART_TX_BAUDRATE 9600

#define MCU_SYSTEM_CLOCK 2000000



Emulating UART by Using FlexIO, Application Note, Rev. 0, 01/2015

Freescale Semiconductor, Inc. 7

Software implementation

FLEXIO_UART module Tx initialization function:

• pConfig - pointer to configuration structure

• shifterOutIx - Index of shifter for transmit

• timerOutIx - Index of timer for transmit

• pinTxIx - Index of FlexIO Pin for Tx signal

• baudRate - Requested baudrate

• FlexIoClk - Clock frequency of flexio peripheral

• Return result of Init Operation  

FLEXIO_UART_RESULT FLEXIO_UART_RxInit(FLEXIO_UART_CONFIG * pConfig, uint32_t 
shifterInIx, uint32_t timerInIx, uint32_t pinRxIx, uint32_t baudRateRx, uint32_t flexioClk);

FLEXIO_UART module Rx initialization function:

• pConfig - pointer to configuration structure

• shifterInIx - Index of shifter for receive and ACK

• timerInIx - Index of timer for clocking of shifter registers

• pinRxIx - Index of flexio Pin for Rx signal

• baudRate - Requested baudrate

• FlexIoClk - Clock frequency of flexio peripheral

• Return result of Init Operation

FLEXIO_UART_RESULT FLEXIO_UART_PutStr(FLEXIO_UART_CONFIG * pConfig, const uint8 * 
str);

FLEXIO_UART module Write string:

• pConfig - pointer to configuration structure

• str - pointer to string

• Return result of Write Operation

FLEXIO_UART_RESULT FLEXIO_UART_SendBuffer(FLEXIO_UART_CONFIG * pConfig, const uint8 
* pBuff, uint32 len);

FLEXIO_UART module Write data function:

• pConfig - pointer to configuration structure

• pBuff - pointer to input buffer



Emulating UART by Using FlexIO, Application Note, Rev. 0, 01/2015

8 Freescale Semiconductor, Inc.

Conclusion

• Return result of write operation

uint8_t FLEXIO_UART_GetChar(FLEXIO_UART_CONFIG * pConfig); 

FLEXIO_UART module Read data function:

• pConfig - pointer to configuration structure

• Return read byte of data in interrupt mode

The following functions are used only in interrupt mode:

FLEXIO_UART_RESULT FLEXIO_UART_PutChar(FLEXIO_UART_CONFIG * pConfig, uint8 ch);

FLEXIO_UART module putchar function:

• pConfig - pointer to configuration structure

• ch - pointer input character

• Return result of write operation.

FLEXIO_UART_SetCallBack(FLEXIO_UART_CONFIG * pConfig, FLEXIO_UART_CALLBACK 
pCallback);

FLEXIO_UART module register CallBack function:

• pConfig - pointer to configuration structure

• pCallback - pointer to function CallBack function (NULL for unregister)

• Result of register callBack function operation

• Implemented as function call.

7 Conclusion
This application note demonstrates the use-case which can be easily implemented by FlexIO peripheral 
module available on the Freescale Kinetis KL43 MCU. The example application was created with and 
demonstrates the use of FlexIO emulated UART and hardware UART modules in the same application 
using the Freescale Tower platform. Together with this application note, the application software is 
available on the Freescale web pages.

8 References
• Freescale Tower system  - freescale.com/tower

• Emulating I2S bus master by FlexIO Application Note



Emulating UART by Using FlexIO, Application Note, Rev. 0, 01/2015

Freescale Semiconductor, Inc. 9

References

• TWR-KL43Z48M: Kinetis KL43, KL33, KL27, KL17 48 MHz MCUs Tower System Module - 
freescale.com/webapp/sps/site/prod_summary.jsp?code=TWR-KL43Z48M



Document Number: AN5034
Rev. 0
01/2015

Information in this document is provided solely to enable system and software 

implementers to use Freescale products. There are no express or implied copyright 

licenses granted hereunder to design or fabricate any integrated circuits based on the 

information in this document.

Freescale reserves the right to make changes without further notice to any products 

herein. Freescale makes no warranty, representation, or guarantee regarding the 

suitability of its products for any particular purpose, nor does Freescale assume any 

liability arising out of the application or use of any product or circuit, and specifically 

disclaims any and all liability, including without limitation consequential or incidental 

damages. “Typical” parameters that may be provided in Freescale data sheets and/or 

specifications can and do vary in different applications, and actual performance may 

vary over time. All operating parameters, including “typicals,” must be validated for 

each customer application by customer’s technical experts. Freescale does not convey 

any license under its patent rights nor the rights of others. Freescale sells products 

pursuant to standard terms and conditions of sale, which can be found at the following 

address: freescale.com/SalesTermsandConditions.

How to Reach Us:
Home Page: 
freescale.com 

Web Support: 
freescale.com/support

Freescale, the Freescale logo, and Kinetis are trademarks of Freescale 

Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. Tower is a trademark of Freescale 

Semiconductor, Inc. All other product or service names are the property of their 

respective owners. ARM, the ARM Powered logo and Cortex are registered 

trademarks of ARM Limited (or its subsidiaries) in the EU and/or elsewhere. 

© 2015 Freescale Semiconductor, Inc.

 
 


	Emulating UART by Using FlexIO
	1 Introduction
	2 Main features of the FlexIO peripheral module
	3 Required hardware
	Figure 1. UART 8-bit data frame

	4 UART in general
	5 UART emulation by FlexIO module
	Figure 2. UART emulation block diagram
	5.1 Transmitter
	Figure 3. Block diagram of the UART transmitter on FlexIO module

	5.2 Receiver
	Figure 4. Block diagram of the UART receiver on FlexIO module


	6 Software implementation
	Figure 5. Block diagram of the FlexIO bare metal drivers
	6.1 Software settings
	6.2 API of FlexIO high level driver

	7 Conclusion
	8 References

