
Freescale Semiconductor, Inc.
Application Note

© 2015 Freescale Semiconductor, Inc. All rights reserved.

1 Introduction
Electrical energy consumption is not constant during the day.
There is different electrical energy consumption in
the morning, in the evening, and at night. There are peaks in
electricity consumption during the day which are not
desirable, but there are efforts to reduce these peaks in
electricity consumption. This is the reason why load
management is utilized.

Electric companies motivate electricity consumers to turn
their electrical appliances off during peak times, and to turn
their electrical appliances on during the drops in electricity
consumption. The motivation for doing this is usually a
lower tariff for electrical energy during the daily drops in
electrical energy consumption. And this is the reason why
ripple control is utilized.

Ripple control is a form of load control, and it is already used
in many countries around the world. With a ripple control
receiver, it is possible to change the tariff for electrical
energy, turn the electrical appliance off or on from the grid,
and much more.

Document Number: AN5046
Rev. 2, 11/2015

Contents
1. Introduction . 1
2. Block diagram . 2
3. Ripple control communication protocol 3
4. Ripple Control Library (rcolib) – Practical

Implementation . 6
5. Receiving a ripple control message from the grid . . 12
6. Summary . 14
7. References . 15
8. Revision history . 15
A. C-Header file of Rcolib . 16
B. C-Header file generated by the configuration tool . . 20
C. Test example . 21

Ripple Control Receiver Using
Kinetis M
by: Martin Sebest

Ripple Control Receiver Using Kinetis M, Application note, Rev. 2, 11/2015

2 Freescale Semiconductor, Inc.

Block diagram

Ripple control communication is based on superimposing a higher frequency signal onto the 50 Hz or
60 Hz mains power signal. The amplitude of the superimposed signal is usually around 5 % of the nominal
phase voltage, and the frequency of the ripple signal is usually ranging from 150 to 1600 Hz.
The description of the ripple control communication protocol is contained in Section 3, “Ripple control
communication protocol.” The amplitude of the superimposed signal may vary due to various interference
sources, for example, rectifiers, thyristor controls, welders, and so on. The distance between the ripple
control signal transmitter and the receiver is another factor which may have an impact on the ripple control
signal quality.

The main purpose of this application note is to describe how the ripple control communication is working
(communication protocol), and how the ripple control library (rcolib) can be implemented in a ripple
control receiver.

2 Block diagram
Figure 1 shows a simple block diagram of the ripple control principle. The source of electrical energy is
the power plant. Electrical energy is distributed from the power plant to various kinds of electrical
appliances by a wire. The consumers of electrical energy are electrical appliances, which can be situated
in different locations around the country. Before each final location (house, company), there is a power
meter, which measures the amount of electrical energy consumed. This is the basic principle of the
distribution of electrical energy.

Among other things, the modern power meter is able to calculate the price of electrical energy consumed.
The price is a simple product of the consumed amount of electrical energy in kWh and the unit tariff for
one kWh. If we want to apply different tariffs for electrical energy in different parts of the day, we can use
ripple control.

For a ripple control communication to be established, a ripple control transmitter and a ripple control
receiver are needed. The role of the ripple control transmitter is to generate the ripple control information
and to transmit this information to the grid. On the other hand, the ripple control receiver is needed for
receiving the ripple control information from the ripple control transmitter.

As mentioned above, the role of the ripple control transmitter is to generate the ripple control information
according to the communication protocol, and to transmit this information to the grid. The ripple control
transmitter is suitable to be placed near to the final consumers. How the ripple control transmitter generates
and transmits the ripple control message to the grid is not the purpose of this application note. It is
mentioned only to clarify that there is more than one way of generating the ripple control message in
the transmitter and superimposing it onto the main power signal.

Ripple Control Receiver Using Kinetis M, Application note, Rev. 2, 11/2015

Freescale Semiconductor, Inc. 3

Ripple control communication protocol

Figure 1. Block diagram of the ripple control principle

The presence of the ripple control receiver is needed in order to receive and apply the ripple control
information from the ripple control transmitter. The role of the ripple control receiver is to correctly receive
and decode the ripple control information sent from the ripple control transmitter. How the received ripple
control message can be applied may also vary. It depends on the specific application, whether we want to
only change the tariff for electrical energy, or to disconnect the electrical appliances from the grid, or,
whether we want to address power meters only in a specific location. There are many ways in which the
ripple control receiver can affect the power meter.

Figure 1 illustrates only two of the many ways in which the ripple control receiver can affect the power
meter or electrical appliances connected to the grid. For example, one possibility is that the power meter
includes the ripple control receiver function. This is a smart and compact solution _ the power meter with
an embedded ripple control receiving function assembled in one box. A standalone ripple control receiver
is another possibility of how a ripple control receiver can affect one or more power meters or other
electrical appliances.

The ripple control communication protocol is described in Section 3, “Ripple control communication
protocol.”

3 Ripple control communication protocol
The ripple control communication protocol is described in Figure 2. The communication starts with
a start bit. After the start bit, a start pause must follow. The start bit and start pause are followed by the data
bits. After each data bit, there must be a data pause. The time lengths of individual parts of the ripple
control communication protocol (start bit, start pause, data bit, data pause) may vary. The number of data
bits may vary as well. This means that there may be a lot of specific ripple control communication
protocols. The most common ripple control communication protocols are described in Table 1.

Ripple Control Receiver Using Kinetis M, Application note, Rev. 2, 11/2015

4 Freescale Semiconductor, Inc.

Ripple control communication protocol

Figure 2. Ripple control communication protocol

The ripple control communication protocol seems to be very similar to the UART communication
protocol, but it is not quite the same. A detailed explanation of how the ripple control communication
works in a real application is included in Section 3.1, “Detailed explanation of ripple control
communication.”

3.1 Detailed explanation of ripple control communication

This section describes the ripple control communication in a real application. The waveform of the first
harmonic of the power signal is depicted in the first graph of Figure 3. The amplitude of the power signal
is 325 VP (or 230 VRSM), and the frequency of the power signal is 50 Hz.

The ripple control signal is displayed in the second graph of Figure 3. The amplitude of the ripple control
signal is 5 % from the first harmonic waveform, and is about 16.2 VP (or 11.5 VRMS). The frequency of
the ripple control signal is, in our case, 216.6 Hz. In a real application, the frequency of a ripple control
signal may be different. Which frequency will be used depends on the distributor of electrical energy.
Generally, the carrier frequency of the ripple control signal may be in the interval from 110 Hz to 1600 Hz.

As shown in the second graph of Figure 3, the ripple control signal consists of a start bit, start pause, data
bit, and a data pause interval. The time duration of individual parts of the ripple control signal is different.
For example, the time duration of the start bit is not the same as the time duration of the data bit. Generally,
the start bit is two or more times longer than the data bit, as shown in Table 3.

This ripple control signal is superimposed onto the first harmonic of the power signal, as shown in the third
graph of Figure 3. The ripple control signal is transmitted to receivers via the power lines. The ripple
control signal does not affect the electrical appliances that are connected to the grid. The time duration of
the whole ripple control message is less than one minute in most cases.

Ripple Control Receiver Using Kinetis M, Application note, Rev. 2, 11/2015

Freescale Semiconductor, Inc. 5

Ripple control communication protocol

Figure 3. Ripple control communication

3.2 Common ripple control protocols

The most common ripple control communication protocols are described in Table 1.

Table 1. The most common ripple control communication protocols

Manufacturer
Protocol

Name

Start Impulse Data Impulse
Number of

bits
Impulse [ms] Pause [ms] Impulse [ms] Pause [ms]

ABB Ricontic b 880 560 320 320 50

 Ricontic s 1600 1360 640 1360 50

Landys & Gyr Landis & Gyr 460 407 150 427 50

 Semagyr 50 460 407 110 467 50

 Semagyr 50 a 460 387 150 427 50

 Semagyr 50 b 450 695 150 425 50

Ripple Control Receiver Using Kinetis M, Application note, Rev. 2, 11/2015

6 Freescale Semiconductor, Inc.

Ripple control library (Rcolib) – practical implementation

More detailed information on the ripple control communication protocols mentioned in Table 1, or about
many others, can be found on many web pages; for example: www.rundsteuerung.de/.

4 Ripple control library (Rcolib) – practical
implementation

This section describes how the ripple control signal can be received using the ripple control C-code library
(C-code).

Figure 4. Ripple control signal decoding

A simple block diagram is depicted in Figure 4. It shows how the ripple control message can be decoded
from the power-signal waveform, on which the ripple control signal is superimposed. In the beginning,
we need to measure the phase voltage where the ripple control message can occur.

 Semagyr … 460 695 110 467 50

 Semagyr 52 1320 400 320 400 50

 Semagyr 56 2640 800 640 800 50

 RWE 1560 1515 150 427 46

 RWE (mod) 1560 431 150 427 50

Schlumberger Pulsadis (EdF) 1000 2750 1000 1500 40

 Pulsadis (EdF
mod.)

2000 1750 1000 1500 40

 Pulsadis 2000 1050 300 450 31

 Pulsadis / MVM 2000 1000 500 500 50

Siemens TELENERG 50 1650 600 400 600 50

 TELENERG 29 1650 600 400 600 29

ZPA ZPA 2330 2990 1000 330 44

Table 1. The most common ripple control communication protocols (continued)

Manufacturer
Protocol

Name

Start Impulse Data Impulse
Number of

bits
Impulse [ms] Pause [ms] Impulse [ms] Pause [ms]

http://www.rundsteuerung.de/

Ripple Control Receiver Using Kinetis M, Application note, Rev. 2, 11/2015

Freescale Semiconductor, Inc. 7

Ripple control library (Rcolib) – practical implementation

The measured samples of the phase voltage are filtered by the band-pass filter. The output from
the band-pass filter should be the ripple control signal. When the presence of a ripple control signal is
detected, the decoding process can start. The decoding process should provide valid ripple control data,
which should be the same as the transmitted ripple control data.

All these steps are included in the rcolib library (ripple control library). This library is described
in Section 4.1, “Rcolib library.”

4.1 Rcolib library

The rcolib library consists of a couple of functions with a unique application programming interface (API)
for receiving the ripple control data from the ripple control signal.

4.1.1 Function API summary

The API functions defined in the rcolib library are described in this section. They are as follows:

• void RcolibInit (tRCOLIB_DATA *const ptr)

Initializes the ripple control function.

• void RcolibDecode (register frac16 u, tRCOLIB_DATA *const ptr)

Decodes the ripple control message from the phase voltage waveform.
• int RcolibDecodeInfo (void)

Monitors the status of the ripple control communication.

• long long RcolibMsgRead (void)

Reads the ripple control message.

4.1.2 RcolibInit

This function initializes all the variables necessary for ripple control data receiving, for example, the filter
constants.

4.1.2.1 Syntax

#include “rcolib.h”

void RcolibInit (tRCOLIB_DATA *const ptr);

4.1.2.2 Arguments

Table 2. RcolibInit function arguments

Type Name Direction Description

tRCOLIB_
DATA

ptr In Pointer to ripple control library data
structure

Ripple Control Receiver Using Kinetis M, Application note, Rev. 2, 11/2015

8 Freescale Semiconductor, Inc.

Ripple control library (Rcolib) – practical implementation

4.1.2.3 Returns

This function does not return any arguments.

4.1.2.4 Description

RcolibInit initializes all necessary filter constants and decoding variables for a successful ripple control
message reception. The appropriate threshold value depends mainly on the amplitude of the ripple control
signal, and also on the carrier frequency of the ripple control signal. It is recommended to set the threshold
value very high when using the RcolibInit in an application for the first time. The best threshold value can
be set by using the RcolibCalibrate function which is mentioned below.

4.1.3 RcolibDecode

This function decodes the ripple control message from the phase voltage waveform. This function must be
called at a constant frequency.

4.1.3.1 Syntax

#include “rcolib.h”

void RcolibDecode (register frac16 u, tRCOLIB_DATA *const ptr);

4.1.3.2 Arguments

4.1.3.3 Returns

This function does not return any arguments.

4.1.3.4 Description

This function checks for the presence of a ripple control signal and decodes the ripple control signal.
The decoding method is briefly explained in Figure 5.

Table 3. RcolibDecode function arguments

Type Name Direction Description

register u in Instantaneous phase voltage sample in a 16-bit fractional data format

tRCOLIB_
DATA

ptr In Pointer to ripple control library data structure

Ripple Control Receiver Using Kinetis M, Application note, Rev. 2, 11/2015

Freescale Semiconductor, Inc. 9

Ripple control library (Rcolib) – practical implementation

Figure 5. Decoding process with the rcolib

In the beginning, the phase voltage which contains ripple control information must be measured by
the ADC converter, and the measured samples are sent through a band-pass filter. The output from
the band-pass filter should contain only a ripple control signal generated by the ripple control transmitter.
Next, the filtered ripple control signal is “rectified” by being multiplied by itself. This rectified signal is
sent through the fast and slow low-pass filter with very different cut-off frequencies. The fast filter has a
"quicker" response on input change in comparison to slow filter. It means, there exists difference or error
between fast and slow low-pass filter outputs when ripple signal is introduced. According to difference in
low pass filters outputs the ripple control message is recognized in decoding algorithm.

4.1.4 RcolibDecodeInfo

This function monitors the status of the ripple control receiver.

4.1.4.1 Syntax

#include “rcolib.h”

int RcolibDecodeInfo (void);

4.1.4.2 Arguments

None.

4.1.4.3 Returns

This function returns the actual status of the ripple control decoding.

Table 4. Return options of the RcolibDecodeInfo function

Status Description

RCOLIB_MSG_READY Ripple control message is successfully received and ready to be read.

RCOLIB_MSG_PENDING Ripple control message decoding process is pending.

RCOLIB_MSG_IDLE Ripple control receiver is idle. Receiver is waiting for start bit.

Ripple Control Receiver Using Kinetis M, Application note, Rev. 2, 11/2015

10 Freescale Semiconductor, Inc.

Ripple control library (Rcolib) – practical implementation

4.1.4.4 Description

This function is intended to provide the actual status of the ripple control receiver. If the ripple control
receiver is idle, the RcolibDecodeInfo returns RCOLIB_MSG_IDLE. The RCOLIB_MSG_IDLE status
is valid until the ripple control receiver does not detect a new start bit of a new ripple control message.
When the decoding process is in progress, the RcolibDecodeInfo returns RCOLIB_MSG_PENDING.
If a ripple control message is successfully received, the status will be RCOLIB_MSG_READY.
All statuses can be visualized on the display.

4.1.5 RcolibMsgRead

This function reads the received ripple control message.

4.1.5.1 Syntax

#include “rcolib.h”

long long RcolibMsgRead (void);

4.1.5.2 Arguments

None.

4.1.5.3 Returns

This function returns all data bits from the last ripple control message received.

4.1.5.4 Description

This function can be used to read the received ripple control meesage.

4.2 Rcolib library performance

Table 5 shows the MCU computational requirements for using the rcolib library on
the ARM® Cortex®-M0+ core (MKM34Z128MCU).

Table 5. Computing performance of the whole rcolib library

Function name CM0+ core CM0+ core with MMAU

Code size
Clock
cycles

Code size
Clock
cycles

RcolibInit 154 bytes 1248 154 bytes 1248

RcolibDecode 512 bytes 960 566 bytes 768

RcolibDecodeInfo 24 bytes 40 24 bytes 40

RcolibMsgRead 10 bytes 38 10 bytes 38

Ripple Control Receiver Using Kinetis M, Application note, Rev. 2, 11/2015

Freescale Semiconductor, Inc. 11

Ripple control library (Rcolib) – practical implementation

4.3 Configuration tool

The configuration tool is intended to easily set up the ripple control algorithm (see Figure 6). The
configuration tool is intended to setup filter coefficients according to sampling and ripple control signal
frequency and to generate the C-header file that contains the source code with parameters describing the
behavior of the ripple control algorithm. The typical usage of the configuration tool is explained in the
following section.

Figure 6. Ripple control library configuration tool

Ripple Control Receiver Using Kinetis M, Application note, Rev. 2, 11/2015

12 Freescale Semiconductor, Inc.

Receiving a ripple control message from the grid

4.3.1 Using the configuration tool

The ripple control configuration tool contains seven important parameters that need to be set according to
the requirements of the final application. The following six parameters are linked to the ripple control
communication protocol:

• Start bit duration in seconds

• Start pause duration in seconds

• Data bit duration in seconds

• Data pause duration in seconds

• Number of bits of used ripple control protocol

• Ripple frequency in hertz

The final parameter that needs to be set is the sampling frequency in hertz.

The next feature of the ripple control configuration tool is the possibility to create the template from
currently entered data (Save as Template button). All created templates can be saved as binary files on the
computer’s hard drive (Save Templates As button) and then loaded again after the next configuration tool
starts (Load Templates File button). Unwanted templates can be deleted from the list of templates.
Unwanted templates must be checked and can be deleted (Detele Checked Templates button).

NOTE

The generated header file can only be considered correct and be included
into the application project if all seven parameters of the ripple control
configuration tool are set.

The preview window of the generated header file is shown at the bottom of the ripple control configuration
tool. To save the generated header file use the Save As function by clicking on File and then Save As.

5 Receiving a ripple control message from the grid
For testing purposes, the ripple control library was added into a single-phase Kinetis-M power meter.
This single-phase power meter was connected to the grid and waited for a ripple control message to be
transmitted from a ripple control transmitter, placed somewhere far away from the single-phase power
meter with ripple control receiver functionality. The ripple control receiver was initialized for receiving a
ripple control message according to the ZPA protocol (see Table 1).

Over a couple of hours, dozens of ripple control messages were successfully received. The figures below
(Figure 7 and Figure 8) serve as clear evidence of successfully received ripple control messages.
In Figure 7, there is one ripple control message received on September 24th, 2015, at 3:51 p.m.
The received ripple control message begins with a start bit and that start bit is followed by 44 data bits.
The received ripple control message is displayed in a hexadecimal format for better readability.

Ripple Control Receiver Using Kinetis M, Application note, Rev. 2, 11/2015

Freescale Semiconductor, Inc. 13

Receiving a ripple control message from the grid

Figure 7. Ripple control message received on September 24th, 2015, at 3:51 PM in Roznov pod Radhostem

Figure 8 shows the single-phase power meter used as a ripple control receiver. On its display, there is
the same ripple control message as displayed in Figure 7, but only nine digits can be displayed on
the single-phase power meter display. The optically isolated RS232 interface is used for communication
between FreeMASTER and the single-phase power meter with ripple control receiver functionality.

Ripple Control Receiver Using Kinetis M, Application note, Rev. 2, 11/2015

14 Freescale Semiconductor, Inc.

Summary

Figure 8. Single-phase power meter with ripple control receiver functionality displays a received ripple
control message on September 24th, 2015, at 3:51 p.m. in Roznov pod Radhostem in hexadecimal format.

6 Summary
This application note describes the basic principles of ripple control communication. The purpose of this
application note is to explain the ripple control communication protocol and the method of how the ripple

Ripple Control Receiver Using Kinetis M, Application note, Rev. 2, 11/2015

Freescale Semiconductor, Inc. 15

References

control message can be received. The C-code ripple control library (rcolib) was created to successfully
receive ripple control messages from the grid.

Section 4, “Ripple control library (Rcolib) – practical implementation” describes the API of the rcolib
library. A flowchart depicting one of the possible usages of the rcolib API is shown in this chapter.
The header file of the ripple control library is attached in Section Appendix A, “C-Header file of Rcolib
and the example of the header file generated by the configuration tool is attached in Section Appendix B,
“C-Header file generated by the configuration tool.

Section 5, “Receiving a ripple control message from the grid” presents the functionality of the rcolib
library in a real application. A single-phase power meter, expanded by the rcolib library was used as
a ripple control receiver. The ZPA communication protocol is used in the Roznov pod Radhostem region.
Over a couple of days, lots of ripple control messages were successfully received.

7 References
1. Ripple Control Information, Load Management, en.wikipedia.org/wiki/Load_management

2. Used Ripple Control Protocols, www.rundsteuerung.de/

3. IIR Filter Design, iowahills.com/A4IIRBilinearTransform.html

4. Freescale Semiconductor, “Kinetis M Series MCUs”,
freescale.com/products/arm-processors/kinetis-cortex-m/m-series:KINETIS_M_SERIES?cof=0
&am=0

8 Revision history
Table 6. Revision history

Revision Number Date Substantive Changes

0 11/2014 Initial release

1 10/2015 Added section 4.3, “Configuration tool.
Updated 4, “Ripple control library (Rcolib) – practical
implementation.
Updated 4.1.3.4, “Description.
Table 2 updated.
Figure 5 changed.
Figure 7changed.
Appendix A, “C-Header file of Rcolib updated.
Appendix B, “C-Header file generated by the configuration
tool added.
Appendix C, “Test example updated.

2 11/2015 Updated text in typedef struct page 17 of Appendix A,
“C-Header file of Rcolib

en.wikipedia.org/wiki/Load_management
www.rundsteuerung.de/
http://iowahills.com/A4IIRBilinearTransform.html
http://www.freescale.com/products/arm-processors/kinetis-cortex-m/m-series:KINETIS_M_SERIES?cof=0&am=0.
en.wikipedia.org/wiki/Load_management
www.rundsteuerung.de/
http://iowahills.com/A4IIRBilinearTransform.html

Ripple Control Receiver Using Kinetis M, Application note, Rev. 2, 11/2015

16 Freescale Semiconductor, Inc.

C-Header file of Rcolib

Appendix A C-Header file of Rcolib
/***

*

* Copyright 2015 Freescale Semiconductor, Inc.

*

* This software is owned or controlled by Freescale Semiconductor.

* Use of this software is governed by the Freescale License

* distributed with this Material.

* See the LICENSE file distributed for more details.

*

**//*!

*

 * @file RCOLIB.h

 * @author B49954

 * @version 2.1.0.0

 * @date October-16-2015

 * @brief Header file containing common data types, macros and list of

 * exported functions supporting receive ripple control message.

 **/

#ifndef __RCOLIB_H

#define __RCOLIB_H

/**

 * user data type & macro definitions *

 **/

#define RCOLIB_MSG_READY 2 /*!< Output if message is ready */

#define RCOLIB_MSG_PENDING 1 /*!< Output if message is pending */

#define RCOLIB_MSG_IDLE 0 /*!< Output if message is idle */

/**

 * exported function prototypes *

 **/

#ifdef __cplusplus

extern "C" {

#endif

Ripple Control Receiver Using Kinetis M, Application note, Rev. 2, 11/2015

Freescale Semiconductor, Inc. 17

C-Header file of Rcolib

/*!< Data protocol structure definition */

typedef struct

{

startBitDur; /* Start bit duration */

startPauseDur; /* Start pause duration */

dataBitDur; /* Data bit duration */

dataPauseDur; /* Data pause bit duration */

numberOfBits; /* Number of bits */

ripFreq; /* Ripple frequency */

smplFreq; /* Sample Frequency */

startBitDtcNull; /* Start bit detected nulled */

startBitDtcSet; /* Start bit detected set */

msgDur; /* Message Duration */

}ProtocolData;

/*!< Bandpass filter structure definition */

/*!< filter implementation: y=c(0)*x+c(1)*x(0)+c(2)*x(1)-c(3)*y(0)-c(4)*y(2) */

typedef struct

{

 frac16 c[5]; /* Filter coefficients */

 frac16 x[2]; /* Filter input array */

 frac32 y[2]; /* Filter output array */

} IIR1Data;

/*!< Lowpass filter structure definition */

/*!< filter implementation: y=c(0)*x+c(1)*x(0)-c(2)*y(0) */

typedef struct

{

 frac32 c[3]; /* Filter coefficients */

 frac32 x; /* Filter input array */

 frac32 y; /* Filter output array */

} IIR2Data;

Ripple Control Receiver Using Kinetis M, Application note, Rev. 2, 11/2015

18 Freescale Semiconductor, Inc.

C-Header file of Rcolib

/*!< filter implementation: y=c(0)*x+c(1)*x(0)-c(2)*y(0) */

typedef struct

{

 frac32 c[3]; /* Filter coefficients */

 frac32 x; /* Filter input array */

 frac32 y; /* Filter output array */

} IIR2DataSlow;

/*!< Ripple control library data structure definition */

typedef struct

{

 IIR1Data iir1; /* Bandpass filter data */

 IIR2Data iir2; /* Lowpass filter data */

 IIR2DataSlow iir2slow; /* Slow low pass filter data 1st ord */

 ProtocolData prtcl; /* Protocol data */

} tRCOLIB_DATA;

/***//*!

 * @brief Ripple control function initialization.

 * @param ptr Pointer to tRCOLIB_DATA strucure

 * @remarks Implemented in C-language. This function initializes all necessary

 * variables for ripple control message receiving.

 **/

extern void RcolibInit (tRCOLIB_DATA *const ptr);

/***//*!

 * @brief Decodes ripple control message from phase voltage waveform.

 * @param u Instantaneous phase voltage sample in 16-bit fractional

 * data format.

 * @param ptr Pointer to tRCOLIB_DATA strucure

 * @remarks Implemented in C-language. This function must be called at constant

 * frequency.

 **/

extern void RcolibDecode (register frac16 u, tRCOLIB_DATA *const ptr);

Ripple Control Receiver Using Kinetis M, Application note, Rev. 2, 11/2015

Freescale Semiconductor, Inc. 19

C-Header file of Rcolib

/***//*!

 * @brief Monitor the status of ripple control communication.

 * @return Function returns: @ref RCOLIB_MSG_READY if ripple control message is

 * decoded and ready to be read, @ref RCOLIB_MSG_PENDING if ripple control

 * message reception is in progress or @ref RCOLIB_MSG_IDLE if idle..

 * @remarks Implemented in C-language. This function can be used to find out

 * the actual status of ripple control receiving.

 **/

extern int RcolibDecodeInfo (void);

/***//*!

 * @brief Read ripple control message.

 * @return Function returns all data bits from ripple control message.

 * @remarks Implemented in C-language. This function can be used to read the

 * ripple control information.

 **/

extern long long RcolibMsgRead (void);

/***//*!

 * @example rcolib_test.c

 * This example demonstrates use of ripple control library in typical application

 * with input phase voltage waveform generated numerically.

 **/

#ifdef __cplusplus

}

#endif

#endif /* __RCOLIB_H */

Ripple Control Receiver Using Kinetis M, Application note, Rev. 2, 11/2015

20 Freescale Semiconductor, Inc.

C-Header file generated by the configuration tool

Appendix B C-Header file generated by the configuration
tool

/**

* Ripple Control Library Configuration Header File, Created: 9/4/2015 14:15

 ***/

#ifndef __RCOLIB_CFG_H

#define __RCOLIB_CFG_H

/**

* Ripple Control Configuration Structure

 **/

#define RCOLIB_CFG \

{ \

 { \

 {FRAC16(0.0079006),FRAC16(0.00),FRAC16(-0.0079006),FRAC16(-0.0866869),FRAC16(0.4841988)},\

 {FRAC16(0.0),FRAC16(0.0)}, \

 {FRAC32(0.0),FRAC32(0.0)} \

 }, \

 { \

 {FRAC32(0.0103586),FRAC32(0.0103586),FRAC32(-0.9792827)}, \

 FRAC32(0.0), \

 FRAC32(0.0) \

 }, \

 { \

 {FRAC32(0.0026098),FRAC32(0.0026098),FRAC32(-0.9947803)}, \

 FRAC32(0.0), \

 FRAC32(0.00001) \

 }, \

 { \

 2.33000, 2.99000, 1.00000, 0.33000,44, 283.30,1200,1831,2516,73812} \

 }

#endif /*__RCOLIB_CFG_H */

Ripple Control Receiver Using Kinetis M, Application note, Rev. 2, 11/2015

Freescale Semiconductor, Inc. 21

Test example

Appendix C Test example
/***

*

* Copyright 2015 Freescale Semiconductor, Inc.

*

* This software is owned or controlled by Freescale Semiconductor.

* Use of this software is governed by the Freescale License

* distributed with this Material.

* See the LICENSE file distributed for more details.

*

**//*!

*

 * @file rcolib_test.c

 * @author B49954

 * @version 2.1.0.0

 * @date October-16-2015

 * @brief C - Source module with software which can serve as a demonstration

 * of rcolib library functionality

 **

 * rcolib_test.c

 **/

#include "drivers.h"

#include "freemaster.h"

#include <math.h>

#include "rcolib_cfq.h"

#include "rcolib.h"

#ifndef CALCFREQ

 #define CALCFREQ 1200.000 /* Sample frequency in Hz */

#endif

#define TIMESTEP(s) (int)((s)*CALCFREQ)/* Converts seconds to number of steps */

#define RIP_OMEGA (1.780E+3) /* 2*Pi*f_rip (283.3Hz) */

#define RIP_AMPL (8.131727984E-3) /* (0.01*230*sqrt(2))/400 */

#define LINE_OMEGA (3.141592653E+2) /* 2*Pi*f_line (50Hz) */

Ripple Control Receiver Using Kinetis M, Application note, Rev. 2, 11/2015

22 Freescale Semiconductor, Inc.

Test example

#define LINE_AMPL (8.131727984E-1) /* (230*sqrt(2))/400 */

#define ANGLE (7.853981634E-1) /* (45/180)*Pi */

#pragma diag_suppress = Pa082

/* 3.490 s is time for the center of first data bit after start bit detection */

/* then every 1.330s another data bit is expected */

/* it is true only for ZPA protocol */

/*! DataReadyTm is created just for testing the ripple control library */

static const int DataReadyTm[]= { TIMESTEP(3.490), TIMESTEP(4.820), //2

 TIMESTEP(6.150), TIMESTEP(7.480), TIMESTEP(8.810), //5

 TIMESTEP(10.140), TIMESTEP(11.470), TIMESTEP(12.800),//8

 TIMESTEP(14.130), TIMESTEP(15.460), TIMESTEP(16.790),//11

 TIMESTEP(18.120), TIMESTEP(19.450), TIMESTEP(20.780),//14

 TIMESTEP(22.110), TIMESTEP(23.440), TIMESTEP(24.770),//17

 TIMESTEP(26.100), TIMESTEP(27.430), TIMESTEP(28.760),//20

 TIMESTEP(30.090), TIMESTEP(31.420), TIMESTEP(32.750),//23

 TIMESTEP(34.080), TIMESTEP(35.410), TIMESTEP(36.740),//26

 TIMESTEP(38.070), TIMESTEP(39.400), TIMESTEP(40.730),//29

 TIMESTEP(42.060), TIMESTEP(43.390), TIMESTEP(44.720),//32

 TIMESTEP(46.050), TIMESTEP(47.380), TIMESTEP(48.710),//35

 TIMESTEP(50.040), TIMESTEP(51.370), TIMESTEP(52.700),//38

 TIMESTEP(54.030), TIMESTEP(55.360), TIMESTEP(56.690),//41

 TIMESTEP(58.020), TIMESTEP(59.350), TIMESTEP(60.680),//44

 }; /* Data time steps */

/*! Variables */

static volatile frac16 u16_sample; /* Voltage Sample */

static volatile double time = 0.000,U_ANGLE = (0.0/180.0)*3.1415927, x=0;

static volatile double U_MAX=400.000; /* Voltage Scale */

static volatile frac32 thr1=FRAC32(0.99); /* Initial threshold value */

static volatile int Cnt=-1*TIMESTEP(2.330),Rip=0;

/* Cnt is initialized to -2976 due to start bit and Rip initialized to 0 */

static volatile long long buffer; /* Result buffer */

static volatile int pit_change = 0;/* PIT flag */

volatile int status=0; /* Receiver status */

Ripple Control Receiver Using Kinetis M, Application note, Rev. 2, 11/2015

Freescale Semiconductor, Inc. 23

Test example

static int i=0; /* Data bit counter */

static int wait=1000; /* Delay for ripple signal generation */

/*!< Ripple control data structure definition */

static tRCOLIB_DATA rcolib = RCOLIB_CFG;

/**

 * PIT - 1200Hz *

***/

void pit_callback (PIT_CALLBACK_TYPE type);

/* PIT callback definition */

void pit_callback (PIT_CALLBACK_TYPE type)

{

 if (type == PIT0CH0_CALLBACK) {pit_change = 1 ; }

}

void main (void)

{

 SIM_Init (SIM_MODULE_ALL_PERIPH_ON_CONFIG);

 /* route system clock to PTF7 */

 SIM_SelClkout(CLKOUT_SRC1);

 PORT_Init (PORTF,PORT_MODULE_ALT3_MODE,PIN7);

 /* clock mode 2:1:1, 48MHz */

 SIM_SetClkMode (SYSCLK_MODE1);

 SIM_SetClkDiv (SYSCLK_DIV1);

 FLL_Init (FLL_MODULE_FEE_48MHZ_CONFIG);

 /* PIT initialization - 1200Hz */

 PIT_InstallCallback (PRI_LVL0,pit_callback);

 PIT_Init (PIT0,CH0, PIT_CH_TMR_EN_CONFIG, 24000000/1200);

 PIT_Enable (PIT0,CH0);

Ripple Control Receiver Using Kinetis M, Application note, Rev. 2, 11/2015

24 Freescale Semiconductor, Inc.

Test example

 /* initialize UART and FreeMASTER */

 PORT_Init (PORTI, PORT_MODULE_ALT2_MODE, PIN6|PIN7);

 UART_Init (UART2, UART_MODULE_POLLMODE_CONFIG(115200,24e6));

 UART_InstallCallback (PRI_LVL2, (UART_CALLBACK)FMSTR_Isr);

 FMSTR_Init();

 /* initialize PORT C */

 PORT_Init (PORTK, PORT_MODULE_ALT1_MODE, PIN2);

 GPIO_Init (GPIOK, GPIO_OUT_LOGIC1_MODE, PIN2);

 PORT_Init (PORTK, PORT_MODULE_ALT1_MODE, PIN3);

 GPIO_Init (GPIOK, GPIO_OUT_LOGIC1_MODE, PIN3);

 PORT_Init (PORTG, PORT_MODULE_ALT1_MODE, PIN0);

 GPIO_Init (GPIOG, GPIO_OUT_LOGIC0_MODE, PIN0);

 /* initialize LEDs */

 PORT_Init (PORTJ, PORT_MODULE_LED_MODE, PIN3); /* green led */

 PORT_Init (PORTJ, PORT_MODULE_LED_MODE, PIN4); /* red led */

 PORT_Init (PORTD, PORT_MODULE_LED_MODE, PIN0); /* orange led */

 GPIO_Init (GPIOJ, GPIO_OUT_LOGIC0_MODE, PIN3); /* green led */

 GPIO_Init (GPIOJ, GPIO_OUT_LOGIC0_MODE, PIN4); /* red led */

 GPIO_Init (GPIOD, GPIO_OUT_LOGIC0_MODE, PIN0); /* orange led */

 EnableInterrupts();

 /**

 * Ripple control detection - initialization *

 **/

 RcolibInit(&rcolib);

 /* ZPA, 283.3Hz ripple frequency, 1200Hz sample frequency */

 while(1)

 {

 /**

 * PIT - 1200Hz *

Ripple Control Receiver Using Kinetis M, Application note, Rev. 2, 11/2015

Freescale Semiconductor, Inc. 25

Test example

 **/

 while (pit_change == 0); /* Waiting for PIT callback, every 1/1200 s */

 pit_change = 0;

 time = time+(1.0/CALCFREQ);

 /**

 * Calculate phase voltage waveform with ripple control information *

 **/

 x = (Rip)?(sin(RIP_OMEGA*time+U_ANGLE)*RIP_AMPL):0.0;

 u16_sample = FRAC16(((sin(LINE_OMEGA*time+U_ANGLE)*LINE_AMPL)+x));

 /**

 * Ripple control message generation - example *

 **/

 if(wait==0)

 {

 if(Cnt <0) /* Generating start bit */

 {

 Rip=1; /* Start bit */

 }

 Cnt++;

 if (Cnt == (DataReadyTm[i]-TIMESTEP(0.50))) /* Data bit start */

 {

 Rip=1;

 }

 if (Cnt == (DataReadyTm[i]+TIMESTEP(0.50))) /* Data bit end */

 {

 Rip=0; /*Data Pause */

 i++;

 }

 /* toggle Rip from 1 to 0. It represents end of start bit. */

Ripple Control Receiver Using Kinetis M, Application note, Rev. 2, 11/2015

26 Freescale Semiconductor, Inc.

Test example

 if (Cnt == TIMESTEP(0.000)) /* Cnt is initialized to -2.330*1200= -2976 */

 {

 Rip = 0; /* Due to start pause bit */

 }

 }

 else

 {

 wait--; /*Decrementing wait*/

 }

 /***

 * Ripple control detection - call in task when phase voltage is measured *

 ***/

 RcolibDecode (u16_sample, &rcolib);

 /***

 * Ripple control message ready and read - call whenever needed, but *

 * at slow task for example when updating LCD screens *

 ***/

 status=RcolibDecodeInfo ();

 /**

 * In variable "status" is saved the status of ripple control receiver *

 * "0" if idle, "1" if pending, "2" if message is succesfuly received and *

 * ready to be read. *

 **/

 switch(status)

 {

 case 0:

 GPIO_Set (GPIOJ, PIN4);

 GPIO_Set (GPIOD, PIN0);

 GPIO_Clr (GPIOJ, PIN3); /*Green Led if idle */

 break;

 case 1:

Ripple Control Receiver Using Kinetis M, Application note, Rev. 2, 11/2015

Freescale Semiconductor, Inc. 27

Test example

 GPIO_Set (GPIOJ, PIN3);

 GPIO_Set (GPIOD, PIN0);

 GPIO_Clr (GPIOJ, PIN4); /*Red Led if pending */

 break;

 case 2:

 GPIO_Set (GPIOJ, PIN3);

 GPIO_Set (GPIOJ, PIN4);

 GPIO_Clr (GPIOD, PIN0); /*Orange Led if message is ready */

 break;

 default:

 break;

 }

 if (status == RCOLIB_MSG_READY)

 {

 buffer = RcolibMsgRead(); /* Result word is saved into buffer */

 /* Variables need to be initialized again, before next packet receiving*/

 Cnt=-1*TIMESTEP(2.330); /*Cnt is initialized to -2976 due to start bit*/

 Rip=0; /* Rip is initialized to 1 due to start bit */

 time = 0; /* Time is nulled */

 i=0; /* Data bit counter nulled */

 wait=1000; /* Set wait for another calibration function */

 }

 }

}

Ripple Control Receiver Using Kinetis M, Application note, Rev. 2, 11/2015

28 Freescale Semiconductor, Inc.

Test example

Ripple Control Receiver Using Kinetis M, Application note, Rev. 2, 11/2015

Freescale Semiconductor, Inc. 29

Test example

Ripple Control Receiver Using Kinetis M, Application note, Rev. 2, 11/2015

30 Freescale Semiconductor, Inc.

Test example

Document Number: AN5046
Rev. 2
11/2015

Information in this document is provided solely to enable system and software

implementers to use Freescale products. There are no express or implied copyright

licenses granted hereunder to design or fabricate any integrated circuits based on the

information in this document.

Freescale reserves the right to make changes without further notice to any products

herein. Freescale makes no warranty, representation, or guarantee regarding the

suitability of its products for any particular purpose, nor does Freescale assume any

liability arising out of the application or use of any product or circuit, and specifically

disclaims any and all liability, including without limitation consequential or incidental

damages. “Typical” parameters that may be provided in Freescale data sheets and/or

specifications can and do vary in different applications, and actual performance may

vary over time. All operating parameters, including “typicals,” must be validated for

each customer application by customer’s technical experts. Freescale does not convey

any license under its patent rights nor the rights of others. Freescale sells products

pursuant to standard terms and conditions of sale, which can be found at the following

address: freescale.com/SalesTermsandConditions.

How to Reach Us:
Home Page:
freescale.com

Web Support:
freescale.com/support

Freescale, the Freescale logo, and Kinetis are trademarks of Freescale

Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. All other product or service names are

the property of their respective owners. ARM, the ARM powered logo, and Cortex are

the registered trademarks of ARM Limited.

© 2015 Freescale Semiconductor, Inc. All rights reserved.

http://freescale.com/support
http://freescale.com
http://freescale.com/SalesTermsandConditions

	Ripple Control Receiver Using Kinetis M
	1 Introduction
	2 Block diagram
	3 Ripple control communication protocol
	4 Ripple control library (Rcolib) - practical implementation
	5 Receiving a ripple control message from the grid
	6 Summary
	7 References
	8 Revision history
	Appendix A C-Header file of Rcolib
	Appendix B C-Header file generated by the configuration tool
	Appendix C Test example

