
1 Introduction
This document describes the Linux probe-less trace
component and presents multiple execution flows of it. The
objective of this component is to encapsulate the trace
configurator and probe into one small and cross-compiled
component that gets uploaded on target machine. Its main use
is to collect trace of a program that crashes without known
reasons.

NOTE
This feature will be delivered as an archive
or part of the ARMv8 CodeWarrior.

2 Overview

The component integrates the complete flow for a trace
collection session under Linux OS based on an ARMv8
processor. It is based on ARMv8 platform configurator and
probe controlled by xml files.

The main advantages ARMv8 standalone tracing tool are:
• Size – contains only what is needed
• Speed – all services are hosted on target machine and

there are no delays caused by communication between
multiple workstations or languages

NXP Semiconductors Document Number: AN5129

Application Note Rev. 11.3.1, 5/2018

Collect Linux Hardware Trace for
ARMv8 User Space and Kernel
Space Applications

Contents

1 Introduction..1

2 Overview..1

3 Execution Flow............................2

4 Component Details.......................2

5 Conclusions............................. 7

• Nonintrusive – no need to instrument the target application
• Easy to use – collects all required / available information for decoding
• Simple API – can be easily integrated into any testing framework
• Data-driven – the configurator and probe can be easily tuned up and scaled to user needs

3 Execution Flow

The execution flow is described below:

A Launch satrace
Trace
Relocation support
Archive

End

Start A

Configure probe
and configurator
using xml files

Choose launch
options for

satrace

Figure 1. Flowchart for ARMv8 standalone Linux trace

4 Component Details
This section includes:

• API
• User space trace
• Kernel space trace

4.1 API

The Linux trace mechanism is delivered as an independent product. It runs on ARMv8 Linux machine. The root folder of the
delivered product has the following file structure:

bin: (All binary files needed for a trace session)
 ls.linux.satrace

Execution Flow

Collect Linux Hardware Trace for ARMv8 User Space and Kernel Space Applications, Rev. 11.3.1, 5/2018

2 NXP Semiconductors

config: (Configurator and probe configuration file)
 Platform configuration files for all target supported.

lib: (Dependencies)
 libls.linux.satrace.lib.so libsae.ls.target.access.so
 libls.linux.satrace.lib.so.1.0 libsae.ls.target.access.so.1.0
 libls.target.agent.so libsae.ls.tc.config.so
 libls.target.agent.so.1.0 libsae.ls.tc2.config.so
 libsae.ls.common.so libsae.ls.tc2.config.so.1.0
 libsae.ls.common.so.1.0

NOTE
Use the apropriate satrace agent from {CW_INSTALL_DIR}\CW_ARMv8\ARMv8\sa_ls
\:

• linux.armv8-sdk1.8-ear6.satrace for linux image with little endian, on all
targets, starting with ARMv8 SDK ear6

• linux.armv8.satrace for linux image with little endian, on all targets, before
ARMv8 SDK ear6

• linux.armv8-ls1043-be.satrace for linux image with big endian, on LS1043

Below are the listed options with a short description.

Table 1. User space options

Command Description

-A [--archive-file] arg (=[app_name].cwzsa) Archive path

-b [--backtrace] Shows backtrace on SEGFAULT

[app_name] Name of the traced application.

Table 2. Common options

Command Description

-T [--multithreading] Enables multithreading support

-p [--pid] PID Attach to a process giving a PID

--vmid vmid Virtual machine ID

--start-trace address Start tracepoint

--stop-trace address Stop tracepoint

--include-range range Include range

--exclude-range range Exclude range

Table 3. Kernel space options

Command Description

-K [--kernel] path Archive path.

-i [--kernel-image] path vmlinux image compiled with debugging symbols.

Component Details

Collect Linux Hardware Trace for ARMv8 User Space and Kernel Space Applications, Rev. 11.3.1, 5/2018

NXP Semiconductors 3

Table 4. System trace options

Command Description

-S [--system] arg (=[app_name].scwzsa) Archive path.

-i [--kernel-image] path vmlinux image compiled with debugging symbols.

-b [--backtrace] Shows backtrace on SEGFAULT.

Table 5. General options

Command Description

-v [--verbose] Verbose mode.

-V [--version] Product version

-h [--help] Displays this help message

-c [--config-file] path Configuration file

--soc arg (=LS1088A) Name of the SoC

4.2 User space trace

The relocation file contains a list of libraries linked with the traced application with their load addresses. This list will contain
also injected libraries through LD_PRELOAD variable.

The trace file incorporates the raw trace collected by Debug Trace Complex (DTC) Probe from the location specified in the
probe configuration file.

The -A option is the most verbose. It archives the applications, all its dependencies (shared libraries), trace file, the
configuration file and relocation support. This is the default option. Its use increases the time and file-system space required
for archiving. The main advantage is the generated *.cwzsa file. It's an archive file that can be imported and fully decoded
using ARMv8 decoder or ARMv8 CodeWarrior.

The -p option offers the attach possibility. The user will start a process (for example, daemon or server) and using its process
ID (PID) it will attach satrace to it in order to get a detailed overview of its performance.

The -T option enables multithreading support. There is also the possibility to trace between addresses or ranges.

[range] - An interval specified using one of the following formats:

• 0x2000-0x3000 - Address range [0x2000, 0x3000]
• libpthread - Executable code from libpthread.so
• init_linuxrc - Address range based on kernel function name; Covers all instructions from init_linuxrc
• init_linuxrc-init_linuxrc+8 - Includes/Excludes first 8 bytes from init_linuxrc
• ipv6.ko - Includes/Excludes 'ipv6' kernel module

[address] - An address specified using one of the following formats :
• 0x2000 - Hex address
• libpthread+200 - Offset from a shared libary (libpthread.so)
• init_linuxrc - Address based on kernel function name
• init_linuxrc+8 - Kernel function offset
• ipv6.ko - Kernel module offset

Component Details

Collect Linux Hardware Trace for ARMv8 User Space and Kernel Space Applications, Rev. 11.3.1, 5/2018

4 NXP Semiconductors

--vmid argument is compatible only with address range filters.

The –v option will generate a more detailed output at standard output about all the execution steps. Usually the SEGFAULT
signal is the main reason of the C/C++ applications crash. Thus, a backtrace on SEGFAULT is welcome for an embedded
world where each byte of file system matters. The –b option will dump all known stack frames without having support from a
debugger. Before using this option the user must ensure that the traced application has been compiled with debug information
(-g for GCC) and extra code for exception propagation (-funwind-tables for GCC) and all symbols are added to the dynamic
symbol table (-rdynamic for GCC).

Before starting any trace session the user must ensure that Linux Kernel has been compiled with enabled
PID_IN_CONTEXTIDR configuration option.

Create a small program that computes the sum of elements from 0 to num and crashes due to a segmentation fault.

#include <iostream>

 class SegFaultTest
 {
 public:
 SegFaultTest() {
 sum(5);
 function1();
 }

 private:
 void function1() { function2(); }

 void function2() { function3(); }

 void function3() { function4(); }

 void function4() { crash(); }

 void crash() {
 char * p = NULL;
 *p = 0;
 }

 int sum(int n) {
 if (n <= 0) {
 return n;
 }

 return n + sum(n - 1);
 }
 };

 int main(int argc, char ** argv)
 {
 SegFaultTest * f = new SegFaultTest();
 return 0;
 }

After saving the above program into segfault.cpp file, you should compile it with debugging symbols:

 g++ -g3 -funwind-tables -rdynamic segfault.cpp -o segfault

Figure out which line caused the crash. Launch the segfault executable using ls.linux.satrace.

 root@ls2085aqds:~# ./linux.armv8.satrace/bin/ls.linux.satrace -b ./segfault
 User space trace
 Application : `./segfault`
 Arguments :
 Relocation file : `/home/root/segfault.rlog`
 Trace file : `/home/root/segfault.dat`
 Starting `./segfault`
 Signal 11 (Segmentation fault), address is 0
 (1) ./segfault : SegFaultTest::crash()+0xf [0x8bc4]

Component Details

Collect Linux Hardware Trace for ARMv8 User Space and Kernel Space Applications, Rev. 11.3.1, 5/2018

NXP Semiconductors 5

 (2) ./segfault : SegFaultTest::function4()+0xd [0x8bae]
 (3) ./segfault : SegFaultTest::function3()+0xd [0x8b9a]
 (4) ./segfault : SegFaultTest::function2()+0xd [0x8b86]
 (5) ./segfault : SegFaultTest::function1()+0xd [0x8b72]
 (6) ./segfault : SegFaultTest::SegFaultTest()+0x15 [0x8b5a]
 (7) ./segfault : main+0x19 [0x8ad2]
 (8) /lib/libc.so.6 : __libc_start_main+0x110 [0x76c912b8]
 User application terminated because it didn't catch signal number : 11 (Segmentation
fault)
 Master process
 Collecting trace ...
 Archive file : `/home/root/segfault.cwzsa`
 Creating archive
 Archiving /home/root/segfault.rlog
 Archiving /home/root/segfault
 Archiving /lib/librt-2.18-2013.10.so
 Archiving /lib/libdl-2.18-2013.10.so
 Archiving /lib/libpthread-2.18-2013.10.so
 Archiving /lib/libc-2.18-2013.10.so
 Archiving /lib/libm-2.18-2013.10.so
 Archiving /lib/ld-2.18-2013.10.so
 Archiving ./linux.armv8.satrace/config/PlatformConfig.xml
 Archiving /home/root/segfault.dat

For LSDK, run the following command:

./linux.armv8-sdk1.8-ear6.satrace/bin/ls.linux.satrace -b -v ./segfault

The satrace collects trace and archives all dependencies into /home/root/segfault.cwzsa archive. You can open the
generated archive using ARMv8 CodeWarrior drag-and-drop action. Previous action will trigger the import wizard. After
importing it, the user will be able to access all Software Analysis features using Analysis Results view.

4.3 Kernel space trace

The same component can be used for probe-less kernel space tracing. For this type of trace, Kernel space options are used.
There are two options: -K and –i. The first option is used to start a kernel space trace session and will specify the name of
the generated archive. It is the kernel space equivalent for –A option. The –i option is optional and will point to the vmlinux
image of the system. This option will be useful only when the kernel image contains debug information, otherwise –K option
will be more convenient to use.

Run the satrace with –K and –i options. After few seconds, send a SEGINT signal by pressing CTRL+C on your keyboard.

root@ls2085aqds:~# ./linux.armv8.satrace/bin/ls.linux.satrace -K kernelTest -i ~/vmlinux
Kernel space trace
Archive : `kernelTest.kcwzsa`
Hit CTRL+C to stop trace.
Collecting trace ...
Kernel image : `/home/root/vmlinux`
Archive file : `kernelTest.kcwzsa`
Creating archive
Archiving /home/root/vmlinux
Archiving ./linux.armv8.satrace/config/PlatformConfig.xml
Archiving kernelTest.dat

For LSDK, run the following command:

./linux.armv8-sdk1.8-ear6.satrace/bin/ls.linux.satrace -K kernelTest -i ~/vmlinux

The generated archive can be open by an ARMv8 CodeWarrior with a drag-and-drop action. This action will trigger the
import wizard.

Component Details

Collect Linux Hardware Trace for ARMv8 User Space and Kernel Space Applications, Rev. 11.3.1, 5/2018

6 NXP Semiconductors

Figure 2. Import wizard

5 Conclusions

The ls.linux.satrace component can be used by any Linux user who wants to know the cause of the crash, or wants to
follow the function calls or needs to evaluate his software without any hardware probe. After saving the trace file into an
archive that contains all needed files for a full decoding, can be viewed in CodeWarrior. The user benefits from all
advantages offered by CodeWarrior ARMv8. You have the profiling data code coverage, call tree, and performance analysis
as well.

Conclusions

Collect Linux Hardware Trace for ARMv8 User Space and Kernel Space Applications, Rev. 11.3.1, 5/2018

NXP Semiconductors 7

How to Reach Us:

Home Page:
nxp.com

Web Support:
nxp.com/support

Information in this document is provided solely to enable system and software
implementers to use NXP products. There are no express or implied copyright
licenses granted hereunder to design or fabricate any integrated circuits based
on the information in this document. NXP reserves the right to make changes
without further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of
its products for any particular purpose, nor does NXP assume any liability arising
out of the application or use of any product or circuit, and specifically disclaims
any and all liability, including without limitation consequential or incidental
damages. “Typical” parameters that may be provided in NXP data sheets and/or
specifications can and do vary in different applications, and actual performance
may vary over time. All operating parameters, including “ typicals ,” must be
validated for each customer application by customer's technical experts. NXP
does not convey any license under its patent rights nor the rights of others. NXP
sells products pursuant to standard terms and conditions of sale, which can be
found at the following address: nxp.com/SalesTermsandConditions .

NXP, the NXP logo, Freescale, the Freescale logo, and QorIQ are trademarks of
are trademarks of NXP B.V. All other product or service names are the property
of their respective owners. Arm, Cortex are registered trademarks of Arm Limited
(or its subsidiaries) in the EU and/or elsewhere. All rights reserved.

© 2017-2018 NXP B.V.

Document Number AN5129
Revision 11.3.1, 5/2018

http://nxp.com
http://nxp.com/support
http://nxp.com/salestermsandconditions

	Introduction
	Overview
	Execution Flow
	Component Details
	API
	User space trace
	Kernel space trace

	Conclusions

