

© Freescale Semiconductor, Inc., 2015. All rights reserved.

Freescale Semiconductor
Document Number: AN5137

Application Note

Debugging ARMv7 Applications in

Environment Initialized by U-Boot / ROM

Target Debug

1. Introduction

This document describes the necessary steps required to
use CodeWarrior for QorIQ LS series - ARM V7 ISA for
debugging applications running in an environment
initialized by U-Boot.

This document explains:

• How to build U-Boot to add bootelf support

• How to load the application to the target

• How to debug from the entry point using

CodeWarrior, an application started using the

 command

• How to debug from the entry point using

CodeWarrior, an application flashed in NOR

• How to debug a secure ROM target application

• How to debug ROM applications on some

specific LS1 boards

Contents

1. Introduction ... 1
2. Debugging applications started from U-Boot 2
3. Debugging applications flashed in NOR 5
4. Debugging secure ROM target applications 10
5. Debugging ROM target applications - Use

cases .. 11

Debugging applications started from U-Boot

Debugging ARMv7 Applications in Environment Initialized by U-Boot / ROM Target Debug Application Note

2 Freescale Semiconductor

2. Debugging applications started from U-Boot

2.1. Add bootelf support to U-Boot

The command allows booting an ELF image in memory after the U-Boot is loaded. To add

bootelf support to U-Boot, perform these steps:

1. Install SDK with Yocto and build U-Boot. For more details, see Freescale Infocenter.

2. Go to the U-Boot source location and edit , to add the

command.

Figure 1. Edit config_cmd_default.h file

3. Rebuild U-Boot:

This adds bootelf support to the U-Boot image available in the u-boot folder.

2.2. Run and debug application

First, you need to create an ARMv7 application, starting from stationary project. The project must be
created with UART I/O support, to display messages on U-Boot console. The steps are:

1. Create an ARMv7 project and build it using a RAM target.
2. Power on the board and stop at U-Boot prompt.
3. Copy the ELF file to a TFTP server location.
4. Load the ELF to RAM, using U-Boot commands.

http://www.freescale.com/infocenter/topic/QORIQSDK/2888202.html

 Debugging applications started from U-Boot

Debugging ARMv7 Applications in Environment Initialized by U-Boot / ROM Target Debug Application Note

Freescale Semiconductor 3

Figure 2. Load ELF to RAM

5. To start debugging from the entry point, connect to the target board using Attach launch
configuration and set a hardware breakpoint at , using Debugger Shell command

.

Figure 3. Set a hardware breakpoint at _startCustom

6. From U-Boot prompt, run the command. This executes the ELF from RAM.

Figure 4. Run bootelf command

7. Breakpoint will be hit and you can perform debugging from the entry point.

Debugging applications started from U-Boot

Debugging ARMv7 Applications in Environment Initialized by U-Boot / ROM Target Debug Application Note

4 Freescale Semiconductor

Figure 5. Perform debugging from entry point

8. To continue debugging from function, set a breakpoint using Debugger Shell command

 and resume the core.

Figure 6. Set a breakpoint at main function

Breakpoint will be hit, as shown in the figure below.

 Debugging applications flashed in NOR

Debugging ARMv7 Applications in Environment Initialized by U-Boot / ROM Target Debug Application Note

Freescale Semiconductor 5

Figure 7. Application stopped at main function

9. Continue debugging (step, run, or breakpoint) till the end of the application.

Figure 8. Debug application

NOTE To debug the application from the entry point, a copy of the startup file ()

needs to be included in source form. This is not applicable to CodeWarrior for ARM
v7 10.0.3 release.

3. Debugging applications flashed in NOR

To debug an application flashed in NOR, perform these steps:

1. Create an ARMv7 project.

2. Choose Project > Properties to open the Properties window for the project.

3. Select C/C++ Build > Settings to open project settings.

4. On the Tool Settings tab, select Additional Tools to open the Additional Tools page.

5. Select the Create Flash Image checkbox, as shown in the figure below.

Debugging applications flashed in NOR

Debugging ARMv7 Applications in Environment Initialized by U-Boot / ROM Target Debug Application Note

6 Freescale Semiconductor

Figure 9. Select Create Flash Image option

6. On the Tool Settings tab, select ARM Sourcery GNU Create Flash Image > Output to open

the Output page.

7. Choose binary as the output file format, as shown in the figure below.

Figure 10. Choose output file format

8. Click Apply, and then click OK.
9. Build the application using ROM target. Beside the ELF file, a binary file will be produced.

10. Connect to the target board and load the application binary file to NOR flash, using Flash
Programmer, as shown in the figure below.

 Debugging applications flashed in NOR

Debugging ARMv7 Applications in Environment Initialized by U-Boot / ROM Target Debug Application Note

Freescale Semiconductor 7

Figure 11. Add Program / Verify Action dialog

NOTE The binary file will be flashed in NOR at the same address where U-Boot is usually
placed. Because of this, if U-Boot is present on the target board, it will be
overwritten by the application. The address is specified in the ROM linker file.

At the board reset, the application will run and it can be debugged.

11. To start debugging from the entry point, connect to the target board using ROM Attach launch
configuration, and then reset the board with no initialization file.

Figure 12. Reset dialog

12. Set a hardware breakpoint at , using Debugger Shell command , as

shown in the figure below.

Debugging applications flashed in NOR

Debugging ARMv7 Applications in Environment Initialized by U-Boot / ROM Target Debug Application Note

8 Freescale Semiconductor

Figure 13. Set a hardware breakpoint at _start

13. Resume the core. Breakpoint will be hit and you can perform debugging from the entry point.

Figure 14. Perform debugging from entry point

14. To continue debugging from the function, set a breakpoint using Debugger Shell

command and resume the core.

 Debugging applications flashed in NOR

Debugging ARMv7 Applications in Environment Initialized by U-Boot / ROM Target Debug Application Note

Freescale Semiconductor 9

Figure 15. Set a breakpoint at main function

Breakpoint will be hit, as shown in the figure below.

Figure 16. Application stopped at main function

10. Continue debugging (step, run, or breakpoint) till the end of the application.

NOTE To debug the application from the entry point, a copy of startup file () needs

to be included in source form. In addition, the LCF file needs to be modified to
include changes necessary for application to be loaded to ROM. This is not
applicable to CodeWarrior for ARM v7 10.0.3 release.

Debugging secure ROM target applications

Debugging ARMv7 Applications in Environment Initialized by U-Boot / ROM Target Debug Application Note

10 Freescale Semiconductor

4. Debugging secure ROM target applications

Debugging a ROM target application signed with Code Signing Tool (CST) involves, besides the steps
from Debugging applications flashed in NOR, signing the application and generating the application
header. For details on CST, see Freescale Infocenter.

To sign a ROM target application with CST, perform these steps:

1. Generate private key - public key pair.
2. Copy ROM target application to .

3. Specify the name of the application and command sequence file (CSF) header in the
 file.

Figure 17. Specify application name and CSF header

4. Execute the

 command.

5. Connect to the target board and load the application binary file and CSF header to NOR flash,
using Flash Programmer.

6. Start debugging (step, run, or breakpoint) using the steps from Debugging applications flashed in
NOR.

NOTE For secure boot in RCW, set SB_EN = 1. Also, PBI commands must contain
reference to CSF header address.
The binary file will be flashed in NOR at the same address where U-Boot is usually
placed. Because of this, if U-Boot is present on the target board, it will be
overwritten by the application.

http://www.freescale.com/infocenter/topic/QORIQSDK/6334155.html

 Debugging ROM target applications - Use cases

Debugging ARMv7 Applications in Environment Initialized by U-Boot / ROM Target Debug Application Note

Freescale Semiconductor 11

5. Debugging ROM target applications - Use cases

5.1. Debugging an LS102MARDB ROM target application

To debug a ROM application running on an LS102MARDB target, perform these steps:

1. Create an ARMv7 project for LS102MARDB with ROM Attach launch configuration.
2. Set the board for I2C boot (SW1[6:7]).
3. Power on the board and interrupt the autoboot sequence.
4. Connect to the target board using ROM Attach launch configuration. If the target is in the

Running mode, then suspend the target.
5. Set the PC at the value 0x20000000 (this is the entry point of application) using Debugger Shell

command .

6. Start debugging (step, run, or breakpoint).

NOTE After the application is built using CodeWarrior, use Flash Programmer to write the

application to ROM, ensuring that the Apply Address Offset checkbox is not
selected.

5.2. Debugging an LS1024ARDB ROM target application

To debug a ROM application running on an LS1024ARDB target, follow these steps:

1. Create an ARMv7 project.
2. Ensure that the LS1024ARDB SDK is available.

3. Choose Project > Properties to open the Properties window for the project.

4. Select C/C++ Build > Settings to open project settings.

5. On the Tool Settings tab, select Additional Tools to open the Additional Tools page.

6. Select the Create Flash Image checkbox, as shown in the figure below.

Figure 18. Select Create Flash Image option

7. On the Tool Settings tab, select ARM Sourcery GNU Create Flash Image > Output to open

the Output page.

8. Choose binary as the output file format, as shown in the figure below.

Debugging ROM target applications - Use cases

Debugging ARMv7 Applications in Environment Initialized by U-Boot / ROM Target Debug Application Note

12 Freescale Semiconductor

Figure 19. Choose output file format

9. On the Tool Settings tab, select ARM Sourcery GNU Create Flash Image > Section to open

the Section page.

10. Select the checkboxes labeled Section: -j .text and Section: -j .data.

Figure 20. Select Section page options

11. Click Apply, and then click OK.
12. Build the application using ROM target. Besides the ELF file, a binary file will be produced.
13. Rename the binary image to and place it in the

 folder of the

LS1024ARDB SDK.

 Debugging ROM target applications - Use cases

Debugging ARMv7 Applications in Environment Initialized by U-Boot / ROM Target Debug Application Note

Freescale Semiconductor 13

14. Sign the application using script. Singing the application will make it

recognized by the microloader.
A new will be produced.

15. Connect to the target board and using Flash Programmer, load the application binary file to NOR
flash, at address .

16. Reset the board and microloader will recognize and run the application.
17. Start debugging (step, run, or breakpoint).

NOTE To debug the application from the entry point, connect to the target after reset,
suspend the target, and set the PC at the value , using Debugger Shell

command .

www.freescale.com

support@freescale.com

Document Number: AN5137

9 July 2015

Information in this document is provided solely to enable system and software implementers to use
Freescale Semiconductor products. There are no express or implied copyright licenses granted
hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in
this document.

Freescale reserves the right to make changes without further notice to any products herein. Freescale
makes no warranty, representation, or guarantee regarding the suitability of its products for any
particular purpose, nor does Freescale assume any liability arising out of the application or use of any
product or circuit, and specifically disclaims any and all liability, including without limitation
consequential or incidental damages. “Typical” parameters that may be provided in Freescale data
sheets and/or specifications can and do vary in different applications, and actual performance may vary
over time. All operating parameters, including “typicals,” must be validated for each customer application
by customer's technical experts. Freescale does not convey any license under its patent rights nor the
rights of others. Freescale sells products pursuant to standard terms and conditions of sale, which
can be found at the following address: freescale.com/SalesTermsandConditions.

Freescale, the Freescale logo, CodeWarrior, and QorIQ are trademarks of Freescale Semiconductor,
Inc., Reg. U.S. Pat. & Tm. Off. Layerscape is trademark of Freescale Semiconductor,
Inc. All other product or service names are the property of their respective owners. ARM, Cortex and
TrustZone are trademarks or registered trademarks of ARM Ltd or its subsidiaries in the EU and/or
elsewhere. All rights reserved.

© 2015 Freescale Semiconductor, Inc.

http://www.freescale.com/SalesTermsandConditions

