
1 Overview
This application note describes how to debug an AIOP SDK
application with CodeWarrior for APP. The application
targeted by this document is AIOP Packet reflector.

AIOP packet reflector provides an entry-level demonstration
about how to use and program an AIOP. It has no predefined
NXP infrastructure that is required to be used by the end user.
It uses the AIOP SL-Service Layer routines only.

The purpose of this sample application is to demonstrate a
simple application data path on AIOP. The application is
available in these two flavors:

• A basic reflector for every IPv4 frame (further
referenced as Reflector). It works much like the NADK
Packet Reflector application, except that it runs on
AIOP.

• The second one applies an extra classification and only
accepted frames are further reflected (further referenced
as Reflector-Classifier).

For more details about this application, see the AIOP ‘packet
reflector’ sample application chapter of the LS2085 SDK
Quick Start Guide.

This application note focuses on the Reflector flavor.

An updated version of the Application Note is available at
CodeWarrior Development Suites for Networked Applications
Product Summary Page.

NXP Semiconductors Document Number: AN5165

Application Note Rev. 10.3.2, 08/2018

AIOP SDK Applications Debug

Contents

1 Overview..1

2 Prerequisites...2

3 Building AIOP reflector APP.................................... 2

4 Hardware setup............................2

5 Importing and building AIOP reflector
project... 6

6 Debugging AIOP APP using
CodeWarrior..8

6.1 Debugging AIOP from system
entry point...11

6.2 Debugging AIOP from application
entry point...13

7 Collecting hardware trace................ 15

7.1 GCov code coverage................ 17

https://www.nxp.com/support/developer-resources/software-development-tools/codewarrior-development-tools/codewarrior-network-applications/codewarrior-development-suites-for-networked-applications:CW-DS-NETAPPS?tab=Documentation_Tab

2 Prerequisites
Before you debug an AIOP SDK application on CodeWarrior for App, ensure the following prerequisites.

NOTE
The references used in this application note are from a Linux 64-bit host machine for
simulator. For hardware, you can use either Linux or Windows.

The table below shows the requisite components.

Component Version

CodeWarrior for APP 10.2.0 or later

SDK EAR6.0 or later

LSDK 17.12 or later

3 Building AIOP reflector APP
To get the latest AIOP APP source files, follow the steps from SDK documentation or from Layerscape-SDK documentation.

4 Hardware setup
To demonstrate the reflected traffic, you can use only one board with two ports connected back-to-back, as the following
figure shows (in the example below, the copper ports 5 and 6 are connected):

Prerequisites

AIOP SDK Applications Debug, Rev. 10.3.2, 08/2018

2 NXP Semiconductors

https://www.nxp.com/support/developer-resources/run-time-software/linux-software-and-development-tools/linux-sdk-for-qoriq-processors:SDKLINUX?tab=Documentation_Tab
https://www.nxp.com/support/developer-resources/run-time-software/linux-software-and-development-tools/layerscape-software-development-kit:LAYERSCAPE-SDK?tab=Documentation_Tab

Figure 1. Hardware setup using one board with two ports connected back-to-back

The Linux container role is played by the port 5 and the AIOP container role is played by the port 6.

LINUX AIOP
dpni.0 <-> dpmac.5 <-------------------------------> dpmac.6 <-> dpni.1
(ni0)

After you get a U-Boot prompt on the board, use these commands:

Bring up the board via tftp from U-Boot (or you can write the images to the flash using the flash programmer from
CodeWarrior for ARMv8).

setenv filesize; setenv myaddr 0x580100000; tftp 0x80000000 u-boot-nor.bin; protect off
$myaddr +$filesize; erase $myaddr +$filesize; cp.b 0x80000000 $myaddr $filesize; protect on
$myaddr +$filesize

setenv filesize; setenv myaddr 0x580000000; tftp 0x80000000 PBL.bin; protect off $myaddr +
$filesize; erase $myaddr +$filesize; cp.b 0x80000000 $myaddr $filesize; protect on $myaddr +
$filesize

setenv filesize; setenv myaddr 0x580300000; tftp 0x80000000 mc.itb; protect off $myaddr +
$filesize; erase $myaddr +$filesize; cp.b 0x80000000 $myaddr $filesize; protect on $myaddr +
$filesize

setenv filesize; setenv myaddr 0x580700000; tftp 0x80000000 dpl-eth.0x2A_0x41.dtb; protect
off $myaddr +$filesize; erase $myaddr +$filesize; cp.b 0x80000000 $myaddr $filesize; protect
on $myaddr +$filesize

setenv filesize; setenv myaddr 0x580800000; tftp 0x80000000 dpc-0x2a41.dtb; protect off

Hardware setup

AIOP SDK Applications Debug, Rev. 10.3.2, 08/2018

NXP Semiconductors 3

$myaddr +$filesize; erase $myaddr +$filesize; cp.b 0x80000000 $myaddr $filesize; protect on
$myaddr +$filesize

Prepare target for AIOP application

fsl_mc start mc 580300000 580800000 && fsl_mc apply dpl 580700000
tftp a0000000 kernel-ls2085ardb.itb
bootm a0000000

NOTE
bootargs needs to contains minimal parameters in order to have a correct setup for AIOP
application. Make sure bootargs=console=ttyS1,115200 root=/dev/ram0
earlycon=uart8250,mmio,0x21c0600 ramdisk_size=0x2000000
default_hugepagesz=2m hugepagesz=2m hugepages=256

Configure the ni0 interface and create a static ARP entry. Set the destination MAC as the ARP hardware address for all the IP
flows on which the packet needs to be sent:

$ ifconfig ni0 6.6.6.1 up
$ arp –s 6.6.6.10 000000000006

Prepare the AIOP container using the following steps:
1. Run the following script on the linux target.

<yocto_path>/build_ls2085ardb_release/tmp/work/aarch64-fsl-linux/aiopapp-refapp/scripts/
dynamic_aiop_root.sh

2. Delete the lines between 205 and 225 and update DPMAC1="dpmac.6".
3. Copy the script and the aiop_reflector.elf on the linux target using scp from the linux host and the eth0

(connected to e1000#0 PCI card) interface.

On the linux target:

$ ifconfig eth0 192.168.1.2 up

On the linux host:

$ ifconfig eth0 192.168.1.1 up
$ scp <yocto_path>/build_ls2085ardb_release/tmp/work/aarch64-fsl-linux/aiopapp-refapp/
scripts/dynamic_aiop_root.sh root@192.168.1.2:.
$ scp <yocto_path>/build_ls2085ardb_release/tmp/work/aarch64-fsl-linux/aiopapp-refapp/demos/
reflector/out/aiop_reflector.elf root@192.168.1.2:.

On the linux target:

root@ls2085ardb:~# chmod +x dynamic_aiop_root_test.sh
root@ls2085ardb:~# ./dynamic_aiop_root_test.sh
Creating AIOP Container
Assigned dpbp.1 to dprc.2
Assigned dpbp.2 to dprc.2
Assigned dpbp.3 to dprc.2
Assigned dpni.1 to dprc.2
Connecting dpni.1<------->dpmac.6
AIOP Container dprc.2 created
----- Contents of AIOP Container: dprc.2 -----
dprc.2 contains 4 objects:
object label plugged-state
dpni.1 plugged
dpbp.3 plugged
dpbp.2 plugged
dpbp.1 plugged

==
Creating AIOP Tool Container
Assigned dpaiop.0 to dprc.3
Assigned dpmcp.22 to dprc.3
AIOP Tool Container dprc.3 created

Hardware setup

AIOP SDK Applications Debug, Rev. 10.3.2, 08/2018

4 NXP Semiconductors

----- Contents of AIOP Tool Container: dprc.3 -----
dprc.3 contains 2 objects:
object label plugged-state
dpaiop.0 plugged
dpmcp.22 plugged

==
Performing VFIO mapping for AIOP Tool Container (dprc.3)
Performing vfio [234.804575] vfio-fsl-mc dprc.3: Binding with vfio-fsl_mc driver
mapping for dprc.3
[234.814384] vfio-fsl-mc dpaiop.0: Binding with vfio-fsl_mc driver
[234.821209] vfio-fsl-mc dpmcp.22: Binding with vfio-fsl_mc driver
========== Summary =================================
 AIOP Container: dprc.2
 AIOP Tool Container: dprc.3
==

Load the AIOP application using aiop_tool.

Initiate ping on the interface to forward packets to the Reflector application running on the AIOP container board. Basically,
this is a ping from ni0 interface (dpni.0 – dpmac.5) to dpni.1 – dpmac.6.

$ aiop_tool load -f aiop_reflector.elf -g dprc.3
AIOP Image (aiop_reflector.elf) loaded successfully.
$ ping 6.6.6.10

To check if the AIOP reflector application loaded successfully, execute the following command in the Linux command shell:

$ root@ls2085ardb:~# cat /dev/fsl_aiop_console

The command output displays the number of DPNIs that are successfully configured, together with the DPNIs that are
provided to the AIOP Reflector Application:

REFLECTOR : Successfully configured ni0 (dpni.1)
REFLECTOR : dpni.1 <---connected---> dpmac.6 (MAC addr: 00:00:00:00:00:06)
> TRACE [CPU 0, dpci_drv.c:524 dpci_event_handle_removed_objects]: Exit
> INFO [CPU 0, init.c:289 core_ready_for_tasks]: AIOP core 0 completed boot sequence
> INFO [CPU 0, init.c:295 core_ready_for_tasks]: AIOP boot finished; ready for tasks...

The AIOP Logger prints a brief information about every frame that is reflected, as listed below. You can also view these logs
in the CodeWarrior IDE in a simple manner using the Debug Print feature. For more information about the Debug Print
feature, see the Debug Print Application Note.

$ root@ls2085ardb:~# tail -f /dev/fsl_aiop_console

RX on DPNI 1 | CORE:15
 MAC_SA: 02-00-c0-a8-48-01 MAC DA: 00-00-00-00-00-06
 IP SRC: 6.6.6.1 IP DST: 6.6.6.10

RX on DPNI 1 | CORE:15
 MAC_SA: 02-00-c0-a8-48-01 MAC DA: 00-00-00-00-00-06
 IP SRC: 6.6.6.1 IP DST: 6.6.6.10

RX on DPNI 1 | CORE:15
 MAC_SA: 02-00-c0-a8-48-01 MAC DA: 00-00-00-00-00-06
 IP SRC: 6.6.6.1 IP DST: 6.6.6.10

RX on DPNI 1 | CORE:15
 MAC_SA: 02-00-c0-a8-48-01 MAC DA: 00-00-00-00-00-06
 IP SRC: 6.6.6.1 IP DST: 6.6.6.10

Hardware setup

AIOP SDK Applications Debug, Rev. 10.3.2, 08/2018

NXP Semiconductors 5

5 Importing and building AIOP reflector project
To import and build the AIOP reflector project, follow these steps:

1. Start the CodeWarrior and create a new workspace.
2. Import (File > Import > General > Existing Projects Into Workspace) the reflector and aiop_sl projects from this

location: <yocto_path>/build_<target>_release\tmp\work\aarch64-fsl-linux\aiopsl

Importing and building AIOP reflector project

AIOP SDK Applications Debug, Rev. 10.3.2, 08/2018

6 NXP Semiconductors

Figure 2. Import dialog - Import Projects page
3. The aiop reflector project (aiop_reflector.elf) is already built by Yocto, but if you want you can edit the sources

and build the project directly from the CodeWarrior. To do this, right-click on the project in the CodeWarrior
Projects view and select Build Project. The IDE also rebuilds the aiop_sl library project that is linked to the
reflector project. It is recommended to use –O0 level optimization for improved debugging. To access Optimization
Level, select Project Properties > C/C++ Build > Settings > Compiler > Optimization > Optimization Level.

Importing and building AIOP reflector project

AIOP SDK Applications Debug, Rev. 10.3.2, 08/2018

NXP Semiconductors 7

Figure 3. Properties for reflector project - Settings window

Figure 4. CodeWarrior Projects view - Build Project option

6 Debugging AIOP APP using CodeWarrior
To debug the AIOP using the CodeWarrior for APP IDE, follow these steps:

1. Copy the new aiop_reflector.elf just compiled with CodeWarrior or yocto to the linux board. To locate the elf,
expand the Binaries group from reflector project, right click on the aiop_app.elf and select Show in Windows
Explorer for Windows, or Show in File Manager for Linux.

Debugging AIOP APP using CodeWarrior

AIOP SDK Applications Debug, Rev. 10.3.2, 08/2018

8 NXP Semiconductors

Figure 5. Show in Windows Explorer option
2. Select Run > Debug Configurations from the IDE menu bar.

The Debug Configuration dialog appears.

3. Select the reflector project.
4. Select aiop_dbg launch configuration from the left panel.
5. Click Edit from Connection.
6. Specify the Hostname/IP.

Debugging AIOP APP using CodeWarrior

AIOP SDK Applications Debug, Rev. 10.3.2, 08/2018

NXP Semiconductors 9

Figure 6. Properties for <connection> dialog - Hostname/IP option
7. Click OK.
8. Ensure that the AIOP OS awareness is enabled. To do this, open the Debugger > OS Awareness tabs and ensure that

the AIOP is selected in the Target OS group.

Figure 7. Selecting AIOP Target OS
9. Click Debug for attaching to the AIOP.

Figure 8. Debug view - Attaching AIOP

You can debug the AIOP APP using the following two methods:
• Debugging AIOP from system entry point
• Debugging AIOP from application entry point

Debugging AIOP APP using CodeWarrior

AIOP SDK Applications Debug, Rev. 10.3.2, 08/2018

10 NXP Semiconductors

6.1 Debugging AIOP from system entry point

1. To access the very first AIOP instruction (the entry point), you need to control the entire system booting process (U-
Boot/GPP > MC > AIOP) and have run-control on the GPP core side.

2. Click Reset.

Figure 9. Debug view showing Reset button

The AIOP debugging halts.

Figure 10. Debug view
3. Open the CodeWarrior for APP IDE.
4. Set a breakpoint at __sys_start.

NOTE
This is possible from both the source file and the Debugger Shell view. The
breakpoint from the __sys_start init hits just after the AIOP tool loads the
AIOP application.

Figure 11. CodeWarrior for APP - Editor view

Debugging AIOP APP using CodeWarrior

AIOP SDK Applications Debug, Rev. 10.3.2, 08/2018

NXP Semiconductors 11

Figure 12. CodeWarrior for APP - Debugger Shell view
5. Click Resume to boot the entire eco-system (u-boot/GPP > MC > Linux > AIOP) using the Debugger Shell view.

Write the following command in the Debugger Shell view <protocol ccs::run_core 288>

Figure 13. CodeWarrior for APP - Debug Shell view
6. The debugger hits the break point __sys_start after the aiop_tool loads the AIOP application from the linux

target. For more details, see Hardware setup.

Debugging AIOP APP using CodeWarrior

AIOP SDK Applications Debug, Rev. 10.3.2, 08/2018

12 NXP Semiconductors

Figure 14. CodeWarrior for APP - Debug perspective

6.2 Debugging AIOP from application entry point

The entry point function executed by a triggered AIOP task is app_reflector. A breakpoint in this function hits when you
generate a traffic using the ping command (see Hardware setup). To debug AIOP from the application entry point, follow the
steps below:

1. Set up a breakpoint at app_reflector symbol using either the source file or the Debugger Shell view.

Figure 15. Setting breakpoint using source file

Debugging AIOP APP using CodeWarrior

AIOP SDK Applications Debug, Rev. 10.3.2, 08/2018

NXP Semiconductors 13

Figure 16. Setting breakpoint using Debugger Shell view
2. Click Resume from the Debug view.

The figure below shows the AIOP task suspended in core_ready_for_tasks() function.

Figure 17. Debug view displaying core_ready_for_tasks() function
3. The core finishes to boot and waits for the tasks to be triggered.
4. Now, follow the AIOP reflector demonstration steps listed in the Hardware setup chapter.

NOTE
You need to load the kernel via the tftp and bootm commands. Sending the
packets (with ping) to the AIOP interfaces generate tasks that can be observed/
debugged in the System Browser view and also hits the breakpoint from the
app_reflector symbol. For full debugging capabilities of the System Browser
and the AIOP Task Aware features, see the AIOP Task Aware Debug (document
AN5044) application note.

Debugging AIOP APP using CodeWarrior

AIOP SDK Applications Debug, Rev. 10.3.2, 08/2018

14 NXP Semiconductors

Figure 18. Debug view - app_reflector breakpoint

Figure 19. System Browser view

7 Collecting hardware trace
To collect the hardware trace, follow the steps listed below:

Collecting hardware trace

AIOP SDK Applications Debug, Rev. 10.3.2, 08/2018

NXP Semiconductors 15

1. Open Run > Debug Configurations > Trace and Profile tab.
2. Check the Enable Trace and Profile checkbox. For customizing the trace options, click Edit.

Figure 20. Trace and Profile tab
3. Click Debug.

The trace gets collected between the two suspended events.

NOTE
After the attach is completed, it is mandatory for the task to process the suspend
operation first.

4. Ensure that you set up the breakpoints in the app_reflector entry point.
5. Click Resume.
6. Send the ping traffic as suggested in the Hardware setup chapter.
7. The debugger hits the breakpoint.
8. Click Resume again for executing the entry point function and for generating the trace for your entry point function.
9. The debugger hits the breakpoint again.

10. Click Upload Trace to collect the trace.

Figure 21. Debug view - Collect Trace option
11. The collected trace appears in the Analysis Results view.

Figure 22. Analysis Results view
12. It is mandatory to open the Trace item first for letting the CodeWarrior IDE to decoding the gathered hardware trace.

Collecting hardware trace

AIOP SDK Applications Debug, Rev. 10.3.2, 08/2018

16 NXP Semiconductors

Figure 23. Hardware trace

For the rest of the items, ensure that you select the last task because the app reflector is enabling the tasks in a round-robin
manner starting from the last task.

Figure 24. Call Tree view

Figure 25. Selecting task

Figure 26. Collected trace

7.1 GCov code coverage

To enable GCov code coverage for reflector, follow the steps below:

1. Enable the Generate Code Coverage File option from the Project > Properties > Settings > Tool Settings >
Compiler > Processor and re-build the project.

Collecting hardware trace

AIOP SDK Applications Debug, Rev. 10.3.2, 08/2018

NXP Semiconductors 17

Figure 27. Generate Code Coverage File option
2. Follow the steps from Collecting hardware trace section to have the gcov results.

For more details, see the section 6.3 GCov of the CodeWarrior Development Studio for Advanced Packet Processing
Targeting Manual (document CWAPPTM).

Figure 28. gcov view

Figure 29. Editor view - reflector.c file

Collecting hardware trace

AIOP SDK Applications Debug, Rev. 10.3.2, 08/2018

18 NXP Semiconductors

How to Reach Us:

Home Page:
nxp.com

Web Support:
nxp.com/support

Information in this document is provided solely to enable system and software implementers to use
NXP products. There are no express or implied copyright licenses granted hereunder to design or
fabricate any integrated circuits based on the information in this document. NXP reserves the right to
make changes without further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its products for any
particular purpose, nor does NXP assume any liability arising out of the application or use of any
product or circuit, and specifically disclaims any and all liability, including without limitation
consequential or incidental damages. “Typical” parameters that may be provided in NXP data sheets
and/or specifications can and do vary in different applications, and actual performance may vary over
time. All operating parameters, including “typicals,” must be validated for each customer application
by customer’s technical experts. NXP does not convey any license under its patent rights nor the
rights of others. NXP sells products pursuant to standard terms and conditions of sale, which can be
found at the following address: nxp.com/SalesTermsandConditions.

While NXP has implemented advanced security features, all products may be subject to unidentified
vulnerabilities. Customers are responsible for the design and operation of their applications and
products to reduce the effect of these vulnerabilities on customer’s applications and products, and
NXP accepts no liability for any vulnerability that is discovered. Customers should implement
appropriate design and operating safeguards to minimize the risks associated with their applications
and products.

NXP, the NXP logo, Freescale, the Freescale logo, and QorIQ are trademarks of are trademarks of
NXP B.V. All other product or service names are the property of their respective owners. Arm, Cortex
are trademarks or registered trademarks of Arm Limited (or its subsidiaries) in the US and/or
elsewhere. The related technology may be protected by any or all of patents, copyrights, designs and
trade secrets. All rights reserved.

© 2017-18 NXP B.V.

Document Number AN5165
Revision 10.3.2, 08/2018

http://nxp.com
http://nxp.com/support
http://nxp.com/SalesTermsandConditions

	Overview
	Prerequisites
	Building AIOP reflector APP
	Hardware setup
	Importing and building AIOP reflector project
	Debugging AIOP APP using CodeWarrior
	Debugging AIOP from system entry point
	Debugging AIOP from application entry point

	Collecting hardware trace
	GCov code coverage

