
1 Introduction
This document describes how to use the Trace Compass
feature from CodeWarrior for ARMv8 release. Trace
Compass is an open source toolkit that integrates open source
trace frameworks/toolkits. It is based on Eclipse plugins
(views) and binaries, and shared libraries. The trace compass
tool allows you view and analyze trace data in various forms,
like views, graphs, and metrics. The tool helps in extracting
the useful information from traces in a much simpler and user-
friendly manner.

NOTE
The Eclipse plugin is the architecture and
Operating System agnostic based on a Java
implementation. The C binaries are
Operating System dependent. All of them
can run only on a Linux-based system.

This application note includes the following sections:
• Setup requirements
• Collecting trace data using LTTng command-line tools
• Importing trace data

2 Setup requirements

NXP Semiconductors Document Number: AN5172

Application Note Rev. 11.3.2, 07/2018

Using Trace Compass with
CodeWarrior for ARMv8

Contents

1 Introduction..1

2 Setup requirements...........................1

3 Collecting trace data using LTTng
command-line tools...................................2

4 Importing trace data......................... 3

For the SDK based on DASH, before proceeding the trace collection, you have to enable LTTng within kernel and associated
modules.

Ensure that LTTng layer is available and is compiled successfully, using the following commands:
1. Set CONFIG_BUILD_LTTNG to "y", replacing default "n" in

flexbuild/configs/build_lsdk.cfg
2. Build linux kernel

flex-builder -c linux
3. Build LTTng modules

flex-builder -c lttng-modules
4. Prepare boot partition

flex-builder -i mkbootpartition
5. Prepare Ubuntu rootfs

flex-builder -i mkrfs -a arm64
6. Merge modules into rootfs and obtain its compressed .tgz version

flex-builder -i merge-component
flex-builder -i compressrfs

7. Prepare board with the boot partition and rootfs images. For steps to obtain boot partition and rootfs images, refer
LSDK documentation or use the flex-installer utility Help menu.

3 Collecting trace data using LTTng command-line tools
After the built image is boot up, you can start a trace session using LTTng toolkit. Perform the following steps to start the
trace collection:

1. Create a trace session using the create command. By default, the traces are written in the root directory.
2. Filter the trace session by enabling only certain events/functions.
3. Start the trace session after all the settings are applied, using the start command. The stop command stops the

tracing.
4. View the generated trace data using the view command, which is by default calling babeltrace.
5. Use Babeltrace for further processing of the trace log. You need to specify the trace path.
6. Destroy the trace session, using the destroy command followed by the name of the session.

The following list of commands shows an example of how to collect trace data using LTTng commands.

root@Ubuntu:~# lttng create mySession
Session mySession created.
Traces will be written in /root/lttng-traces/mySession-20171124-231444
root@Ubuntu:~# lttng enable-event sched_switch -k
Kernel event sched_switch created in channel channel0
root@Ubuntu:~# lttng start
Tracing started for session mySession
root@Ubuntu:~# lttng stop
Waiting for data availability....
Tracing stopped for session mySession
root@Ubuntu:~# lttng view
[23:15:20.516894700] (+?.?????????) Ubuntu.ls1088ardb sched_switch: { cpu_id = 2 },
{ prev_comm = "swapper/2", prev_tid = 0, prev_prio = 20, prev_state = 0, next_comm = "lttng-
consumerd", next_tid = 3812, next_prio = 20 }
[23:15:20.518855700] (+0.001961000) Ubuntu.ls1088ardb sched_switch: { cpu_id = 5 },
{ prev_comm = "swapper/5", prev_tid = 0, prev_prio = 20, prev_state = 0, next_comm =
"rcu_preempt", next_tid = 8, next_prio = 20 }
[23:15:20.518868540] (+0.000012840) Ubuntu.ls1088ardb sched_switch: { cpu_id = 0 },
{ prev_comm = "swapper/0", prev_tid = 0, prev_prio = 20, prev_state = 0, next_comm =

Collecting trace data using LTTng command-line tools

Using Trace Compass with CodeWarrior for ARMv8, Rev. 11.3.2, 07/2018

2 NXP Semiconductors

https://www.nxp.com/support/developer-resources/run-time-software/linux-software-and-development-tools/layerscape-software-development-kit:LAYERSCAPE-SDK?tab=Documentation_Tab

"rcu_sched", next_tid = 9, next_prio = 20 }
[23:15:20.518895420] (+0.000026880) Ubuntu.ls1088ardb sched_switch: { cpu_id = 5 },
{ prev_comm = "rcu_preempt", prev_tid = 8, prev_prio = 20, prev_state = 1026, next_comm =
"swapper/5", next_tid = 0, next_prio = 20 }
[23:15:20.518895980] (+0.000000560) Ubuntu.ls1088ardb sched_switch: { cpu_id = 0 },
{ prev_comm = "rcu_sched", prev_tid = 9, prev_prio = 20, prev_state = 1026, next_comm =
"kworker/0:1", next_tid = 111, next_prio = 20 }
[23:15:20.518923380] (+0.000027400) Ubuntu.ls1088ardb sched_switch: { cpu_id = 0 },
{ prev_comm = "kworker/0:1", prev_tid = 111, prev_prio = 20, prev_state = 1026, next_comm =
"swapper/0", next_tid = 0, next_prio = 20 }
[23:15:20.522714620] (+0.003791240) Ubuntu.ls1088ardb sched_switch: { cpu_id = 0 },
{ prev_comm = "swapper/0", prev_tid = 0, prev_prio = 20, prev_state = 0, next_comm = "mmcqd/
0", next_tid = 1582, next_prio = 20 }
[23:15:20.522731620] (+0.000017000) Ubuntu.ls1088ardb sched_switch: { cpu_id = 2 },
{ prev_comm = "lttng-consumerd", prev_tid = 3812, prev_prio = 20, prev_state = 2, next_comm
= "swapper/2", next_tid = 0, next_prio = 20 }
[23:15:20.522769420] (+0.000037800) Ubuntu.ls1088ardb sched_switch: { cpu_id = 0 },
{ prev_comm = "mmcqd/0", prev_tid = 1582, prev_prio = 20, prev_state = 1, next_comm =
"swapper/0", next_tid = 0, next_prio = 20 }
...
root@Ubuntu:~# lttng destroy mySession
Session mySession destroyed
root@Ubuntu:~#

4 Importing trace data
After collecting the trace data on the board using LTTng command-line utilities.

NOTE
Before importing and viewing the trace data, open the Project Explorer view and switch
to LTTng Kernel perspective.

Perform the following steps to import a tracing project in the CodeWarrior:
1. Select File > New > Project.

The New Project wizard appears.

2. Expand the Tracing folder and select Tracing Project.
3. Click Next.

The Tracing Project page appears.

Importing trace data

Using Trace Compass with CodeWarrior for ARMv8, Rev. 11.3.2, 07/2018

NXP Semiconductors 3

Figure 1. Tracing Project wizard
4. Specify the Project name and click Finish.

The new project is added in the Projects view area.

Figure 2. Project View
5. Expand the node of the selected project. It contains the following folders:

Importing trace data

Using Trace Compass with CodeWarrior for ARMv8, Rev. 11.3.2, 07/2018

4 NXP Semiconductors

• Experiments folder contains a set of traces that needs to be analyzed. These traces are selected from Traces
folder. It displays several trace files by overlapping the data in the user interface.

• Traces folder contains all the imported trace files.

6. Right-click the Traces folder and select Import from the menu.
The Trace Import wizard appears.

Figure 3. Trace Import wizard
7. Browse the location of the Source directory that contains the tracing session folder.
8. Expand the node of the tracing session folder and select the trace folder.
9. Select the type of trace using Trace type field and click Finish.

The folder that contains the trace data gets added under the Traces folder of the Projects view.

Importing trace data

Using Trace Compass with CodeWarrior for ARMv8, Rev. 11.3.2, 07/2018

NXP Semiconductors 5

Double-click the trace file to access the trace data. You can now use all the advantages and features offered by Trace
Compass toolkit.

Figure 4. LTTng Perspective

Importing trace data

Using Trace Compass with CodeWarrior for ARMv8, Rev. 11.3.2, 07/2018

6 NXP Semiconductors

How to Reach Us:

Home Page:
nxp.com

Web Support:
nxp.com/support

Information in this document is provided solely to enable system and software implementers to use
NXP products. There are no express or implied copyright licenses granted hereunder to design or
fabricate any integrated circuits based on the information in this document. NXP reserves the right to
make changes without further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its products for any
particular purpose, nor does NXP assume any liability arising out of the application or use of any
product or circuit, and specifically disclaims any and all liability, including without limitation
consequential or incidental damages. “Typical” parameters that may be provided in NXP data sheets
and/or specifications can and do vary in different applications, and actual performance may vary over
time. All operating parameters, including “ typicals,” must be validated for each customer application
by customer's technical experts. NXP does not convey any license under its patent rights nor the
rights of others. NXP sells products pursuant to standard terms and conditions of sale, which can be
found at the following address: nxp.com/SalesTermsandConditions.

While NXP has implemented advanced security features, all products may be subject to unidentified
vulnerabilities. Customers are responsible for the design and operation of their applications and
products to reduce the effect of these vulnerabilities on customer’s applications and products, and
NXP accepts no liability for any vulnerability that is discovered. Customers should implement
appropriate design and operating safeguards to minimize the risks associated with their applications
and products.

NXP, the NXP logo, Freescale, the Freescale logo, and QorIQ are trademarks of are trademarks of
NXP B.V. All other product or service names are the property of their respective owners. Arm, Cortex
are registered trademarks of Arm Limited (or its subsidiaries) in the EU and/or elsewhere. All rights
reserved.

© 2017-2018 NXP B.V.

Document Number AN5172
Revision 11.3.2, 07/2018

http://nxp.com
http://nxp.com/support
http://nxp.com/salestermsandconditions

	Introduction
	Setup requirements
	Collecting trace data using LTTng command-line tools
	Importing trace data

