
1 Introduction
The most popular user space application for SDK/ODP
(OpenDataPlane) is the packet reflector reference application.

This application note is focused on the odp_reflector
application. It’s the extension of odp_pktio application with
the addition of the schedule PUSH mode, where scheduled
packets are received in the PUSH mode. Like odp_pktio, the
odp_reflector application swaps the Ethernet and IP
header addresses of the received frames and transmits them on
the same interface.

This application note explains a use case, where
odp_reflector is running on a single board using 2 ports
connected back-to-back. If you need another hardware setup
or full details about the ODP applications, see LS2085 SDK
Quick Start Guide.

This application note explains:

• How you can build a real hardware setup for running
odp_reflector

• How you can import, download, run, and debug the
odp_reflector application from CodeWarrior

• How you can attach to a running odp_reflector
application and debug it using CodeWarrior

NXP Semiconductors Document Number: AN5269

Application Note Rev. 06/2018

ODP Reflector Application Debug

Contents

1 Introduction..1

2 Get the ODP reflector source files............. 2

3 Hardware setup............................2

3.1 Hardware setup using only one
board... 2

4 CodeWarrior Setup........................6

4.1 Import and start the odp_reflector
application from CodeWarrior..........6

4.2 Attach to a running odp_reflector
application and debug using
CodeWarrior.......................................11

4.2.1 odp_reflector debug from
entry_point14

4.3 Debug capabilities................. 15

2 Get the ODP reflector source files
To get the latest AIOP APP source files, follow the steps from SDK documentation or from Layerscape-SDK documentation.

3 Hardware setup
The reflector application reflects back the packet received on the same interface where the packets are originally received,
and the source and destination MAC and IP addresses of the received packet are swapped.

3.1 Hardware setup using only one board

In order to demonstrate the traffic “reflected”, you can use a single board with 2 ports connected back-to-back. In the
following figure, the copper red ports 5 and 6 are connected.

• Port 5 - Linux container
• Port 6 - ODP container

Get the ODP reflector source files

ODP Reflector Application Debug, Rev. 06/2018

2 NXP Semiconductors

https://www.nxp.com/support/developer-resources/run-time-software/linux-software-and-development-tools/linux-sdk-for-qoriq-processors:SDKLINUX?tab=Documentation_Tab
https://www.nxp.com/support/developer-resources/run-time-software/linux-software-and-development-tools/layerscape-software-development-kit:LAYERSCAPE-SDK?tab=Documentation_Tab

Figure 1. Single board with 2 ports connected back-to-back

LINUX ODP
dpni.0 <-> dpmac.5 <-------------------------------> dpmac.6 <-> dpni.1
(ni0)

Run these commands when the U-Boot prompt is available.

At the U-Boot console, bring up the board via TFTP. Or, you can write the images to the flash memory using the
CodeWarrior for ARMv8 flash programmer tool.

setenv filesize; setenv myaddr 0x580100000; tftp 0x80000000 u-boot-nor.bin; protect off
$myaddr +$filesize; erase $myaddr +$filesize; cp.b 0x80000000 $myaddr $filesize; protect on
$myaddr +$filesize

setenv filesize; setenv myaddr 0x580000000; tftp 0x80000000 PBL.bin; protect off $myaddr +
$filesize; erase $myaddr +$filesize; cp.b 0x80000000 $myaddr $filesize; protect on $myaddr +
$filesize

setenv filesize; setenv myaddr 0x580300000; tftp 0x80000000 mc.itb; protect off $myaddr +
$filesize; erase $myaddr +$filesize; cp.b 0x80000000 $myaddr $filesize; protect on $myaddr +
$filesize

setenv filesize; setenv myaddr 0x580700000; tftp 0x80000000 dpl-eth.0x2A_0x41.dtb; protect
off $myaddr +$filesize; erase $myaddr +$filesize; cp.b 0x80000000 $myaddr $filesize; protect
on $myaddr +$filesize

setenv filesize; setenv myaddr 0x580800000; tftp 0x80000000 dpc-0x2a41.dtb; protect off

Hardware setup

ODP Reflector Application Debug, Rev. 06/2018

NXP Semiconductors 3

$myaddr +$filesize; erase $myaddr +$filesize; cp.b 0x80000000 $myaddr $filesize; protect on
$myaddr +$filesize

<restart the board for loading new images>

Prepare target for running ODP application

fsl_mc start mc 580300000 580800000 && fsl_mc apply dpl 580700000
tftp a0000000 kernel-ls2085ardb.itb
bootm a0000000

NOTE
bootargs needs to contains minimal parameters in order to have a correct setup for AIOP
application. Make sure bootargs=console=ttyS1,115200 root=/dev/ram0
earlycon=uart8250,mmio,0x21c0600 ramdisk_size=0x2000000
default_hugepagesz=2m hugepagesz=2m hugepages=256

Configure the ni0 interface and create static ARP entry. Set the destination MAC as the ARP hardware address for all the IP
flows on which the packet needs to be sent. 000000000006 is the MAC of the dpmac.6 (this information can be verified
using restool).

root@ls2085ardb:~# ifconfig ni0 6.6.6.1 up
root@ls2085ardb:~# arp -s 6.6.6.10 000000000006

Configure the eth0 interface.

root@ls2085ardb:~# ifconfig eth0 192.168.1.2

Connect a new DPNI for DPMAC.6 and create the rest of the objects for the ODP container using the dynamic_dpl.sh
script. This script uses a Linux user space tool called restool that can be used to create/destroy containers and objects
dynamically.

root@ls2085ardb:~# cd /usr/odp/scripts
root@ls2085ardb:/usr/odp/scripts# ./dynamic_dpl.sh dpmac.6
Available DPRCs
dprc.1

dprc.2 Created

Validating the arguments.....

DPNI parameters :-->
 MAX_SENDERS = 8
 MAX_TCS = 1
 MAX_DIST_PER_TC = 8
 MAX_DIST_KEY_SIZE = 32
 DPNI_OPTIONS =
DPNI_OPT_MULTICAST_FILTER,DPNI_OPT_UNICAST_FILTER,DPNI_OPT_DIST_HASH,DPNI_OPT_DIST_FS,DPNI_OP
T_FS_MASK_SUPPORT

DPCON parameters :-->
 DPCON_PRIORITIES = 8

DPSECI parameters :-->
 DPSECI_QUEUES = 8
 DPSECI_PRIORITIES = 2,2,2,2,2,2,2,2

DPIO parameters :-->
 DPIO_PRIORITIES = 8

####### Parsing argument number 1 (dpmac.6) #######

 dpni.1 created with MAC addr = 00:00:00:00:0:6

Hardware setup

ODP Reflector Application Debug, Rev. 06/2018

4 NXP Semiconductors

 Disconnecting the dpmac.6, if already connected
 dpmac.6 Linked with dpni.1
 dpni.1 assigned to dprc.2

 dpmac.6 <--------connected------> dpni.1 (00:00:00:00:0:6)
………………
USE dprc.2 FOR YOUR APPLICATIONS

Verify if the DPNI interfaces are correctly allocated using restool.

root@ls2085ardb:/usr/odp/scripts# restool dpni info dpni.0
dpni version: 6.0
dpni id: 0
plugged state: plugged
endpoint state: 1
endpoint: dpmac.5, link is up
link status: 1 - up
mac address: 4a:3e:27:d2:df:f6
dpni_attr.options value is: 0x180
 DPNI_OPT_UNICAST_FILTER
 DPNI_OPT_MULTICAST_FILTER
max senders: 1
max traffic classes: 1
max distribution's size per RX traffic class:
 class 0's size: 1
max unicast filters: 16
max multicast filters: 64
max vlan filters: 0
max QoS entries: 0
max QoS key size: 0
max distribution key size: 0
root@ls2085ardb:/usr/odp/scripts# restool dpni info dpni.1
dpni version: 6.0
dpni id: 1
plugged state: plugged
endpoint state: 0
endpoint: dpmac.6, link is down
link status: 0 - down
mac address: 00:00:00:00:00:06
dpni_attr.options value is: 0x401b0
 DPNI_OPT_DIST_HASH
 DPNI_OPT_DIST_FS
 DPNI_OPT_UNICAST_FILTER
 DPNI_OPT_MULTICAST_FILTER
 DPNI_OPT_FS_MASK_SUPPORT
max senders: 8
max traffic classes: 1
max distribution's size per RX traffic class:
 class 0's size: 8
max unicast filters: 16
max multicast filters: 64
max vlan filters: 0
max QoS entries: 0
max QoS key size: 0
max distribution key size: 32

Start the odp_reflector and check if this works using ping.

root@ls2085ardb:~# cd /usr/odp/bin/
root@ls2085ardb:/usr/odp/bin# export DPRC=dprc.2
root@ls2085ardb:/usr/odp/bin# ./odp_reflector -i dpni.1 -m 0 -c 8 &

Hardware setup

ODP Reflector Application Debug, Rev. 06/2018

NXP Semiconductors 5

<enter>
root@ls2085ardb:~# ping 6.6.6.10 -c 2
PING 6.6.6.10 (6.6.6.10) 56(84) bytes of data.
64 bytes from 6.6.6.10: icmp_seq=1 ttl=64 time=0.093 ms
64 bytes from 6.6.6.10: icmp_seq=2 ttl=64 time=0.055 ms

--- 6.6.6.10 ping statistics ---
2 packets transmitted, 2 received, 0% packet loss, time 1001ms
rtt min/avg/max/mdev = 0.055/0.074/0.093/0.019 ms

4 CodeWarrior Setup
This topic explains:

• Import and start the odp_reflector application from CodeWarrior
• Attach to a running odp_reflector application and debug using CodeWarrior
• Debug capabilities

4.1 Import and start the odp_reflector application from
CodeWarrior

After compiling the odp_reflector application, with debug information (-ggdb) you’ll need to use in CodeWarrior the elf
file containing the debug symbols. This will generate the correct elf/DWARF symbolic needed for the CodeWarrior parser to
make data to symbols and symbols to data (this is very important).

1. Select File > Import > C/C++ > CodeWarrior Debug Projects.
2. Click Next.
3. Select the odp_reflector elf available at:

<Yocto>/build_ls2085ardb_release/tmp/work/aarch64-fsl-linux/odp/1.4-r0/git/example/
reflector/odp_reflector

CodeWarrior automatically detects the elf type and makes the settings for the Linux Application debug flow.

CodeWarrior Setup

ODP Reflector Application Debug, Rev. 06/2018

6 NXP Semiconductors

Figure 2. CodeWarrior Executable Importer
4. Set the remote absolute path to odp_reflector and the commands to execute before the application.

Figure 3. Absolute path and commands to execute
5. If you want, you can set up directly the remote path of the odp_reflector without downloading it (use Skip download

to target path) In this case, check to have the reflector from target obtained from the same yocto/rootfs build with the
one imported in CodeWarrior .

CodeWarrior Setup

ODP Reflector Application Debug, Rev. 06/2018

NXP Semiconductors 7

Figure 4. Skip download to target path
6. Set the host/IP name of the ODP Linux target using the Edit button in the Connection area.

Figure 5. Scp Connection properties
7. Set sysroot in .gdbinit from the Debugger > Main tab appending this command: set sysroot <path_to_sdk>/

build_ls2085ardb_release/tmp/sysroots/ls2085ardb

Figure 6. Set sysroot
8. Set the gdbserver port used by ssh tunnel by selecting the Debugger > Gdbserver Settings tab.

CodeWarrior Setup

ODP Reflector Application Debug, Rev. 06/2018

8 NXP Semiconductors

Figure 7. Gdbserver port
9. The odp_reflector also needs some specific arguments in order to start correctly. These can be set up using the

Arguments tab in the Debug Configurations dialog. You can refer the LS2085 SDK_Quick_Start_Guide for details
about the legal arguments for the reflector application.

10. Select Run > Debug Configurations > C/C++ Remote Application.
11. Click the Debug button to run the reflector application.

A login window appears.

12. Enter the user ID for linux target as root and the password is blank. Click OK.

Please note that now odp_reflector can only run as root and also the CodeWarrior will warn you, if necessary,
about the changed RSA key mapping for root and the remote target Linux. For example, this can happen if you are
restarting the Linux target and the remote Linux generates a different RSA key.

13. The connection between gdb and gdbserver is established, the gdbserver will start the odp_reflector and the bind script
will be run. You can observe this in the remote shell console.

Figure 8. Remote shell console
14. The reflector debug sessions starts and all the debug capabilities are available. By default, the reflector will be stopped

at main() function as per the Debugger tab settings.

Figure 9. Debugger tab

CodeWarrior Setup

ODP Reflector Application Debug, Rev. 06/2018

NXP Semiconductors 9

Figure 10. Debugging starts
15. Following are the key functions to debug:

a. pktio_thread
b. odp_schedule
c. odp_packet_from_event
d. swap_pkt_addrs
e. odp_pktio_send

Set up breakpoints at all these functions from the gdb command line to see how the new threads are spawned and
executed.

Figure 11. Set breakpoints at different functions
16. Disable all these breakpoints from GUI, resume the application.
17. At the Linux container, issue a ping (that is ping 6.6.6.10 -c 10) and during this run enable all breakpoints again.

The breakpoints will be hit in different conditions.

CodeWarrior Setup

ODP Reflector Application Debug, Rev. 06/2018

10 NXP Semiconductors

Figure 12. Re-enable breakpoints

4.2 Attach to a running odp_reflector application and debug
using CodeWarrior

1. Import the odp_reflector elf file as explained in Import and start the odp_reflector application from CodeWarrior.
2. In the Debug Configurations dialog, select C/C++ attach to Application and click New launch configuration.
3. Click the Debugger tab and select gdbserver from the Debugger drop-down list.
4. Click the Connection subtab, set Type as TCP. Also, set the host IP of the Linux target and the port number for the

gdbserver.

Figure 13. Set connection type
5. Start the gdbserver and the odp application standalone on the Linux target.

export DPRC=dprc.2
/usr/odp/bin/odp_reflector -i dpni-1 -m 0 -c 8 &
gdbserver --multi :1234

6. Click Debug. The gdb client will connect to gdbserver. Now, you can attach to any application from the Linux target,
including the reflector, using the green button shown below.

CodeWarrior Setup

ODP Reflector Application Debug, Rev. 06/2018

NXP Semiconductors 11

Figure 14. Connect to a process

CodeWarrior Setup

ODP Reflector Application Debug, Rev. 06/2018

12 NXP Semiconductors

Figure 15. Select process

CodeWarrior Setup

ODP Reflector Application Debug, Rev. 06/2018

NXP Semiconductors 13

7. Click OK to attach to the running reflector. This enables all the debug capabilities. The stack after attach is shown
below.

Figure 16. Debug session
8. For setting breakpoints to the global symbols, such as main, load the odp_reflector debug symbols using the file

<path_to_elf> command.

file /home/b32331/LS2/sdk/EAR6.0/prerelease_iso/LS2085A-SDK-20160304-yocto/
build_ls2085ardb_release/tmp/work/aarch64-fsl-linux/odp/1.4-r0/git/example/reflector/
odp_reflector

4.2.1 odp_reflector debug from entry_point

To debug odp_reflector from entry_point:

1. You can manually start the reflector via gdbserver on the Linux target as below and then just attach with CodeWarrior
to the gdbserver/odp_reflector. Note that you must run the bind script manually. This is basically the same solution
presented in Import and start the odp_reflector application from CodeWarrior where all steps are made by
CodeWarrior.

export DPRC=dprc.2
gdbserver --multi :1234 /usr/odp/bin/odp_reflector -i dpni-1 -m 0 -c 8

2. Click Debug. CodeWarrior will attach to reflector and stop at the entry_point.

3. For setting breakpoints to global symbols, such as main, you should load the odp_reflector debug symbols using file
<path_to_elf> command.

file /home/b32331/LS2/sdk/EAR6.0/prerelease_iso/LS2085A-SDK-20160304-yocto/
build_ls2085ardb_release/tmp/work/aarch64-fsl-linux/odp/1.4-r0/git/example/reflector/
odp_reflector

4. Now, you can set breakpoints from the gdb console, such as b main. After the hitting the breakpoint from the main
function the stack will look as below.

CodeWarrior Setup

ODP Reflector Application Debug, Rev. 06/2018

14 NXP Semiconductors

4.3 Debug capabilities

In the debug session, various debug capabilities are available:

1. GDB console (selected from right side). In this console, you can run gdb commands.

Figure 17. Select console

Figure 18. Console view

In the gdb traces console, you can see full trace details about the gdb client commands running on the host Linux.

In the Remote Shell console, you can see the remote commands (and outputs) which are executed by CodeWarrior on
the remote Linux target.

In the gdb console, you can run gdb commands.

2. Source path mapping resolved automatically by the CodeWarrior software if you are running the CodeWarrior
software on the same machine where the reflector is built.

Figure 19. Source path mapping resolved automatically

CodeWarrior Setup

ODP Reflector Application Debug, Rev. 06/2018

NXP Semiconductors 15

If not, the CodeWarrior software will ask you where the reflector source files are located as shown below.

Figure 20. Not able to locate reflector source files
3. Access to registers and memory, both from the GDB and CodeWarrior views.

Figure 21. Registers in CodeWarrior view

Figure 22. Registers in GDB console view
4. Run control per process, per thread

By default, the run control is enabled per process, but you can enable it per thread, using the scheduler-locking option
in the gdb console. For example, you can set a breakpoint at the line 193 in odp_reflector.c, run until the
breakpoint, and then you can try the scheduler-locking to be set on. Using <info threads> and <thread id>, you
can switch between different threads and perform run control operations (stepi, step, next) per thread.

CodeWarrior Setup

ODP Reflector Application Debug, Rev. 06/2018

16 NXP Semiconductors

Figure 23. Run control per process, per thread
5. OS Resources: You can view information about processes (PID), Threads (TID), Sockets, shared-memory regions. To

open this view, select Window > Show view > Other > OS Resources.

Figure 24. OS Resources view

CodeWarrior Setup

ODP Reflector Application Debug, Rev. 06/2018

NXP Semiconductors 17

6. Breakpoints can be read/written from the IDE or gdb console.

CodeWarrior Setup

ODP Reflector Application Debug, Rev. 06/2018

18 NXP Semiconductors

Figure 25. Breakpoints view

7. Full Remote Shell console. You can enable it from Window > Show view > Other Remote Shell.

Figure 26. Remote Shell view

8. Dynamic printf – Right-click the left side panel of the source code to see the menu below. A dynamic printf works like
a breakpoint and when this is hit, a custom message is printed. This feature is very useful for debug.

CodeWarrior Setup

ODP Reflector Application Debug, Rev. 06/2018

NXP Semiconductors 19

Figure 27. Dynamic printf

CodeWarrior Setup

ODP Reflector Application Debug, Rev. 06/2018

20 NXP Semiconductors

How to Reach Us:

Home Page:
nxp.com

Web Support:
nxp.com/support

Information in this document is provided solely to enable system and software implementers to use
NXP products. There are no express or implied copyright licenses granted hereunder to design or
fabricate any integrated circuits based on the information in this document. NXP reserves the right to
make changes without further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its products for any
particular purpose, nor does NXP assume any liability arising out of the application or use of any
product or circuit, and specifically disclaims any and all liability, including without limitation
consequential or incidental damages. “Typical” parameters that may be provided in NXP data sheets
and/or specifications can and do vary in different applications, and actual performance may vary over
time. All operating parameters, including “typicals,” must be validated for each customer application
by customer’s technical experts. NXP does not convey any license under its patent rights nor the
rights of others. NXP sells products pursuant to standard terms and conditions of sale, which can be
found at the following address: nxp.com/SalesTermsandConditions.

While NXP has implemented advanced security features, all products may be subject to unidentified
vulnerabilities. Customers are responsible for the design and operation of their applications and
products to reduce the effect of these vulnerabilities on customer’s applications and products, and
NXP accepts no liability for any vulnerability that is discovered. Customers should implement
appropriate design and operating safeguards to minimize the risks associated with their applications
and products.

NXP, the NXP logo, Freescale, the Freescale logo, and QorIQ are trademarks of are trademarks of
NXP B.V. All other product or service names are the property of their respective owners. Arm, Cortex
are registered trademarks of Arm Limited (or its subsidiaries) in the EU and/or elsewhere. All rights
reserved.

© 2016-18 NXP B.V.

Document Number AN5269
Revision 06/2018

http://www.nxp.com
http://www.nxp.com/support
http://nxp.com/SalesTermsandConditions

	Introduction
	Get the ODP reflector source files
	Hardware setup
	Hardware setup using only one board

	CodeWarrior Setup
	Import and start the odp_reflector application from CodeWarrior
	Attach to a running odp_reflector application and debug using CodeWarrior
	odp_reflector debug from entry_point

	Debug capabilities

