
1 Introduction
CodeWarrior projects provide an excellent test bed for
developing and evaluating embedded target code. Standard
CodeWarrior projects typically initialize and use target DDR
to host the downloaded project code. However, there are some
cases in which target evaluation or testing must be performed,
but target DDR is not available.

This document explains:

• Method for downloading a CodeWarrior ARMv8 project
into the target On-Chip RAM

• Running the target code in On-Chip RAM, without
needing any other target memory

2 Preliminary background
OCRAM on QorIQ LS processors is 128 KB that is large
enough to hold some embedded C or C++ code while still
allowing for standard uses of RAM, such as variables, stack,
and heap. But, care must be taken to ensure that test code
intended to be hosted by and run from only OCRAM, not only
fits within this space during downloads, but also has enough
available space to manage the target code’s run-time
requirements such as variables, stack, and heap. Recursive
functions are especially vulnerable to stack overflow in this
limited RAM space.

NXP Semiconductors Document Number: AN5346

Application Note Rev. 0, 10/2016

Adapting CodeWarrior ARMv8
Stationery to Download and Run
from OCRAM

Contents

1 Introduction..1

2 Preliminary background.. 1

3 Download and run ARMv8 stationery
project only from OCRAM........................2

3.1 Source code changes...............2

3.2 Linker Control File changes........................... 2

3.3 Enable the use of OCRAM to
execute code... 3

4 Debugging.............................. 3

The limited capacity of OCRAM on QorIQ LS processors prevents the use of large support libraries, such as stdio.h, which
prevents use of convenient function as printf(). The user can still monitor data and variable values in the debugger
Registers, Variables, and Memory views.

Debugging should be limited to use only one core to the stack and heap space needed for each core.

Trace data can be collected while debugging in OCRAM. Be sure to select the On-Chip buffer in the CodeWarrior ARMv8
Trace Commander view.

3 Download and run ARMv8 stationery project only from
OCRAM

You need to perform following changes to a CodeWarrior ARMv8 C stationery project to download and run the project only
from OCRAM:

• Source code changes
• Linker Control File changes
• Enable the use of OCRAM to execute code

3.1 Source code changes
#include <stdio.h> is included in three source files of every “Hello World C” project:

• src\exceptions\exception.c
• src\gic\gic.c
• src\main.c

Delete #include <stdio.h> and all references to printf(), from each of these three files and save the changes.

It is recommended (though not required) to edit src\start.S to delete the use of the Linker Control File variable
___DDR_ADDRESS. This variable is used during the initialization of the target MMU. Leaving the variable and this portion of
initialization code in place, will not affect the operation of the target code, but doing so makes code bad. If the reference to
___DDR_ADDRESS is retained in start.S, make sure it is defined in the Linker Control file. If it is deleted, then also delete
the block of code that uses it, in the function _init_tables.

3.2 Linker Control File changes
The Linker Control File (LCF) will also need editing. This section describes what linker definitions are required.

In the CodeWarrior project, expand the Linker_Files folder and edit the file aarch64elf.x. OCRAM on LS20xxA
processors starts at address 0x1800_0000, so for an LS20xxA target only, change the definition of:

PROVIDE (___OCRAM_ADDRESS = 0x10000000);

to

PROVIDE (___OCRAM_ADDRESS = 0x18000000);

NOTE

PROVIDE (___OCRAM_ADDRESS = 0x10000000); is valid for LS1043A (and
derivatives) and LS1012A (and derivatives).

Next, change:

PROVIDE (___START_RAM_ADDRESS = ___DDR_ADDRESS + ___CORE_NUMBER * ___MEMORY_SIZE);

Download and run ARMv8 stationery project only from OCRAM

Adapting CodeWarrior ARMv8 Stationery to Download and Run from OCRAM, Rev. 0, 10/2016

2 NXP Semiconductors

to

PROVIDE (___START_RAM_ADDRESS = ___OCRAM_ADDRESS + ___CORE_NUMBER * ___OCRAM_SIZE);

Next, change:

PROVIDE (___STACK_AND_HEAP_SIZE = 0x80000);

to

PROVIDE (___STACK_AND_HEAP_SIZE = 0x2000);

NOTE
The Linker variable ___STACK_SIZE_PER_CORE is not used, so does not need to be
reduced in defined size.

Finally, change:

PROVIDE(___END_RAM_ADDRESS_EXPECTED = ___START_RAM_ADDRESS + ___MEMORY_SIZE);

to

PROVIDE(___END_RAM_ADDRESS_EXPECTED = ___START_RAM_ADDRESS + ___OCRAM_SIZE);

The CodeWarrior build tools will warn with a “Not enough memory” error displayed in the Console view when building the
CodeWarrior project, when code size is too large to fit in the available OCRAM space. If this happens, the solution is one or
both of the following:

• Reduce code size
• Reduce ___STACK_AND_HEAP_SIZE value

A convenient way to determine how much total RAM your code requires is to examine the contents of either the .map
or .lst file after building your project. These files are located in project’s Debug folder, but they may not be generated if
errors are generated. If none of these files are generated, edit the LCF and temporarily make ___OCRAM_SIZE large enough
to build without errors.

3.3 Enable the use of OCRAM to execute code
For LS20xxA projects, edit the Target Initialization File in the project’s Target Connection Configuration, to add these
lines at the end of the file:

Enable "honor_ewa_en" bit in "SA Auxiliary Control register" of the CCN-504.
CCSR_LE_M(0x04080500, 0x000008d7)

4 Debugging
Debugging the OCRAM-hosted application proceeds is similar to debugging DDR-hosted code. Configure the Target
Connection definition as described in Section 5.1 “Target Connection configurator overview” of the QorIQ LS series - ARM
V8 ISA, Targeting Manual, then start the debugger according to Section 2.5.1 “Debugging Bareboard project” in the
Targeting manual.

Debugging

Adapting CodeWarrior ARMv8 Stationery to Download and Run from OCRAM, Rev. 0, 10/2016

NXP Semiconductors 3

How to Reach Us:

Home Page:
nxp.com

Web Support:
nxp.com/support

Information in this document is provided solely to enable system and software
implementers to use Freescale products. There are no express or implied
copyright licenses granted hereunder to design or fabricate any integrated
circuits based on the information in this document. Freescale reserves the right
to make changes without further notice to any products herein.

Freescale makes no warranty, representation, or guarantee regarding the
suitability of its products for any particular purpose, nor does Freescale assume
any liability arising out of the application or use of any product or circuit, and
specifically disclaims any and all liability, including without limitation
consequential or incidental damages. “Typical” parameters that may be provided
in Freescale data sheets and/or specifications can and do vary in different
applications, and actual performance may vary over time. All operating
parameters, including “typicals,” must be validated for each customer application
by customer's technical experts. Freescale does not convey any license under its
patent rights nor the rights of others. Freescale sells products pursuant to
standard terms and conditions of sale, which can be found at the following
address: nxp.com/SalesTermsandConditions.

Freescale, the Freescale logo, CodeWarrior, and QorIQ are trademarks of
Freescale Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. ARM, Cortex, Cortex-
A53, Cortex-A57, and TrustZone are registered trademarks of ARM Limited (or
its subsidiaries) in the EU and/or elsewhere. All rights reserved.

© 2016, Freescale Semiconductor, Inc.

Document Number AN5346
Revision 0, 10/2016

http://www.nxp.com
http://www.nxp.com/support
http://freescale.com/SalesTermsandConditions

	Introduction
	Preliminary background
	Download and run ARMv8 stationery project only from OCRAM
	Source code changes
	Linker Control File changes
	Enable the use of OCRAM to execute code

	Debugging

