NXP Semiconductors
Application Note

KEA Bootloader

1 Introduction

This application note describes the architecture and usage of the
KEA bootloader within the KEA MCUs.

This bootloader supports SPI (Serial Peripheral Interface) and UART
(Universal Asynchronous Receiver/Transmitter) as communication
interfaces and can be easily modified to support other kinds of
communication interfaces.

2 Architecture description

The bootloader is organized in three layers:

Document Number: AN5400
Rev. 0, 04/2017

Contents
1 Introduction..........oevrvireeeeeeeececesssssennns 1
2 Architecture description............cccceennee. 1
2.1 Bootloader workflow
OVEIVIEW....ceveeeieeeie e 3
2.2 Communication
handling overview................. 5
3 Building compatible applications........ 8
4 Using the bootloader............cccccvriunnnnae 8
4.1 SPl interface...........couu....... 9
4.2 UART interface.................. 9
A AppendiX A.....cooeeceemeerrrnseeer e 1
A1OnNKDS......ccoeeeeee, 11
A28S32DS....ccoo 16
B AppendiX B......cccccuviirinimniinn s 20
B.1 Linker file on KDS............ 20

B.2 Linker file on S32DS........ 23

* Bootloader - is in charge of starting the user application and polling for incoming data

* Communication handling / Memory handling — is in charge of processing the received data and handling the writes to non-

volatile memory

» Microcontroller drivers — is in charge of handling all the low-level communication with the actual peripherals available on

the microcontroller.

The following image showcases a diagram of the architecture of the bootloader:

h o
P

https://www.nxp.com/products/processors-and-microcontrollers/arm-microcontrollers/kea-automotive-mcus/ultra-reliable-kea-automotive-microcontrollers-mcus-based-on-arm-cortex-m0-plus-core:KEA?utm_medium=AN-2021

Architecture description

Bootloader

Communication handling

Memory handling

Flash UART SPI

Microcontroller

Figure 1. Bootloader Architecture

The bootloader is placed in the first 4 kB of flash memory. The current footprint of the bootloader is 3.25 kB the remaining .
75 kB is reserved for future usage. This initial 4kB of memory is write protected from any attempt to overwrite the boot loader
from the user application will be blocked by this protection mechanism (for more details regarding this protection mechanism
please refer to the device reference manual chapter 18.3.6 Protection).

The remaining 124 kB available on the device are intended to be used by the user application. The following diagram
showcases the memory layout that the bootloader has and the application must follow:

KEA Bootloader, Rev. 0, 04/2017
2 NXP Semiconductors

Architecture description
Bootloader workflow overview

0x0002_0000 ——p

The remaining 124

kB are intended for = Application
the application.

0x0000_1000 —— Application vector table

@0x0000_1000
First 4 kB of memory
are reserved for the) Bootloader
bootloader

0x0000_0000 ——p

Figure 2. Memory layout

As displayed in the above figure, the bootloader expects the application vector table to be located at the end of the first 4 kB
of flash (i.e. 0x1000), this is required since the application stack pointer and entry point are taken from this vector table.

2.1 Bootloader workflow overview

The bootloader workflow can be observed in the figure below:

KEA Bootloader, Rev. 0, 04/2017
NXP Semiconductors 3

Architecture description
Bootloader workflow overview

Initialize
communication

channels
4

Initialize timeout

Is there activity in
communication

mnial Download app
channel!

Has timeout
occurred?

Set registers to
reset state

h 4

Jump to user
application

Figure 3. Bootloader workflow

The first step is to initialize the available communication channels, in this instance only UART and SPI are available, but if
another communication channel is required its initialization routine should be called here.

To select the communication channel to be used simply modify ‘sources/drivers/inc/comm.h’ in line 11 to select the

communication interface to use. Setting the preprocessor directive to 0 disables the communication interface and setting it
to 1 enables it.

/* Define communication

interfaces to use, 0-> Disable 1-> Enable */
#define UART COMM 1

#define SPI_COMM 0

KEA Bootloader, Rev. 0, 04/2017

NXP Semiconductors

Architecture description
Communication handling overview

Both interfaces can be enabled to work simultaneously, but since the bootloader is optimized for size, the bootloader’s linker
file would have to be modified to accommodate the generated code. Therefore it is recommended to use only one kind of
communication at a time. If both interfaces are needed, the first one to detect activity in the bus will be used to download the
application, in case both interfaces detect activity at the same time UART communication has a higher priority and will be
used instead of SPI.

By default the bootloader is set to work with UART communication only.

The second step is to initialize the timeout mechanism. After reset, the microcontroller will poll the selected communication
channel, if no activity was detected during the time allowed by the timeout mechanism the device will attempt to execute the
last application loaded, if the device did not received an application it would get stuck in a loop. In order to attempt the
download of an application another reset is required.

The timeout value is configurable and it is set by default to five seconds. Only one second multiples can be selected, in order
to change the timeout value simply set the desired value in ‘sources/drivers/inc/timeout.h’ line 14.

/* Define timeout value, the
base is 1s */

#define TIMEOUT VAL 5

Once the timeout mechanism has been initialized the device starts polling for activity in the communication channel for the
time allotted by the timeout value. If activity is detected in the communication channel, the bootloader starts downloading the
application via the selected communication channel (e.g. UART or SPI).

If a timeout occurs or an application is flashed to the device, the bootloader disables and set all the registers that are modified
to its reset state. This step is required to ensure that, the application starts executing on an environment close to out of reset
state.

Once the registers have been set to its reset state the device attempts to jump to the user application residing on 0x1000
address.

2.2 Communication handling overview

The first step carried out by the communication handling routine is to obtain an SREC ‘phrase’ through the selected channel.
A phrase is simply a line of the SREC file. Two lines (phrase) of an SREC file can be found below:

S500F0000eB656CECeF202020202000003C
511F00007C0802R6900100045421FFFOTCECIBTATCEBCZ3TE3Ce000003863000026

[| Record type [] Byte count [| Address [| Data] Checksum

The structure of an SREC line can be seen below:
S Type | Byte Count | Address | Data | Checksum

Figure 4. SREC phrase structure

The first two characters are sent in ASCII format, ‘S’ and SREC type (e.g. ‘0; ‘1°...’9’), the remaining data is converted to its
hexadecimal representation and sent (instead of sending ‘0’ and ‘F’ OxOF is sent). For a detailed description of an SREC
format please refer to the following webpage: https://en.wikipedia.org/wiki’'SREC_(file_format)

KEA Bootloader, Rev. 0, 04/2017
NXP Semiconductors 5

https://en.wikipedia.org/wiki/SREC_(file_format)

Architecture description
Communication handling overview

The phrase is received and stored in the following structure:

typedefunion

{

uint8 t Byte [MAX PHSIZE BP]; /* Byte level access to the
Phrase */

struct

{

char PhraseType ; /* Type of received record (e.g. SO, S1, S5, S9...) */ uint8_t
PhraseSize ; /* Phrase size (address + data +

checksum) */
/* Address, depending on
the type of record it might vary */

uint8_t PhraseAddress [MAX ADDRESS BP]_ attribute ((aligned (32)));
/* Maximum 32 data bytes */
uint8 t PhraseData [MAX DATA BP] attribute ((aligned (32)));
uint8 t PhraseCRC ; /* Checksum of size + address + data */

}F o

} BootPhraseStruct ;

This structure holds all the information provided by the SREC phrase, such as record type, byte count, address, data and
cyclic redundancy check (CRC).

Once the structure has been populated it is checked to verify that it contains a valid record type (i.e. within ‘0’ and ‘9’), its
size is within the SREC maximum and also the CRC is computed with the received data and compared with the CRC that
was received. If any of these conditions are not met, i.e. invalid record type, invalid record size or CRC does not match, an
ERR_CRC (0x41) signal is sent back to the device that is sending the data. If everything is received without issues the
received data is processed and an ERR_OK (0x45) signal is sent as an acknowledge.

If the type of record received carries the data to write to the microcontroller (either ‘1; ‘2’ or ‘3’) then the data is processed
and written by the memory handling layer.

This process is repeated until the termination record is received (either 7, ‘8’ or ‘9’), once this record is received the
communication handling routine ends and returns to the bootloader.

KEA Bootloader, Rev. 0, 04/2017
6 NXP Semiconductors

Architecture description

Communication handling overview

Get SREC phrase

h

v

Verify phrase

as the phrase Process received

received h

correctly? RINaSE

« Send CRC error Send
acknowledge

Has end of SREC
been received?

F 3

Figure 5. Communication handling workflow

KEA Bootloader, Rev. 0, 04/2017

NXP Semiconductors

Building compatible applications
Communication handling overview

3 Building compatible applications

The application should start at 0x1000 (4 kB) of flash and its vector table should be placed at this address.

An easy and quick way to compile an application compatible with this bootloader is to simply add an offset of 4 kB to the
memory section of the linker file, some examples on two IDEs are shown below.

On KDS:
MEMORY

{
m_interrupts (RX) : ORIGIN = 0x00001000,
LENGTH = 0x00000100

m_flash config (RX) : ORIGIN = 0x00001400, LENGTH =
0x00000010
m_text (RX)

: ORIGIN = 0x00001410, LENGTH = 0x0001DBFO

m_data
(RW) : ORIGIN = Ox1FFFF000, LENGTH =
0x00004000
}
On S32DS:
MEMORY
{
FLASH_1 (RX) : ORIGIN = 0x00001000, LENGTH = 0x00000100
FLASH_CONFIG (RX) : ORIGIN = 0x00001400, LENGTH = 0x00000010
FLASH_2 (RX) : ORIGIN = 0x00001410, LENGTH = 0x0001DBFO
SRAM (RW) : ORIGIN = Ox1FFFF000, LENGTH = 0x00004000

}

The best way to adapt an application to work with the bootloader is to eliminate the flash_config memory section of the linker
file (Project_Settings/Linker_Files/SKEAZ128xxx4_flash.ld) as well as the actual configuration in the startup file
(Project_Settings/Startup_Code/startup_SKEAZ1284.S line 100), there is a sample application attached within this AN
package. Also Appendix B on page 20 features an example linker file for both S32DS and KDS.

As long as the vector table is located at 0x1000 (4 kB) and the application memory space does not overlap with the
bootloader’s (0x00 — 0x1000) the bootloader is capable of flashing and running the application.

4 Using the bootloader

The bootloader expects the image to load in SREC format, for instructions on how to generate an SREC file on KDS and
S32DS please refer to Appendix A on page 11. Precompiled example SREC files are available within this AN package,
these examples work on both the TRK-KEA128 and FRDM-KEAZ128 boards.

NOTE
Some IDE’s place the name of the project in the first SREC phrase (S0), this could cause issues
with the bootloader whenever the project name exceeds 27 characters. The maximum data per
phrase is 32 bytes, but the IDE appends the string ‘srec’ to the project name, hence the 27
characters as maximum allowed.

KEA Bootloader, Rev. 0, 04/2017
8 NXP Semiconductors

Using the bootloader
SPl interface

The bootloader supports two different communication channels:
e UART
e SPI

If the UART interface (default) is selected then the bootloader interface can be used directly with the board, otherwise a UART
to SPI translator board is required (source code included in AN package).

4.1 SPI interface

To use the SPI interface a UART to SPI bridge must be used, this has been implemented on the UART2SPI project, simply
load this project on the board that will work as a converter and connect the signals as follow:

Table 1. SPI connections

Bridge (Master) Target (Slave)
PTG4 (SCL) PTDO (SCL)
PTG5 (MOSI) PTD1 (MOSI)
PTG6 (MISO) PTD2 (MISO)
PTG7 (PCS) PTD3 (PCS)

Once connected simply follow the steps described on the UART interface section (select the bridge’s UART port instead of
the target).

4.2 UART interface

While using the UART interface simply open the java application located in ‘Java interface/ and follow these steps:
1. Select communication port.

2. Select baudrate, the default baudrate is 19200.

3. Select SREC file to send.
4

. Click download, and the SREC file will be sent line after line.

KEA Bootloader, Rev. 0, 04/2017
NXP Semiconductors 9

Using the bootloader
UART interface

interface (|]
_li] Bootloader interface =
File Help

| Serial Bootloader Interface

Serial Port 1 |COM23 v
Baudrate | 2 (19200 v

File to Upload lications\KEA_test srec E]
3.

Message 90;_/

Port COM23 selected
19200 baudrate selected

4 [oomioss |
M’

Once the whole SREC file has been sent the java interface will close the port and the application should start execution on
the target board.

KEA Bootloader, Rev. 0, 04/2017
10 NXP Semiconductors

(&) Bootioaderinterface o] =1 82

File Help

Serial Bootloader Interface

SerialPort | COM23 |v]

Baudrate [19200 v

File to Upload ns\KEA_test_PEx.srec u

Message Box

COEMNMe 813
Sentline 816
Sentline 817
Sentline 818
Sentline 819
Sentline 820
Sentline 821
Sentline 822
Sentline 823
Sentline 824
Sentline 825
Sentline 826
Transmission finished
Total lines: 826

7>

Serial Port Closed... J

v

Download |

A Appendix A

A.1 On KDS

On KDS:

KEA Bootloader, Rev. 0, 04/2017

Appendix A
On KDS

NXP Semiconductors

1"

Appendix A
On KDS

PO WOA_UUULEeg

4 [._;’5 _K_.E&_tm:r_ oy

[%‘h’

PEOD

i

44

o,

3 KkEA
0 KLo,

L3 LED

3 LED) .

LI TRE
3 vaF
J UAF

-

{L‘;ﬂ

£

MNew
Go Into

Open in New Window

Copy

Paste

Delete

Remove from Context
Source

Move...

Rename...

Import...
Export...

Build Project

Clean Project

Refresh

Close Project

Close Unrelated Projects

Build Configurations
Make Targets

Index

Convert CodeWarrior project file...

Flash from file...

Show in Remote Systems view
Profiling Tools

Profile As

Debug As

Run As

Compare With

Restore from Local History...
Run C/C++ Code Analysis

Team

Properties

Ctrl+C
Ctrl+V
Delete
Ctrl+Alt+Shift+ Down

F2

F5

Alt+Enter

KEA Bootloader, Rev. 0, 04/2017

12

NXP Semiconductors

| type filter text Setti o
» Resource
Builders
4 C/C++ Build Configuration: [D*H! [Active] '] IMmagernﬁgulatiom.]
Build Variables
Environment
Logging) Tool Settings| & Toolchains | & Build Steps | " Build Artifact | [} Binary Parsers | @ Error Parsers |
3 Settings
~ Tool Chain Editor Name: = GNU Tools for ARM E dded P (bi-gcc)
Tools Paths ; FTTTTTTTETTOaa—
b C/C++ General Architecture: ARM (AArch32) v
Linux Tools Path Prefic arm-none-eabi-
Project References
Run/Debug Settings St
» Task Repository C compiler: gee
Wikites C++ compiler: g++
Archiver | ar
Hex/Bin converter: objcopy
Listing generator: objdump
Size command: size
Build command: make
Remove command: rm

Toolchain path:

${eclipse_home}/../toolchain/bin
(to change it use the global or workspace preferences pages or the project properties page)

Appendix A
On KDS

Create flash imag i
[7] Create extended listing

®

KEA Bootloader, Rev. 0, 04/2017
NXP Semiconductors 13

Appendix A

On KDS
[type filter text
i Resource
Builders
4 C/C+ Build Configuration: |Debug [Active] ~] [Manage Configurations...
Build Variables
Environment
Logging & 1 7 Settings |) Toolchains | " Build Steps | 1 Build Artifect | [i} Binary Parsers | @ Error Parsers|
Settings —
o i (5 Target Processor Qutput file format (-0) [MotorolaS-record | g | -
Tools Paths (2 Optimization Section: -j text =
» C/C++ General = Wamnnqs B Section: - data
Linux Tools Path (3 Debugging .
Project References 4 1 Cross ARM GNU Assembler Other sections (-j)
Run/Debug Settings (% Preprocessor
» Task Repository (% Includes
WikiTed {2 Warnings
(8 Miscellaneous
4 & Cross ARM C Compiler
(% Preprocessor
(2 Includes
(% Optimization
(5 Wamnings.
(2 Miscellaneous
a B Cross ARM C++ Compiler
(% Preprocessor
(2 Includes
(% Optimization
(2 Warnings
(2 Miscellaneous
4 1§ Cross ARM C++ Linker
(2 General
(2 Libraries
(% Miscellaneous
4 18 Cross ARM GNU Create Flash Image
3 General | o
4 % Cross ARM GNU Print Size
(2 General
Other flags J
10
@
KEA Bootloader, Rev. 0, 04/2017
14

NXP Semiconductors

Appendix A
On KDS

4 (5 KEA test
P ﬁr Binaries
> Y Includes
4 (= Debug
» (= Project_Settings
» (= Sources
> %5 KEA_test.elf - [arm/le]
_, KEA_test.map
=] KEA_test.srec
@ makefile
& objects.mk
@ sources.mk
> = Includes
4 (= Project_Settings
> (= Debugger
> (= Linker_Files
> (7 Startup_Code
> (= Sources

KEA Bootloader, Rev. 0, 04/2017
NXP Semiconductors 15

Appendix A
S32DS

A.2 S32DS

4 [KES hoptinadar |

. 8.1

b I.._.‘]"Inrl:l?'l.
» 3 Prajy
(5 inch

B src |y
e

1 UART2S

B¢

Mew

Go Into
Open in Mew Window

Copy

Paste

Delete

Rermove from Context
Source

Move...

Rename...

Import...
Export...

Build Project

Clean Progect

Refresh

Close Project

Close Unrelated Projects

Build Configurstions
Make Targets
Index

Build path
Build Configurations Explorer

Show in Rernote Systems view
Profiling Tools

Debug As

Fun As

Compare With

Restore from Lecal History...
SDKs

Team

2; Properties

Ctri+C
Ctrl+V
Delete
Ctri= Alt+ Shift+ Down

F2

F3

AbtsEnter

KEA Bootloader, Rev. 0, 04/2017

16

NXP Semiconductors

Appendix A

S32DS
[type filter text
1= Resource
Builders =
4 C/Co+ Build c ion: |Debug [Active] = | [Manage ¢ |
Build Variables
Environment
Logging 1) Tool Settings | = Build Steps | Build Adifact | lit} Binary Parsers | @ Emor Parsers|
Settings
é, Tool Chain Editor (& Cross Settings, 4 Prefic arm-none-eabi-
 CfC++ General (5 Target Processor—
EmbSys Register View « %) Standard S3205 C Compiler Py HARTODLCHUT Bl 4
Linux Tools Path (% Dialect Suffix
Project References. (B Preprocessor L " -
Run/Debug Settings 5 Symbols Sonmwa 33
SDKs 22 Includes Co+ compiler ger =
1+ Task Repository (& Optimization Hex/Bi -
Wicts @ et lex/Bin converter objcopy
(2 Wamings Listing generater objdump
(3 Miscellaneous Size command size
4 T Standard S32D5 C Linker
2 General Build command make
g Libraries Remove command 1m -rf
Miscellaneous - .
(52 Shared Library Settings cm ey 00
4) Standard S32DS Assembler] Create extended listing
2 General Print size (8
(52 Preprocessor
(£ Symbols
(52 Optimization
(& Debugging
« % Standard 53205 Print Size
(2 General
4) Standard 53205 C Preprocessor
(2 Settings
4 % Standard 53205 Disaszembler
(3 Settings
|
KEA Bootloader, Rev. 0, 04/2017
NXP Semiconductors 17

Appendix A
S32DS

type filter text Settings Svhvw
1+ Resource | -
Builders (5 Includes C++ compiler ger S
#[0/C - Bl & Optimization Hex/Bin converter ob
jcopy
Build Variables (2 Debugging
Environment (2 Wamings Listing generator objdump
Logging 3 Miscellaneous Size command <ize
Settings 4 83 Standard 53205 C Linker
Tool Chain Editor (& General Build command make
& C/Ces General (5 Libraries T
EcnbysRegeiey Vil B Maccluieas [Create flash image
Linux Tools Path (5 Shared Library Settings . = |
Project References 4 1) Standard 53205 Assembler f‘w{!ﬂmded isting
Run/Debug Settings (% General [print size
SDKs (5 Preprocessor
&+ Task Repository 5 Symbols
WikiText (2 Optimization
(% Debugging
4 1 Standard 320 Print Size
(2 General
4 18y Standard $3205 C Preprocessor
(2 Settings
a 8 Standard 53205 Disassembler
(5 Settings

6
(e (o -

@ .

KEA Bootloader, Rev. 0, 04/2017
18 NXP Semiconductors

Appendix A
S32DS

| type filker text Settings S hvw
& Resource
Builders i
A % Tool Settings | = Buid Steps | 1 Build Arfact | (i Binary Porsers [@ Error Parsers| L
::vgl;:::nent -] :ms s;n'ngs Output file format (-0) [Motorola S-record - =)
Seftings & % s:z:‘.mms;;:;rc Compiter j Section: § text — Wirite the output file using the given object format. |
Tool Chain Editor 5 Dislect [Section: -j .data
& C/Crs Genersl — T
ol g :;:,:l.::m Other sections (-§) a8 p
Linux Tools Path & Includes
Project References & Optimization
Run/Debug Settings & Debugging
e (22 Warnings
» Task Repository 3 Miscellaneous
Wiited 4 1§ Standard 53205 C Linker
(2 General
(& Libraries
(B Miscellaneous =
(B Shared Library Settings
4 T Standard 53205 Assembler
(B2 General
(53 Preprocessor
(& Symbols
&% Optimization
(22 Debugging
4 8 Standard 532DS Create Flash Image
(5 General
4 1 Standard 532D rint Size
(& General
4 % Standard 53205 C Preprocessor
(22 Settings
4 ¥ Standard 53205 Disassembler
(55 settings
.
© -

KEA Bootloader, Rev. 0, 04/2017
NXP Semiconductors 19

Appendix B
Linker file on KDS

1> KEA_bootloader: Debug
> %, Binaries
n)l Includes
. (&> Project_Settings
5 (A include
p §8 src
4 (= Debug
- (= Project_Settings
» = SIC
. %5 KEA_bootloader.elf - [arm/le]
= KEA_bootloader.args
| KEA_bootloader.map
| KEA_bootloader.srec
@ makefile

= makefile.local

_© objects.mk
@ sources.mk

B Appendix B

B.1 Linker file on KDS

/* Linker file for GNU C Compiler*/

/* Entry Point */
ENTRY (Reset_Handler)

HEAP_SIZE = DEFINED(_ heap_size_) ? _ heap_size_ : 0x00000400;

STACK SIZE = DEFINED(__ stack_size) ? _ stack size : 0x00000400;

KEA Bootloader, Rev. 0, 04/2017

20

NXP Semiconductors

/* Specify the memory areas
MEMORY

{

m_interrupts (RX)
m_text (RX)
m_data (RW)

}

/* Define output sections */

SECTIONS

{

&/

ORIGIN = 0x00001000, LENGTH = 0x00000100
ORIGIN = 0x00001100, LENGTH = 0x0001EFO0O0
ORIGIN = Ox1FFFF000, LENGTH = 0x00004000

/* The startup code goes first into internal flash */

.interrupts
{
___VECTOR_TABLE = .;
= ALIGN(4);
KEEP (* (.isr vector)) /*
= ALIGN (4) ;
} > m_interrupts

Startup code */

/* The program code and other data goes into internal flash */

.text

{

= ALIGN (4) ;
* (.text) /*
* (.text*) /*
* (.rodata) A
* (.rodata*) /%
* (.glue_7) /*
* (.glue_ 7t) /*
* (.eh frame)

KEEP (*(.init))
KEEP (*(.fini))
= ALIGN (4) ;

} > m text

.ARM.extab

{

(.ARM.extab* .gnu.linkonce.

*
} > m_text

.ARM

__exidx start = .;
* (.ARM.exidx¥*)
__exidx end = .;

} > m text

.ctors

{

__CTOR LIST = .;

.text sections (code) */

.text* sections (code) */
.rodata sections (constants,
.rodata* sections (constants,

glue arm to thumb code */
glue thumb to arm code */

armextab. *)

/* gcc uses crtbegin.o to find the start of

the constructors, so we make sure it is

first.

Because this is a wildcard, it

doesn't matter if the user does not

actually link against crtbegin.o; the

linker won't look for a file to match a

wildcard.

The wildcard also means that it

doesn't matter which directory crtbegin.o

strings,
strings,

KEA Bootloader, Rev. 0, 04/2017

etc.)*/
etc.)

*/

Appendix B
Linker file on KDS

NXP Semiconductors

21

Appendix B
Linker file on KDS

is in. */

KEEP (*crtbegin.o(.ctors))

KEEP (*crtbegin?.o(.ctors))

/* We don't want to include the

.ctor section from

from the crtend.o file until after the sorted ctors.

The .ctor section from the crtend file contains the

end of ctors marker and it must be last */
KEEP (* (EXCLUDE_FILE (*crtend?.o *crtend.o) .ctors))

KEEP (* (SORT(.ctors.*)))
KEEP (*(.ctors))
__CTOR END = .;

} > m text

.dtors

{

__DTOR_LIST _ = .;

KEEP (*crtbegin.o(.dtors))
KEEP (*crtbegin?.o(.dtors))

KEEP (* (EXCLUDE_FILE (*crtend?.o *crtend.o) .dtors))

KEEP (* (SORT (.dtors.*)))
KEEP (*(.dtors))
__DTOR_END__ = .;

} > m_text

.preinit_array

{

PROVIDE_HIDDEN (_ preinit_array_start = .);

KEEP (*(.preinit_array¥*))

PROVIDE_HIDDEN (_ preinit_array end = .);

} > m text
.init_array

{

PROVIDE_HIDDEN (__ init_array start = .);

KEEP (* (SORT(.init_array.*)))
KEEP (*(.init_array*))

PROVIDE HIDDEN (_init array end
} > m text

.fini_array

{

= o) g

PROVIDE HIDDEN (_ fini array start = .);

KEEP (* (SORT(.fini array.*)))
KEEP (*(.fini array*))

PROVIDE HIDDEN (_fini array end
} > m_text

= o) g

__etext = .; /* define a global symbol at end of code */

__ DATA ROM = .; /* Symbol is used by startup for data initialization */

/* reserve MTB memory at the beginning of m data */
.mtb : /* MTB buffer address as defined by the hardware */

= ALIGN(8) ;
~mtb_start = .;

KEEP (* (.mtb_buf)) /* need to KEEP Micro Trace Buffer as not referenced by application

=/

= ALIGN(8) ;

mtb_end = .;
} > m data

KEA Bootloader, Rev. 0, 04/2017

22

NXP Semiconductors

Appendix B
Linker file on S32DS

.data : AT(_DATA ROM)

{

= ALIGN (4) ;
__DATA RAM = .;
__data_start = .; /* create a global symbol at data start */
* (.data) /* .data sections */
* (.data*) /* .data* sections */
KEEP (* (.jcr*))
= ALIGN (4) ;
__data_ end = .; /* define a global symbol at data end */

} > m data

/* Symbol is used by startup for data initialization */
_ DATA END = DATA ROM + (_ data end - _ data start_);

/* Uninitialized data section */
.bss
{
/* This is used by the startup in order to initialize the .bss section */
= ALIGN (4) ;
__START BSS = .;
__bss start_ = .;
(@8
* (.
* (COMMON)
= ALIGN (4) ;
__bss end = .;
__END BSS = .;
} > m data

.heap
{

= ALIGN(8) ;
_end = .;
PROVIDE (end = .);
__ _HeapBase = .;
+= HEAP_SIZE;
_ HeapLimit = .;
} > m data
.stack
{

= ALIGN(8) ;

+= STACK SIZE;
} > m data

__StackTop = .;
__StackLimit = _ StackTop - STACK SIZE;
PROVIDE (_ stack = _ StackTop) ;

.ARM.attributes 0 : { *(.ARM.attributes) }

}

B.2 Linker file on S32DS

/* Linker file for GNU C Compiler */

KEA Bootloader, Rev. 0, 04/2017
NXP Semiconductors 23

Appendix B
Linker file on S32DS

/* Entry Point */
ENTRY (Reset_Handler)

/*

To use "new" operator with EWL in C++ project the following symbol shall be defined
=/

/*EXTERN (_ZN10_ cxxabivl11l9 terminate handlerE) */

/* Highest address of the user mode stack */

_estack = 0x20003000; /* end of SRAM */

_ SP_INIT = _estack;

HEAP_SIZE = DEFINED(__ heap_size) ? _ _heap size :0x00000500;
STACK SIZE = DEFINED(_ stack size) ? _ stack size : 0x00000400;
/* Specify the memory areas*/

MEMORY

{

FLASH 1 (RX) : ORIGIN = 0x00001000, LENGTH = 0x0001F000
SRAM (RW) : ORIGIN = Ox1FFFF000, LENGTH = 0x00004000
/* Define output sections*/

SECTIONS

{

/* The startup code goes first into internal flash */
.interrupts
{
__VECTOR_TABLE = .;
= ALIGN (4) ;
KEEP (* (.isr_ vector)) /* Startup code */
= ALIGN (4) ;
} > FLASH 1

/* The program code and other data goes into internal flash */

.text
{
= ALIGN (4) ;
(.text) / .text sections (code) */
* (.text*) /* .text* sections (code) */
* (.rodata) /* .rodata sections (constants, strings, etc.) */
* (.rodata¥*) /* .rodata* sections (constants, strings, etc.) */
* (.glue_7) /* glue arm to thumb code */
* (.glue_7t) /* glue thumb to arm code */

*(.eh_frame)

KEEP (*(.init))

KEEP (*(.fini))
= ALIGN (4);

} > FLASH 1

.ARM.extab

{
* (_ARM.extab* .gnu.linkonce.armextab.*)
} > FLASH 1

.ARM

{

__exidx start = .;

* (ARM.exidx¥*)

__exidx end = .;

} > FLASH 1 .ctors

{ __CTOR_LIST = .;

/* gcc uses crtbegin.o to find the start of
the constructors, so we make sure it is
first. Because this is a wildcard, it

KEA Bootloader, Rev. 0, 04/2017
24 NXP Semiconductors

doesn't matter if the user does not

actually link against crtbegin.o; the

linker won't look for a file to match a

wildcard. The wildcard also means

that it

doesn't matter which directory crtbegin.o

is in. */

KEEP (*crtbegin.o(.ctors))

KEEP (*crtbegin?.o(.ctors))

/* We don't want to include the .cto

r section from

from the crtend.o file until after the sorted ctors.

The .ctor section from the crtend fi
end of ctors marker and it must be 1

le contains the
ast */

KEEP (* (EXCLUDE_FILE (*crtend?.o*crtend.o) .ctors))

KEEP (* (SORT(.ctors.*)))
KEEP (*(.ctors))
__CTOR_END__ = .;

} > FLASH 1

.dtors

{

__ DTOR_LIST _ = .;

KEEP (*crtbegin.o(.dtors))

KEEP (*crtbegin?.o(.dtors))

KEEP (* (EXCLUDE_FILE (*crtend?.o *crt
KEEP (* (SORT(.dtors.*)))

KEEP (*(.dtors))

__DTOR_END__ = .;

} > FLASH 1

.preinit_array

{

PROVIDE HIDDEN (_ preinit_ array sta
KEEP (*(.preinit_array*))
PROVIDE_HIDDEN (__ preinit_array end
} > FLASH 1

.init_array

{

PROVIDE_HIDDEN

(__init_array start = .);

KEEP (* (SORT(.init array.*)))

KEEP (*(.init array*))

PROVIDE HIDDEN (_init array end =
} > FLASH 1

.fini_array

{

PROVIDE HIDDEN (_fini array start =
KEEP (* (SORT (.fini_array.*)))

KEEP (*(.fini_array*))
PROVIDE_HIDDEN (_ fini_ array end =
} > FLASH 1

__etext = .; /* define a global

__DATA ROM .; /* Symbol is used by startup for data initialization */

/* reserve MTB memory at the beginni
.mtb : /* MTIB buffer address as def

{

= ALIGN(8) ;

end.o) .dtors))

rt = .);

= .);

=) 8

o) 8

=) 8

symbol at end of code */

ng of SRAM */
ined by the hardware */

KEA Bootloader, Rev. 0, 04/2017

Appendix B
Linker file on S32DS

NXP Semiconductors

25

Appendix B
Linker file on S32DS

_mtb_start = .;

KEEP (* (.mtb_buf)) /* need to KEEP Micro Trace Buffer as not referenced by application */

= ALIGN(8) ;
_mtb_end = .;
} > SRAM

.data : AT(__DATA ROM)

{

= ALIGN (4) ;
__DATA RAM = .;
__data_start = .; /* create a global symbol at data start */
_sdata = .; /* create a global symbol at data start */
* (.data) /* .data sections */
* (.datax*) /* .data* sections */

KEEP (* (.jcr*))
= ALIGN (4) ;
__data_end 0§

_edata = .;
} > SRAM

/* define a global symbol at data end */
/* define a global symbol at data end */

/* Symbol is used by startup for data initialization */
_ DATA END = _ DATA ROM + (_ data end_ - _ data start_);

data _size = edata - _sdata;

/*Uninitialized data section */
.bss

{

/* This is used by the startup in order to initialize the .bss section */

= ALIGN (4) ;
___START BSS = .;
bss _start = .;
(.bss)
* (.bss¥*)
* (COMMON)

= ALIGN (4) ;
__bss end = .;
__END BSS = .;
} > SRAM

*

_romp_at = _ DATA ROM + SIZEOF(.data)
.romp : AT (_romp_at)
{

__ S romp = _romp_at;
LONG (__DATA ROM) ;
LONG (_sdata) ;
LONG(__ data_ size);
LONG (
LONG (
LONG (0) ;
} > SRaM

0);
0);

.heap
{
= ALIGN(8) ;
_end = .;
_end = .;
PROVIDE (end = .);
__HeapBase = .;
+= HEAP_SIZE;
___HeapLimit = .;

7

KEA Bootloader, Rev. 0, 04/2017

26

NXP Semiconductors

} > SRAM

.stack
{
= ALIGN(8) ;
+= STACK SIZE
} > SRAM

__StackTop =
_ StackLimit =

PROVIDE (__stack
.ARM.attributes

}

7

__ StackTop - STACK_SIZE;
= _ StackTop) ;
0 : { *(.ARM.attributes) }

KEA Bootloader, Rev. 0, 04/2017

Appendix B
Linker file on S32DS

NXP Semiconductors

27

How To Reach Us
Home Page:
nxp.com

Web Support:

nxp.com/support

W POWERED

b
Pl
X

Information in this document is provided solely to enable system and software implementers
to use NXP products. There are no express or implied copyright licenses granted hereunder
to design or fabricate any integrated circuits based on the information in this document. NXP
reserves the right to make changes without further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its products
for any particular purpose, nor does NXP assume any liability arising out of the application
or use of any product or circuit, and specifically disclaims any and all liability, including without
limitation consequential or incidental damages. “Typical” parameters that may be provided in
NXP data sheets and/or specifications can and do vary in different applications, and actual
performance may vary over time. All operating parameters, including “typicals,” must be
validated for each customer application by customer's technical experts. NXP does not convey
any license under its patent rights nor the rights of others. NXP sells products pursuant to
standard terms and conditions of sale, which can be found at the following address: nxp.com/
SalesTermsandConditions.

NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD,
COOLFLUX, EMBRACE, GREENCHIP, HITAG, 12C BUS, ICODE, JCOP, LIFE VIBES,
MIFARE, MIFARE CLASSIC, MIFARE DESFire, MIFARE PLUS, MIFARE FLEX, MANTIS,
MIFARE ULTRALIGHT, MIFARE4MOBILE, MIGLO, NTAG, ROADLINK, SMARTLX,
SMARTMX, STARPLUG, TOPFET, TRENCHMOS, UCODE, Freescale, the Freescale logo,
AltiVec, C-5, CodeTEST, CodeWarrior, ColdFire, ColdFire+, C-Ware, the Energy Efficient
Solutions logo, Kinetis, Layerscape, MagniV, mobileGT, PEG, PowerQUICC, Processor
Expert, QorlQ, QorlQ Qonverge, Ready Play, SafeAssure, the SafeAssure logo, StarCore,
Symphony, VortiQa, Vybrid, Airfast, BeeKit, BeeStack, CoreNet, Flexis, MXC, Platform in a
Package, QUICC Engine, SMARTMOS, Tower, TurboLink, and UMEMS are trademarks of
NXP B.V. All other product or service names are the property of their respective owners.
ARM, AMBA, ARM Powered, Artisan, Cortex, Jazelle, Keil, SecurCore, Thumb, TrustZone,
and pVision are registered trademarks of ARM Limited (or its subsidiaries) in the EU and/or
elsewhere. ARM7, ARM9, ARM11, big.LITTLE, CoreLink, CoreSight, DesignStart, Mali, mbed,
NEON, POP, Sensinode, Socrates, ULINK and Versatile are trademarks of ARM Limited (or
its subsidiaries) in the EU and/or elsewhere. All rights reserved. Oracle and Java are
registered trademarks of Oracle and/or its affiliates. The Power Architecture and Power.org
word marks and the Power and Power.org logos and related marks are trademarks and
service marks licensed by Power.org.

© 2017 NXP B.V.

h
P R

http://www.nxp.com
http://www.nxp.com/support
http://www.nxp.com/SalesTermsandConditions
http://www.nxp.com/SalesTermsandConditions

	Contents
	1 Introduction
	2 Architecture description
	2.1 Bootloader workflow overview
	2.2 Communication handling overview

	3 Building compatible applications
	4 Using the bootloader
	4.1 SPI interface
	4.2 UART interface

	A Appendix A
	A.1 On KDS
	A.2 S32DS

	B Appendix B
	B.1 Linker file on KDS
	B.2 Linker file on S32DS

