
1 Overview
The MCUXpresso Software Development Kit (SDK) provides
comprehensive software support for Kinetis and LPC
Microcontrollers. The MCUXpresso SDK includes a flexible
set of peripheral drivers designed to speed up and simplify
development of embedded applications. Along with the
peripheral drivers, the MCUXpresso SDK provides an
extensive and rich set of example applications covering
everything from basic peripheral use case examples to full
demo applications. The MCUXpresso SDK contains
FreeRTOS, a USB host and device stack, and various other
middleware to support rapid development.

For supported toolchain versions, see the MCUXpresso SDK
Release Notes Supporting LPCXpresso51U68 (document
MCUXSDKLPC51U68RN).

For the latest version of this and other MCUXpresso SDK
documents, see the MCUXpresso SDK homepage
MCUXpresso-SDK: Software Development Kit for
MCUXpresso.

NXP Semiconductors Document Number: MCUXSDKLPC51U68GSUG

User's Guide Rev. 0, 02/2018

Getting Started with MCUXpresso
SDK for LPC51U68

Contents

1 Overview................................ 1

2 MCUXpresso SDK Board Support
Folders.. 2

3 Run a demo application using IAR.......4

4 Run a demo using Keil® MDK/
μVision.. 7

5 Run a demo using Arm® GCC............................. 11

6 Run a demo using MCUXpresso IDE....20

7 MCUXpresso Config Tools...................................29

8 MCUXpresso IDE New Project
Wizard... 30

9 Appendix A - How to determine COM
port...30

10 Appendix B - Default debug interfaces 32

11 Appendix C - Updating debugger
firmware.. 34

http://www.nxp.com/products/software-and-tools/run-time-software/mcuxpresso-software-and-tools/mcuxpresso-software-development-kit-sdk:MCUXpresso-SDK
http://www.nxp.com/products/software-and-tools/run-time-software/mcuxpresso-software-and-tools/mcuxpresso-software-development-kit-sdk:MCUXpresso-SDK

Application Code

Stacks and Middleware
(Connectivity, Security,
DMA, Filesystem, etc,)

Board Support

Peripheral DriversReal Time Kernel
(FreeRTOS)

CMSIS-CORE and CMSIS-DSP
(Device Header Files: Core Access Functions, Intrinsics, Peripheral & Interrupt Definitions, DSP Library)

Microcontroller Hardware

Figure 1. MCUXpresso SDK layers

2 MCUXpresso SDK Board Support Folders
MCUXpresso SDK board support provides example applications for NXP development and evaluation boards for Arm®

Cortex®-M cores, including Freedom, Tower System, and LPCXpresso boards. Board support packages are found inside of
the top level boards folder, and each supported board has its own folder (an MCUXpresso SDK package can support multiple
boards). Within each <board_name> folder, there are various sub-folders to classify the type of examples they contain. These
include (but are not limited to):

• cmsis_driver_examples: Simple applications intended to concisely illustrate how to use CMSIS drivers.
• demo_apps: Full-featured applications intended to highlight key functionality and use cases of the target MCU. These

applications typically use multiple MCU peripherals and may leverage stacks and middleware.
• driver_examples: Simple applications intended to concisely illustrate how to use the MCUXpresso SDK’s peripheral

drivers for a single use case. These applications typically only use a single peripheral, but there are cases where
multiple are used (for example, SPI conversion using DMA).

• emwin_examples: Applications that use the emWin GUI widgets.
• rtos_examples: Basic FreeRTOSTM OS examples showcasing the use of various RTOS objects (semaphores, queues,

and so on) and interfacing with the MCUXpresso SDK’s RTOS drivers
• usb_examples: Applications that use the USB host/device/OTG stack.

2.1 Example Application Structure

This section describes how the various types of example applications interact with the other components in the MCUXpresso
SDK. To get a comprehensive understanding of all MCUXpresso SDK components and folder structure, see the
MCUXpresso SDK API Reference Manual document (MCUXSDKAPIRM).

Each <board_name> folder in the boards directory contains a comprehensive set of examples that are relevant to that specific
piece of hardware. We’ll discuss the hello_world example (part of the demo_apps folder), but the same general rules apply to
any type of example in the <board_name> folder.

MCUXpresso SDK Board Support Folders

Getting Started with MCUXpresso SDK for LPC51U68, Rev. 0, 02/2018

2 NXP Semiconductors

In the hello_world application folder you see the following contents:

Figure 2. Application folder structure

All files in the application folder are specific to that example, so it is easy to copy and paste an existing example to start
developing a custom application based on a project provided in the MCUXpresso SDK.

2.2 Locating Example Application Source Files

When opening an example application in any of the supported IDE (except MCUXpresso IDE), there are a variety of source
files referenced. The MCUXpresso SDK devices folder is the central component to all example applications. It means the
examples reference the same source files and, if one of these files is modified, it could potentially impact the behavior of
other examples.

The main areas of the MCUXpresso SDK tree used in all example applications are:

• devices/<device_name>: The device’s CMSIS header file, MCUXpresso SDK feature file and a few other things.
• devices/<device_name>/cmsis_drivers: All the CMSIS drivers for your specific MCU.
• devices/<device_name>/drivers: All of the peripheral drivers for your specific MCU.
• devices/<device_name>/<tool_name>: Toolchain-specific startup code. Vector table definitions are here.
• devices/<device_name>/utilities: Items such as the debug console that are used by many of the example applications.

For examples containing an RTOS, there are references to the appropriate source code. RTOSes are in the rtos folder. Again,
the core files of each of these are shared, so modifying them could have potential impacts on other projects that depend on
them.

MCUXpresso SDK Board Support Folders

Getting Started with MCUXpresso SDK for LPC51U68, Rev. 0, 02/2018

NXP Semiconductors 3

3 Run a demo application using IAR

This section describes the steps required to build, run, and debug example applications provided in the MCUXpresso SDK.
The hello_world demo application targeted for the LPCXpresso51U68 hardware platform is used as an example, although
these steps can be applied to any example application in the MCUXpresso SDK.

3.1 Build an example application

The following steps guide you through opening the hello_world example application. These steps may change slightly for
other example applications as some of these applications may have additional layers of folders in their path.

1. If not already done, open the desired demo application workspace. Most example application workspace files can be
located using the following path:

<install_dir>/boards/<board_name>/<example_type>/<application_name>/iar

Using the LPCXpresso51U68 hardware platform as an example, the hello_world workspace is located in

<install_dir>/boards/lpcxpresso51U68/demo_apps/hello_world/iar/hello_world.eww

2. Select the desired build target from the drop-down. For this example, select the “hello_world – Debug” target.

Run a demo application using IAR

Getting Started with MCUXpresso SDK for LPC51U68, Rev. 0, 02/2018

4 NXP Semiconductors

Figure 3. Demo build target selection

3. To build the demo application, click the “Make” button, highlighted in red below.

Figure 4. Build the demo application

4. The build completes without errors.

3.2 Run an example application

Run a demo application using IAR

Getting Started with MCUXpresso SDK for LPC51U68, Rev. 0, 02/2018

NXP Semiconductors 5

To download and run the application, perform these steps:

1. Download and install LPCScrypt or the Windows® operating systems driver for LPCXpresso boards from
www.nxp.com/lpcutilities. This installs the required drivers for the board.

2. Connect the development platform to your PC via USB cable between the Link2 USB connector (named Link for some
boards) and the PC USB connector. If you are connecting for the first time, allow about 30 seconds for the devices to
enumerate.

3. Open the terminal application on the PC, such as PuTTY or TeraTerm, and connect to the debug COM port (to
determine the COM port number, see Appendix A). Configure the terminal with these settings:

a. 115200 baud rate (reference BOARD_DEBUG_UART_BAUDRATE variable in board.h file)
b. No parity
c. 8 data bits
d. 1 stop bit

Figure 5. Terminal (PuTTY) configuration
4. In IAR, click the "Download and Debug" button to download the application to the target.

Figure 6. Download and Debug button
5. The application is then downloaded to the target and automatically runs to the main() function.

Run a demo application using IAR

Getting Started with MCUXpresso SDK for LPC51U68, Rev. 0, 02/2018

6 NXP Semiconductors

http://www.nxp.com/lpcutilities

NOTE
The application is programmed to the external on board flash, then jumped to
SRAM to run

Figure 7. Stop at main() when running debugging
6. Run the code by clicking the "Go" button to start the application.

Figure 8. Go button
7. The hello_world application is now running and a banner is displayed on the terminal. If this does not occur, check

your terminal settings and connections.

Figure 9. Text display of the hello_world demo

4 Run a demo using Keil® MDK/μVision
This section describes the steps required to build, run, and debug example applications provided in the MCUXpresso SDK.
The hello_world demo application targeted for the LPCXpresso51U68 hardware platform is used as an example, although
these steps can be applied to any demo or example application in the MCUXpresso SDK.

Run a demo using Keil® MDK/μVision

Getting Started with MCUXpresso SDK for LPC51U68, Rev. 0, 02/2018

NXP Semiconductors 7

4.1 Install CMSIS device pack

After the MDK tools are installed, Cortex® Microcontroller Software Interface Standard (CMSIS) device packs must be
installed to fully support the device from a debug perspective. These packs include things such as memory map information,
register definitions and flash programming algorithms. Follow these steps to install the appropriate CMSIS pack.

1. Open the MDK IDE, which is called μVision. In the IDE, select the “Pack Installer” icon.

Figure 10. Launch the Pack installer
2. After the installation finishes, close the Pack Installer window and return to the μVision IDE.

4.2 Build an example application

• Open the desired example application workspace in: <install_dir>/boards/<board_name>/<example_type>/
<application_name>/mdk

The workspace file is named <demo_name>.uvmpw, so for this specific example, the actual path is:

<install_dir>/boards/lpcxpresso51U68/demo_apps/hello_world/mdk/hello_world.uvmpw
• To build the demo project, select the "Rebuild" button, highlighted in red.

Figure 11. Build the demo
• The build completes without errors.

4.3 Run an example application

To download and run the application, perform these steps:

1. Download and install LPCScrypt or the Windows® operating systems driver for LPCXpresso boards from
www.nxp.com/lpcutilities. This installs the required drivers for the board.

2. Connect the development platform to your PC via USB cable between the Link2 USB connector and the PC USB
connector. If you are connecting for the first time, allow about 30 seconds for the devices to enumerate.

3. Open the terminal application on the PC, such as PuTTY or TeraTerm, and connect to the debug serial port number (to
determine the COM port number, see Appendix A). Configure the terminal with these settings:

a. 115200 baud rate (reference BOARD_DEBUG_UART_BAUDRATE variable in board.h file)
b. No parity
c. 8 data bits
d. 1 stop bit

Run a demo using Keil® MDK/μVision

Getting Started with MCUXpresso SDK for LPC51U68, Rev. 0, 02/2018

8 NXP Semiconductors

http://www.nxp.com/lpcutilities

Figure 12. Terminal (PuTTY) configurations
4. To debug the application, click the “Start/Stop Debug Session” button, highlighted in red.

Run a demo using Keil® MDK/μVision

Getting Started with MCUXpresso SDK for LPC51U68, Rev. 0, 02/2018

NXP Semiconductors 9

Figure 13. Stop at main() when run debugging
5. Run the code by clicking the “Run” button to start the application.

Figure 14. Go button

The hello_world application is now running and a banner is displayed on the terminal. If this is not true, check your
terminal settings and connections.

Run a demo using Keil® MDK/μVision

Getting Started with MCUXpresso SDK for LPC51U68, Rev. 0, 02/2018

10 NXP Semiconductors

Figure 15. Text display of the hello_world demo

5 Run a demo using Arm® GCC
This section describes the steps to configure the command line Arm® GCC tools to build, run, and debug demo applications
and necessary driver libraries provided in the MCUXpresso SDK. The hello_world demo application targeted for the
LPCXpresso51U68 hardware platform is used as an example, though these steps can be applied to any board, demo or
example application in the MCUXpresso SDK.

5.1 Set up toolchain

This section contains the steps to install the necessary components required to build and run a MCUXpresso SDK demo
application with the Arm GCC toolchain, as supported by the MCUXpresso SDK. There are many ways to use Arm GCC
tools, but this example focuses on a Windows operating system environment.

5.1.1 Install GCC ARM Embedded tool chain

Download and run the installer from launchpad.net/gcc-arm-embedded. This is the actual toolset (in other words, compiler,
linker, etc.). The GCC toolchain should correspond to the latest supported version, as described in the MCUXpresso SDK
Release Notes Supporting LPCXpresso51U68. (document MCUXSDKLPC51U68RN).

5.1.2 Install MinGW (only required on Windows OS)

The Minimalist GNU for Windows (MinGW) development tools provide a set of tools that are not dependent on third party
C-Runtime DLLs (such as Cygwin). The build environment used by the SDK does not utilize the MinGW build tools, but
does leverage the base install of both MinGW and MSYS. MSYS provides a basic shell with a Unix-like interface and tools.

1. Download the latest MinGW mingw-get-setup installer from sourceforge.net/projects/mingw/files/Installer/.
2. Run the installer. The recommended installation path is C:\MinGW, however, you may install to any location.

NOTE
The installation path cannot contain any spaces.

3. Ensure that the “mingw32-base” and “msys-base” are selected under Basic Setup.

Run a demo using Arm® GCC

Getting Started with MCUXpresso SDK for LPC51U68, Rev. 0, 02/2018

NXP Semiconductors 11

https://launchpad.net/gcc-arm-embedded
http://sourceforge.net/projects/mingw/files/Installer/

Figure 16. Setup MinGW and MSYS
4. Click “Apply Changes” in the “Installation” menu and follow the remaining instructions to complete the installation.

Figure 17. Complete MinGW and MSYS installation
5. Add the appropriate item to the Windows operating system path environment variable. It can be found under Control

Panel -> System and Security -> System -> Advanced System Settings in the "Environment Variables..." section. The
path is:

<mingw_install_dir>\bin

Assuming the default installation path, C:\MinGW, an example is shown below. If the path is not set correctly, the
toolchain does not work.

NOTE
If you have "C:\MinGW\msys\x.x\bin" in your PATH variable (as required by
KSDK 1.0.0), remove it to ensure that the new GCC build system works correctly.

Run a demo using Arm® GCC

Getting Started with MCUXpresso SDK for LPC51U68, Rev. 0, 02/2018

12 NXP Semiconductors

Figure 18. Add Path to systems environment

5.1.3 Add a new system environment variable for ARMGCC_DIR

Create a new system environment variable and name it ARMGCC_DIR. The value of this variable should point to the Arm
GCC Embedded tool chain installation path. For this example, the path is:

Reference the installation folder of the GNU ARM GCC Embedded tools for the exact path name of your installation.

Run a demo using Arm® GCC

Getting Started with MCUXpresso SDK for LPC51U68, Rev. 0, 02/2018

NXP Semiconductors 13

Figure 19. Add ARMGCC_DIR system variable

5.1.4 Install CMake

1. Download CMake 3.0.x from www.cmake.org/cmake/resources/software.html.
2. Install CMake, ensuring that the option "Add CMake to system PATH" is selected when installing. The user chooses to

select whether it is installed into the PATH for all users or just the current user. In this example, it is installed for all
users.

Run a demo using Arm® GCC

Getting Started with MCUXpresso SDK for LPC51U68, Rev. 0, 02/2018

14 NXP Semiconductors

http://www.cmake.org/cmake/resources/software.html

Figure 20. Install CMake
3. Follow the remaining instructions of the installer.
4. You may need to reboot your system for the PATH changes to take effect.
5. Make sure "sh.exe" is not in the Environment Variable PATH. This is a limitation of mingw32-make.

5.2 Build an example application

To build an example application, follow these steps.

1. Open a GCC Arm Embedded tool chain command window. To launch the window, from the Windows operating
system Start menu, go to “Programs -> GNU Tools ARM Embedded <version>” and select “GCC Command Prompt”.

Figure 21. Launch command prompt

Run a demo using Arm® GCC

Getting Started with MCUXpresso SDK for LPC51U68, Rev. 0, 02/2018

NXP Semiconductors 15

2. Change the directory to the example application project directory, which has a path similar to the following:

<install_dir>/boards/<board_name>/<example_type>/<application_name>/armgcc

For this example, the exact path is: <install_dir>/examples/lpcxpresso51U68/demo_apps/hello_world/armgcc

NOTE
To change directories, use the 'cd' command.

3. Type “build_debug.bat” on the command line or double click on the "build_debug.bat" file in Windows Explorer to
perform the build. The output is shown in this figure:

Figure 22. hello_world demo build successful

5.3 Run an example application

This section describes steps to run a demo application using J-Link GDB Server application. To perform this exercise, two
things must be done:

• Make sure that:
• You have a standalone J-Link pod that is connected to the debug interface of your board. Note that some

hardware platforms require hardware modification in order to function correctly with an external debug interface.

After the J-Link interface is configured and connected, follow these steps to download and run the demo applications:

1. Connect the development platform to your PC via USB cable between the Link2 USB connector and the PC USB
connector. If you are connecting for the first time, allow about 30 seconds for the devices to enumerate.

2. Open the terminal application on the PC, such as PuTTY or TeraTerm, and connect to the debug serial port number (to
determine the COM port number, see Appendix A). Configure the terminal with these settings:

a. 115200 or 9600 baud rate, depending on your board (reference BOARD_DEBUG_UART_BAUDRATE variable
in board.h file)

b. No parity
c. 8 data bits
d. 1 stop bit

Run a demo using Arm® GCC

Getting Started with MCUXpresso SDK for LPC51U68, Rev. 0, 02/2018

16 NXP Semiconductors

Figure 23. Terminal (PuTTY) configurations
3. Open the J-Link GDB Server application. Assuming the J-Link software is installed, the application can be launched by

going to the Windows operating system Start menu and selecting “Programs -> SEGGER -> J-Link <version> J-Link
GDB Server”.

4. Modify the settings as shown below. The target device selection chosen for this example is the LPC51U68
5. After it is connected, the screen should resemble this figure:

Run a demo using Arm® GCC

Getting Started with MCUXpresso SDK for LPC51U68, Rev. 0, 02/2018

NXP Semiconductors 17

Figure 24. SEGGER J-Link GDB Server screen after successful connection
6. If not already running, open a GCC ARM Embedded tool chain command window. To launch the window, from the

Windows operating system Start menu, go to “Programs -> GNU Tools ARM Embedded <version>” and select “GCC
Command Prompt”.

Figure 25. Launch command prompt
7. Change to the directory that contains the example application output. The output can be found in using one of these

paths, depending on the build target selected:

<install_dir>/boards/<board_name>/<example_type>/<application_name>/armgcc/debug

<install_dir>/boards/<board_name>/<example_type>/<application_name>/armgcc/release

For this example, the path is:

<install_dir>/boards/lpcxpresso51U68/demo_apps/hello_world/armgcc/debug
8. Run the command “arm-none-eabi-gdb.exe <application_name>.elf”. For this example, it is “arm-none-eabi-gdb.exe

hello_world.elf”.

Run a demo using Arm® GCC

Getting Started with MCUXpresso SDK for LPC51U68, Rev. 0, 02/2018

18 NXP Semiconductors

Figure 26. Run arm-none-eabi-gdb
9. Run these commands:

a. "target remote localhost:2331"
b. "monitor reset"
c. "monitor go"
d. "monitor halt"
e. "load"
f. "monitor reg pc=(0x4)"
g. "monitor reg msp=(0x0)"

10. The application is now downloaded and halted at the reset vector. Execute the “monitor go” command to start the demo
application.

The hello_world application is now running and a banner is displayed on the terminal. If this is not true, check your
terminal settings and connections.

Figure 27. Text display of the hello_world demo

Run a demo using Arm® GCC

Getting Started with MCUXpresso SDK for LPC51U68, Rev. 0, 02/2018

NXP Semiconductors 19

6 Run a demo using MCUXpresso IDE
NOTE

Ensure that the MCUXpresso IDE toolchain is included when generating the
MCUXpresso SDK Package.

This section describes the steps required to configure MCUXpresso IDE to build, run, and debug example applications. The
hello_world demo application targeted for the LPCXpresso51U68 hardware platform is used as an example, though these
steps can be applied to any example application in the MCUXpresso SDK.

6.1 Select the workspace location
Every time MCUXpresso IDE launches, it prompts the user to select a workspace location. MCUXpresso IDE is built on top
of Eclipse, which uses workspace to store information about its current configuration, and in some use cases, source files for
the projects in the workspace. The location of the workspace can be anywhere, but it is recommended that the workspace be
outside of the MCUXpresso SDK tree.

6.2 Build a non-example application

To build an example application, follow these steps.

1. Drag and drop the SDK zip file into the “Installed SDKs” view to install an SDK. In the window that appears, click the
“OK” button and wait until the import has finished.

Figure 28. Install an SDK
2. On the Quickstart Panel, click “Import SDK example(s)…”.

Run a demo using MCUXpresso IDE

Getting Started with MCUXpresso SDK for LPC51U68, Rev. 0, 02/2018

20 NXP Semiconductors

Figure 29. Import an SDK example
3. In the window that appears, expand the “LPC51U68" folder and select “LPC51U68" . Then, select "lpcxpresso51U68"

and click the “Next” button.

Run a demo using MCUXpresso IDE

Getting Started with MCUXpresso SDK for LPC51U68, Rev. 0, 02/2018

NXP Semiconductors 21

Figure 30. Select LPCXpresso51U68 board
4. Expand the “demo_apps” folder and select “hello_world”. Then, click the "Next” button.

Run a demo using MCUXpresso IDE

Getting Started with MCUXpresso SDK for LPC51U68, Rev. 0, 02/2018

22 NXP Semiconductors

Figure 31. Select "hello_world"
5. Ensure the option “Redlib: Use floating point version of printf” is selected if the cases print floating point numbers on

the terminal (for demo applications such as adc_basic, adc_burst, adc_dma, and adc_interrupt). Otherwise, there is no
need to select it. Click the “Finish” button.

Run a demo using MCUXpresso IDE

Getting Started with MCUXpresso SDK for LPC51U68, Rev. 0, 02/2018

NXP Semiconductors 23

Figure 32. Select "User floating print version of printf"

6.3 Run a non-example application

For more information on debug probe support in the MCUXpresso IDE v10.1.0, visit community.nxp.com.

Run a demo using MCUXpresso IDE

Getting Started with MCUXpresso SDK for LPC51U68, Rev. 0, 02/2018

24 NXP Semiconductors

https://community.nxp.com/message/630901

To download and run the application, perform these steps:

1. Reference the table in Appendix B to determine the debug interface that comes loaded on your specific hardware
platform. For LPCXpresso boards, install the DFU jumper for the debug probe, then connect the debug probe USB
connector.

2. Open the terminal application on the PC, such as PuTTY or TeraTerm, and connect to the debug serial port number (to
determine the COM port number, see Appendix A). Configure the terminal with these settings:

a. 115200 or 9600 baud rate, depending on your board (reference BOARD_DEBUG_UART_BAUDRATE variable
in board.h file)

b. No parity
c. 8 data bits
d. 1 stop bit

Figure 33. Terminal (PuTTY) configurations
3. On the Quickstart Panel, click on "Debug 'lpcxpresso51U68_demo_apps_hello_world’ [Debug]”.

Run a demo using MCUXpresso IDE

Getting Started with MCUXpresso SDK for LPC51U68, Rev. 0, 02/2018

NXP Semiconductors 25

Figure 34. Debug "hello_world" case
4. The first time you debug a project, the Debug Emulator Selection Dialog is displayed, showing all supported probes

that are attached to your computer. Select the probe through which you want to debug and click the “OK” button. (For
any future debug sessions, the stored probe selection is automatically used, unless the probe cannot be found.)

Run a demo using MCUXpresso IDE

Getting Started with MCUXpresso SDK for LPC51U68, Rev. 0, 02/2018

26 NXP Semiconductors

Figure 35. Attached Probes: debug emulator selection
5. The application is downloaded to the target and automatically runs to main():

Run a demo using MCUXpresso IDE

Getting Started with MCUXpresso SDK for LPC51U68, Rev. 0, 02/2018

NXP Semiconductors 27

Figure 36. Stop at main() when running debugging
6. Start the application by clicking the "Resume" button.

Run a demo using MCUXpresso IDE

Getting Started with MCUXpresso SDK for LPC51U68, Rev. 0, 02/2018

28 NXP Semiconductors

Figure 37. Resume button

The hello_world application is now running and a banner is displayed on the terminal. If this is not the case, check your
terminal settings and connections.

Figure 38. Text display of the hello_world demo

7 MCUXpresso Config Tools
MCUXpresso Config Tools can help configure the processor and generate initialization code for the on chip peripherals. The
tools are able to modify any existing example project, or create a new configuration for the selected board or processor. The
generated code is designed to be used with MCUXpresso SDK version 2.x.

The MCUXpresso Config Tools consist of the following:

Pins tool for configuration of pin routing and pin electrical properties.

Clock tool for system clock configuration.

Project Cloner allows creation of the standalone projects from SDK examples.

MCUXpresso Config Tools can be accessed in the following products:

• Integrated in the MCUXpresso IDE. See new perspectives allowing to configure peripherals directly in the IDE.
• Standalone version available for download from www.nxp.com. Recommended for customers using IAR Embedded

Workbench, Keil MDK µVision, or Arm GCC.
• Online version available on mcuxpresso.nxp.com. Recommended to do a quick evaluation of the processor or use the

tool without installation.

MCUXpresso Config Tools

Getting Started with MCUXpresso SDK for LPC51U68, Rev. 0, 02/2018

NXP Semiconductors 29

https://www.nxp.com
http://mcuxpresso.nxp.com

Each version of the product contains a specific “Quick Start Guide” document that can help start your work.

8 MCUXpresso IDE New Project Wizard
MCUXpresso IDE features a new project wizard. The wizard provides functionality for the user to create new projects from
the installed SDKs (and from pre-installed part support), offers the flexibility to select/change many builds, includes a library,
and provides source code options. The source code is organized as software components, categorized as driver, utilities, and
middleware.

To use the wizard, start the MCUXpresso IDE. This is located in the QuickStart Panel at the bottom left of the MCUXpresso
IDE window. Select the “New project” option, shown in the below figure.

Figure 39. MCUXpresso IDE Quickstart Panel

For more details of the usage of new project wizard, see the “MCUXpresso_IDE_User_Guide.pdf” in the MCUXpresso IDE
installation folder.

9 Appendix A - How to determine COM port
This section describes the steps necessary to determine the debug COM port number of your NXP hardware development
platform.

1. To determine the COM port, open the Windows operating system Device Manager. This can be achieved by going to
the Windows operating system Start menu and typing “Device Manager” in the search bar, as shown below:

MCUXpresso IDE New Project Wizard

Getting Started with MCUXpresso SDK for LPC51U68, Rev. 0, 02/2018

30 NXP Semiconductors

Figure 40. Device manager
2. In the Device Manager, expand the “Ports (COM & LPT)” section to view the available ports. Depending on the NXP

board you’re using, the COM port can be named differently:
a. LPC-Link2

Appendix A - How to determine COM port

Getting Started with MCUXpresso SDK for LPC51U68, Rev. 0, 02/2018

NXP Semiconductors 31

Figure 41. LPC-Link2

10 Appendix B - Default debug interfaces
The MCUXpresso SDK supports various hardware platforms that come loaded with a variety of factory programmed debug
interface configurations. The following table lists the hardware platforms supported by the MCUXpresso SDK, their default
debug interface, and any version information that helps differentiate a specific interface configuration.

NOTE
The 'OpenSDA details' column of the following table is not applicable to LPC.

Table 1. Hardware platforms supported by SDK

Hardware platform Default interface OpenSDA details

FRDM-K22F CMSIS-DAP/mbed/DAPLink OpenSDA v2.1

FRDM-K28F DAPLink OpenSDA v2.1

FRDM-K32W042 CMSIS-DAP N/A

FRDM-K64F CMSIS-DAP/mbed/DAPLink OpenSDA v2.0

FRDM-K66F J-Link OpenSDA OpenSDA v2.1

FRDM-K82F CMSIS-DAP OpenSDA v2.1

FRDM-KE15Z DAPLink OpenSDA v2.1

FRDM-KL02Z P&E Micro OpenSDA OpenSDA v1.0

FRDM-KL03Z P&E Micro OpenSDA OpenSDA v1.0

FRDM-KL25Z P&E Micro OpenSDA OpenSDA v1.0

FRDM-KL26Z P&E Micro OpenSDA OpenSDA v1.0

FRDM-KL27Z P&E Micro OpenSDA OpenSDA v1.0

FRDM-KL28Z P&E Micro OpenSDA OpenSDA v2.1

FRDM-KL43Z P&E Micro OpenSDA OpenSDA v1.0

FRDM-KL46Z P&E Micro OpenSDA OpenSDA v1.0

FRDM-KL81Z CMSIS-DAP OpenSDA v2.0

FRDM-KL82Z CMSIS-DAP OpenSDA v2.0

FRDM-KV10Z CMSIS-DAP OpenSDA v2.1

FRDM-KV11Z P&E Micro OpenSDA OpenSDA v1.0

FRDM-KV31F P&E Micro OpenSDA OpenSDA v1.0

FRDM-KW24 CMSIS-DAP/mbed/DAPLink OpenSDA v2.1

FRDM-KW36 DAPLink OpenSDA v2.2

FRDM-KW41Z CMSIS-DAP/DAPLink OpenSDA v2.1 or greater

Hexiwear CMSIS-DAP/mbed/DAPLink OpenSDA v2.0

MAPS-KS22 J-Link OpenSDA OpenSDA v2.0

Table continues on the next page...

Appendix B - Default debug interfaces

Getting Started with MCUXpresso SDK for LPC51U68, Rev. 0, 02/2018

32 NXP Semiconductors

Table 1. Hardware platforms supported by SDK (continued)

TWR-K21D50M P&E Micro OSJTAG N/AOpenSDA v2.0

TWR-K21F120M P&E Micro OSJTAG N/A

TWR-K22F120M P&E Micro OpenSDA OpenSDA v1.0

TWR-K24F120M CMSIS-DAP/mbed OpenSDA v2.1

TWR-K60D100M P&E Micro OSJTAG N/A

TWR-K64D120M P&E Micro OpenSDA OpenSDA v1.0

TWR-K65D180M P&E Micro OpenSDA OpenSDA v1.0

TWR-K65D180M P&E Micro OpenSDA OpenSDA v1.0

TWR-KV10Z32 P&E Micro OpenSDA OpenSDA v1.0

TWR-K80F150M CMSIS-DAP OpenSDA v2.1

TWR-K81F150M CMSIS-DAP OpenSDA v2.1

TWR-KE18F DAPLink OpenSDA v2.1

TWR-KL28Z72M P&E Micro OpenSDA OpenSDA v2.1

TWR-KL43Z48M P&E Micro OpenSDA OpenSDA v1.0

TWR-KL81Z72M CMSIS-DAP OpenSDA v2.0

TWR-KL82Z72M CMSIS-DAP OpenSDA v2.0

TWR-KM34Z75M P&E Micro OpenSDA OpenSDA v1.0

TWR-KV10Z32 P&E Micro OpenSDA OpenSDA v1.0

TWR-KV11Z75M P&E Micro OpenSDA OpenSDA v1.0

TWR-KV31F120M P&E Micro OpenSDA OpenSDA v1.0

TWR-KV46F150M P&E Micro OpenSDA OpenSDA v1.0

TWR-KV58F220M CMSIS-DAP OpenSDA v2.1

TWR-KW24D512 P&E Micro OpenSDA OpenSDA v1.0

USB-KW24D512 N/A External probe N/A

USB-KW41Z CMSIS-DAP\DAPLink OpenSDA v2.1 or greater

USB-KW41Z CMSIS-DAP\DAPLink OpenSDA v2.1 or greater

USB-KW41Z CMSIS-DAP\DAPLink OpenSDA v2.1 or greater

LPC54018 IoT Module N/A N/A

LPCXpresso54018 CMSIS-DAP N/A

LPCXpresso54102 CMSIS-DAP N/A

LPCXpresso54114 CMSIS-DAP N/A

LPCXpresso51U68 CMSIS-DAP N/A

LPCXpresso54608 CMSIS-DAP N/A

LPCXpresso54618 CMSIS-DAP N/A

LPCXpresso54628 CMSIS-DAP N/A

HVP-KE18F DAPLink OpenSDA v2.2

HVP-KV46F150M P&E Micro OpenSDA OpenSDA v1

HVP-KV11Z75M CMSIS-DAP OpenSDA v2.1

HVP-KV58F CMSIS-DAP OpenSDA v2.1

HVP-KV31F120M P&E Micro OpenSDA OpenSDA v1

Appendix B - Default debug interfaces

Getting Started with MCUXpresso SDK for LPC51U68, Rev. 0, 02/2018

NXP Semiconductors 33

11 Appendix C - Updating debugger firmware

11.1 Updating LPCXpresso board firmware

The LPCXpresso hardware platform comes with a CMSIS-DAP-compatible debug interface (known as Link2). This
firmware in this debug interface may be updated using the host computer utility called LPCScrypt. This typically used when
switching between the default debugger protocol (CMSIS-DAP) to SEGGER J-Link, or for updating this firmware with new
releases of these. This section contains the steps to re-program the debug probe firmware.

NOTE
If MCUXpresso IDE is used and the jumper making DFUlink is installed on the board
(JP5 on some boards, but consult the board user manual or schematic for specific jumper
number), Link2 debug probe boots to DFU mode, and MCUXpresso IDE automatically
downloads the CMSIS-DAP firmware to the probe before flash memory programming
(after clicking the "Debug" button). Using DFU mode ensures most up-to-date/
compatible firmware is used with MCUXpresso IDE.

NXP provides the LPCScrypt utility, which is the recommended tool for programming the latest versions of CMSIS-DAP
and J-Link firmware onto LPC-Link2 or LPCXpresso boards. The utility can be downloaded from www.nxp.com/lpcutilities.

These steps show how to update the debugger firmware on your board for Windows operating system. For Linux OS, follow
the instructions described in LPCScrypt user guide (www.nxp.com/lpcutilities, select LPCScrypt, then select documentation
tab).

1. Install the LPCScript utility.
2. Unplug the board's USB cable.
3. Make the DFU link (install the jumper labelled DFUlink).
4. Connect the probe to the host via USB (use Link USB connector).
5. Open a command shell and call the appropriate script located in the LPCScrypt installation directory (<LPCScrypt

install dir>).
a. To program CMSIS-DAP debug firmware: <LPCScrypt install dir>/scripts/program_CMSIS
b. To program J-Link debug firmware: <LPCScrypt install dir>/scripts/program_JLINK

6. Remove DFU link (remove the jumper installed in step 3).
7. Re-power the board by removing the USB cable and plugging it again.

Appendix C - Updating debugger firmware

Getting Started with MCUXpresso SDK for LPC51U68, Rev. 0, 02/2018

34 NXP Semiconductors

http://www.nxp.com/lpcutilities
http://www.nxp.com/lpcutilities

How to Reach Us:

Home Page:
nxp.com

Web Support:
nxp.com/support

Information in this document is provided solely to enable system and software

implementers to use NXP products. There are no express or implied copyright

licenses granted hereunder to design or fabricate any integrated circuits based

on the information in this document. NXP reserves the right to make changes

without further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of

its products for any particular purpose, nor does NXP assume any liability arising

out of the application or use of any product or circuit, and specifically disclaims

any and all liability, including without limitation consequential or incidental

damages. “Typical” parameters that may be provided in NXP data sheets and/or

specifications can and do vary in different applications, and actual performance

may vary over time. All operating parameters, including “typicals,” must be

validated for each customer application by customerʼs technical experts. NXP

does not convey any license under its patent rights nor the rights of others. NXP

sells products pursuant to standard terms and conditions of sale, which can be

found at the following address: nxp.com/SalesTermsandConditions.

NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER

WORLD, COOLFLUX, EMBRACE, GREENCHIP, HITAG, I2C BUS, ICODE,

JCOP, LIFE VIBES, MIFARE, MIFARE CLASSIC, MIFARE DESFire, MIFARE

PLUS, MIFARE FLEX, MANTIS, MIFARE ULTRALIGHT, MIFARE4MOBILE,

MIGLO, NTAG, ROADLINK, SMARTLX, SMARTMX, STARPLUG, TOPFET,

TRENCHMOS, UCODE, Freescale, the Freescale logo, AltiVec, C-5, CodeTest,

CodeWarrior, ColdFire, ColdFire+, C-Ware, the Energy Efficient Solutions logo,

Kinetis, Layerscape, MagniV, mobileGT, PEG, PowerQUICC, Processor Expert,

QorIQ, QorIQ Qonverge, Ready Play, SafeAssure, the SafeAssure logo,

StarCore, Symphony, VortiQa, Vybrid, Airfast, BeeKit, BeeStack, CoreNet,

Flexis, MXC, Platform in a Package, QUICC Engine, SMARTMOS, Tower,

TurboLink, and UMEMS are trademarks of NXP B.V. All other product or service

names are the property of their respective owners. ARM, AMBA, ARM Powered,

Artisan, Cortex, Jazelle, Keil, SecurCore, Thumb, TrustZone, and μVision are

registered trademarks of ARM Limited (or its subsidiaries) in the EU and/or

elsewhere. ARM7, ARM9, ARM11, big.LITTLE, CoreLink, CoreSight,

DesignStart, Mali, mbed, NEON, POP, Sensinode, Socrates, ULINK and

Versatile are trademarks of ARM Limited (or its subsidiaries) in the EU and/or

elsewhere. All rights reserved. Oracle and Java are registered trademarks of

Oracle and/or its affiliates. The Power Architecture and Power.org word marks

and the Power and Power.org logos and related marks are trademarks and

service marks licensed by Power.org.

© 2018 NXP B.V.

Document Number MCUXSDKLPC51U68GSUG
Revision 0, 02/2018

http://www.nxp.com
http://www.nxp.com/support
http://www.nxp.com/SalesTermsandConditions

	Getting Started with MCUXpresso SDK for LPC51U68
	Overview
	MCUXpresso SDK Board Support Folders
	Example Application Structure
	Locating Example Application Source Files

	Run a demo application using IAR
	Build an example application
	Run an example application

	Run a demo using Keil® MDK/μVision
	Install CMSIS device pack
	Build an example application
	Run an example application

	Run a demo using Arm® GCC
	Set up toolchain
	Install GCC ARM Embedded tool chain
	Install MinGW (only required on Windows OS)
	Add a new system environment variable for ARMGCC_DIR
	Install CMake

	Build an example application
	Run an example application

	Run a demo using MCUXpresso IDE
	Select the workspace location
	Build a non-example application
	Run a non-example application

	MCUXpresso Config Tools
	MCUXpresso IDE New Project Wizard
	Appendix A - How to determine COM port
	Appendix B - Default debug interfaces
	Appendix C - Updating debugger firmware
	Updating LPCXpresso board firmware

