

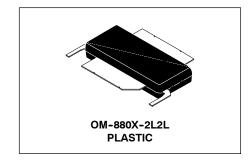
RF Power LDMOS Transistor

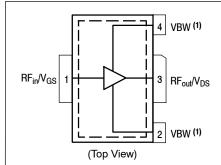
N-Channel Enhancement-Mode Lateral MOSFET

This 56 W RF power LDMOS transistor is designed for cellular base station applications requiring very wide instantaneous bandwidth capability covering the frequency range of 1805 to 1880 MHz.

1800 MHz

 Typical Single-Carrier W-CDMA Performance: V_{DD} = 28 Vdc, I_{DQ} = 1500 mA, P_{out} = 56 W Avg., Input Signal PAR = 9.9 dB @ 0.01% Probability on CCDF.


Frequency	G _{ps} (dB)	η _D (%)	Output PAR (dB)	ACPR (dBc)	IRL (dB)
1805 MHz	17.7	34.2	7.0	-35.1	-15
1840 MHz	18.1	34.1	7.1	-35.2	-13
1880 MHz	18.2	34.8	7.1	-34.6	-10


Features

- · Designed for wide instantaneous bandwidth applications
- Greater negative gate-source voltage range for improved Class C operation
- Able to withstand extremely high output VSWR and broadband operating conditions
- · Optimized for Doherty applications

A2T18S261W12NR3

1805–1880 MHz, 56 W AVG., 28 V AIRFAST RF POWER LDMOS TRANSISTOR

Note: Exposed backside of the package is the source terminal for the transistor.

Figure 1. Pin Connections

 Device can operate with V_{DD} current supplied through pin 2 and pin 4 as long as the device's average output power is less than 90 watts.

Table 1. Maximum Ratings

Rating	Symbol	Value	Unit
Drain-Source Voltage	V _{DSS}	-0.5, +65	Vdc
Gate-Source Voltage	V _{GS}	-6.0, +10	Vdc
Operating Voltage	V _{DD}	32, +0	Vdc
Storage Temperature Range	T _{stg}	-65 to +150	°C
Case Operating Temperature Range	T _C	-40 to +125	°C
Operating Junction Temperature Range (1,2)	T _J	-40 to +225	°C

Table 2. Thermal Characteristics

Characteristic	Symbol	Value (2,3)	Unit
Thermal Resistance, Junction to Case	$R_{ heta JC}$	0.23	°C/W
Case Temperature 81°C, 56 W CW, 28 Vdc, I _{DQ} = 1500 mA, 1840 MHz			

Table 3. ESD Protection Characteristics

Test Methodology	Class
Human Body Model (per JESD22-A114)	2
Charge Device Model (per JESD22-C101)	C3

Table 4. Moisture Sensitivity Level

Test Methodology	Rating	Package Peak Temperature	Unit
Per JESD22-A113, IPC/JEDEC J-STD-020	3	260	°C

Table 5. Electrical Characteristics ($T_A = 25^{\circ}C$ unless otherwise noted)

Characteristic	Symbol	Min	Тур	Max	Unit
Off Characteristics	1	•	•	-	•
Zero Gate Voltage Drain Leakage Current (V _{DS} = 65 Vdc, V _{GS} = 0 Vdc)	I _{DSS}	_	_	10	μAdc
Zero Gate Voltage Drain Leakage Current (V _{DS} = 32 Vdc, V _{GS} = 0 Vdc)	I _{DSS}	_	_	5	μAdc
Gate-Source Leakage Current (V _{GS} = 5 Vdc, V _{DS} = 0 Vdc)	I _{GSS}	_	_	1	μAdc
On Characteristics					
Gate Threshold Voltage (V_{DS} = 10 Vdc, I_{D} = 300 μ Adc)	V _{GS(th)}	1.4	1.8	2.2	Vdc
Gate Quiescent Voltage (V _{DD} = 28 Vdc, I _D = 1500 mAdc, Measured in Functional Test)	V _{GS(Q)}	2.1	2.6	2.9	Vdc
Drain-Source On-Voltage (V _{GS} = 10 Vdc, I _D = 3 Adc)	V _{DS(on)}	0.05	0.17	0.3	Vdc

- 1. Continuous use at maximum temperature will affect MTTF.
- $2. \ \ \text{MTTF calculator available at } \underline{\text{http://www.nxp.com/RF/calculators}}.$
- 3. Refer to AN1955, Thermal Measurement Methodology of RF Power Amplifiers. Go to http://www.nxp.com/RF and search for AN1955.

(continued)

Table 5. Electrical Characteristics ($T_A = 25^{\circ}C$ unless otherwise noted) (continued)

Characteristic	Symbol	Min	Тур	Max	Unit
----------------	--------	-----	-----	-----	------

Functional Tests $^{(1)}$ (In NXP Test Fixture, 50 ohm system) $V_{DD} = 28$ Vdc, $I_{DQ} = 1500$ mA, $P_{out} = 56$ W Avg., f = 1880 MHz, Single-Carrier W-CDMA, IQ Magnitude Clipping, Input Signal PAR = 9.9 dB @ 0.01% Probability on CCDF. ACPR measured in 3.84 MHz Channel Bandwidth @ ± 5 MHz Offset.

Power Gain	G _{ps}	17.0	18.2	19.5	dB
Drain Efficiency	η_{D}	31.5	34.8	_	%
Output Peak-to-Average Ratio @ 0.01% Probability on CCDF	PAR	6.5	7.1	_	dB
Adjacent Channel Power Ratio	ACPR	_	-34.6	-31.5	dBc
Input Return Loss	IRL	_	-10	-8	dB

Load Mismatch (In NXP Test Fixture, 50 ohm system) $I_{DQ} = 1500$ mA, f = 1840 MHz, $12 \mu sec(on)$, 10% Duty Cycle

VSWR 10:1 at 32 Vdc, 295 W Pulsed CW Output Power	No Device Degradation
(3 dB Input Overdrive from 251 W Pulsed CW Rated Power)	-

$\textbf{Typical Performance} \text{ (In NXP Test Fixture, 50 ohm system)} \text{ V_{DD} = 28 Vdc, I_{DQ} = 1500 mA, 1805–1880 MHz Bandwidth}$

Pout @ 1 dB Compression Point, Pulsed CW	P1dB	=	280	_	W
AM/PM (Maximum value measured at the P3dB compression point across the 1805–1880 MHz frequency range.)	Φ	_	-13	_	0
VBW Resonance Point (IMD Third Order Intermodulation Inflection Point)	VBW _{res}	_	100	_	MHz
Gain Flatness in 75 MHz Bandwidth @ P _{out} = 56 W Avg.	G _F	_	0.5	_	dB
Gain Variation over Temperature (–30°C to +85°C)	ΔG	_	0.011	_	dB/°C
Output Power Variation over Temperature (-30°C to +85°C)	ΔP1dB	_	0.005	_	dB/°C

Table 6. Ordering Information

Device	Tape and Reel Information	Package
A2T18S261W12NR3	R3 Suffix = 250 Units, 56 mm Tape Width, 13-inch Reel	OM-880X-2L2L

^{1.} Part internally matched both on input and output.

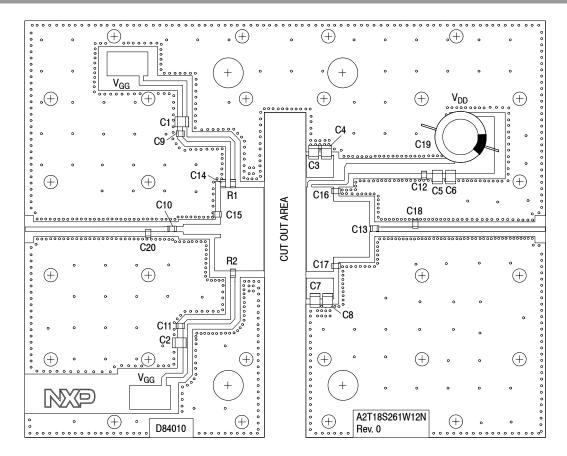
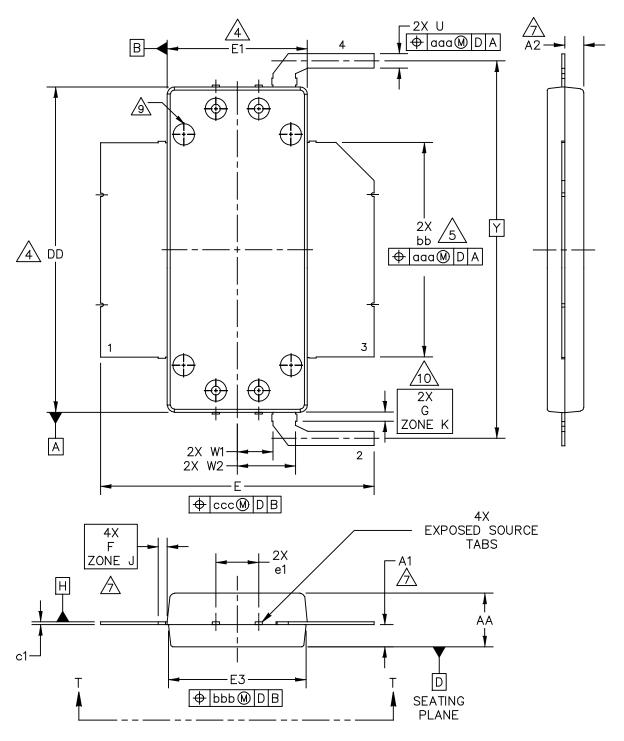
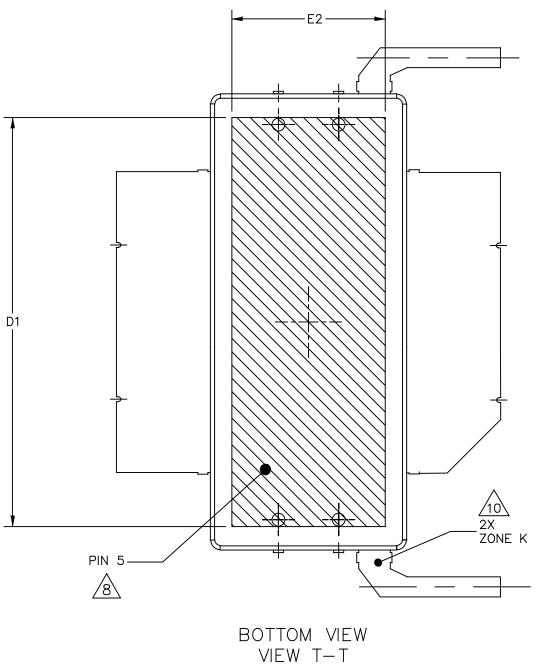



Figure 2. A2T18S261W12NR3 Test Circuit Component Layout


Table 7. A2T18S261W12NR3 Test Circuit Component Designations and Values

Part	Description	Part Number	Manufacturer
C1, C2, C3, C4, C5, C6, C7, C8	4.7 μF Chip Capacitor	C4532X7S2A475M230KB	TDK
C9, C10, C11, C12, C13	15 pF Chip Capacitor	GQM2195C2E150FB12D	Murata
C14	0.9 pF Chip Capacitor	GQM2195C2ER90BB12D	Murata
C15, C18	1 pF Chip Capacitor	GQM2195C2E1R0BB12D	Murata
C16, C17	1.3 pF Chip Capacitor	GQM2195C2E1R3BB12D	Murata
C19	470 μF, 63 V Electrolytic Capacitor	MCGPR63V477M13X26-RH	Multicomp
C20	0.5 pF Chip Capacitor	GQM2195C2ER50BB12D	Murata
R1, R2	2.2 Ω, 1/4 W Chip Resistor	WCR0805-2R2FI	Welwyn
PCB	Rogers RO4350B, 0.020", ε _r = 3.66	D84010	MTL

PACKAGE DIMENSIONS

©	NXP SEMICONDUCTORS N.V. ALL RIGHTS RESERVED	MECHANICAL OUTLINE		PRINT VERSION NOT	TO SCALE	
TITLE:			DOCUME	NT NO: 98ASA00549D	REV: A	
OM-880X-2L2L			STANDARD: NON-JEDEC			
			SOT1817	- 1 09	9 FEB 2016	

© NXP SEMICONDUCTORS N.V. ALL RIGHTS RESERVED	MECHANICAL OUTLINE		PRINT VERSION NO	T TO SCALE	
TITLE:		DOCUMEN	NT NO: 98ASA00549D	REV: A	
OM-880X-2L2L			STANDARD: NON-JEDEC		
		SOT1817	- 1	09 FEB 2016	

NOTES:

- 1. CONTROLLING DIMENSION: INCH
- 2. INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y14.5M-1994.
- 3. DATUM PLANE H IS LOCATED AT TOP OF LEAD AND IS COINCIDENT WITH THE LEAD WHERE THE LEAD EXITS THE PLASTIC BODY AT THE TOP OF THE PARTING LINE.

DIMENSIONS DD AND E1 DO NOT INCLUDE MOLD PROTRUSION. ALLOWABLE PROTRUSION IS . 006 INCH (0.15 MM) PER SIDE. DIMENSIONS DD AND E1 DO INCLUDE MOLD MISMATCH AND ARE DETERMINED AT DATUM PLANE H.

DIMENSION 66 DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE .005 INCH (0.13 MM) TOTAL IN EXCESS OF THE $b\bar{b}$ DIMENSION AT MAXIMUM MATERIAL CONDITION.

- 6. DATUMS A AND B TO BE DETERMINED AT DATUM PLANE H.

、DIMENSIONS A1 AND A2 APPLIES WITHIN ZONE J ONLY. A1 APPLIES TO PINS 1 AND 3. A2 APPLIES TO PINS 2 AND 4.

8. HATCHING REPRESENTS THE EXPOSED AREA OF THE HEAT SLUG. THE DIMENSIONS D1
AND E2 REPRESENT THE VALUES BETWEEN THE TWO OPPOSITE POINTS ALONG THE EDGES OF EXPOSED AREA OF HEAT SLUG.

DIMPLED HOLE REPRESENTS INPUT SIDE.

 $^{\prime}$ 10\ zone k represents non-solderable region where mold flash and resin bleed ARE PERMITTED ON BOTH SIDES OF THE LEADS.

	IN	ICH	MILLIMETER				INCH	MILLIMETER		
DIM	MIN	MAX	MIN	MAX	DIM	MIN	MAX	MIN	MAX	
AA	.148	.152	3.76	3.86	W1	.095	.105	2.41	2.67	
A1	.059	.065	1.50	1.65	W2	.158	.168	4.01	4.27	
A2	.056	.068	1.42	1.73	U	.037	.043	0.94	1.09	
DD	.908	.912	23.06	23.16	Y	1.056 BSC		26.82 BSC		
D1	.816		20.73	3	bb	.597	.603	15.16	15.32	
E	.762	.770	19.35	19.56	c1	.007	.011	0.18	0.28	
E1	.390	.394	9.91	10.01	e1	.116	.124	2.95	3.15	
E2	.306		7.77							
E3	.383	.387	9.73	9.83	aaa		.004		0.10	
F	.025	BSC	0	.64 BSC	bbb	.006		0.15		
G	.030 BSC		0.76 BSC		ccc	.010		0.25		
(© NXP SEMICONDUCTORS N.V. ALL RIGHTS RESERVED MECHANICAL OL					TLINE PRINT VERSION NOT TO SCALE				
TITLE:	TITLE:					DOCUMENT NO: 98ASA00549D REV: A				
	OM-880X-2L2L					STANDARD: NON-JEDEC				
					SOT1817-1 09 FEB 2016					

PRODUCT DOCUMENTATION, SOFTWARE AND TOOLS

Refer to the following resources to aid your design process.

Application Notes

- · AN1907: Solder Reflow Attach Method for High Power RF Devices in Over-Molded Plastic Packages
- AN1955: Thermal Measurement Methodology of RF Power Amplifiers

Engineering Bulletins

• EB212: Using Data Sheet Impedances for RF LDMOS Devices

Software

• Electromigration MTTF Calculator

Development Tools

· Printed Circuit Boards

To Download Resources Specific to a Given Part Number:

- 1. Go to http://www.nxp.com/RF
- 2. Search by part number
- 3. Click part number link
- 4. Choose the desired resource from the drop down menu

REVISION HISTORY

The following table summarizes revisions to this document.

Revision	Date	Description			
0	Nov. 2016	Initial release of data sheet			

How to Reach Us:

Home Page: nxp.com

Web Support: nxp.com/support

Information in this document is provided solely to enable system and software implementers to use NXP products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document. NXP reserves the right to make changes without further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does NXP assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in NXP data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including "typicals," must be validated for each customer application by customer's technical experts. NXP does not convey any license under its patent rights nor the rights of others. NXP sells products pursuant to standard terms and conditions of sale, which can be found at the following address: nxp.com/SalesTermsandConditions.

NXP, the NXP logo, Freescale, the Freescale logo, and Airfast are trademarks of NXP B.V. All other product or service names are the property of their respective owners. © 2016 NXP B.V.

