## **KE04 Sub-Family Data Sheet**

Supports the following: MKE04Z8VTG4(R), MKE04Z8VWJ4(R), and MKE04Z8VFK4(R) Key features

- Operating characteristics
  - Voltage range: 2.7 to 5.5 V
  - Flash write voltage range: 2.7 to 5.5 V
  - Temperature range (ambient): -40 to 105°C
- Performance
  - Up to 48 MHz Arm® Cortex-M0+ core
  - Single cycle 32-bit x 32-bit multiplier
  - Single cycle I/O access port
- Memories and memory interfaces
  - Up to 8 KB flash
  - Up to 1 KB RAM
- Clocks
  - Oscillator (OSC) supports 32.768 kHz crystal or 4 MHz to 24 MHz crystal or ceramic resonator; choice of low power or high gain oscillators
  - Internal clock source (ICS) internal FLL with internal or external reference, 37.5 kHz pre-trimmed internal reference for 48 MHz system clock
  - Internal 1 kHz low-power oscillator (LPO)
- System peripherals
  - Power management module (PMC) with three power modes: Run, Wait, Stop
  - Low-voltage detection (LVD) with reset or interrupt, selectable trip points
  - Watchdog with independent clock source (WDOG)
  - Programmable cyclic redundancy check module (CRC)
  - Serial wire debug interface (SWD)
  - Aliased SRAM bitband region (BIT-BAND)
  - Bit manipulation engine (BME)

# MKE04P24M48SF0

- Security and integrity modules
   80-bit unique identification (ID) number per chip
- Human-machine interface
  - Up to 22 general-purpose input/output (GPIO)
  - Two up to 8-bit keyboard interrupt modules (KBI)
  - External interrupt (IRQ)
- Analog modules
  - One 12-channel 12-bit SAR ADC, operation in Stop mode, optional hardware trigger (ADC)
  - Two analog comparators containing a 6-bit DAC and programmable reference input (ACMP)
- Timers
  - One 6-channel FlexTimer/PWM (FTM)
  - One 2-channel FlexTimer/PWM (FTM)
  - One 2-channel periodic interrupt timer (PIT)
  - One pulse width timer (PWT)
  - One real-time clock (RTC)
- Communication interfaces
  - One SPI module (SPI)
  - One UART module (UART)
  - One I2C module (I2C)
- Package options
  - 24-pin QFN
  - 20-pin SOIC
  - 16-pin TSSOP

NXP reserves the right to change the production detail specifications as may be required to permit improvements in the design of its products.



# **Table of Contents**

| 1 | Orde | ering par | ts3                              |
|---|------|-----------|----------------------------------|
|   | 1.1  | Determ    | ining valid orderable parts      |
| 2 | Part | identific | ation                            |
|   | 2.1  | Descrip   | tion3                            |
|   | 2.2  | Format.   |                                  |
|   | 2.3  | Fields    |                                  |
|   | 2.4  | Exampl    | e4                               |
| 3 | Para | meter cla | assification4                    |
| 4 | Rati | ngs       | 4                                |
|   | 4.1  | Therma    | l handling ratings4              |
|   | 4.2  | Moistur   | re handling ratings              |
|   | 4.3  | ESD ha    | ndling ratings                   |
|   | 4.4  | Voltage   | and current operating ratings    |
| 5 | Gen  | eral      |                                  |
|   | 5.1  | Nonswi    | tching electrical specifications |
|   |      | 5.1.1     | DC characteristics               |
|   |      | 5.1.2     | Supply current characteristics   |
|   |      | 5.1.3     | EMC performance                  |
|   | 5.2  | Switchi   | ng specifications15              |
|   |      | 5.2.1     | Control timing                   |

|   |       | 5.2.2     | FTM module timing16                          |
|---|-------|-----------|----------------------------------------------|
|   | 5.3   | Therma    | l specifications17                           |
|   |       | 5.3.1     | Thermal operating requirements17             |
|   |       | 5.3.2     | Thermal characteristics17                    |
| 6 | Perij | pheral op | perating requirements and behaviors          |
|   | 6.1   | Core m    | odules19                                     |
|   |       | 6.1.1     | SWD electricals                              |
|   | 6.2   | Externa   | l oscillator (OSC) and ICS characteristics20 |
|   | 6.3   | NVM s     | pecifications                                |
|   | 6.4   | Analog.   |                                              |
|   |       | 6.4.1     | ADC characteristics                          |
|   |       | 6.4.2     | Analog comparator (ACMP) electricals25       |
|   | 6.5   | Commu     | nication interfaces                          |
|   |       | 6.5.1     | SPI switching specifications                 |
| 7 | Dim   | ensions   |                                              |
|   | 7.1   | Obtaini   | ng package dimensions29                      |
| 8 | Pino  | ut        |                                              |
|   | 8.1   | Signal I  | Multiplexing and Pin Assignments             |
|   | 8.2   | Device    | pin assignment                               |
| 9 | Revi  | sion hist | ory                                          |
|   |       |           |                                              |

## 1 Ordering parts

### 1.1 Determining valid orderable parts

Valid orderable part numbers are provided on the web. To determine the orderable part numbers for this device, go to **nxp.com** and perform a part number search for the following device numbers: KE04Z.

## 2 Part identification

## 2.1 Description

Part numbers for the chip have fields that identify the specific part. You can use the values of these fields to determine the specific part you have received.

## 2.2 Format

Part numbers for this device have the following format:

Q KE## A FFF R T PP CC N

## 2.3 Fields

This table lists the possible values for each field in the part number (not all combinations are valid):

| Field | Description               | Values                                                                                     |
|-------|---------------------------|--------------------------------------------------------------------------------------------|
| Q     | Qualification status      | <ul> <li>M = Fully qualified, general market flow</li> <li>P = Prequalification</li> </ul> |
| KE##  | Kinetis family            | • KE04                                                                                     |
| A     | Key attribute             | • Z = M0+ core                                                                             |
| FFF   | Program flash memory size | • 8 = 8 KB                                                                                 |
| R     | Silicon revision          | <ul> <li>(Blank) = Main</li> <li>A = Revision after main</li> </ul>                        |
| Т     | Temperature range (°C)    | • V = -40 to 105                                                                           |
| PP    | Package identifier        | • TG = 16 TSSOP (4.5 mm x 5 mm)                                                            |

Parameter classification

| Field | Description                 | Values                                                                             |
|-------|-----------------------------|------------------------------------------------------------------------------------|
|       |                             | <ul> <li>WJ = 20 SOIC (7 mm x 12 mm)</li> <li>FK = 24 QFN (4 mm x 4 mm)</li> </ul> |
| CC    | Maximum CPU frequency (MHz) | • 4 = 48 MHz                                                                       |
| N     | Packaging type              | <ul> <li>R = Tape and reel</li> <li>(Blank) = Trays</li> </ul>                     |

### 2.4 Example

This is an example part number:

MKE04Z8VFK4

## 3 Parameter classification

The electrical parameters shown in this supplement are guaranteed by various methods. To give the customer a better understanding, the following classification is used and the parameters are tagged accordingly in the tables where appropriate:

Table 1. Parameter classifications

| Р | Those parameters are guaranteed during production testing on each individual device.                                                                                                                                   |
|---|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| С | Those parameters are achieved by the design characterization by measuring a statistically relevant sample size across process variations.                                                                              |
| Т | Those parameters are achieved by design characterization on a small sample size from typical devices under typical conditions unless otherwise noted. All values shown in the typical column are within this category. |
| D | Those parameters are derived mainly from simulations.                                                                                                                                                                  |

### NOTE

The classification is shown in the column labeled "C" in the parameter tables where appropriate.

## 4 Ratings

## 4.1 Thermal handling ratings

| Symbol           | Description         | Min. | Max. | Unit | Notes |
|------------------|---------------------|------|------|------|-------|
| T <sub>STG</sub> | Storage temperature | -55  | 150  | °C   | 1     |

Ratings

| Symbol           | mbol Description              |   | Max. | Unit | Notes |
|------------------|-------------------------------|---|------|------|-------|
| T <sub>SDR</sub> | Solder temperature, lead-free | — | 260  | °C   | 2     |

1. Determined according to JEDEC Standard JESD22-A103, High Temperature Storage Life.

 Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices.

## 4.2 Moisture handling ratings

| Syn | nbol | Description<br>Moisture sensitivity level | Min. | Max. | Unit | Notes |
|-----|------|-------------------------------------------|------|------|------|-------|
| M   | SL   | Moisture sensitivity level                | _    | 3    | —    | 1     |

1. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices.

### 4.3 ESD handling ratings

| Symbol           | Description                                           | Min.  | Max.  | Unit | Notes |
|------------------|-------------------------------------------------------|-------|-------|------|-------|
| V <sub>HBM</sub> | Electrostatic discharge voltage, human body model     | -6000 | +6000 | V    | 1     |
| V <sub>CDM</sub> | Electrostatic discharge voltage, charged-device model | -500  | +500  | V    | 2     |
| I <sub>LAT</sub> | Latch-up current at ambient temperature of 105°C      | -100  | +100  | mA   | 3     |

1. Determined according to JEDEC Standard JESD22-A114, *Electrostatic Discharge (ESD) Sensitivity Testing Human Body Model (HBM)*.

- 2. Determined according to JEDEC Standard JESD22-C101, Field-Induced Charged-Device Model Test Method for Electrostatic-Discharge-Withstand Thresholds of Microelectronic Components.
- 3. Determined according to JEDEC Standard JESD78D, IC Latch-up Test.
  - Test was performed at 105 °C case temperature (Class II).
  - I/O pins pass ±100 mA I-test with I<sub>DD</sub> current limit at 200 mA.
  - I/O pins pass +30/-100 mA I-test with I<sub>DD</sub> current limit at 1000 mA.
  - Supply groups pass 1.5 Vccmax.
  - RESET pin was only tested with negative I-test due to product conditioning requirement.

### 4.4 Voltage and current operating ratings

Absolute maximum ratings are stress ratings only, and functional operation at the maxima is not guaranteed. Stress beyond the limits specified in the following table may affect device reliability or cause permanent damage to the device. For functional operating conditions, refer to the remaining tables in this document.

This device contains circuitry protecting against damage due to high static voltage or electrical fields; however, it is advised that normal precautions be taken to avoid application of any voltages higher than maximum-rated voltages to this high-impedance

General

circuit. Reliability of operation is enhanced if unused inputs are tied to an appropriate logic voltage level (for instance, either  $V_{SS}$  or  $V_{DD}$ ) or the programmable pullup resistor associated with the pin is enabled.

| Symbol           | Description                                                               | Min.                  | Max.                               | Unit |
|------------------|---------------------------------------------------------------------------|-----------------------|------------------------------------|------|
| V <sub>DD</sub>  | Digital supply voltage                                                    | -0.3                  | 6.0                                | V    |
| I <sub>DD</sub>  | Maximum current into V <sub>DD</sub>                                      | —                     | 120                                | mA   |
| V <sub>IN</sub>  | Input voltage except true open drain pins                                 | -0.3                  | V <sub>DD</sub> + 0.3 <sup>1</sup> | V    |
|                  | Input voltage of true open drain pins                                     | -0.3                  | 6                                  | V    |
| Ι <sub>D</sub>   | Instantaneous maximum current single pin limit (applies to all port pins) | -25                   | 25                                 | mA   |
| V <sub>DDA</sub> | Analog supply voltage                                                     | V <sub>DD</sub> – 0.3 | V <sub>DD</sub> + 0.3              | V    |

Table 2. Voltage and current operating ratings

1. Maximum rating of  $V_{\text{DD}}$  also applies to  $V_{\text{IN}}.$ 

## 5 General

## 5.1 Nonswitching electrical specifications

### 5.1.1 DC characteristics

This section includes information about power supply requirements and I/O pin characteristics.

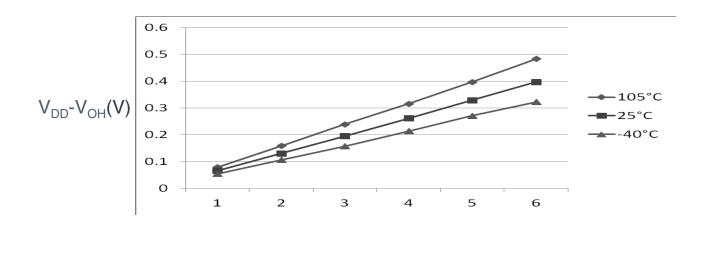
| Symbol           | С |                 | Descriptions                            |                                                          | Min                   | Typical <sup>1</sup> | Max  | Unit |
|------------------|---|-----------------|-----------------------------------------|----------------------------------------------------------|-----------------------|----------------------|------|------|
| —                | _ | C               | Dperating voltage <sup>2</sup>          | —                                                        | 2.7                   | —                    | 5.5  | V    |
| V <sub>OH</sub>  | Р | Output          | All I/O pins, except PTA2               | 5 V, $I_{load} = -5 \text{ mA}$                          | V <sub>DD</sub> – 0.8 | —                    | _    | V    |
|                  | С | high<br>voltage | and PTA3, standard-<br>drive strength   | $3 \text{ V}, \text{ I}_{\text{load}} = -2.5 \text{ mA}$ | $V_{DD} - 0.8$        | —                    | —    | V    |
|                  | Р |                 |                                         | 5 V, $I_{load} = -20 \text{ mA}$                         | $V_{DD} - 0.8$        | —                    | —    | V    |
|                  | С |                 | high-drive strength <sup>3</sup>        | $3 \text{ V}, \text{ I}_{\text{load}} = -10 \text{ mA}$  | $V_{DD}-0.8$          | —                    | —    | V    |
| I <sub>OHT</sub> | D | Output          | Max total I <sub>OH</sub> for all ports | 5 V                                                      | _                     | —                    | -100 | mA   |
|                  |   | high<br>current | 3 V                                     | —                                                        | —                     | -60                  |      |      |
| V <sub>OL</sub>  | Р | Output          | All I/O pins, standard-                 | 5 V, I <sub>load</sub> = 5 mA                            | _                     | —                    | 0.8  | V    |
|                  | С | low<br>voltage  | drive strength                          | 3 V, I <sub>load</sub> = 2.5 mA                          | _                     | —                    | 0.8  | V    |
|                  | Р | vollage         | High current drive pins,                | 5 V, I <sub>load</sub> =20 mA                            | _                     | —                    | 0.8  | V    |
|                  | С |                 | high-drive strength <sup>3</sup>        | 3 V, I <sub>load</sub> = 10 mA                           | _                     |                      | 0.8  | V    |

Table 3. DC characteristics

| Symbol               | С                                          |                                                       | Descriptions                                                                      |                                         | Min                  | Typical <sup>1</sup> | Max                       | Unit |
|----------------------|--------------------------------------------|-------------------------------------------------------|-----------------------------------------------------------------------------------|-----------------------------------------|----------------------|----------------------|---------------------------|------|
| I <sub>OLT</sub>     | D                                          | Output<br>low                                         | Max total $I_{OL}$ for all ports                                                  | 5 V                                     | —                    |                      | 100                       | mA   |
|                      |                                            | current                                               |                                                                                   | 3 V                                     |                      | —                    | 60                        |      |
| V <sub>IH</sub>      | P                                          | Input                                                 | All digital inputs                                                                | $4.5 \le V_{DD} < 5.5 V$                | $0.65 \times V_{DD}$ | —                    | —                         | V    |
|                      |                                            | high<br>voltage                                       |                                                                                   | 2.7≤V <sub>DD</sub> <4.5 V              | $0.70 \times V_{DD}$ | _                    |                           |      |
| V <sub>IL</sub>      | Р                                          | Input low voltage                                     | All digital inputs                                                                | 4.5≤V <sub>DD</sub> <5.5 V              | _                    | _                    | 0.35 ×<br>V <sub>DD</sub> | V    |
|                      |                                            |                                                       |                                                                                   | 2.7≤V <sub>DD</sub> <4.5 V              | —                    | _                    | $0.30 \times V_{DD}$      |      |
| V <sub>hys</sub>     | С                                          | Input<br>hysteresi<br>s                               | All digital inputs                                                                | _                                       | $0.06 \times V_{DD}$ | _                    | —                         | mV   |
| ll <sub>In</sub> l   | Р                                          | Input<br>leakage<br>current                           | Per pin (pins in high<br>impedance input mode)                                    | $V_{IN} = V_{DD}$ or $V_{SS}$           | _                    | 0.1                  | 1                         | μA   |
| <sub>INTOT</sub>     | С                                          | Total<br>leakage<br>combine<br>d for all<br>port pins | Pins in high impedance<br>input mode                                              | $V_{IN} = V_{DD}$ or $V_{SS}$           |                      |                      | 2                         | μΑ   |
| R <sub>PU</sub>      | Р                                          | Pullup<br>resistors                                   | All digital inputs, when<br>enabled (all I/O pins<br>other than PTA2 and<br>PTA3) | _                                       | 30.0                 | _                    | 50.0                      | kΩ   |
| ${\sf R}_{\sf PU}^4$ | Р                                          | Pullup<br>resistors                                   | PTA2 and PTA3 pins                                                                |                                         | 30.0                 | _                    | 60.0                      | kΩ   |
| I <sub>IC</sub>      | D                                          | DC                                                    | Single pin limit                                                                  | $V_{\rm IN} < V_{\rm SS}, V_{\rm IN} >$ | -2                   | —                    | 2                         | mA   |
|                      | injection<br>current <sup>5,</sup><br>6, 7 | current <sup>5,</sup>                                 | Total MCU limit, includes sum of all stressed pins                                | V <sub>DD</sub>                         | -5                   | _                    | 25                        |      |
| C <sub>In</sub>      | С                                          | Input                                                 | capacitance, all pins                                                             | —                                       | —                    | —                    | 7                         | pF   |
| V <sub>RAM</sub>     | С                                          | RA                                                    | M retention voltage                                                               | _                                       | 2.0                  | _                    |                           | V    |

1. Typical values are measured at 25 °C. Characterized, not tested.

- 2. Maximum power supply VDD ramp-up rate is 70V/ms, characterized on samples of different lots.
- 3. Only PTB5, PTC1 and PTC5 support high current output.
- 4. The specified resistor value is the actual value internal to the device. The pullup value may appear higher when measured externally on the pin.
- 5. All functional non-supply pins, except for PTA2 and PTA3, are internally clamped to  $V_{SS}$  and  $V_{DD}$ . PTA2 and PTA3 are true open drain I/O pins that are internally clamped to  $V_{SS}$ .
- 6. Input must be current limited to the value specified. To determine the value of the required current-limiting resistor, calculate resistance values for positive and negative clamp voltages, then use the larger value.
- 7. Power supply must maintain regulation within operating V<sub>DD</sub> range during instantaneous and operating maximum current conditions. If the positive injection current (V<sub>In</sub> > V<sub>DD</sub>) is higher than I<sub>DD</sub>, the injection current may flow out of V<sub>DD</sub> and could result in external power supply going out of regulation. Ensure that external V<sub>DD</sub> load will shunt current higher than maximum injection current when the MCU is not consuming power, such as when no system clock is present, or clock rate is very low (which would reduce overall power consumption).


| Symbol             | С | Desc                                | ription                                             | Min  | Тур  | Max  | Unit |
|--------------------|---|-------------------------------------|-----------------------------------------------------|------|------|------|------|
| V <sub>POR</sub>   | D | POR re-a                            | rm voltage <sup>1</sup>                             | 1.5  | 1.75 | 2.0  | V    |
| V <sub>LVDH</sub>  | С | threshold-hig                       | voltage detect<br>jh range (LVDV<br>1) <sup>2</sup> | 4.2  | 4.3  | 4.4  | V    |
| V <sub>LVW1H</sub> | С | Falling low-<br>voltage             | Level 1 falling<br>(LVWV = 00)                      | 4.3  | 4.4  | 4.5  | V    |
| V <sub>LVW2H</sub> | С | warning<br>threshold—<br>high range | Level 2 falling<br>(LVWV = 01)                      | 4.5  | 4.5  | 4.6  | V    |
| V <sub>LVW3H</sub> | С |                                     | Level 3 falling<br>(LVWV = 10)                      | 4.6  | 4.6  | 4.7  | V    |
| V <sub>LVW4H</sub> | С |                                     | Level 4 falling<br>(LVWV = 11)                      | 4.7  | 4.7  | 4.8  | V    |
| V <sub>HYSH</sub>  | С |                                     | low-voltage<br>ng hysteresis                        | _    | 100  | —    | mV   |
| V <sub>LVDL</sub>  | С | threshold-lov                       | voltage detect<br>w range (LVDV<br>0)               | 2.56 | 2.61 | 2.66 | V    |
| V <sub>LVW1L</sub> | С | Falling low-<br>voltage             | Level 1 falling<br>(LVWV = 00)                      | 2.62 | 2.7  | 2.78 | V    |
| V <sub>LVW2L</sub> | С | warning<br>threshold—<br>low range  | Level 2 falling<br>(LVWV = 01)                      | 2.72 | 2.8  | 2.88 | V    |
| V <sub>LVW3L</sub> | С |                                     | Level 3 falling<br>(LVWV = 10)                      | 2.82 | 2.9  | 2.98 | V    |
| V <sub>LVW4L</sub> | С |                                     | Level 4 falling<br>(LVWV = 11)                      | 2.92 | 3.0  | 3.08 | V    |
| V <sub>HYSDL</sub> | С |                                     | v-voltage detect<br>eresis                          | _    | 40   |      | mV   |
| V <sub>HYSWL</sub> | С |                                     | low-voltage<br>hysteresis                           | —    | 80   |      | mV   |
| V <sub>BG</sub>    | Р | Buffered bar                        | idgap output <sup>3</sup>                           | 1.14 | 1.16 | 1.18 | V    |

| Table 4. | LVD and | POR s | pecification |
|----------|---------|-------|--------------|
|          |         |       | poornoution  |

1. Maximum is highest voltage that POR is guaranteed.

2. Rising thresholds are falling threshold + hysteresis.

3. voltage Factory trimmed at  $V_{DD}$  = 5.0 V, Temp = 25 °C



I<sub>OH</sub>(mA)

Figure 1. Typical  $V_{DD}$ - $V_{OH}$  Vs. I<sub>OH</sub> (standard drive strength) ( $V_{DD}$  = 5 V)

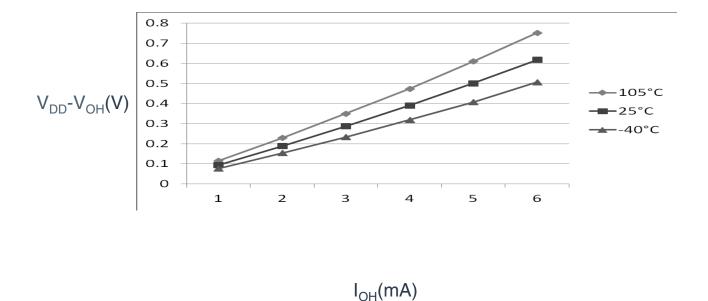
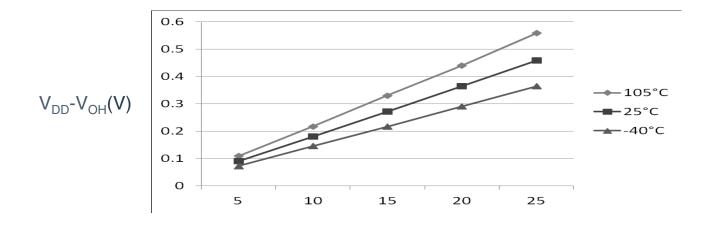
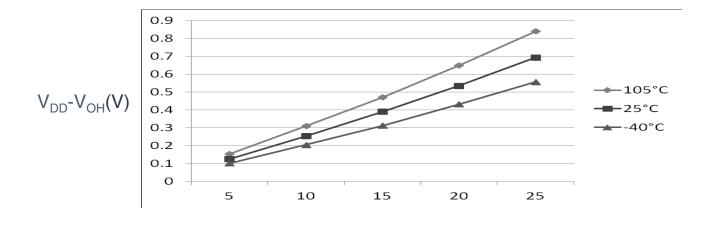
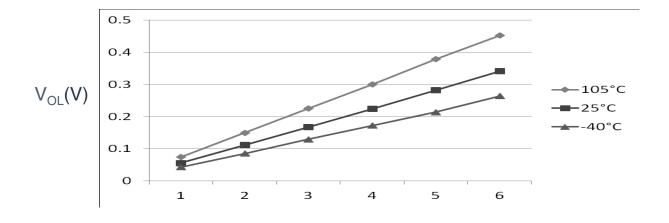





Figure 2. Typical  $V_{DD}$ - $V_{OH}$  Vs. I<sub>OH</sub> (standard drive strength) ( $V_{DD}$  = 3 V)




 $I_{OH}(mA)$ Figure 3. Typical V<sub>DD</sub>-V<sub>OH</sub> Vs. I<sub>OH</sub> (high drive strength) (V<sub>DD</sub> = 5 V)



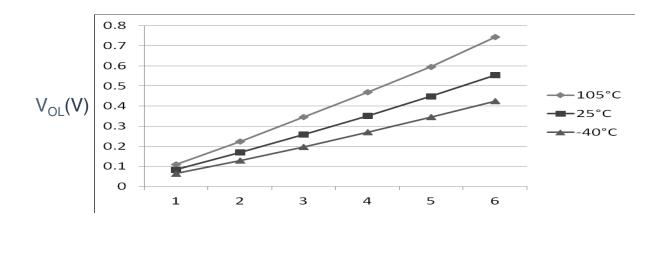

I<sub>OH</sub>(mA)

Figure 4. Typical  $V_{DD}$ - $V_{OH}$  Vs. I<sub>OH</sub> (high drive strength) ( $V_{DD}$  = 3 V)



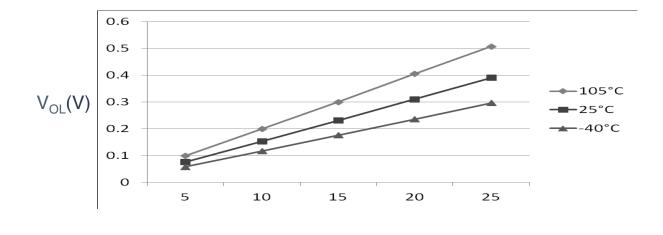

I<sub>OL</sub>(mA)

Figure 5. Typical V<sub>OL</sub> Vs. I<sub>OL</sub> (standard drive strength) (V<sub>DD</sub> = 5 V)



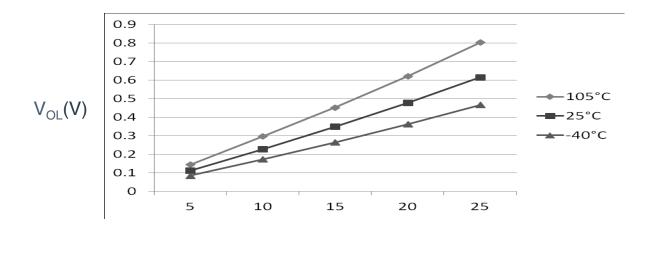

I<sub>OL</sub>(mA)

Figure 6. Typical V<sub>OL</sub> Vs. I<sub>OL</sub> (standard drive strength) (V<sub>DD</sub> = 3 V)



I<sub>OL</sub>(mA)

Figure 7. Typical V<sub>OL</sub> Vs. I<sub>OL</sub> (high drive strength) (V<sub>DD</sub> = 5 V)



 $I_{OL}(mA) \label{eq:IOL}$  Figure 8. Typical V<sub>OL</sub> Vs. I<sub>OL</sub> (high drive strength) (V\_{DD} = 3 V)

### 5.1.2 Supply current characteristics

This section includes information about power supply current in various operating modes.

| С | Parameter                                           | Symbol           | Core/Bus<br>Freq | V <sub>DD</sub> (V) | Typical <sup>1</sup> | Max <sup>2</sup> | Unit | Temp          |
|---|-----------------------------------------------------|------------------|------------------|---------------------|----------------------|------------------|------|---------------|
| С | Run supply current FEI                              | RI <sub>DD</sub> | 48/24 MHz        | 5                   | 10.1                 |                  | mA   | -40 to 105 °C |
| С | mode, all modules clocks<br>enabled; run from flash |                  | 24/24 MHz        |                     | 7.1                  |                  |      |               |
| С |                                                     |                  | 12/12 MHz        |                     | 4.4                  |                  |      |               |
| С |                                                     |                  | 1/1 MHz          |                     | 2.1                  | _                |      |               |
| С |                                                     |                  | 48/24 MHz        | 3                   | 9.9                  |                  |      |               |
| С |                                                     |                  | 24/24 MHz        |                     | 6.9                  |                  |      |               |
| С |                                                     |                  | 12/12 MHz        |                     | 4.2                  | _                |      |               |
|   |                                                     |                  | 1/1 MHz          |                     | 1.9                  | _                |      |               |
| С | Run supply current FEI                              | RI <sub>DD</sub> | 48/24 MHz        | 5                   | 7.4                  |                  | mA   | -40 to 105 °C |
| С | mode, all modules clocks disabled and gated; run    |                  | 24/24 MHz        |                     | 5.2                  | _                |      |               |
| С | from flash                                          |                  | 12/12 MHz        |                     | 3.5                  | _                |      |               |
| С |                                                     |                  | 1/1 MHz          |                     | 2                    | _                |      |               |
| С |                                                     |                  | 48/24 MHz        | 3                   | 7.2                  | _                |      |               |
| С |                                                     |                  | 24/24 MHz        |                     | 5                    | _                |      |               |
| С |                                                     |                  | 12/12 MHz        |                     | 3.3                  | _                |      |               |
| С |                                                     |                  | 1/1 MHz          |                     | 1.8                  | _                |      |               |
| С | Run supply current FBE                              | RI <sub>DD</sub> | 48/24 MHz        | 5                   | 13.2                 |                  | mA   | -40 to 105 °C |
| Р | mode, all modules clocks<br>enabled; run from RAM   |                  | 24/24 MHz        |                     | 9.1                  | 9.5              |      |               |
| С |                                                     |                  | 12/12 MHz        |                     | 5.1                  | —                |      |               |
| С |                                                     |                  | 1/1 MHz          |                     | 1.8                  | _                |      |               |
| С |                                                     |                  | 48/24 MHz        | 3                   | 13                   |                  |      |               |
| Р |                                                     |                  | 24/24 MHz        |                     | 9                    | 9.4              |      |               |
| С |                                                     |                  | 12/12 MHz        |                     | 5                    | _                |      |               |
| С |                                                     |                  | 1/1 MHz          |                     | 1.7                  |                  |      |               |
| С | Run supply current FBE                              | RI <sub>DD</sub> | 48/24 MHz        | 5                   | 10.6                 | _                | mA   | -40 to 105 °C |
| Р | mode, all modules clocks disabled and gated; run    |                  | 24/24 MHz        |                     | 7.6                  | 7.8              |      |               |
| С | from RAM                                            |                  | 12/12 MHz        |                     | 4.3                  |                  |      |               |
| С |                                                     |                  | 1/1 MHz          |                     | 1.7                  | _                |      |               |
| С |                                                     |                  | 48/24 MHz        | 3                   | 10.5                 | _                |      |               |
| Р |                                                     |                  | 24/24 MHz        |                     | 7.5                  | 7.7              |      |               |
| С |                                                     |                  | 12/12 MHz        |                     | 4.2                  | _                |      |               |
|   |                                                     |                  | 1/1 MHz          |                     | 1.6                  |                  |      |               |

Table 5. Supply current characteristics

| С | Parameter                                                 | Symbol           | Core/Bus<br>Freq | V <sub>DD</sub> (V) | Typical <sup>1</sup> | Max <sup>2</sup> | Unit | Temp          |
|---|-----------------------------------------------------------|------------------|------------------|---------------------|----------------------|------------------|------|---------------|
| С | Wait mode current FEI                                     | WI <sub>DD</sub> | 48/24 MHz        | 5                   | 7.2                  | _                | mA   | -40 to 105 °C |
| Р | mode, all modules clocks<br>enabled                       |                  | 24/24 MHz        |                     | 6.3                  | 6.5              |      |               |
| С | enabled                                                   |                  | 12/12 MHz        |                     | 3.6                  |                  |      |               |
| С |                                                           |                  | 1/1 MHz          |                     | 1.9                  |                  |      |               |
| С |                                                           |                  | 48/24 MHz        | 3                   | 7.1                  |                  |      |               |
| Р |                                                           |                  | 24/24 MHz        |                     | 6.2                  | 6.4              |      |               |
| С |                                                           |                  | 12/12 MHz        |                     | 3.5                  |                  |      |               |
| С |                                                           |                  | 1/1 MHz          |                     | 1.8                  | _                |      |               |
| Р | Stop mode supply current                                  | SI <sub>DD</sub> | _                | 5                   | 2                    | 40               | μA   | -40 to 105 °C |
| Р | no clocks active (except 1<br>kHz LPO clock) <sup>3</sup> |                  | —                | 3                   | 1.9                  | 39               |      | -40 to 105 °C |
| С | ADC adder to Stop                                         | —                | —                | 5                   | 86                   | _                | μA   | -40 to 105 °C |
| С | ADLPC = 1                                                 |                  |                  | 3                   | 82                   | —                |      |               |
|   | ADLSMP = 1                                                |                  |                  |                     |                      |                  |      |               |
|   | ADCO = 1                                                  |                  |                  |                     |                      |                  |      |               |
|   | MODE = 10B                                                |                  |                  |                     |                      |                  |      |               |
|   | ADICLK = 11B                                              |                  |                  |                     |                      |                  |      |               |
| С | ACMP adder to Stop                                        | _                | _                | 5                   | 12                   | _                | μA   | -40 to 105 °C |
| С |                                                           |                  |                  | 3                   | 12                   | _                | 1    |               |
| С | LVD adder to Stop <sup>4</sup>                            |                  | —                | 5                   | 130                  | _                | μA   | -40 to 105 °C |
| С |                                                           |                  |                  | 3                   | 125                  |                  |      |               |

Table 5. Supply current characteristics (continued)

1. Data in Typical column was characterized at 5.0 V, 25 °C or is typical recommended value.

2. The Max current is observed at high temperature of 105 °C.

3. RTC adder cause <1 µA I<sub>DD</sub> increase typically, RTC clock source is 1 kHz LPO clock.

4. LVD is periodically woken up from Stop by 5% duty cycle. The period is equal to or less than 2 ms.

### 5.1.3 EMC performance

Electromagnetic compatibility (EMC) performance is highly dependent on the environment in which the MCU resides. Board design and layout, circuit topology choices, location and characteristics of external components as well as MCU software operation play a significant role in EMC performance. The system designer must consult the following applications notes, available on **nxp.com** for advice and guidance specifically targeted at optimizing EMC performance.

- AN2321: Designing for Board Level Electromagnetic Compatibility
- AN1050: Designing for Electromagnetic Compatibility (EMC) with HCMOS Microcontrollers
- AN1263: Designing for Electromagnetic Compatibility with Single-Chip Microcontrollers

- AN2764: Improving the Transient Immunity Performance of Microcontroller-Based Applications
- AN1259: System Design and Layout Techniques for Noise Reduction in MCU-Based Systems

### 5.1.3.1 EMC radiated emissions operating behaviors Table 6. EMC radiated emissions operating behaviors for 20-pin SOIC package

| Symbol              | Description                        | Frequency<br>band (MHz) | Тур. | Unit | Notes |
|---------------------|------------------------------------|-------------------------|------|------|-------|
| V <sub>RE1</sub>    | Radiated emissions voltage, band 1 | 0.15–50                 | 11   | dBµV | 1, 2  |
| V <sub>RE2</sub>    | Radiated emissions voltage, band 2 | 50–150                  | 14   | dBµV |       |
| V <sub>RE3</sub>    | Radiated emissions voltage, band 3 | 150–500                 | 11   | dBµV |       |
| V <sub>RE4</sub>    | Radiated emissions voltage, band 4 | 500–1000                | 5    | dBµV |       |
| V <sub>RE_IEC</sub> | IEC level                          | 0.15–1000               | М    | —    | 2, 3  |

- Determined according to IEC Standard 61967-1, Integrated Circuits Measurement of Electromagnetic Emissions, 150 kHz to 1 GHz Part 1: General Conditions and Definitions and IEC Standard 61967-2, Integrated Circuits - Measurement of Electromagnetic Emissions, 150 kHz to 1 GHz Part 2: Measurement of Radiated Emissions—TEM Cell and Wideband TEM Cell Method. Measurements were made while the microcontroller was running basic application code. The reported emission level is the value of the maximum measured emission, rounded up to the next whole number, from among the measured orientations in each frequency range.
- 2.  $V_{DD} = 5.0 \text{ V}, \text{ T}_{A} = 25 \text{ °C}, \text{ f}_{OSC} = 8 \text{ MHz} \text{ (crystal)}, \text{ f}_{SYS} = 40 \text{ MHz}, \text{ f}_{BUS} = 20 \text{ MHz}$
- 3. Specified according to Annex D of IEC Standard 61967-2, Measurement of Radiated Emissions TEM Cell and Wideband TEM Cell Method

### 5.2 Switching specifications

## 5.2.1 Control timing

Table 7. Control timing

| Num | С | Rating                                  | I                                       | Symbol              | Min                    | Typical <sup>1</sup> | Max  | Unit |
|-----|---|-----------------------------------------|-----------------------------------------|---------------------|------------------------|----------------------|------|------|
| 1   | D | System and core clock                   |                                         | f <sub>Sys</sub>    | DC                     |                      | 48   | MHz  |
| 2   | Р | Bus frequency $(t_{cyc} = 1/f_{Bus})$   |                                         | f <sub>Bus</sub>    | DC                     | _                    | 24   | MHz  |
| 3   | Р | Internal low power oscillator frequency |                                         | f <sub>LPO</sub>    | 0.67                   | 1.0                  | 1.25 | KHz  |
| 4   | D | External reset pulse width <sup>2</sup> | External reset pulse width <sup>2</sup> |                     | 1.5 ×                  | _                    | _    | ns   |
|     |   |                                         |                                         |                     | t <sub>cyc</sub>       |                      |      |      |
| 5   | D | Reset low drive                         |                                         | t <sub>rstdrv</sub> | $34 \times t_{cyc}$    | _                    | _    | ns   |
| 6   | D | IRQ pulse width                         | Asynchronous<br>path <sup>2</sup>       | t <sub>ILIH</sub>   | 100                    | _                    | —    | ns   |
|     | D | -                                       | Synchronous path <sup>3</sup>           | t <sub>IHIL</sub>   | 1.5 × t <sub>cyc</sub> | _                    | _    | ns   |
| 7   | D | Keyboard interrupt pulse<br>width       | Asynchronous<br>path <sup>2</sup>       | t <sub>ILIH</sub>   | 100                    |                      |      | ns   |

Table continues on the next page ...

#### Switching specifications

| Num | С | Rating                                               | I                | Symbol            | Min                 | Typical <sup>1</sup> | Мах | Unit |
|-----|---|------------------------------------------------------|------------------|-------------------|---------------------|----------------------|-----|------|
|     | D |                                                      | Synchronous path | t <sub>IHIL</sub> | $1.5 	imes t_{cyc}$ | —                    | —   | ns   |
| 8   | С | Port rise and fall time - —                          |                  | t <sub>Rise</sub> | —                   | 10.2                 |     | ns   |
|     | С | Normal drive strength<br>(load = 50 pF) <sup>4</sup> |                  | t <sub>Fall</sub> | _                   | 9.5                  | —   | ns   |
|     | С | Port rise and fall time -                            | _                | t <sub>Rise</sub> | —                   | 5.4                  | _   | ns   |
|     | С | high drive strength (load = 50 pF) <sup>4</sup>      |                  | t <sub>Fall</sub> |                     | 4.6                  |     | ns   |

 Table 7. Control timing (continued)

- 1. Typical values are based on characterization data at  $V_{DD}$  = 5.0 V, 25 °C unless otherwise stated.
- 2. This is the shortest pulse that is guaranteed to be recognized as a RESET pin request.
- 3. This is the minimum pulse width that is guaranteed to pass through the pin synchronization circuitry. Shorter pulses may or may not be recognized. In stop mode, the synchronizer is bypassed so shorter pulses can be recognized.
- 4. Timing is shown with respect to 20% V<sub>DD</sub> and 80% V<sub>DD</sub> levels. Temperature range -40 °C to 105 °C.

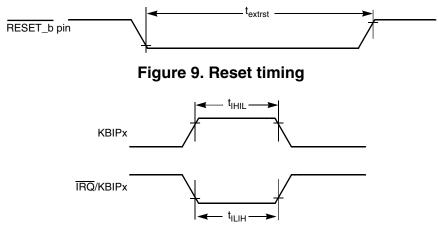
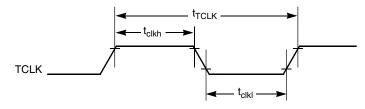



Figure 10. KBIPx timing

### 5.2.2 FTM module timing

Synchronizer circuits determine the shortest input pulses that can be recognized or the fastest clock that can be used as the optional external source to the timer counter.

Table 8. FTM input timing


| С | Function                    | Symbol             | Min              | Max                   | Unit                   |
|---|-----------------------------|--------------------|------------------|-----------------------|------------------------|
| D | Timer clock<br>frequency    | f <sub>Timer</sub> | f <sub>Bus</sub> | f <sub>Sys</sub>      | Hz                     |
| D | External clock<br>frequency | f <sub>TCLK</sub>  | 0                | f <sub>Timer</sub> /4 | Hz                     |
| D | External clock period       | t <sub>TCLK</sub>  | 4                | _                     | t <sub>Timer</sub> , 1 |
| D | External clock high time    | t <sub>clkh</sub>  | 1.5              | —                     | t <sub>Timer</sub> 1   |

#### Thermal specifications

| С | Function                     | Symbol            | Min | Мах | Unit                 |
|---|------------------------------|-------------------|-----|-----|----------------------|
| D | External clock low time      | t <sub>clkl</sub> | 1.5 | _   | t <sub>Timer</sub> 1 |
| D | Input capture pulse<br>width | t <sub>ICPW</sub> | 1.5 | _   | t <sub>Timer</sub> 1 |

Table 8. FTM input timing (continued)

1.  $t_{Timer} = 1/f_{Timer}$ 



#### Figure 11. Timer external clock

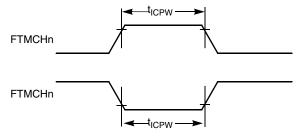



Figure 12. Timer input capture pulse

### 5.3 Thermal specifications

### 5.3.1 Thermal operating requirements

#### Table 9. Thermal operating requirements

| Symbol         | Description              | Min. | Max. | Unit | Notes |
|----------------|--------------------------|------|------|------|-------|
| TJ             | Die junction temperature | -40  | 125  | °C   |       |
| T <sub>A</sub> | Ambient temperature      | -40  | 105  | °C   | 1     |

1. Maximum  $T_A$  can be exceeded only if the user ensures that  $T_J$  does not exceed maximum  $T_J$ . The simplest method to determine  $T_J$  is:  $T_J = T_A + \theta_{JA} x$  chip power dissipation

### 5.3.2 Thermal characteristics

This section provides information about operating temperature range, power dissipation, and package thermal resistance. Power dissipation on I/O pins is usually small compared to the power dissipation in on-chip logic and voltage regulator circuits, and it is user-

#### Thermal specifications

determined rather than being controlled by the MCU design. To take  $P_{I/O}$  into account in power calculations, determine the difference between actual pin voltage and  $V_{SS}$  or  $V_{DD}$  and multiply by the pin current for each I/O pin. Except in cases of unusually high pin current (heavy loads), the difference between pin voltage and  $V_{SS}$  or  $V_{DD}$  will be very small.

| Board type        | Symbol            | Description                                                                                              | 24 QFN | 20 SOIC | 16<br>TSSOP | Unit | Notes |
|-------------------|-------------------|----------------------------------------------------------------------------------------------------------|--------|---------|-------------|------|-------|
| Single-layer (1S) | R <sub>θJA</sub>  | Thermal resistance, junction to ambient (natural convection)                                             | 110    | 88      | 130         | °C/W | 1, 2  |
| Four-layer (2s2p) | R <sub>θJA</sub>  | Thermal resistance, junction to ambient (natural convection)                                             | 42     | 61      | 87          | °C/W | 1, 3  |
| Single-layer (1S) | R <sub>θJMA</sub> | Thermal resistance, junction to ambient (200 ft./min. air speed)                                         | 92     | 74      | 109         | °C/W | 1, 3  |
| Four-layer (2s2p) | R <sub>θJMA</sub> | Thermal resistance, junction to ambient (200 ft./min. air speed)                                         | 36     | 55      | 80          | °C/W | 1, 3  |
| _                 | R <sub>θJB</sub>  | Thermal resistance, junction to board                                                                    | 18     | 34      | 48          | °C/W | 4     |
| _                 | R <sub>θJC</sub>  | Thermal resistance, junction to case                                                                     | 3.7    | 37      | 33          | °C/W | 5     |
| _                 | Ψ <sub>JT</sub>   | Thermal characterization<br>parameter, junction to package<br>top outside center (natural<br>convection) | 10     | 20      | 10          | °C/W | 6     |

Table 10. Thermal attributes

- 1. Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal resistance.
- 2. Per JEDEC JESD51-2 with the single layer board (JESD51-3) horizontal.
- 3. Per JEDEC JESD51-6 with the board (JESD51-7) horizontal.
- 4. Thermal resistance between the die and the printed circuit board per JEDEC JESD51-8. Board temperature is measured on the top surface of the board near the package.
- 5. Thermal resistance between the die and the solder pad on the bottom of the package. Interface resistance is ignored.
- 6. Thermal characterization parameter indicating the temperature difference between package top and the junction temperature per JEDEC JESD51-2. When Greek letters are not available, the thermal characterization.

### The average chip-junction temperature $(T_J)$ in °C can be obtained from:

 $T_J = T_A + (P_D \times \theta_{JA})$ 

Where:

 $T_A$  = Ambient temperature, °C

 $\theta_{JA}$  = Package thermal resistance, junction-to-ambient, °C/W

 $P_D = P_{int} + P_{I/O}$ 

 $P_{int} = I_{DD} \times V_{DD}$ , Watts - chip internal power

 $P_{I/O}$  = Power dissipation on input and output pins - user determined

For most applications,  $P_{I/O} \ll P_{int}$  and can be neglected. An approximate relationship between  $P_D$  and  $T_J$  (if  $P_{I/O}$  is neglected) is:

 $P_D = K \div (T_J + 273 \ ^\circ C)$ 

Solving the equations above for K gives:

$$\mathbf{K} = \mathbf{P}_{\mathrm{D}} \times (\mathbf{T}_{\mathrm{A}} + 273 \ ^{\circ}\mathrm{C}) + \mathbf{\theta}_{\mathrm{JA}} \times (\mathbf{P}_{\mathrm{D}})^{2}$$

where K is a constant pertaining to the particular part. K can be determined by measuring  $P_D$  (at equilibrium) for an known  $T_A$ . Using this value of K, the values of  $P_D$  and  $T_J$  can be obtained by solving the above equations iteratively for any value of  $T_A$ .

## 6 Peripheral operating requirements and behaviors

### 6.1 Core modules

### 6.1.1 SWD electricals

| Table 11. | SWD full voltage range electricals |
|-----------|------------------------------------|
|-----------|------------------------------------|

| Symbol | Description                                     | Min. | Max. | Unit |
|--------|-------------------------------------------------|------|------|------|
|        | Operating voltage                               | 2.7  | 5.5  | V    |
| J1     | SWD_CLK frequency of operation                  |      |      |      |
|        | Serial wire debug                               | 0    | 24   | MHz  |
| J2     | SWD_CLK cycle period                            | 1/J1 |      | ns   |
| JЗ     | SWD_CLK clock pulse width                       |      |      |      |
|        | Serial wire debug                               | 20   | _    | ns   |
| J4     | SWD_CLK rise and fall times                     | —    | 3    | ns   |
| J9     | SWD_DIO input data setup time to SWD_CLK rise   | 10   | _    | ns   |
| J10    | SWD_DIO input data hold time after SWD_CLK rise | 3    | —    | ns   |
| J11    | SWD_CLK high to SWD_DIO data valid              |      | 35   | ns   |
| J12    | SWD_CLK high to SWD_DIO high-Z                  | 5    | _    | ns   |

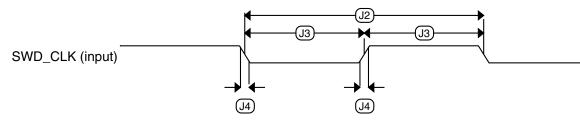



Figure 13. Serial wire clock input timing

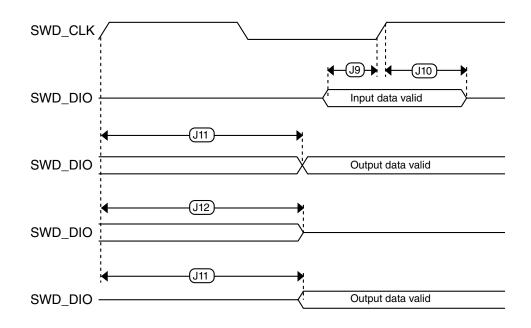



Figure 14. Serial wire data timing

## 6.2 External oscillator (OSC) and ICS characteristics

#### Table 12. OSC and ICS specifications (temperature range = -40 to 105 °C ambient)

| Num | С | C                                   | Characteristic                                | Symbol                      | Min   | Typical <sup>1</sup>  | Max     | Unit |
|-----|---|-------------------------------------|-----------------------------------------------|-----------------------------|-------|-----------------------|---------|------|
| 1   | С | Crystal or                          | Low range (RANGE = 0)                         | f <sub>lo</sub>             | 31.25 | 32.768                | 39.0625 | kHz  |
|     | С | resonator<br>frequency              | High range (RANGE = 1)                        | f <sub>hi</sub>             | 4     | —                     | 24      | MHz  |
| 2   | D | Lo                                  | bad capacitors                                | C1, C2                      |       | See Note <sup>2</sup> |         |      |
| 3   | D | Feedback<br>resistor                | Low Frequency, Low-Power<br>Mode <sup>3</sup> | R <sub>F</sub>              | _     | —                     | —       | ΜΩ   |
|     |   |                                     | Low Frequency, High-Gain<br>Mode              |                             | —     | 10                    | —       | MΩ   |
|     |   |                                     | High Frequency, Low-<br>Power Mode            |                             | _     | 1                     | _       | MΩ   |
|     |   |                                     | High Frequency, High-Gain<br>Mode             |                             | _     | 1                     | —       | ΜΩ   |
| 4   | D | Series resistor -                   | Low-Power Mode <sup>3</sup>                   | R <sub>S</sub> <sup>2</sup> | _     | 0                     | _       | kΩ   |
|     |   | Low Frequency                       | High-Gain Mode                                |                             | _     | 200                   | —       | kΩ   |
| 5   | D | Series resistor -<br>High Frequency | Low-Power Mode <sup>3</sup>                   | ₽ <sub>S</sub> <sup>2</sup> | —     | 0                     | —       | kΩ   |

| Table 12. | OSC and ICS specifications (temperature range = -40 to 105 °C ambient) |
|-----------|------------------------------------------------------------------------|
|           | (continued)                                                            |

| Num | С | C Characteristic                                                                |                                                | Symbol                | Min   | Typical <sup>1</sup> | Max     | Unit              |
|-----|---|---------------------------------------------------------------------------------|------------------------------------------------|-----------------------|-------|----------------------|---------|-------------------|
|     | D | Series resistor -                                                               | 4 MHz                                          |                       | _     | 0                    | _       | kΩ                |
|     | D | High<br>Frequency,                                                              | 8 MHz                                          |                       | _     | 0                    | _       | kΩ                |
|     | D | High-Gain Mode                                                                  | 16 MHz                                         |                       | —     | 0                    | _       | kΩ                |
| 6   | С | Crystal start-up                                                                | Low range, low power                           | t <sub>CSTL</sub>     | _     | 1000                 | _       | ms                |
|     | С | time low range<br>= 32.768 kHz                                                  | Low range, high gain                           |                       | _     | 800                  | _       | ms                |
|     | С | crystal; High                                                                   | High range, low power                          | t <sub>CSTH</sub>     | _     | 3                    | _       | ms                |
|     | С | range = 20 MHz<br>crystal <sup>4,5</sup>                                        | High range, high gain                          |                       | —     | 1.5                  |         | ms                |
| 7   | Т | Internal re                                                                     | eference start-up time                         | t <sub>IRST</sub>     | _     | 20                   | 50      | μs                |
| 8   | Р | Internal referenc                                                               | e clock (IRC) frequency trim<br>range          | f <sub>int_t</sub>    | 31.25 | —                    | 39.0625 | kHz               |
| 9   | Ρ | Internal<br>reference clock<br>frequency,<br>factory trimmed <sup>,</sup>       | T = 25 °C, $V_{DD}$ = 5 V                      | f <sub>int_ft</sub>   | _     | 37.5                 | _       | kHz               |
| 10  | Р | DCO output<br>frequency range                                                   | FLL reference = fint_t, flo,<br>or fhi/RDIV    | f <sub>dco</sub>      | 40    | —                    | 50      | MHz               |
| 11  | Ρ | Factory trimmed<br>internal<br>oscillator<br>accuracy <sup>6</sup>              | T = 25 °C, V <sub>DD</sub> = 5 V               | ∆f <sub>int_ft</sub>  | -0.5  | _                    | 0.5     | %                 |
| 12  | С | Deviation of IRC over                                                           | Over temperature range<br>from -40 °C to 105°C | $\Delta f_{int_t}$    | -1.2  | _                    | 1       | %                 |
|     |   | temperature<br>when trimmed<br>at T = 25 °C,<br>$V_{DD}$ = 5 V                  | Over temperature range<br>from 0 °C to 105°C   | ∆f <sub>int_t</sub>   | -0.5  | _                    | 1       |                   |
| 13  | С | Frequency<br>accuracy of                                                        | Over temperature range<br>from -40 °C to 105°C | $\Delta f_{dco_{ft}}$ | -1.7  | —                    | 1.5     | %                 |
|     |   | DCO output<br>using factory<br>trim value                                       | Over temperature range<br>from 0 °C to 105°C   | $\Delta f_{dco_{ft}}$ | -1    | _                    | 1.5     |                   |
| 14  | С | FLL a                                                                           | acquisition time <sup>4,7</sup>                | t <sub>Acquire</sub>  | _     | —                    | 2       | ms                |
| 15  | С | Long term jitter of DCO output clock (averaged over 2 ms interval) <sup>8</sup> |                                                | C <sub>Jitter</sub>   | _     | 0.02                 | 0.2     | %f <sub>dco</sub> |

1. Data in Typical column was characterized at 5.0 V, 25 °C or is typical recommended value.

- 2. See crystal or resonator manufacturer's recommendation.
- Load capacitors (C<sub>1</sub>,C<sub>2</sub>), feedback resistor (R<sub>F</sub>) and series resistor (R<sub>S</sub>) are incorporated internally when RANGE = HGO = 0.
- 4. This parameter is characterized and not tested on each device.
- 5. Proper PC board layout procedures must be followed to achieve specifications.
- 6. The accuracy is for factory trimmed deviation when performing trim process in NXP, however, the reflow process may cause an extra 0.5% drift at the room temperature.
- This specification applies to any time the FLL reference source or reference divider is changed, trim value changed, or changing from FLL disabled (FBELP, FBILP) to FLL enabled (FEI, FEE, FBE, FBI). If a crystal/resonator is being used as the reference, this specification assumes it is already running.

#### Peripheral operating requirements and behaviors

 Jitter is the average deviation from the programmed frequency measured over the specified interval at maximum f<sub>Bus</sub>. Measurements are made with the device powered by filtered supplies and clocked by a stable external clock signal. Noise injected into the FLL circuitry via V<sub>DD</sub> and V<sub>SS</sub> and variation in crystal oscillator frequency increase the C<sub>Jitter</sub> percentage for a given interval.

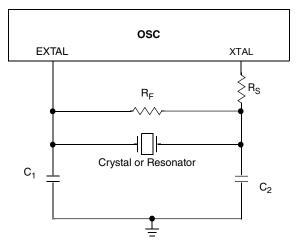



Figure 15. Typical crystal or resonator circuit

### 6.3 NVM specifications

This section provides details about program/erase times and program/erase endurance for the flash memories.

| С | Characteristic                                       | Symbol                  | Min <sup>1</sup> | Typical <sup>2</sup> | Max <sup>3</sup> | Unit <sup>4</sup> |
|---|------------------------------------------------------|-------------------------|------------------|----------------------|------------------|-------------------|
| D | Supply voltage for program/erase –40<br>°C to 105 °C | V <sub>prog/erase</sub> | 2.7              |                      | 5.5              | V                 |
| D | Supply voltage for read operation                    | V <sub>Read</sub>       | 2.7              | —                    | 5.5              | V                 |
| D | NVM Bus frequency                                    | f <sub>NVMBUS</sub>     | 1                | —                    | 24               | MHz               |
| D | NVM Operating frequency                              | f <sub>NVMOP</sub>      | 0.8              | 1                    | 1.05             | MHz               |
| D | Erase Verify All Blocks                              | t <sub>VFYALL</sub>     | —                | —                    | 2605             | t <sub>cyc</sub>  |
| D | Erase Verify Flash Block                             | t <sub>RD1BLK</sub>     | —                | —                    | 2579             | t <sub>cyc</sub>  |
| D | Erase Verify Flash Section                           | t <sub>RD1SEC</sub>     | —                |                      | 485              | t <sub>cyc</sub>  |
| D | Read Once                                            | t <sub>RDONCE</sub>     | —                | —                    | 464              | t <sub>cyc</sub>  |
| D | Program Flash (2 word)                               | t <sub>PGM2</sub>       | 0.12             | 0.13                 | 0.31             | ms                |
| D | Program Flash (4 word)                               | t <sub>PGM4</sub>       | 0.21             | 0.21                 | 0.49             | ms                |
| D | Program Once                                         | <b>t</b> PGMONCE        | 0.20             | 0.21                 | 0.21             | ms                |
| D | Erase All Blocks                                     | t <sub>ERSALL</sub>     | 95.42            | 100.18               | 100.30           | ms                |
| D | Erase Flash Block                                    | t <sub>ERSBLK</sub>     | 95.42            | 100.18               | 100.30           | ms                |
| D | Erase Flash Sector                                   | t <sub>ERSPG</sub>      | 19.10            | 20.05                | 20.09            | ms                |
| D | Unsecure Flash                                       | t <sub>UNSECU</sub>     | 95.42            | 100.19               | 100.31           | ms                |
| D | Verify Backdoor Access Key                           | t <sub>VFYKEY</sub>     | —                | —                    | 482              | t <sub>cyc</sub>  |

Table 13. Flash characteristics

| С | Characteristic                                                                                                              | Symbol              | Min <sup>1</sup> | Typical <sup>2</sup> | Max <sup>3</sup> | Unit <sup>4</sup> |
|---|-----------------------------------------------------------------------------------------------------------------------------|---------------------|------------------|----------------------|------------------|-------------------|
| D | Set User Margin Level                                                                                                       | t <sub>MLOADU</sub> | —                | —                    | 415              | t <sub>cyc</sub>  |
| С | FLASH Program/erase endurance $T_L$ to $T_H$ = -40 °C to 105 °C                                                             | n <sub>FLPE</sub>   | 10 k             | 100 k                | —                | Cycles            |
| С | Data retention at an average junction<br>temperature of T <sub>Javg</sub> = 85°C after up to<br>10,000 program/erase cycles | t <sub>D_ret</sub>  | 15               | 100                  | _                | years             |

Table 13. Flash characteristics (continued)

1. Minimum times are based on maximum  $f_{\text{NVMOP}}$  and maximum  $f_{\text{NVMBUS}}$ 

2. Typical times are based on typical  $f_{\text{NVMOP}}$  and maximum  $f_{\text{NVMBUS}}$ 

3. Maximum times are based on typical  $f_{NVMOP}$  and typical  $f_{NVMBUS}$  plus aging

4.  $t_{cyc} = 1 / f_{NVMBUS}$ 

Program and erase operations do not require any special power sources other than the normal  $V_{DD}$  supply. For more detailed information about program/erase operations, see the Flash Memory Module section in the reference manual.

### 6.4 Analog

### 6.4.1 ADC characteristics

 Table 14. 5 V 12-bit ADC operating conditions

| Characteri<br>stic               | Conditions                                                           | Symbol            | Min               | Typ <sup>1</sup> | Max               | Unit | Comment            |
|----------------------------------|----------------------------------------------------------------------|-------------------|-------------------|------------------|-------------------|------|--------------------|
| Supply                           | Absolute                                                             | V <sub>DDA</sub>  | 2.7               | —                | 5.5               | V    | —                  |
| voltage                          | Delta to V <sub>DD</sub> (V <sub>DD</sub> -V <sub>DDA</sub> )        | $\Delta V_{DDA}$  | -100              | 0                | +100              | mV   | —                  |
| Input<br>voltage                 |                                                                      | V <sub>ADIN</sub> | V <sub>REFL</sub> | _                | V <sub>REFH</sub> | V    | -                  |
| Input<br>capacitance             |                                                                      | C <sub>ADIN</sub> | —                 | 4.5              | 5.5               | pF   | -                  |
| Input<br>resistance              |                                                                      | R <sub>ADIN</sub> | —                 | 3                | 5                 | kΩ   | -                  |
| Analog<br>source                 | <ul> <li>12-bit mode</li> <li>f<sub>ADCK</sub> &gt; 4 MHz</li> </ul> | R <sub>AS</sub>   |                   | _                | 2                 | kΩ   | External to<br>MCU |
| resistance                       | • f <sub>ADCK</sub> < 4 MHz                                          |                   |                   | —                | 5                 |      |                    |
|                                  | <ul> <li>10-bit mode</li> <li>f<sub>ADCK</sub> &gt; 4 MHz</li> </ul> |                   | —                 | _                | 5                 |      |                    |
|                                  | • f <sub>ADCK</sub> < 4 MHz                                          |                   | —                 | _                | 10                |      |                    |
|                                  | 8-bit mode                                                           |                   | —                 | —                | 10                |      |                    |
|                                  | (all valid f <sub>ADCK</sub> )                                       |                   |                   |                  |                   |      |                    |
| ADC                              | High speed (ADLPC=0)                                                 | f <sub>ADCK</sub> | 0.4               | —                | 8.0               | MHz  |                    |
| conversion<br>clock<br>frequency | Low power (ADLPC=1)                                                  |                   | 0.4               | —                | 4.0               |      |                    |

#### Peripheral operating requirements and behaviors

1. Typical values assume  $V_{DDA} = 5.0 \text{ V}$ , Temp = 25°C,  $f_{ADCK}=1.0 \text{ MHz}$  unless otherwise stated. Typical values are for reference only and are not tested in production.

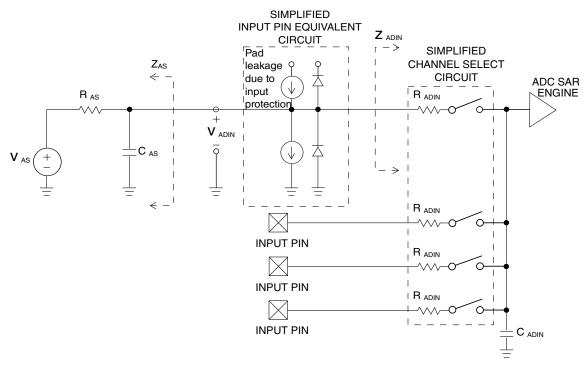



Figure 16. ADC input impedance equivalency diagram

| Table 15. | 12-bit ADC | characteristics | (V <sub>REFH</sub> = | $V_{DDA}$ , | $V_{REFL} = V$ | / <sub>SSA</sub> ) |
|-----------|------------|-----------------|----------------------|-------------|----------------|--------------------|
|-----------|------------|-----------------|----------------------|-------------|----------------|--------------------|

| Characteristic | Conditions              | С | Symbol           | Min | Typ <sup>1</sup> | Max | Unit |
|----------------|-------------------------|---|------------------|-----|------------------|-----|------|
| Supply current |                         | Т | I <sub>DDA</sub> | _   | 133              | —   | μA   |
| ADLPC = 1      |                         |   |                  |     |                  |     |      |
| ADLSMP = 1     |                         |   |                  |     |                  |     |      |
| ADCO = 1       |                         |   |                  |     |                  |     |      |
| Supply current |                         | Т | I <sub>DDA</sub> | _   | 218              | —   | μA   |
| ADLPC = 1      |                         |   |                  |     |                  |     |      |
| ADLSMP = 0     |                         |   |                  |     |                  |     |      |
| ADCO = 1       |                         |   |                  |     |                  |     |      |
| Supply current |                         | Т | I <sub>DDA</sub> | _   | 327              | —   | μA   |
| ADLPC = 0      |                         |   |                  |     |                  |     |      |
| ADLSMP = 1     |                         |   |                  |     |                  |     |      |
| ADCO = 1       |                         |   |                  |     |                  |     |      |
| Supply current |                         | Т | I <sub>DDA</sub> |     | 582              | 990 | μA   |
| ADLPC = 0      |                         |   |                  |     |                  |     |      |
| ADLSMP = 0     |                         |   |                  |     |                  |     |      |
| ADCO = 1       |                         |   |                  |     |                  |     |      |
| Supply current | Stop, reset, module off | Т | I <sub>DDA</sub> |     | 0.011            | 1   | μA   |

| Characteristic                       | Conditions                   | С | Symbol              | Min  | Typ <sup>1</sup>                  | Max  | Unit             |
|--------------------------------------|------------------------------|---|---------------------|------|-----------------------------------|------|------------------|
| ADC asynchronous<br>clock source     | High speed (ADLPC<br>= 0)    | Р | f <sub>ADACK</sub>  | 2    | 3.3                               | 5    | MHz              |
|                                      | Low power (ADLPC<br>= 1)     |   | -                   | 1.25 | 2                                 | 3.3  | -                |
| Conversion time<br>(including sample | Short sample<br>(ADLSMP = 0) | Т | t <sub>ADC</sub>    | _    | 20                                | _    | ADCK<br>cycles   |
| time)                                | Long sample<br>(ADLSMP = 1)  |   |                     | —    | 40                                | —    |                  |
| Sample time                          | Short sample<br>(ADLSMP = 0) | Т | t <sub>ADS</sub>    | —    | 3.5                               | —    | ADCK<br>cycles   |
|                                      | Long sample<br>(ADLSMP = 1)  |   | -                   | —    | 23.5                              | —    | -                |
| Total unadjusted                     | 12-bit mode                  | Т | E <sub>TUE</sub>    | _    | ±3.0                              | _    | LSB <sup>3</sup> |
| Error <sup>2</sup>                   | 10-bit mode                  | С |                     | _    | ±1.0                              | ±2.0 | -                |
|                                      | 8-bit mode                   | Т | -                   | _    | ±0.8                              | _    |                  |
| Differential Non-                    | 12-bit mode                  | Т | DNL                 | _    | ±1.2                              | _    | LSB <sup>3</sup> |
| Liniarity                            | 10-bit mode <sup>4</sup>     | С |                     | _    | ±0.3                              | ±1.0 |                  |
|                                      | 8-bit mode <sup>4</sup>      | Т | -                   | —    | ±0.15                             | _    |                  |
| Integral Non-Linearity               | 12-bit mode                  | Т | INL                 | _    | ±1.2                              | _    | LSB <sup>3</sup> |
|                                      | 10-bit mode                  | С |                     | _    | ±0.3                              | ±1.0 |                  |
|                                      | 8-bit mode                   | Т |                     | _    | ±0.15                             | _    |                  |
| Zero-scale error <sup>5</sup>        | 12-bit mode                  | Т | E <sub>ZS</sub>     | _    | ±1.2                              | _    | LSB <sup>3</sup> |
|                                      | 10-bit mode                  | С |                     | _    | ±0.15                             | ±1.0 |                  |
|                                      | 8-bit mode                   | Т |                     | —    | ±0.3                              | _    |                  |
| Full-scale error <sup>6</sup>        | 12-bit mode                  | Т | E <sub>FS</sub>     | _    | ±1.8                              | _    | LSB <sup>3</sup> |
|                                      | 10-bit mode                  | С |                     | _    | ±0.7                              | ±1.0 | ]                |
|                                      | 8-bit mode                   | Т |                     | _    | ±0.5                              | _    |                  |
| Quantization error                   | ≤12 bit modes                | D | EQ                  | _    | _                                 | ±0.5 | LSB <sup>3</sup> |
| nput leakage error <sup>7</sup>      | all modes                    | D | E <sub>IL</sub>     |      | I <sub>In</sub> * R <sub>AS</sub> |      | mV               |
| Temp sensor slope                    | -40 °C–25 °C                 | D | m                   |      | 3.266                             | _    | mV/°C            |
|                                      | 25 °C–125 °C                 |   |                     |      | 3.638                             | _    |                  |
| Temp sensor voltage                  | 25 °C                        | D | V <sub>TEMP25</sub> | _    | 1.396                             | _    | V                |

| Table 15.         12-bit ADC characterist | tics (V <sub>REFH</sub> = V <sub>DDA</sub> , | V <sub>REFL</sub> = V <sub>SSA</sub> ) (continued) |
|-------------------------------------------|----------------------------------------------|----------------------------------------------------|
|-------------------------------------------|----------------------------------------------|----------------------------------------------------|

1. Typical values assume V<sub>DDA</sub> = 5.0 V, Temp = 25 °C, f<sub>ADCK</sub>=2.5 MHz under FBE mode and alternate clock source (ALTCLK) is selected as ADC clock.

- 2. Includes quantization
- 3. 1 LSB =  $(V_{REFH} V_{REFL})/2^N$
- 4. Monotonicity and no-missing-codes guaranteed in 10-bit and 8-bit modes
- 5.  $V_{ADIN} = V_{SSA}$
- 6.  $V_{ADIN} = V_{DDA}$
- 7.  $I_{In}$  = leakage current (refer to DC characteristics)

### 6.4.2 Analog comparator (ACMP) electricals Table 16. Comparator electrical specifications

| С | Characteristic                        | Symbol           | Min                   | Typical | Max              | Unit |
|---|---------------------------------------|------------------|-----------------------|---------|------------------|------|
| D | Supply voltage                        | V <sub>DDA</sub> | 2.7                   | —       | 5.5              | V    |
| Т | Supply current (Operation mode)       | I <sub>DDA</sub> |                       | 10      | 20               | μA   |
| D | Analog input voltage                  | V <sub>AIN</sub> | V <sub>SS</sub> - 0.3 |         | V <sub>DDA</sub> | V    |
| Р | Analog input offset voltage           | V <sub>AIO</sub> | —                     | _       | 40               | mV   |
| С | Analog comparator hysteresis (HYST=0) | V <sub>H</sub>   |                       | 15      | 20               | mV   |
| С | Analog comparator hysteresis (HYST=1) | V <sub>H</sub>   | _                     | 20      | 30               | mV   |
| Т | Supply current (Off mode)             | IDDAOFF          | —                     | 60      | —                | nA   |
| С | Propagation Delay                     | t <sub>D</sub>   |                       | 0.4     | 1                | μs   |

## 6.5 Communication interfaces

### 6.5.1 SPI switching specifications

The serial peripheral interface (SPI) provides a synchronous serial bus with master and slave operations. Many of the transfer attributes are programmable. The following tables provide timing characteristics for classic SPI timing modes. See the SPI chapter of the chip's reference manual for information about the modified transfer formats used for communicating with slower peripheral devices. All timing is shown with respect to 20%  $V_{DD}$  and 80%  $V_{DD}$ , unless noted, and 25 pF load on all SPI pins. All timing assumes high-drive strength is enabled for SPI output pins.

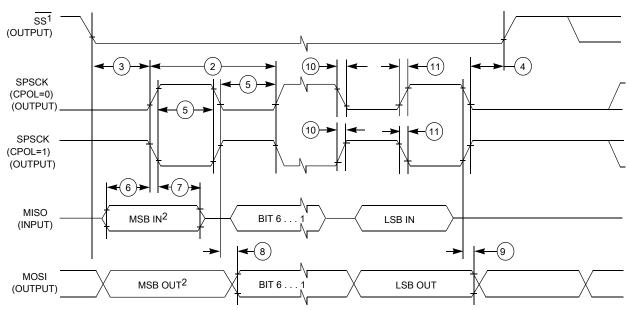
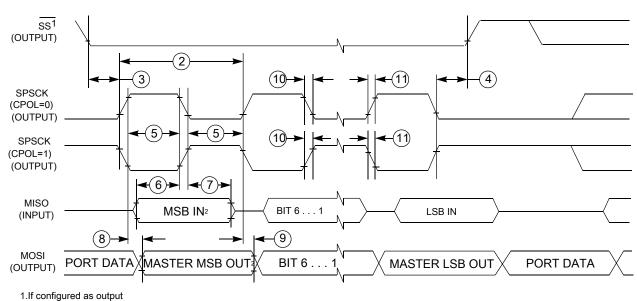

| Nu         | Symbol              | Description                    | Min.                   | Max.                    | Unit               | Comment                              |
|------------|---------------------|--------------------------------|------------------------|-------------------------|--------------------|--------------------------------------|
| <b>m</b> . |                     |                                |                        |                         |                    |                                      |
| 1          | f <sub>op</sub>     | Frequency of operation         | f <sub>Bus</sub> /2048 | f <sub>Bus</sub> /2     | Hz                 | f <sub>Bus</sub> is the bus<br>clock |
| 2          | t <sub>SPSCK</sub>  | SPSCK period                   | 2 x t <sub>Bus</sub>   | 2048 x t <sub>Bus</sub> | ns                 | $t_{Bus} = 1/f_{Bus}$                |
| 3          | t <sub>Lead</sub>   | Enable lead time               | 1/2                    | —                       | t <sub>SPSCK</sub> |                                      |
| 4          | t <sub>Lag</sub>    | Enable lag time                | 1/2                    | _                       | t <sub>SPSCK</sub> | _                                    |
| 5          | t <sub>WSPSCK</sub> | Clock (SPSCK) high or low time | t <sub>Bus</sub> – 30  | 1024 x t <sub>Bus</sub> | ns                 | _                                    |
| 6          | t <sub>SU</sub>     | Data setup time (inputs)       | 8                      | —                       | ns                 | —                                    |
| 7          | t <sub>HI</sub>     | Data hold time (inputs)        | 8                      | —                       | ns                 | —                                    |
| 8          | t <sub>v</sub>      | Data valid (after SPSCK edge)  | —                      | 25                      | ns                 | —                                    |
| 9          | t <sub>HO</sub>     | Data hold time (outputs)       | 20                     | —                       | ns                 | —                                    |
| 10         | t <sub>RI</sub>     | Rise time input                | —                      | t <sub>Bus</sub> – 25   | ns                 | —                                    |

Table 17. SPI master mode timing

#### Peripheral operating requirements and behaviors


| Nu<br>m. | Symbol          | Description      | Min. | Max. | Unit | Comment |
|----------|-----------------|------------------|------|------|------|---------|
|          | t <sub>FI</sub> | Fall time input  |      |      |      |         |
| 11       | t <sub>RO</sub> | Rise time output | —    | 25   | ns   | —       |
|          | t <sub>FO</sub> | Fall time output |      |      |      |         |

#### Table 17. SPI master mode timing (continued)



1. If configured as an output.

2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.



#### Figure 17. SPI master mode timing (CPHA=0)

2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.

#### Figure 18. SPI master mode timing (CPHA=1)

#### Peripheral operating requirements and behaviors

| Nu<br>m. | Symbol              | Description                    | Min.                  | Max.                  | Unit             | Comment                                                         |
|----------|---------------------|--------------------------------|-----------------------|-----------------------|------------------|-----------------------------------------------------------------|
| 1        | f <sub>op</sub>     | Frequency of operation         | 0                     | f <sub>Bus</sub> /4   | Hz               | f <sub>Bus</sub> is the bus clock as defined in Control timing. |
| 2        | t <sub>SPSCK</sub>  | SPSCK period                   | 4 x t <sub>Bus</sub>  | —                     | ns               | $t_{Bus} = 1/f_{Bus}$                                           |
| 3        | t <sub>Lead</sub>   | Enable lead time               | 1                     | —                     | t <sub>Bus</sub> | -                                                               |
| 4        | t <sub>Lag</sub>    | Enable lag time                | 1                     | —                     | t <sub>Bus</sub> | -                                                               |
| 5        | t <sub>WSPSCK</sub> | Clock (SPSCK) high or low time | t <sub>Bus</sub> - 30 | —                     | ns               | -                                                               |
| 6        | t <sub>SU</sub>     | Data setup time (inputs)       | 15                    | —                     | ns               | -                                                               |
| 7        | t <sub>HI</sub>     | Data hold time (inputs)        | 25                    | —                     | ns               | -                                                               |
| 8        | t <sub>a</sub>      | Slave access time              | —                     | t <sub>Bus</sub>      | ns               | Time to data active from<br>high-impedance state                |
| 9        | t <sub>dis</sub>    | Slave MISO disable time        | -                     | t <sub>Bus</sub>      | ns               | Hold time to high-<br>impedance state                           |
| 10       | t <sub>v</sub>      | Data valid (after SPSCK edge)  |                       | 25                    | ns               | —                                                               |
| 11       | t <sub>HO</sub>     | Data hold time (outputs)       | 0                     | —                     | ns               | —                                                               |
| 12       | t <sub>RI</sub>     | Rise time input                |                       | t <sub>Bus</sub> - 25 | ns               | —                                                               |
|          | t <sub>FI</sub>     | Fall time input                |                       |                       |                  |                                                                 |
| 13       | t <sub>RO</sub>     | Rise time output               | _                     | 25                    | ns               | -                                                               |
|          | t <sub>FO</sub>     | Fall time output               |                       |                       |                  |                                                                 |



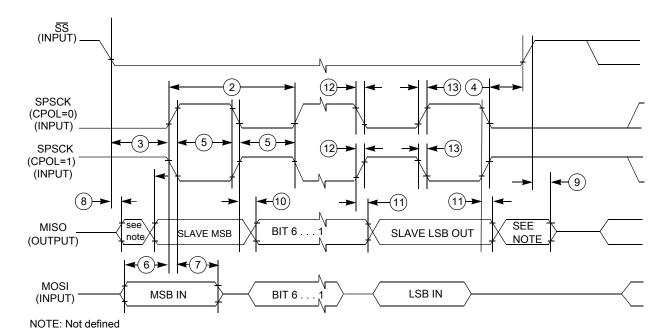



Figure 19. SPI slave mode timing (CPHA = 0)






Figure 20. SPI slave mode timing (CPHA=1)

## 7 Dimensions

## 7.1 Obtaining package dimensions

Package dimensions are provided in package drawings.

To find a package drawing, go to **nxp.com** and perform a keyword search for the drawing's document number:

| If you want the drawing for this package | Then use this document number |
|------------------------------------------|-------------------------------|
| 16-pin TSSOP                             | 98ASH70247A                   |
| 20-pin SOIC                              | 98ASB42343B                   |
| 24-pin QFN                               | 98ASA00474D                   |

## 8 Pinout

## 8.1 Signal Multiplexing and Pin Assignments

The following table shows the signals available on each pin and the locations of these pins on the devices supported by this document.

### NOTE

- PTB5, PTC1, and PTC5 pins support high-current drive output, refer to the PORT\_HDRVE register in Port Control chapter for details.
- VDD and VREFH are internally connected. Only one pin (VDD or VREFH) is available on chip.
- VSS and VREFL are internally connected. Only one pin (VSS or VREFL) is available on chip.
- PTA2 and PTA3 are true open-drain pins when operated as output

| 24<br>QFN | 20<br>SOIC | 16<br>TSS<br>OP | Pin Name | Default        | ALTO | ALT1    | ALT2      | ALT3      | ALT4      | ALT5     | ALT6      | ALT7 |
|-----------|------------|-----------------|----------|----------------|------|---------|-----------|-----------|-----------|----------|-----------|------|
| 1         | _          | -               | PTC5     | DISABLED       | PTC5 | KBI1_P1 | FTM2_CH3  | BUSOUT    |           |          |           |      |
| 2         | _          | _               | PTC4     | DISABLED       | PTC4 | KBI1_P0 | FTM2_CH2  |           | PWT_IN0   |          |           |      |
| 3         | 3          | 3               | VDD      | VDD            |      |         |           |           |           |          | VDD       |      |
| 3         | 3          | 3               | VREFH    | VDDA/<br>VREFH |      |         |           |           |           | VDDA     | VREFH     |      |
| 4         | 4          | 4               | VREFL    | VREFL          |      |         |           |           |           |          | VREFL     |      |
| 4         | 4          | 4               | VSS      | VSS/<br>VSSA   |      |         |           |           |           | VSSA     | VSS       |      |
| 5         | 5          | 5               | PTB7     | EXTAL          | PTB7 |         | I2C0_SCL  |           |           |          | EXTAL     |      |
| 6         | 6          | 6               | PTB6     | XTAL           | PTB6 |         | I2C0_SDA  |           |           |          | XTAL      |      |
| 7         | 7          | 7               | PTB5     | ACMP1_OUT      | PTB5 | KBI1_P7 | FTM2_CH5  | SPI0_PCS  | ACMP1_OUT |          |           |      |
| 8         | 8          | 8               | PTB4     | NMI_b          | PTB4 | KBI1_P6 | FTM2_CH4  | SPI0_MISO | ACMP1_IN2 | NMI_b    |           |      |
| 9         | 9          | -               | PTC3     | ADC0_SE11      | PTC3 | KBI1_P5 | FTM2_CH3  |           |           |          | ADC0_SE11 |      |
| 10        | 10         | _               | PTC2     | ADC0_SE10      | PTC2 | KBI1_P4 | FTM2_CH2  |           |           |          | ADC0_SE10 |      |
| 11        | 11         | _               | PTC1     | ADC0_SE9       | PTC1 | KBI1_P3 | FTM2_CH1  |           |           |          | ADC0_SE9  |      |
| 12        | 12         | _               | PTC0     | ADC0_SE8       | PTC0 | KBI1_P2 | FTM2_CH0  |           |           |          | ADC0_SE8  |      |
| 13        | 13         | 9               | PTB3     | ADC0_SE7       | PTB3 | KBI0_P7 | SPI0_MOSI | FTM0_CH1  |           |          | ADC0_SE7  |      |
| 14        | 14         | 10              | PTB2     | ADC0_SE6       | PTB2 | KBI0_P6 | SPI0_SCK  | FTM0_CH0  | ACMP0_IN0 |          | ADC0_SE6  |      |
| 15        | 15         | 11              | PTB1     | ADC0_SE5       | PTB1 | KBI0_P5 | UART0_TX  | SPI0_MISO | TCLK2     |          | ADC0_SE5  |      |
| 16        | 16         | 12              | PTB0     | ADC0_SE4       | PTB0 | KBI0_P4 | UART0_RX  | SPI0_PCS  | PWT_IN1   |          | ADC0_SE4  |      |
| 17        | _          | -               | PTA7     | ADC0_SE3       | PTA7 |         | FTM2_FLT2 | SPI0_MOSI | ACMP1_IN1 |          | ADC0_SE3  |      |
| 18        |            | -               | PTA6     | ADC0_SE2       | PTA6 |         | FTM2_FLT1 | SPI0_SCK  | ACMP1_IN0 |          | ADC0_SE2  |      |
| 19        | 17         | 13              | PTA3     | DISABLED       | PTA3 | KBI0_P3 | UART0_TX  | I2C0_SCL  |           |          |           |      |
| 20        | 18         | 14              | PTA2     | DISABLED       | PTA2 | KBI0_P2 | UART0_RX  | I2C0_SDA  |           |          |           |      |
| 21        | 19         | 15              | PTA1     | ADC0_SE1       | PTA1 | KBI0_P1 | FTM0_CH1  |           | ACMP0_IN1 |          | ADC0_SE1  |      |
| 22        | 20         | 16              | PTA0     | SWD_CLK        | PTA0 | KBI0_P0 | FTM0_CH0  | RTCO      | ACMP0_IN2 | ADC0_SE0 | SWD_CLK   |      |
| 23        | 1          | 1               | PTA5     | RESET_b        | PTA5 | IRQ     | TCLK1     |           |           |          | RESET_b   |      |
| 24        | 2          | 2               | PTA4     | SWD_DIO        | PTA4 |         |           |           | ACMP0_OUT |          | SWD_DIO   |      |

### 8.2 Device pin assignment

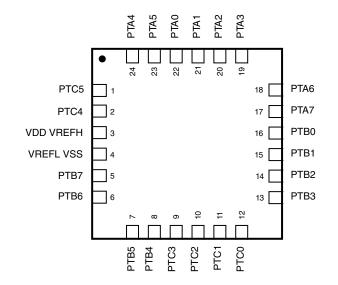



Figure 21. 24-pin QFN package

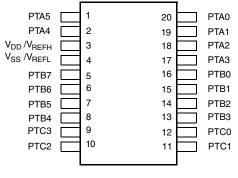



Figure 22. 20-pin SOIC package

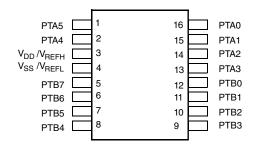



Figure 23. 16-pin TSSOP package

## 9 Revision history

The following table provides a revision history for this document.

| Rev. No. | Date    | Substantial Changes                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|----------|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3        | 3/2014  | Initial public release                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 4        | 01/2019 | <ul> <li>Added a new section of Thermal operating requirements.</li> <li>Added a footnote of "Max power suppply ramp rate is 500 V/ms." to Operating voltage in the DC characteristics.</li> <li>Added a footnote to the Δf<sub>int_ft</sub> in the External oscillator (OSC) and ICS characteristics.</li> </ul>                                                                                                                                                   |
| 5        | 04/2020 | <ul> <li>Updated the descriptions of I<sub>LAT</sub> to add the missing temperature in the ESD handling ratings.</li> <li>Updated the footnote to the Operating voltage in the DC characteristics.</li> <li>Corrected the Unit to the t<sub>TCLK</sub>, t<sub>clkh</sub>, t<sub>clkl</sub>, and t<sub>ICPW</sub>, and added footnote to the Units in the FTM module timing.</li> <li>Updated the timing assumptions in the SPI switching specifications.</li> </ul> |

Table 19. Revision history

#### How to Reach Us:

Home Page: nxp.com

Web Support: nxp.com/support Information in this document is provided solely to enable system and software implementers to use NXP products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document. NXP reserves the right to make changes without further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does NXP assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in NXP data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including "typicals," must be validated for each customer application by customer's technical experts. NXP does not convey any license under its patent rights nor the rights of others. NXP sells products pursuant to standard terms and conditions of sale, which can be found at the following address: nxp.com/SalesTermsandConditions.

While NXP has implemented advanced security features, all products may be subject to unidentified vulnerabilities. Customers are responsible for the design and operation of their applications and products to reduce the effect of these vulnerabilities on customer's applications and products, and NXP accepts no liability for any vulnerability that is discovered. Customers should implement appropriate design and operating safeguards to minimize the risks associated with their applications and products.

NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD, COOLFLUX, EMBRACE, GREENCHIP, HITAG, ICODE, JCOP, LIFE VIBES, MIFARE, MIFARE CLASSIC, MIFARE DESFire, MIFARE PLUS, MIFARE FLEX, MANTIS, MIFARE ULTRALIGHT, MIFARE4MOBILE, MIGLO, NTAG, ROADLINK, SMARTLX, SMARTMX, STARPLUG, TOPFET, TRENCHMOS, UCODE, Freescale, the Freescale logo, AltiVec, CodeWarrior, ColdFire, ColdFire+, the Energy Efficient Solutions logo, Kinetis, Layerscape, MagniV, mobileGT, PEG, PowerQUICC, Processor Expert, QorlQ, QorlQ Qonverge, SafeAssure, the SafeAssure logo, StarCore, Symphony, VortiQa, Vybrid, Airfast, BeeKit, BeeStack, CoreNet, Flexis, MXC, Platform in a Package, QUICC Engine, Tower, TurboLink, EdgeScale, EdgeLock, eIQ, and Immersive3D are trademarks of NXP B.V. All other product or service names are the property of their respective owners. AMBA, Arm, Arm7, Arm7TDMI, Arm9, Arm11, Artisan, big.LITTLE, Cordio, CoreLink, CoreSight, Cortex, DesignStart, DynamIQ, Jazelle, Keil, Mali, Mbed, Mbed Enabled, NEON, POP, RealView, SecurCore, Socrates, Thumb, TrustZone, ULINK, ULINK2, ULINK-ME, ULINK-PLUS, ULINKpro, µVision, Versatile are trademarks or registered trademarks of Arm Limited (or its subsidiaries) in the US and/or elsewhere. The related technology may be protected by any or all of patents, copyrights, designs and trade secrets. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. The Power Architecture and Power.org word marks and the Power and Power.org logos and related marks are trademarks and service marks licensed by Power.org.

©2013-2020 NXP B.V.

Document Number MKE04P24M48SF0 Revision 5, 04/2020



