
ES_LPC11U6x
Errata sheet LPC11U6x
Rev. 1.5 — 19 January 2024 Errata

Document information
Information Content

Keywords LPC11U66JBD48; LPC11U67JBD48; LPC11U67JBD64; LPC11U67JBD100; LPC11U68JBD48;
LPC11U68JBD64; LPC11U68JBD100; LPC11U6x errata

Abstract This errata sheet describes both the known functional problems and any deviations from the
electrical specifications known at the release date of this document. Each deviation is assigned a
number and its history is tracked in a table at the end of the document.

NXP Semiconductors ES_LPC11U6x
Errata sheet LPC11U6x

1 Product identification

The LPC11U6x devices typically have the following top-side marking for LQFP100 packages:

LPC11U6xJBD100
xxxxxx xx
xxxyywwxR[x]

The LPC11U6x devices typically have the following top-side marking for LQFP64 packages:

LPC11U6xJ
xxxxxx xx
xxxyywwxR[x]

The LPC11U6x devices typically have the following top-side marking for LQFP48 packages:

LPC11U6xJ
xx xx
xxxyy
wwxR[x]

Field ‘yy’ states the year the device was manufactured. Field ‘ww’ states the week the device was manufactured
during that year.

Field ‘R’ identifies the device revision. This Errata Sheet covers the following revisions of the LPC11U6x:

Revision identifier (R) Revision description

‘A’ Initial device revision

Table 1. Device revision table

2 Errata overview

Functional
problems

Short description Revision identifier Detailed description

USB_ROM.1 The USB ROM driver routine hwUSB_ResetEP()
accidentally corrupts the subsequent word of memory
while clearing the STALL bit of the selected endpoint.

‘A’ Section 3.1

USB_ROM.2 The USBD ROM stack does not split EP0 transfer into
multiple packets of 8 bytes (MAXP allowed) in low
speed mode.

‘A’ Section 3.2

USB_ROM.3 FRAME_INT is cleared if new SetConfiguration or
USB_RESET are received.

‘A’ Section 3.3

USB_ROM.4 USB full-speed device fail in the Command/Data/
Status Flow after bus reset and bus re-enumeration.

‘A’ Section 3.4

USB.1 The USB controller is unable to generate STALL on
EP0_OUT.

‘A’ Section 3.5

UART.1 The UART controller sets the Idle status bits for
receive and transmit before the transmission of the
stop bit is complete.

‘A’ Section 3.6

ROM.1 On the LPC11U6x, the ROM inadvertently reports IAP
busy status for IAP erase and program operations

'A' Section 3.7

Table 2. Errata summary table

ES_LPC11U6x All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Errata Rev. 1.5 — 19 January 2024
2 / 14

NXP Semiconductors ES_LPC11U6x
Errata sheet LPC11U6x

AC/DC
deviations

Short description Revision identifier Detailed description

n/a n/a n/a n/a

Table 3. AC/DC deviations table

Errata notes Short description Revision identifier Detailed description

n/a n/a n/a n/a

Table 4. Errata notes table

3 Functional problems detail

3.1 USB_ROM.1

Introduction:

The on-chip USB2.0 full-speed device controller uses the USB endpoint (EP) Command/Status List organized
in memory to store the EPs command/status information. Bit 29 indicates the STALL status of the corresponding
EP. The USB ROM driver routine hwUSB_ResetEP(), which is called during SET_CONFIGURATION and
SET_INTERFACE requests for all EPs present in the corresponding configuration/interface, clears the STALL
bit of the selected EPs in Command/Status List as part of EP reset procedure.

Problem:

During the EP reset procedure executed by the USB ROM driver routine hwUSB_ResetEP(), it not only clears
the STALL bit of the selected EP but also corrupts the subsequent word of memory. This issue is caused by a
software bug in the hwUSB_ResetEP() routine.

Below is a summary of the runtime errors resulting from this issue:

• Case 1. When reset procedure is invoked on an EP which is at the end of the EP list, this bug will accidentally
corrupt the memory area following the EP Command/Status List. In the current version of USB ROM driver
this area is used for storing the receiver buffer address for control endpoint (EP0). This corruption causes
erratic behavior on control OUT transaction.

• Case 2. When reset procedure is invoked on an EP which is in the beginning or middle of the EP list, this bug
will accidentally clear the STALL bit of the subsequent EP in list.
– If hwUSB_ResetEP() is called during SET_CONFIGURATION, clearing the STALL bit of

the subsequent EP has no consequence since STALL condition is cleared for all EPs during
SET_CONFIGURATION procedure.

– If hwUSB_ResetEP() is called during SET_INTERFACE when selecting an ALT interface, this issue
could clear STALL condition (if exists) on the subsequent EP. This condition is very rare.

Work-around:

The software work-around to address Case 1 is to specify one extra EP in the max_num_ep field of the
USBD_API_INIT_PARAM_T structure passed to the ROM driver's hw->init() routine. This extra EP provides a
padding buffer to avoid corruption to the subsequent word of memory. This workaround is demonstrated with the
line of code highlighted in red in function usb_init() in the following example.

If your system is affected with Case 2, user should check the "ep_halt" member of USB_CORE_CTRL_T
structure in the SET_INTERFACE event and set STALL bit for any EP which got cleared due to this bug. This

ES_LPC11U6x All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Errata Rev. 1.5 — 19 January 2024
3 / 14

NXP Semiconductors ES_LPC11U6x
Errata sheet LPC11U6x

condition is very rare. This workaround is demonstrated with the function StallWorkAround () in the following
example. Notice that StallWorkAround is set to be an interface event in the usb_init() function (highlighted in
bold).

typedef volatile struct _EP_LIST {
 uint32_t buf_ptr;
 uint32_t buf_length;
} EP_LIST;
ErrorCode_t StallWorkAround(USBD_HANDLE_T hUsb)
{
 ErrorCode_t ret = LPC_OK;
 USB_CORE_CTRL_T *pCtrl = (USB_CORE_CTRL_T *) hUsb;
 EP_LIST *epQueue;
 int32_t i;
 /* WORKAROUND for Case 2:
 Code clearing STALL bits in endpoint reset routine corrupts memory area
 next to the endpoint control data.
 */
 if (pCtrl->ep_halt != 0) { /* check if STALL is set for any endpoint */
 /* get pointer to HW EP queue */
 epQueue = (EP_LIST *) LPC_USB->EPLISTSTART;
 /
* check if the HW STALL bit for the endpoint is cleared due to bug. */
 for (i = 1; i < pCtrl->max_num_ep; i++) {
 /* check OUT EPs */
 if (pCtrl->ep_halt & (1 << i)) {
 /
* Check if HW EP queue also has STALL bit = _BIT(29) is set */
 if ((epQueue[i << 1].buf_ptr & _BIT(29)) == 0) {
 /* bit not set, cleared by BUG. So set it back. */
 epQueue[i << 1].buf.ptr |= _BIT(29);
 }
 }
 /* Check IN EPs */
 if (pCtrl->ep_halt & (1 << (i + 16))) {
 /
* Check if HW EP queue also has STALL bit = _BIT(29) is set */
 if ((epQueue[(i << 1) + 1].buf_ptr & _BIT(29)) == 0) {
 /* bit not set, cleared by BUG. So set it back. */
 epQueue[(i << 1) + 1].buf_ptr |= _BIT(29);
 }
 }
 }
 }
 return ret;
}
/* Initialize USB sub system */
static ErrorCode_t usbd_init(void)
{
 USBD_API_INIT_PARAM_T usb_param;
 USB_CORE_DESCS_T desc;
 ADC_INIT_PARAM_T adc_param;
 ErrorCode_t ret = LPC_OK;
 /* enable clocks and pinmux */
 usb_pin_clk_init();
 /* initialize USBD ROM API pointer. */
 g_pUsbApi = (const USBD_API_T *) LPC_ROM_API->usbdApiBase;
 /* initialize call back structures */
 memset((void *) &usb_param, 0, sizeof(USBD_API_INIT_PARAM_T));
 usb_param.usb_reg_base = LPC_USB0_BASE;

ES_LPC11U6x All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Errata Rev. 1.5 — 19 January 2024
4 / 14

NXP Semiconductors ES_LPC11U6x
Errata sheet LPC11U6x

 /* WORKAROUND for Case 1
For example When EP0, EP1_IN, EP1_OUT and EP2_IN are used we need to
 specify usb_param.max_num_ep as 3 here. But as a workaround for this issue
 specify usb_param.max_num_ep as 4. So that extra EPs control structure acts
as padding buffer to avoid data corruption. Corruption of padding
memory doesn't affect the stack/program behavior.
 */
 usb_param.max_num_ep = 3 + 1;
 usb_param.USB_Interface_Event = StallWorkAround;
 usb_param.mem_base = USB_STACK_MEM_BASE;
 usb_param.mem_size = USB_STACK_MEM_SIZE;
 /* Set the USB descriptors */
 desc.device_desc = (uint8_t *) &USB_DeviceDescriptor[0];
 desc.string_desc = (uint8_t *) &USB_StringDescriptor[0];
 /* Note, to pass USBCV test full-speed only devices should have both
 descriptor arrays point to same location and device_qualifier set to 0.
 */
 desc.high_speed_desc = (uint8_t *) &USB_FsConfigDescriptor[0];
 desc.full_speed_desc = (uint8_t *) &USB_FsConfigDescriptor[0];
 desc.device_qualifier = 0;
 /* USB Initialization */
 ret = USBD_API->hw->Init(&g_hUsb, &desc, &usb_param);
 if (ret == LPC_OK) {
}

3.2 USB_ROM.2

Introduction:

When USB device operates in low-speed mode the maximum packet length (MAXP) for control transfer and
interrupt transfers is restricted to 8 bytes. Hence when more than 8 bytes needs to be transferred, the data
should be split into multiple 8 byte packets. But the current ROM stack splits the control transfer into multiples of
64 bytes only.

Problem:

Device will not enumerate when used in low-speed mode.

Work-around:

The software work-around for this issue is to override the cases where the ROM stack would queue a large
transfer and split them into smaller 8 byte packet transfers. Since low speed USB allows only interrupt
endpoints, a workaround for HID class implementation is shown below:

static ErrorCode_t HID_LowSpeedPatch(USBD_HANDLE_T hUsb, void *data, uint32_t
 event)
{
 USB_CORE_CTRL_T *pCtrl = (USB_CORE_CTRL_T *) hUsb;
 USB_HID_CTRL_T *pHidCtrl = (USB_HID_CTRL_T *) data;
 ErrorCode_t ret = ERR_USBD_UNHANDLED;
 uint16_t cnt = 0, len = 0;
 switch (event) {
 case USB_EVT_SETUP:
 if (pCtrl-
>SetupPacket.bmRequestType.BM.Type == REQUEST_STANDARD) {
 switch (pCtrl->SetupPacket.bRequest) {
 case USB_REQUEST_GET_DESCRIPTOR:

ES_LPC11U6x All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Errata Rev. 1.5 — 19 January 2024
5 / 14

NXP Semiconductors ES_LPC11U6x
Errata sheet LPC11U6x

 /* handle HID descriptors first */
 switch (pCtrl->SetupPacket.wValue.WB.H) {
 case HID_HID_DESCRIPTOR_TYPE:
 pCtrl->EP0Data.pData = pHidCtrl-
>hid_desc;
 len = ((USB_COMMON_DESCRIPTOR *)
 pHidCtrl->hid_desc)->bLength;
 ret = LPC_OK;
 break;
 case HID_REPORT_DESCRIPTOR_TYPE:
 ret = pHidCtrl-
>HID_GetReportDesc(pHidCtrl,
 &pCtrl->SetupPacket,
 &pCtrl->EP0Data.pData, &len);
 break;
 case HID_PHYSICAL_DESCRIPTOR_TYPE:
 if (pHidCtrl->HID_GetPhysDesc == 0) {
 ret = (ERR_USBD_STALL); /
* HID Physical Descriptor is not
 supported */
 }
 else {
 ret = pHidCtrl-
>HID_GetPhysDesc(pHidCtrl,
 &pCtrl-
>SetupPacket, &pCtrl->EP0Data.pData, &len);
 }
 break;
 default:
 ret = pCtrl-
>USB_ReqGetDescriptor(pCtrl);
 break;
 }
 break;
 case USB_REQUEST_GET_CONFIGURATION:
 ret = pCtrl->USB_ReqGetConfiguration(pCtrl);
 break;
 case USB_REQUEST_GET_INTERFACE:
 ret = pCtrl->USB_ReqGetInterface(pCtrl);
 break;
 default:
 break;
 }
 }
 else if ((pCtrl-
>SetupPacket.bmRequestType.BM.Type == REQUEST_CLASS) &&
 (pCtrl-
>SetupPacket.bmRequestType.BM.Recipient ==
REQUEST_TO_INTERFACE) &&
 pCtrl-
>SetupPacket.bRequest == HID_REQUEST_GET_REPORT)) {
 pCtrl->EP0Data.pData = pCtrl->EP0Buf; /
* point to data to be sent */
 /
* allow user to copy data to EP0Buf or change the pointer to his own
 buffer */
 ret = pHidCtrl->HID_GetReport(pHidCtrl, &pCtrl-
>SetupPacket,
 &pCtrl->EP0Data.pData, &pCtrl->EP0Data.Count);
 }

ES_LPC11U6x All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Errata Rev. 1.5 — 19 January 2024
6 / 14

NXP Semiconductors ES_LPC11U6x
Errata sheet LPC11U6x

 break;
 case USB_EVT_IN:
 if (pCtrl-
>SetupPacket.bmRequestType.BM.Dir == REQUEST_DEVICE_TO_HOST) {
 ret = LPC_OK;
 }
 break;
 }
 if (ret == LPC_OK) {
 if ((len != 0) && (pCtrl->EP0Data.Count > len)) {
 pCtrl->EP0Data.Count = len;
 }
 cnt = (pCtrl-
>EP0Data.Count > USB_MAX_PACKET0) ? USB_MAX_PACKET0 :
 pCtrl->EP0Data.Count;
 cnt = USBD_API->hw->WriteEP(pCtrl, 0x80, pCtrl-
>EP0Data.pData, cnt);
 pCtrl->EP0Data.pData += cnt;
 pCtrl->EP0Data.Count -= cnt;
 }
 else if (ret == ERR_USBD_UNHANDLED) {
 ret = g_defaultHidHdlr(hUsb, data, event);
 }
 return ret;
}

To install this patch handler do the following:

1. declare a global variable: static USB_EP_HANDLER_T g_defaultHidHdlr;
2. install the override handler during initialization phase:

 ret = USBD_API->hid->init(hUsb, &hid_param);
 if (ret == LPC_OK) {
 g_defaultHidHdlr = pCtrl->ep0_hdlr_cb[pCtrl->num_ep0_hdlrs - 1];
 /* store the default CDC handler and replace it with ours */
 pCtrl->ep0_hdlr_cb[pCtrl-
>num_ep0_hdlrs - 1] = HID_LowSpeedPatch;

 }

3.3 USB_ROM.3: FRAME_INT is cleared if new SetConfiguration or USB_RESET are
received.

Introduction:

In the USB ROM API, the function call EnableEvent can be used to enable and disable FRAME_INT.

Problem:

When the FRAME_INT is enabled through the USB ROM API call:

ErrorCode_t(* USBD_HW_API::EnableEvent)
(USBD_HANDLE_T hUsb, uint32_t EPNum, uint32_t event_type, uint32_t enable),

the FRAME_INT is cleared if new SetConfiguration or USB_RESET are received.

ES_LPC11U6x All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Errata Rev. 1.5 — 19 January 2024
7 / 14

NXP Semiconductors ES_LPC11U6x
Errata sheet LPC11U6x

Work-around:

Implement the following software work-around in the ISR to ensure that the FRAME_INT is enabled:

void USB_IRQHandler(void)
{
USBD_API->hw->EnableEvent(g_hUsb, 0, USB_EVT_SOF, 1);
USBD_API->hw->ISR(g_hUsb);
}

3.4 USB_ROM.4: USB full-speed device fail in the Command/Data/Status Flow after
bus reset and bus re-enumeration

Introduction:

The LPC11U6x device family includes a USB full-speed interface that can operate in device mode and also,
includes USB ROM based drivers. A Bulk-Only Protocol transaction begins with the host sending a CBW to the
device and attempting to make the appropriate data transfer (In, Out or none). The device receives the CBW,
checks and interprets it, attempts to satisfy the request of the host, and returns status via a CSW.

Problem:

When the device fails in the Command/Data/Status Flow, and the host does a bus reset / bus re-enumeration
without issuing a Bulk-Only Mass Storage Reset, the USB ROM driver does not re-initialize the MSC variables.
This causes the device to fail in the Command/Data/Status Flow after the bus reset / bus re-enumeration.

Work-around:

Implement the following software work-around to re-initialize the MSC variables in the USBD stack.

void *g_pMscCtrl;
ErrorCode_t mwMSC_Reset_workaround(USBD_HANDLE_T hUsb)
{
((USB_MSC_CTRL_T *)g_pMscCtrl)->CSW.dSignature = 0;
 ((USB_MSC_CTRL_T *)g_pMscCtrl)->BulkStage = 0;
 return LPC_OK;
}
ErrorCode_t mscDisk_init(USBD_HANDLE_T hUsb, USB_CORE_DESCS_T *pDesc,
 USBD_API_INIT_PARAM_T *pUsbParam)
{ USBD_MSC_INIT_PARAM_T msc_param;
 ErrorCode_t ret = LPC_OK;
 memset((void *) &msc_param, 0, sizeof(USBD_MSC_INIT_PARAM_T));
 msc_param.mem_base = pUsbParam->mem_base;
 msc_param.mem_size = pUsbParam->mem_size;
 g_pMscCtrl = (void *)msc_param.mem_base;
 ret = USBD_API->msc->init(hUsb, &msc_param);
 /* update memory variables */
 pUsbParam->mem_base = msc_param.mem_base;
 pUsbParam->mem_size = msc_param.mem_size;
 return ret;
}
 usb_param.USB_Reset_Event = mwMSC_Reset_workaround;
 ret = USBD_API->hw->Init(&g_hUsb, &desc, &usb_param);

ES_LPC11U6x All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Errata Rev. 1.5 — 19 January 2024
8 / 14

NXP Semiconductors ES_LPC11U6x
Errata sheet LPC11U6x

3.5 USB.1: USB controller is unable to generate STALL on EP0_OUT

Introduction:

The LPC11U6x have a full-speed USB device controller with support for 10 physical endpoints.

Problem:

The USB device controller is unable to return a STALL handshake on an OUT data packet to endpoint zero. An
NAK handshake is returned instead.

Work-around:

Endpoint zero is the control endpoint. All requests sent to the control endpoint consist of three stages (SETUP /
DATA / STATUS). When an unsupported ControlWrite request (with data phase) is sent by the host to the
device, the device is unable to STALL the data phase of this request.

To solve this problem, the device firmware must accept the data transmitted during the data phase of this
ControlWrite request and return a STALL handshake when the IN token for the STATUS stage is received.

3.6 UART.1

Introduction:

In receive mode, the UART controller provides a status bit (the RXIDLE bit in the UART STAT register) to check
whether the receiver is currently receiving data. If RXIDLE is set, the receiver indicates it is idle and does
not receive data.

In transmit mode, the UART controller provides two status bits (TXIDLE and TXDISSTAT bits in the UART STAT
register) to indicate whether the transmitter is currently transmitting data. The TXIDLE bit is set by the controller
after the last stop bit has been transmitted. The TXDISSTAT bit is set by the controller after the transmitter has
sent the last stop bit and has become fully idle following a transmit disable executed by setting the TXDIS bit in
the UART CTRL register.

The status bits can be used to implement software flow control, but their setting does not affect normal UART
operation.

Problem:

The RXIDLE bit is incorrectly set for a fraction of the clock cycle between the reception of the last data bit and
the reception of the start bit of the next word, that is while the stop bit is received. RXIDLE is cleared at the
beginning of the start bit.

ES_LPC11U6x All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Errata Rev. 1.5 — 19 January 2024
9 / 14

NXP Semiconductors ES_LPC11U6x
Errata sheet LPC11U6x

Figure 1. Incorrect setting of RXIDLE during UART receive

Both, TXIDLE and TXDISSTAT are set incorrectly between the last data bit and the stop bit while the transfer is
still ongoing.

Figure 2. Incorrect setting of TXIDLE and TXDISSTAT during UART transmit

Work-around:

When writing code that checks for the setting of any of the status bits RXIDLE, TXIDLE, TXDISSTAT, check the
value of the status bit in the STAT register:

• If status bit = 1, add a delay of one UART bit time (if STOPLEN = 0, one stop bit) or two bit times (if STOPLEN
= 1, two stop bits) and check the value of the status bit again:
– If status bit = 1, the receiver is idle.
– If status bit = 0, the receiver is receiving data.

• If the status bit = 0, the receiver is receiving data.

ES_LPC11U6x All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Errata Rev. 1.5 — 19 January 2024
10 / 14

NXP Semiconductors ES_LPC11U6x
Errata sheet LPC11U6x

3.7 ROM.1: On the LPC11U6x, the ROM inadvertently reports IAP busy status for IAP
erase and program operations

Introduction:

On the LPC111U6x, In-Application Programming (IAP) calls are available to perform erase and write operation
on the on-chip flash memory, as directed by the end-user application code. IAP status codes are available for
the IAP calls.

Problem:

For IAP erase (sector and page) calls and IAP copy RAM to flash API calls, the ROM inadvertently reports that
the flash programming hardware interface is busy (IAP status code 11).

Work-around:

The following software workaround can be implemented in the user application code. The example below is
for IAP erase operations and utilizes the interrupt status register of the flash IP to ensure that the IAP erase
operation is completed successfully:

 /* flash controller INT_STATUS register address for the workaround */
 #define INT_STATUS ((volatile unsigned *)(0x4003CFE0))
 #define END_OF_BURN (1<<1)
 #define END_OF_ERASE (1<<0)
__attribute__((section(".iap_ramfunc"))) uint32_t iap_erase_page(uint8_t
 page_start, uint8_t page_end)
 {
 volatile uint32_t dummy = 0;
 uint32_t dummy_pos = 0;
 struct sIAP IAP;
 IAP.cmd = IAP_ERASE_PAGE; // Erase Page
 IAP.par[0] = page_start; // Start page
 IAP.par[1] = page_end; // End page
 IAP.par[2] = SystemCoreClock / 1000; // CCLK in kHz
 while (((*INT_STATUS) & 0x8) != 0)
 {
 dummy = *(volatile uint32_t *)(0x0 + dummy_pos);
 *INT_CLR_STATUS = 0x8;

 if(((*INT_STATUS) & 0x8) != 0x8)
 {
 break;
 }
 /* Find a flash location without ECC error */
 dummy_pos += 4;
 /* For LPC11U6x, the flash size is 0x10000 */
 if (dummy_pos >= 0x10000)
 {
 return BUSY;
 }
 }
 IAP_Call(&IAP.cmd, &IAP.stat); // Call IAP Command
 if (IAP.stat == BUSY)
 {
 // If it returns BUSY, wait until program/erase is done
 while ((*INT_STATUS & (END_OF_BURN | END_OF_ERASE)) == 0);
 IAP.stat = 0;

ES_LPC11U6x All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Errata Rev. 1.5 — 19 January 2024
11 / 14

NXP Semiconductors ES_LPC11U6x
Errata sheet LPC11U6x

 return (IAP.stat); // Command Failed
 }
 return (0);
}

4 Revision history

Document ID Release date Description

ES_LPC11U6x v. 1.5 19 January 2024 • Added Section 3.7

ES_LPC11U6x v. 1.4 7 March 2018 • Added Section 3.4

ES_LPC11U6x v. 1.3 4 August 2017 • Added Section 3.3

ES_LPC11U6x v. 1.2 22 October 2015 • Added Section 3.6
• Added Section 3.1

ES_LPC11U6x v. 1.1 28 July 2014 • Corrected Section 3.1 work-around.
• Corrected part marking information.
• Parts added: LPC11U67JBD100, LPC11U67JBD64, LPC11U66

JBD48.

ES_LPC11U6x v. 1.0 15 January 2014 Initial version.

Table 5. Revision history

5 Note about the source code in the document

Example code shown in this document has the following copyright and BSD-3-Clause license:

Copyright 2024 NXP Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the
following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other materials must be provided with the distribution.

3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or
promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

ES_LPC11U6x All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Errata Rev. 1.5 — 19 January 2024
12 / 14

NXP Semiconductors ES_LPC11U6x
Errata sheet LPC11U6x

6 Legal information

6.1 Definitions
Draft — A draft status on a document indicates that the content is still
under internal review and subject to formal approval, which may result
in modifications or additions. NXP Semiconductors does not give any
representations or warranties as to the accuracy or completeness of
information included in a draft version of a document and shall have no
liability for the consequences of use of such information.

6.2 Disclaimers
Limited warranty and liability — Information in this document is believed
to be accurate and reliable. However, NXP Semiconductors does not give
any representations or warranties, expressed or implied, as to the accuracy
or completeness of such information and shall have no liability for the
consequences of use of such information. NXP Semiconductors takes no
responsibility for the content in this document if provided by an information
source outside of NXP Semiconductors.
In no event shall NXP Semiconductors be liable for any indirect, incidental,
punitive, special or consequential damages (including - without limitation -
lost profits, lost savings, business interruption, costs related to the removal
or replacement of any products or rework charges) whether or not such
damages are based on tort (including negligence), warranty, breach of
contract or any other legal theory.
Notwithstanding any damages that customer might incur for any reason
whatsoever, NXP Semiconductors’ aggregate and cumulative liability
towards customer for the products described herein shall be limited in
accordance with the Terms and conditions of commercial sale of NXP
Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to
make changes to information published in this document, including without
limitation specifications and product descriptions, at any time and without
notice. This document supersedes and replaces all information supplied prior
to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed,
authorized or warranted to be suitable for use in life support, life-critical or
safety-critical systems or equipment, nor in applications where failure or
malfunction of an NXP Semiconductors product can reasonably be expected
to result in personal injury, death or severe property or environmental
damage. NXP Semiconductors and its suppliers accept no liability for
inclusion and/or use of NXP Semiconductors products in such equipment or
applications and therefore such inclusion and/or use is at the customer’s own
risk.

Applications — Applications that are described herein for any of these
products are for illustrative purposes only. NXP Semiconductors makes no
representation or warranty that such applications will be suitable for the
specified use without further testing or modification.
Customers are responsible for the design and operation of their
applications and products using NXP Semiconductors products, and NXP
Semiconductors accepts no liability for any assistance with applications or
customer product design. It is customer’s sole responsibility to determine
whether the NXP Semiconductors product is suitable and fit for the
customer’s applications and products planned, as well as for the planned
application and use of customer’s third party customer(s). Customers should
provide appropriate design and operating safeguards to minimize the risks
associated with their applications and products.
NXP Semiconductors does not accept any liability related to any default,
damage, costs or problem which is based on any weakness or default
in the customer’s applications or products, or the application or use by
customer’s third party customer(s). Customer is responsible for doing all
necessary testing for the customer’s applications and products using NXP
Semiconductors products in order to avoid a default of the applications
and the products or of the application or use by customer’s third party
customer(s). NXP does not accept any liability in this respect.

Terms and conditions of commercial sale — NXP Semiconductors
products are sold subject to the general terms and conditions of commercial
sale, as published at http://www.nxp.com/profile/terms, unless otherwise
agreed in a valid written individual agreement. In case an individual
agreement is concluded only the terms and conditions of the respective
agreement shall apply. NXP Semiconductors hereby expressly objects to
applying the customer’s general terms and conditions with regard to the
purchase of NXP Semiconductors products by customer.

Export control — This document as well as the item(s) described herein
may be subject to export control regulations. Export might require a prior
authorization from competent authorities.

Suitability for use in non-automotive qualified products — Unless
this document expressly states that this specific NXP Semiconductors
product is automotive qualified, the product is not suitable for automotive
use. It is neither qualified nor tested in accordance with automotive testing
or application requirements. NXP Semiconductors accepts no liability for
inclusion and/or use of non-automotive qualified products in automotive
equipment or applications.
In the event that customer uses the product for design-in and use in
automotive applications to automotive specifications and standards,
customer (a) shall use the product without NXP Semiconductors’ warranty
of the product for such automotive applications, use and specifications, and
(b) whenever customer uses the product for automotive applications beyond
NXP Semiconductors’ specifications such use shall be solely at customer’s
own risk, and (c) customer fully indemnifies NXP Semiconductors for any
liability, damages or failed product claims resulting from customer design and
use of the product for automotive applications beyond NXP Semiconductors’
standard warranty and NXP Semiconductors’ product specifications.

Translations — A non-English (translated) version of a document, including
the legal information in that document, is for reference only. The English
version shall prevail in case of any discrepancy between the translated and
English versions.

Security — Customer understands that all NXP products may be subject to
unidentified vulnerabilities or may support established security standards or
specifications with known limitations. Customer is responsible for the design
and operation of its applications and products throughout their lifecycles
to reduce the effect of these vulnerabilities on customer’s applications
and products. Customer’s responsibility also extends to other open and/or
proprietary technologies supported by NXP products for use in customer’s
applications. NXP accepts no liability for any vulnerability. Customer should
regularly check security updates from NXP and follow up appropriately.
Customer shall select products with security features that best meet rules,
regulations, and standards of the intended application and make the
ultimate design decisions regarding its products and is solely responsible
for compliance with all legal, regulatory, and security related requirements
concerning its products, regardless of any information or support that may be
provided by NXP.
NXP has a Product Security Incident Response Team (PSIRT) (reachable
at PSIRT@nxp.com) that manages the investigation, reporting, and solution
release to security vulnerabilities of NXP products.

NXP B.V. — NXP B.V. is not an operating company and it does not distribute
or sell products.

6.3 Trademarks
Notice: All referenced brands, product names, service names, and
trademarks are the property of their respective owners.
NXP — wordmark and logo are trademarks of NXP B.V.

ES_LPC11U6x All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Errata Rev. 1.5 — 19 January 2024
13 / 14

mailto:PSIRT@nxp.com

NXP Semiconductors ES_LPC11U6x
Errata sheet LPC11U6x

Contents
1 Product identification ... 2
2 Errata overview ... 2
3 Functional problems detail 3
3.1 USB_ROM.1 .. 3
3.2 USB_ROM.2 .. 5
3.3 USB_ROM.3: FRAME_INT is cleared if

new SetConfiguration or USB_RESET are
received. .. 7

3.4 USB_ROM.4: USB full-speed device fail in
the Command/Data/Status Flow after bus
reset and bus re-enumeration 8

3.5 USB.1: USB controller is unable to
generate STALL on EP0_OUT 9

3.6 UART.1 ...9
3.7 ROM.1: On the LPC11U6x, the ROM

inadvertently reports IAP busy status for
IAP erase and program operations11

4 Revision history .. 12
5 Note about the source code in the

document ... 12
6 Legal information ..13

Please be aware that important notices concerning this document and the product(s)
described herein, have been included in section 'Legal information'.

© 2024 NXP B.V. All rights reserved.
For more information, please visit: http://www.nxp.com

Date of release: 19 January 2024
Document identifier: ES_LPC11U6x

	1 Product identification
	2 Errata overview
	3 Functional problems detail
	3.1 USB_ROM.1
	3.2 USB_ROM.2
	3.3 USB_ROM.3: FRAME_INT is cleared if new SetConfiguration or USB_RESET are received.
	3.4 USB_ROM.4: USB full-speed device fail in the Command/Data/Status Flow after bus reset and bus re-enumeration
	3.5 USB.1: USB controller is unable to generate STALL on EP0_OUT
	3.6 UART.1
	3.7 ROM.1: On the LPC11U6x, the ROM inadvertently reports IAP busy status for IAP erase and program operations

	4 Revision history
	5 Note about the source code in the document
	6 Legal information
	Contents

