Errata sheet LPC540xx_LPC54S0xx Rev. 2.0 — 25 January 2024

Errata

Document information

Information	Content
Keywords	LPC54018JET180, LPC54018JBD208, LPC54016JET180, LPC54016JBD208, LPC54016JBD100, LPC54016JET100, LPC54005JET100, LPC54005JBD100, LPC54S018JET180, LPC54S018JET180, LPC54S018JBD208, LPC54S016JET180, LPC54S016JBD208, LPC54S016JBD100, LPC54S016JET100, LPC54S005JET100, LPC54S005JBD100
Abstract	LPC540xx and LPC54S0xx errata

Errata sheet LPC540xx_LPC54S0xx

1 Product identification

The LPC540xx and LPC54S0xx TFBGA180 and TFBGA100 packages have the following top-side marking:

- First line: LPC540xxJ or LPC54S0xxJ
- Second line: ET180 or ET100
- Third line: xxxxxxxxxxxxxxxx
- Fourth line: xxxyywwx[R]x
 - yyww: Date code with yy = year and ww = week.
 - x[R] = boot code version and device revision.

The LPC540xx and LPC54S0xx LQFP208 and LQFP100 packages have the following top-side marking:

- First line: LPC540xxJ or LPC54S0xxJ
- Second line: BD208 or BD100
- Third line: xxxxxxxxxxxxxxxx
- Fourth line: xxxyywwx[R]x
 - yyww: Date code with yy = year and ww = week.
 - x[R] = Boot code version and device revision.

Table 1. Device revision table

Revision identifier (R)	Revision description
0A	Initial device revision with Boot ROM version 21.0 for LPC540xx only.
1B	Initial device revision with Boot ROM version 21.1 for LPC540xx and LPC54S0xx.

2 Errata overview

Functional problems	Short description	Revision identifier	Detailed description
ISP.1	Reinvoke ISP using USB0 DFU and USB1 DFU interfaces are not functional.	0A	Section 3.1
OTP.1	SWD interface cannot be disabled using OTP bits.	0A	Section 3.2
OTP.2	OTP APIs are not functional.	0A	Section 3.3
USB.1	Resetting interrupt endpoint resets DATAx sequence to DATA.1.	0A	Section 3.4
USB.2	In USB full-speed device mode, the ROOT2 endpoint test fails.	0A, 1B	Section 3.5
USB.3	USB high-speed device in endpoint TX data corruption.	0A	Section 3.6
IOCON.1	On power-up the standard GPIO pins are not in high Z mode by default.	0A	Section 3.7
ROM.1	On boot failure peripheral pins remain configured or drive.	0A	Section 3.8
ROM.2	ISP/IAP call to read UUID is not functional.	0A	Section 3.9
USB.ROM.1	USB full-speed device fail in the Command/Data/Status Flow after bus reset and bus re-enumeration.	0A	Section 3.10
ADC.1	High current consumption in reduced low power modes when using ADC.	0A, 1B	Section 3.11
SHA.1	Using MEMCTRL after DIGEST Ready to include more blocks via Mastering does not clear DIGEST bit.	0A, 1B	Section 3.12

Errata sheet LPC540xx_LPC54S0xx

Functional problems	Short description	Revision identifier	Detailed description
CONFIG.1	For LPC54S018JET180 Rev 1B devices with date code 1812, secure boot features are not available.	1B	Section 3.13
PART_ID.1	For LPC54S018JET180 Rev 1B devices with date code 1812, the part ID (device ID) is incorrect.	1B	Section 3.14
USB.4	In USB high-speed device mode, device writes extra byte(s) to the buffer if the NBytes is not multiple of 8 for OUT transfer.	0A, 1B	Section 3.15
USB.5	In USB high-speed device mode, when device isochronous IN endpoint sends a packet of MaxPacketSize of 1024 bytes in response to IN token from host, the isochronous IN endpoint interrupt is not set and the endpoint command/status list entry for the isochronous IN endpoint is not updated.	0A, 1B	Section 3.16
USB.6	In USB high-speed host mode, only one transaction per micro-frame is allowed for isochronous IN endpoints.	0A, 1B	Section 3.17
PLL.1	P-divider set to 4 could generate the wrong output frequency from the PLL.	0A, 1B	Section 3.18

Table 2. Functional problems table...continued

Table 3. AC/DC deviations table

AC/DC deviations	Short description		Detailed description
n/a	n/a	n/a	n/a

Table 4. Errata notes

Note		Revision identifier	Detailed description
n/a	n/a	n/a	n/a

3 Functional problems detail

3.1 ISP.1: Reinvoke ISP using USB0 DFU and USB1 DFU interfaces are not functional

Introduction:

On the LPC540xx, reinvoke ISP command is available to invoke the bootloader in ISP mode. This command may be used when a valid user program is present in the internal SRAM memory and the ISP entry pins are not accessible to force the ISP mode. ISP communication can be selected via auto-detect, I2C0 (Flexcomm Interface 1), SPI0 (Flexcomm Interface 3), SPI1 (Flexcomm Interface 10), UART0 (Flexcomm Interface 0), USB0 DFU, and USB1 DFU interfaces.

Problem:

Options to select USB0 DFU, and USB1 DFU interfaces does not work.

Work-around:

There is no work-around. This will be fixed on the next silicon revision.

3.2 OTP.1: SWD interface cannot be disabled using OTP bits

Introduction:

On the LPC540xx devices, bits 6 and 13 (SWD_JTAG_ENx) of the OTP memory bank 3, word 0, can be used to disable SWD access.

Problem:

Setting these bits to disable SWD is not functional.

Work-around:

There is no work-around. This will be fixed on the next silicon revision.

3.3 OTP.2: OTP APIs are not functional

Introduction:

On the LPC540xx devices, the Boot ROM provides API support for programming the OTP.

Problem:

The OTP programming APIs are not functional.

Work-around:

There is no work-around. This will be fixed on the next silicon revision.

3.4 USB.1: Resetting interrupt endpoint resets DATAx sequence to DATA.1

Introduction:

The LPC540xx includes a USB High Speed interface (USB1) that can operate in device mode at high speed. The T bit in command/status list determines if the endpoint type is generic endpoint or periodic endpoint. When the endpoint type is set to periodic, the RF/TV bit in command/status list determines if the endpoint type is isochronous endpoint or interrupt endpoint. When the TR bit in command/status list is set to '1', the toggle value will set to the value indicated in the RF/TV bit.

Problem:

When the endpoint type is set to interrupt with T bit as '1' and RF/TV bit as '1', the data toggle for the interrupt endpoint with TR bit as '1' resets to DATA1.

Work-around:

For applications that have strict requirements of the data toggle value, the following is the the software workaround:

- 1. Set INTONNAK_AO and INTONNAK_AI bits to '1' in the Device Command/Status register.
- 2. Set A=0, TR=1, RF/TV=0, T=0 (this will force the device to return a NAK handshake and reset the internal toggle value to zero).

- 3. Wait until an interrupt is received. Read the Endpoint Toggle register and check the value of the endpoint toggle. If the toggle is reset to '0', then go to step 4 else wait for the next interrupt.
- 4. Set A=1, TR=0, RF/TV=1, T=1 (the endpoint is back to the normal operation)

The result of this work-around is when an endpoint is reset, a NAK handshake is returned on the first received token.

3.5 USB.2: In USB full-speed device mode, the ROOT2 endpoint test fails

Introduction:

The LPC540xx/LPC54S0xx includes a USB full speed interface (USB0) that can operate in device mode at full speed. It supports 10 physical (5 logical) endpoints including control endpoints. The device should not respond to those endpoints which are not supported.

Problem:

The device NAKed the OUT token addressed to an endpoint that is not present on the device causing the ROOT2 endpoint test to fail.

Work-around:

There is no work-around.

3.6 USB.3: USB high-speed device in endpoint TX data corruption

Introduction:

The LPC540xx/LPC54S0xx includes a USB high-speed interface (USB1) that can operate in device mode at high-speed. The endpoint type can be configured as control, interrupt, bulk, and isochronous to their corresponding maximum packet sizes of 64, 1024, 512, and 1024 bytes.

Problem:

For all endpoint types and TX (IN) transfer, the first byte of the transfer data is changed to 0 if all the following conditions are met:

- A TX (IN) transfer happens after a RX (OUT) transfer.
- The RX (OUT) transfer length is $4 + N^*16$ (N ≥ 0) bytes.

The TX (IN) transfer and the RX (OUT) transfer can be on either the same endpoint or different endpoint.

Work-around:

A NAKed Tx (IN) transfer in-between the RX (OUT) and TX (IN) transfers solves the issue.

3.7 IOCON.1: On power-up the standard GPIO pins are not in high Z mode by default

Introduction:

On the LPC540xx devices, on power-up, pins PIO0_0 to PIO0_31, PIO1_0 to PIO1_31, PIO2_0 to PIO2_31, PIO3_0 to PIO3_31, PIO4_0 to PIO4_31, and PIO5_0 to PIO5_10 are in high Z mode by default (internal pull-up resistor and internal pull-down resistor are disabled).

Errata sheet LPC540xx_LPC54S0xx

Problem:

Only on the LPC540xx device revision 0A (Boot ROM version 21.0), on power-up, pins PIO0_0 to PIO0_31, PIO1_0 to PIO1_31, PIO2_0 to PIO2_31, PIO3_0 to PIO3_31, PIO4_0 to PIO4_31, and PIO5_0 to PIO5_10 have the internal pull-ups enabled and are not in high Z mode by default. Depending on the application, this can cause a higher in-rush current and/or external circuits connected to the GPIO pins to work in an unexpected manner.

Work-around:

This issue will be fixed in the next device revision 1B (Boot ROM version 21.1). Users should carefully design their application and consider the impact of the GPIOs' default change from device revision 0A to device revision 1B. The user can identify the device revisions by reading the DEVICE_ID1 register or by calling the Boot ROM version ISP/IAP function.

3.8 ROM.1: On boot failure peripheral pins remain configured or driven

Introduction:

On the LPC540xx devices, images can be booted into on-chip SRAM from external flash (SPI, QSPI, or parallel flash) or downloaded via the serial ports (UART, I2C, SPI, USB0, USB1). Depending on the values of the OTP bits and ISP pins, and the image header type definition, the bootloader decides whether to download code into the on-chip SRAM or run from external memory. If OTP BOOT_SRC bits are not set and the ISP pins (PIO0_4, PIO0_5, PIO0_6) are all HIGH, the LPC540xx will perform auto boot and look for valid image in the following order: external SPIFI flash device, external SPI flash, and external parallel flash memory.

Problem:

If LPC540xx Rev 0A devices boot in auto mode, pins may remain configured and even driven depending on boot failure:

- If a SPIFI or SPI flash is populated, but not programmed, after an unsuccessful boot attempt, the SPIFI/SPI pins are disabled and placed in a pull-up state.
- If neither a SPIFI or SPI flash is populated, SPIFI/SPI pins continue to remain configured after boot attempt. If those pins are used for other purposes after boot, such as GPIO, their respective IOCON registers will require reconfiguration. Also, the SPIFI and SPI clocks are still enabled. The affected pins include PIO0_23 to PIO0_28.
- If a parallel flash is not present or is present, but is not programmed with a valid image, the EMC (parallel) pins continue to remain configured after a boot attempt.
- The following EMC port pins remain configured for EMC. If these pins are used for other purposes after boot, such as GPIO, or if there are power related concerns, their respective IOCON registers will require reconfiguration. Also the EMC clocks are still enabled.

- Output pins: PIO0_15 to PIO0_21 PIO1_22 to PIO1_27 PIO1_15 to PIO1_18 PIO3_10 PIO3_12 to PIO3_14 PIO3_23 to PIO3_31 PIO4_0 to PIO4_6 PIO4_17 to PIO4_20 PIO5_5 to PIO5_9 - 1/0 (Tri-state) pins:

I/O (Tri-state) pins:

Errata sheet LPC540xx_LPC54S0xx

PIO0_2 to PIO0_9 PIO1_4 PIO1_19 to PIO1_21 PIO1_28 to PIO1_31 PIO4_21 to PIO4_31 PIO5_0 to PIO5_4

Work-around:

- 1. In Auto boot mode, program SPIFI or SPI flash with a valid image so that boot completes and does not attempt EMC boot.
- 2. Choose a different ISP mode such as SPI, SPIFI or serial boot mode, especially if developing code using debugger (download image directly to SRAM). This configures less number of pins compared to auto mode.

The issue occurs only on LPC540xx Rev 0A devices and will be fixed in Rev 1B silicon.

3.9 ROM.2: ISP/IAP call to read UUID is not functional

Introduction:

All LPC540xx/LPC54S0xx devices include ISP/IAP calls to read 128-bit UUID (unique identification number).

Problem:

The UUID ISP/IAP call is not functional on device revision 0A.

Work-around:

None. This issue is fixed on device revision 1B.

3.10 USB_ROM.1: USB full-speed device fail in the Command/Data/Status Flow after bus reset and bus re-enumeration

Introduction:

The LPC540xx device family includes a USB full-speed interface that can operate in device mode and also, includes USB ROM based drivers. A Bulk-Only Protocol transaction begins with the host sending a CBW to the device and attempting to make the appropriate data transfer (In, Out or none). The device receives the CBW, checks and interprets it, attempts to satisfy the request of the host, and returns status via a CSW.

Problem:

When the device fails in the Command/Data/Status Flow, and the host does a bus reset / bus re-enumeration without issuing a Bulk-Only Mass Storage Reset, the USB ROM driver does not re-initialize the MSC variables. This causes the device to fail in the Command/Data/Status Flow after the bus reset / bus re-enumeration.

Work-around:

Implement the following software work-around to re-initialize the MSC variables in the USBD stack.

```
void *g_pMscCtrl;
ErrorCode_t mwMSC_Reset_workaround(USBD_HANDLE_T hUsb)
{
```

ES_LPC540xx_LPC54S0xx

© 2024 NXP B.V. All rights reserved

Errata sheet LPC540xx_LPC54S0xx

```
((USB MSC CTRL T *)g pMscCtrl)->CSW.dSignature = 0;
        ((USB_MSC_CTRL_T *)g_pMscCtrl)->BulkStage = 0;
return LPC_OK;
ErrorCode t mscDisk init(USBD HANDLE T hUsb, USB CORE DESCS T *pDesc, USBD API INIT PARAM
         USBD MSC INIT PARAM T msc param;
{
        ErrorCodet ret = LPC OK;
        memset((void *) &msc_param, 0, sizeof(USBD MSC INIT PARAM T));
        msc param.mem base = pUsbParam->mem base;
        msc param.mem size = pUsbParam->mem size;
        g_pMscCtrl = (void *)msc_param.mem_base;
        ret = USBD API->msc->init(hUsb, &msc param);
        /* update memory variables */
        pUsbParam->mem base = msc param.mem base;
        pUsbParam->mem size = msc param.mem size;
        return ret;
}
        usb param.USB Reset Event = mwMSC Reset workaround;
        ret = USBD API->hw->Init(&g hUsb, &desc, &usb_param);
```

3.11 ADC.1: High current consumption in reduced low power modes when using ADC.

Introduction:

The 12-bit ADC controller is available on all LPC540xx/LPC54S0xx parts. The ADC can measure the voltage on any of the input signals on the analog input channel. For accurate voltage readings, the digital pin function on the ADC input channel must be disabled by writing a 0 to the DIGIMODE bit in the related IOCON register. This enables the analog mode functionality on the ADC input channel.

Problem:

For applications using the ADC, the current consumption could be higher than expected in reduced power modes (deep-sleep and deep power-down modes) or when the ADC is disabled using the PDRUNCFG register.

Work-around:

To prevent high current consumption, use the following steps in the software:

- Following a chip reset, all 12 ADC input channels (ADC0_0 to ADC0_11) should be in Digital Mode (DIGIMODE = 1) in the related IOCON registers until the configuration of the ADC block is complete. See the Basic Configuration section in the LPC540xx/LPC54S0xx 12-bit ADC controller (ADC) chapter of the LPC540xx/LPC54S0xx User Manual.
- 2. After configuring the ADC, change only those pins that are used as ADC input channels to Analog Mode (DIGIMODE = 0) in the related IOCON registers before starting ADC conversions.
- 3. Before entering any reduced power mode (deep-sleep and deep power-down) or before powering down the ADC block (by writing to the PDEN_ADC0 bit in the PDRUNCFG register), the ADC input channel(s) must be changed back to Digital Mode.
- 4. After waking up from the reduced power mode or when re-enabling the ADC block (PDEN_ADC0 bit in the PDRUNCFG), the software must follow step 2 before starting ADC conversions.

ES_LPC540xx_LPC54S0xx

© 2024 NXP B.V. All rights reserved.

3.12 SHA.1: Using MEMCTRL after DIGEST Ready to include more blocks via Mastering does not clear DIGEST bit.

Introduction:

The LPC540xx/LPC54S0xx includes a SHA hash block to compute SHA1 and SHA2-256 hash digests on flash images or messages in RAM. For maximum performance and ease of use, the hash block includes a master on the internal buses of the chip to read multiple blocks of memory while hashing, without involvement of the processor. This mastering model permits hashing up to 128 K bytes of memory (Flash, RAM, or SPI Flash).

Problem:

If the application uses the mastering on up to 128 K bytes and then uses it for additional blocks (without starting new), the DIGEST (digest ready) status does not clear when starting the next sequence via mastering. If the processor or DMA is used for the additional blocks, the DIGEST status is cleared.

Work-around:

If the purpose for the additional block(s) is to hash the last block (with padding and length), then the processor or DMA may be used to write the 16 words via INDATA, and the DIGEST status will clear when the 1st word is written.

If the purpose for additional blocks is to do a large number of blocks (for example, after doing 128 K, another 64 K is to be hashed), then the 1st block may be started by the processor (that is, the processor writes the 16 words to INDATA) followed by configuring MEMADDR and MEMCTRL for the remaining blocks. The MEMCTRL should be written within 64 cycles of writing the last word to INDATA to ensure DIGEST is 0.

3.13 CONFIG.1: For LPC54S108JET180 Rev 1B devices with date code 1812, secure boot features are not available.

Introduction:

On the LPC54S0xx Rev 1B, the following secure boot features are available:

- Secure authentication only boot
- · Encrypted image boot
- Enhanced image boot
- Supports secure anti-rollback of images through revocation of image key certificate
- Supports Device Identifier Composition Engine (DICE) Specification

Problem:

For only the LPC54S018JET180 Rev 1B devices marked with date code 1812 (see the "yyww" marking in <u>Section 1</u>), the secure boot features mentioned above are not available because of incorrect device configuration. The secure peripherals (RNG, SHA, AES, PUF) are not affected by this incorrect configuration and are available to the user.

Work-around

None. This will be fixed on the LPC54S018JET180 Rev 1B devices with date codes other than 1812.

3.14 PART_ID.1: For LPC54S108JET180 Rev 1B devices with date code 1812, the part ID is incorrect

Introduction:

On the LPC540xx/LPC54S0xx, ISP and IAP calls are available to read the part ID. The part ID for the LPC54S018JET180 device is 0x01FD4018.

Problem:

For only the LPC54S018JET180 Rev 1B devices marked with date code 1812 (see the "yyww" marking in <u>Section 1</u>), the part ID (device ID) is

incorrectly configured and the part ID is 0x01FD4618.

Work-around:

None. This will be fixed on the LPC54S018JET180 Rev 1B devices with date codes other than 1812.

3.15 USB.4: In USB high-speed device mode, device writes extra byte(s) to the buffer if the NBytes is not multiple of 8 for OUT transfer

Introduction:

The LPC540xx/LPC54S0xx device family include a USB high-speed interface (USB1) that can operate in device mode at high-speed. The NBytes value represents the number of bytes that can be received in the buffer.

Problem:

The LPC540xx/LPC54S0xx USB device controller writes extra bytes to the receive data buffer if the size of the transfer is not a multiple of 8 bytes since the USB device controller always writes 8 bytes. For example, if the transfer length is 1 bytes, 7 extra bytes will be written to the receive data buffer. If the transfer length is 7 bytes, 1 extra bytes will be written to the receive data buffer.

Work-around:

Reserve an additional, intermediary buffer along with the buffer used by the application for USB data. After the USB data transfer into the intermediary buffer has been completed, use memcpy to move the data from the intermediary buffer into the application buffer, skipping the extraneous extra byte. This software work-around is implemented on the SDK software platform.

3.16 USB.5: In USB high-speed device mode, when device isochronous IN endpoint sends a packet of MaxPacketSize of 1024 bytes in response to IN token from host, the isochronous IN endpoint interrupt is not set and the endpoint command/status list entry for the isochronous IN endpoint is not updated

Introduction:

The LPC540xx/LPC54S0xx device family include a USB high-speed interface (USB1) that can operate in device mode at high-speed. The isochronous IN endpoint supports a MaxPacketSize of 1024 bytes.

ES_LPC540xx_LPC54S0xx

© 2024 NXP B.V. All rights reserved.

Problem:

When device isochronous IN endpoint sends a packet of MaxPacketSize of 1024 bytes in response to IN token from host, the isochronous IN endpoint interrupt is not set and the endpoint command/status list entry for the isochronous IN endpoint is not updated.

Work-around:

Restrict the isochronous IN endpoint MaxPacketSize to 1023 bytes in device descriptor.

3.17 USB.6: In USB high-speed host mode, only one transaction per micro-frame is allowed for isochronous IN endpoints

Introduction:

The LPC540xx/LPC54S0xx device family include a USB high-speed interface which can operate in host mode. Up to three high-speed transactions are allowed in a single micro-frame to support high-bandwidth endpoints. This mode is enabled by setting the Mult (Multiple) field in the Proprietary Transfer Descriptor (PTD) and is used to indicate to the host controller the number of transactions that should be executed per micro-frame. The allowed bit settings are:

- 00b Reserved. A zero in this field yields undefined results.
- 01b One transaction to be issued for this endpoint per micro-frame.
- 10b Two transactions to be issued for this endpoint per micro-frame.
- 11b Three transactions to be issued for this endpoint per micro-frame.

Problem:

For High-bandwidth mode, using multiple packets (MULT = 10b or 11b) in a frame causes unreliable operation. Only one transaction (MULT = 01b) can be issued per micro-frame.

Work-around:

There is no software workaround. Only one transaction can be issued per micro-frame.

3.18 PLL.1: P-divider set to 4 could generate the wrong output frequency from the PLL

Introduction:

On the LPC540xx/LPC54S0xx PLL, the Fcco frequency must be either the actual desired output frequency, or the desired output frequency times 2 x P, where P is range from 1 to 32 (2^5). The Fcco frequency must also be a multiple of the PLL reference frequency, which is either the PLL input, or the PLL input divided by N, where N is from 2 to 256.

Problem:

The P-divider when set for divide by 4 mode can erroneously arrive in divide by 2 mode. The high frequency spikes coming from the level shifter during startup of the PLL can cause the P-divider to jump into the wrong division state only when set in divide by 4 mode. This issue affects both the System PLL and Audio PLL.

Work-around:

Use other P values other than 4 to achieve desired output frequency. P = 1 - 32 and $P \neq 4$.

4 AC/DC deviations detail

No known errata.

5 Errata notes

No known errata.

6 Note about the source code in the document

Example code shown in this document has the following copyright and BSD-3-Clause license:

Copyright 2024 NXP Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

- 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
- 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials must be provided with the distribution.
- 3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

7 Revision history

Table 5. Revision history

Document ID	Release date	Description
ES_LPC540xx_LPC54S0xx v. 2.0	25 January 2024	Added <u>Section 3.18</u>
ES_LPC540xx_LPC54S0xx v. 1.9	19 April 2021	Added USB.5 errata.Added USB.6 errata.
ES_LPC540xx_LPC54S0xx v. 1.8	16 February 2021	Added USB.4 errata.
ES_LPC540xx_LPC54S0xx v. 1.7	23 October 2019	Added ROM.2 errata.
ES_LPC540xx_LPC54S0xx v. 1.6	22 October 2018	 Added secure parts: LPC54S018JET180, LPC54S018 JBD208, LPC54S016JET180, LPC54S016JBD208, LPC54 S016JBD100, LPC54S016JET100, LPC54S005JET100, LPC54S005JBD100.

Errata sheet LPC540xx_LPC54S0xx

Table 5.	Revision	historycontinued
----------	----------	------------------

Document ID	Release date	Description
		Added USB.3
ES_LPC540xx_LPC54S0xx v. 1.5	13 April 2018	CONFIG.1 PART_ID.1 Added LPC54S018
ES_LPC540xx_LPC54S0xx v. 1.4	21 March 2018	• ADC.1 • SHA.1
ES_LPC540xx_LPC54S0xx v. 1.3	13 March 2018	• USB.2
ES_LPC540xx_LPC54S0xx v. 1.2	2 March 2018	Added ROM.1Added USB.ROM.1
ES_LPC540xx_LPC54S0xx v. 1.1	4 January 2017	Added IOCON.1
ES_LPC540xx_LPC54S0xx v. 1	5 Decemebr 2017	Initial version.

Errata sheet LPC540xx_LPC54S0xx

Legal information 8

8.1 Definitions

Draft - A draft status on a document indicates that the content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included in a draft version of a document and shall have no liability for the consequences of use of such information.

8.2 Disclaimers

Limited warranty and liability - Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. NXP Semiconductors takes no responsibility for the content in this document if provided by an information source outside of NXP Semiconductors.

In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms and conditions of commercial sale of NXP Semiconductors

Right to make changes - NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use - NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors and its suppliers accept no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). NXP does not accept any liability in this respect.

Terms and conditions of commercial sale - NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. NXP Semiconductors hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of NXP Semiconductors products by customer.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Suitability for use in non-automotive qualified products - Unless this document expressly states that this specific NXP Semiconductors product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. NXP Semiconductors accepts no liability for inclusion and/or use of non-automotive qualified products in automotive equipment or applications.

In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without NXP Semiconductors' warranty of the product for such automotive applications, use and specifications, and (b) whenever customer uses the product for automotive applications beyond NXP Semiconductors' specifications such use shall be solely at customer's own risk, and (c) customer fully indemnifies NXP Semiconductors for any liability, damages or failed product claims resulting from customer design and use of the product for automotive applications beyond NXP Semiconductors' standard warranty and NXP Semiconductors' product specifications.

Translations — A non-English (translated) version of a document, including the legal information in that document, is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

Security - Customer understands that all NXP products may be subject to unidentified vulnerabilities or may support established security standards or specifications with known limitations. Customer is responsible for the design and operation of its applications and products throughout their lifecycles to reduce the effect of these vulnerabilities on customer's applications and products. Customer's responsibility also extends to other open and/or proprietary technologies supported by NXP products for use in customer's applications. NXP accepts no liability for any vulnerability. Customer should regularly check security updates from NXP and follow up appropriately. Customer shall select products with security features that best meet rules, regulations, and standards of the intended application and make the ultimate design decisions regarding its products and is solely responsible for compliance with all legal, regulatory, and security related requirements concerning its products, regardless of any information or support that may be provided by NXP.

NXP has a Product Security Incident Response Team (PSIRT) (reachable at PSIRT@nxp.com) that manages the investigation, reporting, and solution release to security vulnerabilities of NXP products.

NXP B.V. - NXP B.V. is not an operating company and it does not distribute or sell products.

8.3 Trademarks

Notice: All referenced brands, product names, service names, and trademarks are the property of their respective owners.

NXP — wordmark and logo are trademarks of NXP B.V.

ES_LPC540xx_LPC54S0xx

Errata sheet LPC540xx_LPC54S0xx

Contents

1	Product identification
2	
3 3.1	Functional problems detail
3.1	ISP.1: Reinvoke ISP using USB0 DFU and USB1 DFU interfaces are not functional
~ ~	
3.2	OTP.1: SWD interface cannot be disabled
~ ~	using OTP bits4
3.3	OTP.2: OTP APIs are not functional4
3.4	USB.1: Resetting interrupt endpoint resets
	DATAx sequence to DATA.14
3.5	USB.2: In USB full-speed device mode, the
	ROOT2 endpoint test fails5
3.6	USB.3: USB high-speed device in endpoint
	TX data corruption5
3.7	IOCON.1: On power-up the standard GPIO
	pins are not in high Z mode by default5
3.8	ROM.1: On boot failure peripheral pins
	remain configured or driven6
3.9	ROM.2: ISP/IAP call to read UUID is not
	functional7
3.10	USB ROM.1: USB full-speed device fail in
	the Command/Data/Status Flow after bus
	reset and bus re-enumeration
3.11	ADC.1: High current consumption in
	reduced low power modes when using
	ADC
3.12	SHA.1: Using MEMCTRL after DIGEST
	Ready to include more blocks via Mastering
	does not clear DIGEST bit
3.13	CONFIG.1: For LPC54S108JET180 Rev
0.10	1B devices with date code 1812, secure
	boot features are not available
3.14	PART ID.1: For LPC54S108JET180 Rev
0.14	1B devices with date code 1812, the part ID
	is incorrect
3.15	USB.4: In USB high-speed device mode,
0.10	device writes extra byte(s) to the buffer if
	the NBytes is not multiple of 8 for OUT
	transfer10
3.16	USB.5: In USB high-speed device mode,
5.10	when device isochronous IN endpoint
	•
	sends a packet of MaxPacketSize of 1024
	bytes in response to IN token from host,
	the isochronous IN endpoint interrupt is not
	set and the endpoint command/status list
	entry for the isochronous IN endpoint is not
0.47	updated
3.17	USB.6: In USB high-speed host mode, only
	one transaction per micro-frame is allowed
0.40	for isochronous IN endpoints11
3.18	PLL.1: P-divider set to 4 could generate the
	wrong output frequency from the PLL11
4	AC/DC deviations detail 12

Errata notes	12
Note about the source code in the	
document	12
Revision history	12
Legal information	14

5 6

7 8

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.

© 2024 NXP B.V.

All rights reserved.

For more information, please visit: http://www.nxp.com