

KINETIS_0N62J
Rev. 10 DEC 2013

© 2013 Freescale Semiconductor, Inc.

Mask Set Errata for Mask 0N62J

This document contains errata information for Kinetis Mask Set
0N62J but excludes any information on selected security-related
modules.

A nondisclosure agreement (NDA) is required for any security-related
module information.

For more information on obtaining an NDA, please contact your local
Freescale sales representative.

Introduction
This report applies to mask 0N62J for these products:

• KINETIS

Errata ID Errata Title

6804 CJTAG: Performing a mode change from Standard Protocol to Advanced Protocol may reset the CJTAG.

6990 CJTAG: possible incorrect TAP state machine advance during Check Packet

6939 Core: Interrupted loads to SP can cause erroneous behavior

4588 DMAMUX: When using PIT with "always enabled" request, DMA request does not deassert correctly

4710 FTM: FTMx_PWMLOAD register does not support 8-/16-bit accesses

6484 FTM: The process of clearing the FTMx_SC[TOF] bit does not work as expected under a certain condition
when the FTM counter reaches FTM_MOD value.

6573 JTAG: JTAG TDO function on the PTA2 disables the pull resistor

5130 SAI: Under certain conditions, the CPU cannot reenter STOP mode via an asynchronous interrupt
wakeup event

7027 UART: During ISO-7816 T=0 initial character detection invalid initial characters are stored in the RxFIFO

7028 UART: During ISO-7816 initial character detection the parity, framing, and noise error flags can set

6472 UART: ETU compensation needed for ISO-7816 wait time (WT) and block wait time (BWT)

4647 UART: Flow control timing issue can result in loss of characters if FIFO is not enabled

7029 UART: In ISO-7816 T=1 mode, CWT interrupts assert at both character and block boundaries

7090 UART: In ISO-7816 mode, timer interrupts flags do not clear

7031 UART: In single wire receive mode UART will attempt to transmit if data is written to UART_D

5704 UART: TC bit in UARTx_S1 register is set before the last character is sent out in ISO7816 T=0 mode

7091 UART: UART_S1[NF] and UART_S1[PE] can set erroneously while UART_S1[FE] is set

7092 UART: UART_S1[TC] is not cleared by queuing a preamble or break character

6933 eDMA: Possible misbehavior of a preempted channel when using continuous link mode

Freescale Semiconductor KINETIS_0N62J

Mask Set Errata Rev 10 DEC 2013

Mask Set Errata for Mask 0N62J

© 2013 Freescale Semiconductor, Inc.

e6804: CJTAG: Performing a mode change from Standard Protocol to Advanced
Protocol may reset the CJTAG.

Errata type: Errata
Description: In extremely rare conditions, when performing a mode change from Standard Protocol to

Advanced Protocol on trhe IEEE 1149.7 (Compact JTAG interface) , the CJTAG may reset
itself. In this case, all internal CJTAG registers will be reset and the CJTAG will return to the
Standard Protocol mode.

Workaround: If the CJTAG resets itself while attempting to change modes from Standard Protocol to
Advanced Protocol and Advanced Protocol cannot be enabled after several attempts, perform
future accesses in Standard Protocol mode and do not use the Advanced Protocol feature.

e6990: CJTAG: possible incorrect TAP state machine advance during Check Packet

Errata type: Errata
Description: While processing a Check Packet, the IEEE 1149.7 module (CJTAG) internally gates the TCK

clock to the CJTAG Test Access Port (TAP) controller in order to hold the TAP controller in the
Run-Test-Idle state until the Check Packet completes. A glitch on the internally gated TCK
could occur during the transition from the Preamble element to the first Body element of Check
Packet processing that would cause the CJTAG TAP controller to change states instead of
remaining held in Run-Test-Idle

If the CJTAG TAP controller changes states during the Check Packet due to the clock glitch,
the CJTAG will lose synchronization with the external tool, preventing further communication.

Workaround: To prevent the possible loss of JTAG synchronization, when processing a Check Packet,
provide a logic 0 value on the TMS pin during the Preamble element to avoid a possible glitch
on the internally gated TCK clock.

e6939: Core: Interrupted loads to SP can cause erroneous behavior

Errata type: Errata
Description: ARM Errata 752770: Interrupted loads to SP can cause erroneous behavior

Affects: Cortex-M4, Cortex-M4F

Fault Type: Programmer Category B

Fault Status: Present in: r0p0, r0p1 Open.

Description

If an interrupt occurs during the data-phase of a single word load to the stack-pointer (SP/
R13), erroneous behavior can occur. In all cases, returning from the interrupt will result in the
load instruction being executed an additional time. For all instructions performing an update to
the base register, the base register will be erroneously updated on each execution, resulting in
the stack-pointer being loaded from an incorrect memory location.

The affected instructions that can result in the load transaction being repeated are:

1) LDR SP,[Rn],#imm

2) LDR SP,[Rn,#imm]!

3) LDR SP,[Rn,#imm]

Mask Set Errata for Mask 0N62J, Rev 10 DEC 2013

2 Freescale Semiconductor, Inc.

4) LDR SP,[Rn]

5) LDR SP,[Rn,Rm]

The affected instructions that can result in the stack-pointer being loaded from an incorrect
memory address are:

1) LDR SP,[Rn],#imm

2) LDR SP,[Rn,#imm]!

Conditions

1) An LDR is executed, with SP/R13 as the destination

2) The address for the LDR is successfully issued to the memory system

3) An interrupt is taken before the data has been returned and written to the stack-pointer.

Implications

Unless the load is being performed to Device or Strongly-Ordered memory, there should be no
implications from the repetition of the load. In the unlikely event that the load is being
performed to Device or Strongly-Ordered memory, the repeated read can result in the final
stack-pointer value being different than had only a single load been performed.

Interruption of the two write-back forms of the instruction can result in both the base register
value and final stack-pointer value being incorrect. This can result in apparent stack corruption
and subsequent unintended modification of memory.

Workaround: Both issues may be worked around by replacing the direct load to the stack-pointer, with an
intermediate load to a general-purpose register followed by a move to the stack-pointer.

If repeated reads are acceptable, then the base-update issue may be worked around by
performing the stack pointer load without the base increment followed by a subsequent ADD or
SUB instruction to perform the appropriate update to the base register.

e4588: DMAMUX: When using PIT with "always enabled" request, DMA request does
not deassert correctly

Errata type: Errata
Description: The PIT module is not assigned as a stand-alone DMA request source in the DMA request

mux. Instead, the PIT is used as the trigger for the DMAMUX periodic trigger mode. If you want
to use one of the PIT channels for periodic DMA requests, you would use the periodic trigger
mode in conjunction with one of the "always enabled" DMA requests. However, the DMA
request does not assert correctly in this case.

Instead of sending a single DMA request every time the PIT expires, the first time the PIT
triggers a DMA transfer the "always enabled" source will not negate its request. This results in
the DMA request remaining asserted continuously after the first trigger.

Workaround: Use of the PIT to trigger DMA channels where the major loop count is greater than one is not
recommended. For periodic triggering of DMA requests with major loop counts greater than
one, we recommended using another timer module instead of the PIT.

If using the PIT to trigger a DMA channel where the major loop count is set to one, then in
order to get the desired periodic triggering, the DMA must do the following in the interrupt
service routine for the DMA_DONE interrupt:

1. Set the DMA_TCDn_CSR[DREQ] bit and configure DMAMUX_CHCFGn[ENBL] = 0

Mask Set Errata for Mask 0N62J, Rev 10 DEC 2013

Freescale Semiconductor, Inc. 3

2. Then again DMAMUX_CHCFGn[ENBL] = 1, DMASREQ=channel in your DMA DONE
interrupt service routine so that "always enabled" source could negate its request then DMA
request could be negated.

This will allow the desired periodic triggering to function as expected.

e4710: FTM: FTMx_PWMLOAD register does not support 8-/16-bit accesses

Errata type: Errata
Description: The FTM PWM Load register should support 8-bit and 16-bit accesses. However, the

FTMx_PWMLOAD[LDOK] bit is cleared automatically by FTM with these sized accesses, thus
disabling the loading of the FTMx_MOD, FTMx_CNTIN, and FTMx_CnV registers.

Workaround: Always use a 32-bit write access to modify contents of the FTMx_PWMLOAD register.

e6484: FTM: The process of clearing the FTMx_SC[TOF] bit does not work as expected
under a certain condition when the FTM counter reaches FTM_MOD value.

Errata type: Errata
Description: The process of clearing the TOF bit does not work as expected when

FTMx_CONF[NUMTOF] != 0 and the current TOF count is less than FTMx_CONF[NUMTOF],
if the FTM counter reaches the FTM_MOD value between the reading of the TOF bit and the
writing of 0 to the TOF bit. If the above condition is met, the TOF bit remains set, and if the
TOF interrupt is enabled (FTMx_SC[TOIE] = 1), the TOF interrupt also remains asserted.

Workaround: Two possible workarounds exist for this erratum and the decision on which one to use is based
on the requirements of your particular application.

1) Repeat the clearing sequence mechanism until the TOF bit is cleared.

Below is a pseudo-code snippet that would need to be included in the TOF interrupt routine.

while (FTM_SC[TOF]!=0)

{

void FTM_SC() ; // Read SC register

FTM_SC[TOF]=0 ; // Write 0 to TOF bit

}

2) With FTMx_CONF[TOFNUM] = 0 and a variable in the software, count the number of times
that the TOF bit is set. In the TOF interrupt routine, clear the TOF bit and increment the
variable that counts the number of times that the TOF bit was set.

e6573: JTAG: JTAG TDO function on the PTA2 disables the pull resistor

Errata type: Errata
Description: The JTAG TDO function on the PTA2 pin disables the pull resistor, but keeps the input buffer

enabled. Because the JTAG will tri-state this pin during JTAG reset (or other conditions), this
pin will float with the input buffer enabled. If the pin is unconnected in the circuit, there can be
increased power consumption in low power modes for some devices.

Mask Set Errata for Mask 0N62J, Rev 10 DEC 2013

4 Freescale Semiconductor, Inc.

Workaround: Disable JTAG TDO functionality when the JTAG interface is not needed and left floating in a
circuit. Modify the PORTA_PCR2 mux before entering low power modes. Set the mux to a pin
function other than ALT7. If set up as a digital input and left unconnected in the circuit, then a
pull-up or pull-down should be enabled. Alternatively, an external pull device or external source
can be added to the pin.

Note: Enabling the pull resistor on the JTAG TDO function violates the JTAG specification.

e5130: SAI: Under certain conditions, the CPU cannot reenter STOP mode via an
asynchronous interrupt wakeup event

Errata type: Errata
Description: If the SAI generates an asynchronous interrupt to wake the core and it attempts to reenter

STOP mode, then under certain conditions the STOP mode entry is blocked and the
asynchronous interrupt will remain set.

This issue applies to interrupt wakeups due to the FIFO request flags or FIFO warning flags
and then only if the time between the STOP mode exit and subsequent STOP mode reentry is
less than 3 asynchronous bit clock cycles.

Workaround: Ensure that at least 3 bit clock cycles elapse following an asynchronous interrupt wakeup
event, before STOP mode is reentered.

e7027: UART: During ISO-7816 T=0 initial character detection invalid initial characters
are stored in the RxFIFO

Errata type: Errata
Description: When performing initial character detection (UART_C7816[INIT] = 1) in ISO-7816 T=0 mode

with UART_C7816[ANACK] cleared, the UART samples incoming traffic looking for a valid
initial character. Instead of discarding any invalid initial characters that are received, the UART
will store them in the receive FIFO.

Workaround: After a valid initial charcter is detected (UART_IS7816[INITD] sets), flush the RxFIFO to
discard any invalid initial characters that might have been received before the valid initial
character.

e7028: UART: During ISO-7816 initial character detection the parity, framing, and noise
error flags can set

Errata type: Errata
Description: When performing initial character detection (UART_C7816[INIT] = 1) in ISO-7816 mode the

UART should not set error flags for any receive traffic before a valid initial character is
detected, but the UART will still set these error flags if any of the conditions are true.

Workaround: After a valid initial charcter is detected (UART_IS7816[INITD] sets), check the UART_S1[NF,
FE, and PF] flags. If any of them are set, then clear them.

Mask Set Errata for Mask 0N62J, Rev 10 DEC 2013

Freescale Semiconductor, Inc. 5

e6472: UART: ETU compensation needed for ISO-7816 wait time (WT) and block wait
time (BWT)

Errata type: Errata
Description: When using the default ISO-7816 values for wait time integer (UARTx_WP7816T0[WI]), guard

time FD multiplier (UARTx_WF7816[GTFD]), and block wait time integer
(UARTx_WP7816T1[BWI]), the calculated values for Wait Time (WT) and Block Wait Time
(BWT) as defined in the Reference Manual will be 1 ETU less than the ISO-7816-3
requirement.

Workaround: To comply with ISO-7816 requirements, compensation for the extra 1 ETU is needed. This
compensation can be achieved by using a timer, such as the low-power timer (LPTMR), to
introduce a 1 ETU delay after the WT or BWT expires.

e4647: UART: Flow control timing issue can result in loss of characters if FIFO is not
enabled

Errata type: Errata
Description: On UART0 and UART1 when /RTS flow control signal is used in receiver request-to-send

mode, the /RTS signal is negated if the number of characters in the Receive FIFO is equal to
or greater than the receive watermark. The /RTS signal will not negate until after the last
character (the one that makes the condition for /RTS negation true) is completely received and
recognized. This creates a delay between the end of the STOP bit and the negation of the /
RTS signal. In some cases this delay can be long enough that a transmitter will start
transmission of another character before it has a chance to recognize the negation of the /RTS
signal (the /CTS input to the transmitter).

Workaround: Always enable the RxFIFO if you are using flow control for UART0 or UART1. The receive
watermark should be set to seven or less. This will ensure that there is space for at least one
more character in the FIFO when /RTS negates. So in this case no data would be lost.

Note that only UART0 and UART1 are affected. The UARTs that do not have the RxFIFO
feature are not affected.

e7029: UART: In ISO-7816 T=1 mode, CWT interrupts assert at both character and
block boundaries

Errata type: Errata
Description: When operating in ISO-7816 T=1 mode and switching from transmission to reception block,

the character wait time interrupt flag (UART_IS7816[CWT]) should not be set, only block type
interrupts should be valid. However, the UART can set the CWT flag while switching from
transmit to receive block and at the start of transmit blocks.

Workaround: If a CWT interrupt is detected at a block boundary instead of a character boundary, then the
interrupt flag should be cleared and otherwise ignored.

e7090: UART: In ISO-7816 mode, timer interrupts flags do not clear

Errata type: Errata

Mask Set Errata for Mask 0N62J, Rev 10 DEC 2013

6 Freescale Semiconductor, Inc.

Description: In ISO-7816, when any of the timer counter expires, the corresponding interrupt status register
bits gets set. The timer register bits cannot be cleared by software without additional steps,
because the counter expired signal remains asserted internally. Therefore, these bits can be
cleared only after forcing the counters to reload.

Workaround: Follow these steps to clear the UART_IS7816 WT, CWT, or BWT bits:

1. Clear the UART_C7816[ISO_7816E] bit, to temporarily disable ISO-7816 mode.

2. Write 1 to the WT, CWT, or BWT bits that need to be cleared.

3. Set UART_C7816[ISO_7816E] to re-enable ISO-7816 mode.

Note that the timers will start counting again as soon as the ISO_7816E bit is set. To avoid
unwanted timeouts, software might need to wait until new transmit or receive traffic is expected
or desired before re-enabling ISO-7816 mode.

e7031: UART: In single wire receive mode UART will attempt to transmit if data is
written to UART_D

Errata type: Errata
Description: If transmit data is loaded into the UART_D register while the UART is configured for single wire

receive mode, the UART will attempt to send the data. The data will not be driven on the pin,
but it will be shifted out of the FIFO and the UART_S1[TDRE] bit will set when the character
shifting is complete.

Workaround: Do not queue up characters to transmit while the UART is in receive mode. Always write
UART_C3[TXDIR] = 1 before writing to UART_D in single wire mode.

e5704: UART: TC bit in UARTx_S1 register is set before the last character is sent out in
ISO7816 T=0 mode

Errata type: Errata
Description: When using the UART in ISO-7816 mode, the UARTx_S1[TC] flag sets after a NACK is

received, but before guard time expires.

Workaround: If using the UART in ISO-7816 mode with T=0 and a guard time of 12 ETU, check the
UARTn_S1[TC] bit after each byte is transmitted. If a NACK is detected, then the transmitter
should be reset.

The recommended code sequence is:

UART0_C2 &= ~UART_C2_TE_MASK; //make sure the transmitter is disabled at first

UART0_C3 |= UART_C3_TXDIR_MASK; //set the TX pin as output

UART0_C2 |= UART_C2_TE_MASK; //enable TX

UART0_C2 |= UART_C2_RE_MASK; //enable RX to detect NACK

for(i=0;i<length;i++)

{

while(!(UART0_S1&UART_S1_TDRE_MASK)){}

UART0_D = data[i];

while(!(UART0_S1&UART_S1_TC_MASK)){}//check for NACK

Mask Set Errata for Mask 0N62J, Rev 10 DEC 2013

Freescale Semiconductor, Inc. 7

if(UART0_IS7816 & UART_IS7816_TXT_MASK)//check if TXT flag set

{

/* Disable transmit to clear the internal NACK detection counter */

UART0_C2 &= ~UART_C2_TE_MASK;

UART0_IS7816 = UART_IS7816_TXT_MASK;// write one to clear TXT

UART0_C2 |= UART_C2_TE_MASK; // re-enable transmit

}

}

UART0_C2 &= ~UART_C2_TE_MASK; //disable after transmit

e7091: UART: UART_S1[NF] and UART_S1[PE] can set erroneously while
UART_S1[FE] is set

Errata type: Errata
Description: While the UART_S1[FE] framing error flag is set the UART will discard any received data.

Even though the data is discarded, if characters are received that include noise or parity
errors, then the UART_S1[NF] or UART_S1[PE] bits can still set. This can lead to triggering of
unwanted interrupts if the parity or noise error interrupts are enabled and framing error
interrupts are disabled.

Workaround: If a framing error is detected (UART_S1[FE] = 1), then the noise and parity error flags can be
ignored until the FE flag is cleared. Note: the process to clear the FE bit will also clear the NF
and PE bits.

e7092: UART: UART_S1[TC] is not cleared by queuing a preamble or break character

Errata type: Errata
Description: The UART_S1[TC] flag can be cleared by first reading UART_S1 with TC set and then

performing one of the following: writing to UART_D, queuing a preamble, or queuing a break
character. If the TC flag is cleared by queuing a preamble or break character, then the flag will
clear as expected the first time. When TC sets again, the flag can be cleared by any of the
three clearing mechanisms without reading the UART_S1 register first. This can cause a TC
flag occurrence to be missed.

Workaround: If preamble and break characters are never used to clear the TC flag, then no workaround is
required.

If a preamble or break character is used to clear TC, then write UART_D immediately after
queuing the preamble or break character.

e6933: eDMA: Possible misbehavior of a preempted channel when using continuous
link mode

Errata type: Errata

Mask Set Errata for Mask 0N62J, Rev 10 DEC 2013

8 Freescale Semiconductor, Inc.

Description: When using continuous link mode (DMA_CR[CLM] = 1) with a high priority channel linking to
itself, if the high priority channel preempts a lower priority channel on the cycle before its last
read/write sequence, the counters for the preempted channel (the lower priority channel) are
corrupted. When the preempted channel is restored, it runs past its "done" point instead of
performing a single read/write sequence and retiring.

The preempting channel (the higher priority channel) will execute as expected.

Workaround: Disable continuous link mode (DMA_CR[CLM]=0) if a high priority channel is using minor loop
channel linking to itself and preemption is enabled. The second activation of the preempting
channel will experience the normal startup latency (one read/write sequence + startup) instead
of the shortened latency (startup only) provided by continuous link mode.

Mask Set Errata for Mask 0N62J, Rev 10 DEC 2013

Freescale Semiconductor, Inc. 9

Document Number: KINETIS_0N62J
Rev. 10 DEC 2013
02/2014

Information in this document is provided solely to enable system and software

implementers to use Freescale products. There are no express or implied copyright

licenses granted hereunder to design or fabricate any integrated circuits based on the

information in this document.

Freescale reserves the right to make changes without further notice to any products

herein. Freescale makes no warranty, representation, or guarantee regarding the

suitability of its products for any particular purpose, nor does Freescale assume any

liability arising out of the application or use of any product or circuit, and specifically

disclaims any and all liability, including without limitation consequential or incidental

damages. “Typical” parameters that may be provided in Freescale data sheets and/or

specifications can and do vary in different applications, and actual performance may

vary over time. All operating parameters, including “typicals,” must be validated for

each customer application by customer’s technical experts. Freescale does not convey

any license under its patent rights nor the rights of others. Freescale sells products

pursuant to standard terms and conditions of sale, which can be found at the following

address: freescale.com/SalesTermsandConditions.

How to Reach Us:
Home Page:
freescale.com

Web Support:
freescale.com/support

Freescale, the Freescale logo and Kinetis are trademarks of Freescale Semiconductor,

Inc. All other product or service names are the property of their respective owners.

ARM is the registered trademark of ARM Limited.

© 2014 Freescale Semiconductor, Inc.

http://www.freescale.com
http://www.freescale.com/support
http://www.freescale.com/SalesTermsandConditions
http://www.freescale.com/SalesTermsandConditions

	Known Errata
	e6804
	e6990
	e6939
	e4588
	e4710
	e6484
	e6573
	e5130
	e7027
	e7028
	e6472
	e4647
	e7029
	e7090
	e7031
	e5704
	e7091
	e7092
	e6933

