

© 2018 NXP B.V.

IoT Device Secure Connection with LoRa

1. Introduction

The importance of secure connection is realized by many

people but the focus is on the security of gateway or IP

devices to Internet. Security between gateway and end

devices is ignored. You can find the device security from

some wireless protocols, like Bluetooth/ZigBee, but it is

very complicated to copy to other platforms.

This application note explains how to establish IoT secure

connection with LoRa between gateway and end devices.

The hardware is based on i.MX RT1050 EVK/LPC845

MAX boards and LoRa module to consist “star” network.

The software of security library can be ported to other

NXP MCUs easily.

The base firmware and device drivers are implemented in

C while the application layer is implemented in C++

language.

NXP Semiconductors Document Number: AN12257

Application Note Rev. 0 , 09/2018

Contents

1. Introduction .. 1
2. Abbreviations ... 2
3. Overview .. 3
4. Software architecture .. 3

4.1. Secure library .. 4
4.2. C++ framework ... 5

5. Secure Link Layer Message Formats 7
5.1. Link Header ... 7
5.2. Link IDs .. 9
5.3. PayLoad .. 9
5.4. MIC ... 9

6. Key management .. 10
7. Application Layer Data Encryption 11

7.1. AES128-CBC encryption/decryption 11
7.2. AES128-CCM encryption/decryption 12

8. The procedure of establishing secure channel 12
8.1. Initiate connection ... 12
8.2. Symmetric connection ... 13
8.3. Asymmetric connection ... 13
8.4. secure data exchange ... 14

9. Hardware platform ... 15
9.1. LoRa board .. 15
9.2. Server hardware .. 16
9.3. Client hardware ... 18

10. Software platform ... 19
10.1. Server software .. 19
10.2. Client software .. 20

11. Hands-on .. 21
12. Use cases .. 24

12.1. Point to point secure connection 24
12.2. Secure star/mesh network 24
12.3. Secure connection for RS484/CAN 25

13. Conclusion .. 25
14. Reference .. 25
15. Revision history .. 25

Abbreviations

IoT Device Secure Connection with LoRa, Application Note, Rev. 09/2018

2 NXP Semiconductors

2. Abbreviations

This chapter provides an overview of the abbreviations as used in this documents.

Abbreviation Description

ACK Acknowledge

AES Advanced Encryption Standard

CMAC Cipher-based Message Authentication

CCM Counter with Cipher Block Chaining-Message Authentication

Code

DES Data Encryption Algorithm

ECC Elliptic Curve Cryptography

ECDH Elliptic-curve Diffie-Hellman

ECDSA Elliptic Curve Digital Signature Algorithm

HMAC Keyed-Hash Message Authentication Code

MAC Message Authentication Code

SHA1 Secure Hash Algorithm 1

SHA256 Secure Hash Algorithm 256

TLS Transport Layer Security

ECB Electronic Cookbook Mode

CBC Cipher Block Chaining mode

CFB Cipher Feedback Mode

CTR Counter Mode

CCM Counter Mode with CBC-MAC

HMAC Keyed-Hash Message Authentication Code

MIC Message Integrity Code

Crt Certificate. In the document, Crt is just consisted by public key

and ECDSA signature value r/s.

Software architecture

IoT Device Secure Connection with LoRa, Application Note, Rev. 0, 09/2018

NXP Semiconductors 3

CID Command Identifier

TRNG True Random Number Generator

NVM nonvolatile memory

3. Overview

Security always comes at the prize of higher complexity. Hence, the security mechanisms should only

be used when they are really needed. When and how to use the mechanisms is determined by the

security policies of a device. This AN introduces two methods for enforcing link-level security and

building more advanced security policies. The security methods are Symmetric and Asymmetric

connection.

Figure 1. shows the system block diagram. LPC845/i.MXRT1050 is as LoRa controller via SPI interface.

This is a star network, i.MXRT1050 is a Gateway(server) and LPC845 is a node(client). The Gateway

can be connected by 250 nodes. Nodes cannot communicate each other directly. Actually, the PHY layer

can be changed to others, e.g. GFSK. To communicate securely, client and server need to establish

secure channel.

RT1050 + LoRa

LPC845 + LoRa LPC845 + LoRa.

Cloud

Secure channel

Figure 1. System Block Diagram

4. Software architecture

The software architecture is 3-layer architecture. The layer 1 is based on MCUXpresso SDK for server

and code bundle for client. Secure library and LoRa driver are added to layer 1. The layer 2 is C++

Framework. Due to limited resources, this layer is removed in client project. The layer 3 is C++

application code to implement the user purpose.

Software architecture

IoT Device Secure Connection with LoRa, Application Note, Rev. 09/2018

4 NXP Semiconductors

Base software & drivers
(CMSIS-CORE, CMSIS-DSP, Peripheral Driver)

Secure library LoRa driver

C++ Framework

C++ Application

Microcontroller Hardware

Figure 2. Software Architecture

4.1. Secure library

The secure library is based on mbed TLS under the Apache 2.0 license. Mbed TLS provides SSL/TLS

functionality on the server and client side to application and provides the cryptographic building blocks

for building other cryptographic protocols. But we modified and cropped mbed TLS source code for

secure library including necessary IoT security. Detailed IoT secure library is:

➢ Symmetric encryption algorithms

AES, DES

➢ Modes of operation

ECB, CBC, CFB, CTR, CCM

➢ Hash algorithms

SHA1-1, SHA-224, SHA-256

➢ MAC modes

HMAC-SHA1, HMAC-SHA224, HMAC-SHA256, CMAC

➢ Elliptic Curve Cryptography(ECC)

Secure library has its own big number library based on mbed TLS for ECC implementation and

supports both Elliptic Curve Diffie Hellman(ECDH) and Elliptic Curve Digital Signature

Algorithm(ECDSA). The following standardized curves/ECP groups are supported:

• secp192r1 - 192-bits NIST curve

• secp224r1 - 224-bits NIST curve

• secp256r1 - 256-bits NIST curve

Software architecture

IoT Device Secure Connection with LoRa, Application Note, Rev. 0, 09/2018

NXP Semiconductors 5

• secp384r1 - 384-bits NIST curve

• secp521r1 - 521-bits NIST curve

• secp192k1 - 192-bits Koblitz curve

• secp224k1 - 224-bits Koblitz curve

• secp256k1 - 256-bits Koblitz curve

• bp256r1 - 256-bits Brainpool curve

• bp384r1 - 384-bits Brainpool curve

• bp512r1 - 512-bits Brainpool curve

• m255 - 255-bits Curve25519

➢ Random number generation

We provide NIST standardized HMAC_DRBG pseudo-random number generator.

You can find the IoT secure library(RT1050_Security_lib.lib and LPC84x_Security_lib.lib by MDK

tool) in the projects.

4.2. C++ framework

 A framework for C++ project is established as in Figure 3. . Four main classes are :

CSystem : One task scheduler is included. The types of task include high priority task, low priority task

and slice task. If any class wants to create one task, need to inherit COneTask class and register.

CHardware: Includes the classes related with hardware, e.g. Radio.

CCommunication: Includes classes related with communication, e.g. secureMAC.

CBusiness: The CBusiness class includes related or virtual objects. E.g. one client object will be created

when received the client joining command and deleted when sent/received disconnect command.

KeyManagement class will be included in CBusiness class.

Software architecture

IoT Device Secure Connection with LoRa, Application Note, Rev. 09/2018

6 NXP Semiconductors

Figure 3. C++ Framework

Secure Link Layer Message Formats

IoT Device Secure Connection with LoRa, Application Note, Rev. 0, 09/2018

NXP Semiconductors 7

5. Secure Link Layer Message Formats

A secure Link layer is added for secure connection. All uplink and downlink messages start with Link

header and two Link IDs(From Link ID and To Link ID), followed by Link payload(PayLoad), and

end with message integrity code(MIC).

Link Header From Link ID PayLoad MIC

Bit7~6 Bit5~0

Res
Command

(0x00~0x3F)

Bit7~0 20/16 Bytes<= 64 Bytes

To Link ID

Bit7~0

Figure 4. Secure Link Layer Message Format

5.1. Link Header

The Link Header reserves 2 bits(Bit7~6) and specifies the message commands(Bit5~0). The list of

detailed commands is in Table 1.

Table 1. Link Commands

CID COMMAND TRANSMITTED

BY

DESCRIPTION

Client Server

0x01 Join Request √ Used by a client to initiate joining network request.

0x02 Join Accept √ Answer to “Join Request” command.

Server allows this client to join the network.

0x03 Join Type √ “Join Type” contains two methods: Symmetric and

Asymmetric. To judge the method from payload

message.

0x04 Type Accept √ Answer to “Type Accept” command.

0x10 Key Type √ If “Join Type” is Symmetric, CIDs(0x10 ~0x14) are

available.

Client need send own Key to Server.

0x11 Key number √ Answer to “Key Type” command and server

confirms the Key Type is right. then server sends

“Key number” command and tell client which Key

will be used.

0x12 Key confirm √ Answer to “Key number” command. Tell server

Secure Link Layer Message Formats

IoT Device Secure Connection with LoRa, Application Note, Rev. 09/2018

8 NXP Semiconductors

Key is OK.

0x13 Symmetric session

key

 √ Server generates session key, then sends it to client.

0x14 Symmetric session

key confirmed
√ Answer to “Symmetric session key” command.

0x20 Request server Crt √ If “Join Type” is Asymmetric, CIDs(0x20~0x28)

are available.

Client request server’s Crt. Need several times to

get Crt.

0x21 Response server Crt √ Answer to “Request server Crt” command.

Server sends own Crt to client. Need several times

to send Crt.

0x22 Server Crt

confirmed
√ After received server CA, client will verify CA. if

the CA is correct, client will send “Server CA

confirm” command.

0x23 Request client Crt √ Server request client’s Crt. Need several times to

get Crt.

0x24 Response client Crt √ Answer to “Request client Crt” command.

Client sends own Crt to server. Need several times

to send Crt.

0x25 Client Crt

confirmed

 √ After received client Crt, client will verify Crt. if

the Crt is correct, server will send “Client Crt

confirmed” command.

0x26 Shared Key

confirmed
√ After both Crts are confirmed, Client and server

will generate same shared Key. Client sends this

command.

0x27 Asymmetric session

key

 √ Server generates session Key, then sends it to

client.

0x28 Asymmetric session

key confirmed
√ Client confirmed that session key is received

successfully.

0x30 Data Key √ Server generates data Key, then sends it to client.

0x31 Data Key confirmed √ Client confirmed that data key is received

successfully.

Secure Link Layer Message Formats

IoT Device Secure Connection with LoRa, Application Note, Rev. 0, 09/2018

NXP Semiconductors 9

0x32 Security connected √ Server notifies secure channel is established.

0x35 Change Session

Key
√ √ Client or server can send the command to request to

change session key.

0x36 Change Session

Key confirmed
√ √ Answer to “Change Session Key” command.

Receiver generates new session key, sends it to the

side requested.

0x37 Change Data Key √ √ Client or server can send the command to request to

change data key.

0x38 Change Data Key

confirmed
√ √ Answer to “Change Data Key” command.

Receiver generates new data key, sends it to the

side requested.

0x3A Data √ √ After the secure channel is established, send useful

data to another side.

0x3B ACK √ √ Answer to “Data” command.

Receiver send the command to tell sender the

message is received.

0x3F Disconnect √ √ Send the command to disconnect secure channel.

5.2. Link IDs

There are two Link IDs in the secure Link layer. One Link ID is “From Link ID” means where the

message is from, another Link ID is “To Link ID” means where the message is to. When received one

package, firstly need to judge whether the package is for “me” according to “To Link ID” and whether

the package is needed to process according to “From Link ID”.

5.3. PayLoad

If a data frame carries a payload, the PayLoad maybe is encrypted before the message integrity code is

calculated and you can get some information from PayLoad. about how to encrypt/decrypt the Payload,

please see Application Layer Data Encryption.

5.4. MIC

The message integrity code(MIC) is calculated over all the fields in the message.

 msg = Link Header | From Link ID | To Link ID | PayLoad

There are two methods to do message integrity code(MIC) including HMAC-SHA1 and CMAC.

Key management

IoT Device Secure Connection with LoRa, Application Note, Rev. 09/2018

10 NXP Semiconductors

 HMAC-SHA1(K, msg) = H((K ⊕ opad)|| H((K ⊕ ipad) || msg))

Where

 K is secret key.

 H is approved hash function.

⊕ is exclusive-or operation

ipad is inner pad.

opad is outer pad.

 MIC = HMAC-SHA1[0…19], where MIC should be 20 bytes.

 CMAC = aes128-cmac(K, msg)

 MIC = CMAC[0…15], where MIC should be 16 bytes.

6. Key management

Key management involves the generation, distribution, storage, and handling of the cryptographic keys.

Many keys are involved in a secure connection. The keys stored are very important, since they are used

to encrypt/decrypt messages during establishing secure channel. Table 2. lists all these keys.
Table 2. Keys Introduction

KEY

NAME

METHO

D

GENER

ATED

LINK

COMMAND

USED(CID)

FILED

(LINK LAYER

MIC / DATA

ENCRYPTION)

DESCRIPTION

HKey
①

 Stored
④
 0x01 ~ 0x26 Link Layer MIC Client and server should have same

Hkey. It is stored in nonvolatile

memory.

ECC Key
②

 Stored - - If the connection mode is

“Asymmetric”, Server and Client

should store own ECC Key

SymmKey
③

 Stored - - If the connection mode is “Symmetric”,

client stores 5 Keys and server also

stores same client’s Keys.

Keyx Stored 0x13 ~ 0x14

0x30 ~ 0x32

DATA

ENCRYPTION

This key is one of SymmKey. If the

connection mode is “Symmetric”,

server will select one of SymmKey

randomly as temporary data key.

Keyp Server/Cli 0x27 ~ 0x28 Link Layer MIC After Crts are verified, server and client

Application Layer Data Encryption

IoT Device Secure Connection with LoRa, Application Note, Rev. 0, 09/2018

NXP Semiconductors 11

ent 0x30 ~ 0x32 will get each other’s public key. They

can generate same shared key called

“Keyp” by ECDH.

Session key Server 0x30 ~ 0x3F Link Layer MIC Server generates session key during

establishing secure channel by TRNG.

If responding “Change Session Key”

command, server or client generates it.

Data key Server/Cli

ent

0x35 ~ 0x3F DATA

ENCRYPTION

Server generates Data key during

establishing secure channel by TRNG.

If responding “Change Data Key”

command, server or client generates it.

NOTE

1. For example, in ConfigutationInfo.c file of security_sw_RT and

security_sw_LPC84x projects, the arrays of ConstHKey are for

this.

2. For example, in ConfigurationInfo.c file of security_sw_RT and

security_sw_LPC84x projects, the arrays of Serverd/Clientd are

ECC private key and the arrays of Q_XYZ are ECC public key.

3. For example, in ConfigurationInfo.c file of security_sw_RT

project, array of ConstsymmKey consists of 5 clients’ SymmKey,

and every client SymmKey consists of 5 Keys.

4. “Stored” means the key is stored in nonvolatile memory before

system works.All keys stored need inject NVM beforehand and it

is better saved in OTP memory. All keys non-stored need

destroyed after secure channel disconnected. Session key and Data

key need to be changed after a certain time.

5. Key management is related with entire system security, so we just

list the keys used. If you want to learn more about this, you can

check from NXP Secure MCU features, e.g PUF/OTP/DICE…

7. Application Layer Data Encryption

Eencryption of PayLoad of secure Link Layer, called Application Layer Data Encryption. There are two

different methods of encryption/decryption: AES128-CBC, AES128-CCM in different CID package.

The PayLoads with CIDs(0x01~0x12, 0x20~0x26) are not encrypted.

7.1. AES128-CBC encryption/decryption

The message is encrypted by AES-128 in CBC mode. This encryption is just used to exchange session

key and data key during establishing secure channel, you can find it in the packages with

CIDs(0x13~0x14, 0x27~0x28, 0x30~0x32).

The procedure of establishing secure channel

IoT Device Secure Connection with LoRa, Application Note, Rev. 09/2018

12 NXP Semiconductors

7.2. AES128-CCM encryption/decryption

The message is encrypted and authenticated by AES-128 in CCM mode. CCM is used to provide

assurance of the confidentiality and the authenticity of data by combining the techniques of the

Counter(CTR) mode and the Cipher Block Chaining-Message Authentication Code(CBC-MAC)

algorithm. This encryption/decryption is used after the secure channel is established, you can find it in

the packages with CIDs(0x35~0x3F). After the plain text is encrypted, the encrypted data with same

length and 8 bytes tag will be generated.

Figure 5. Message Encryption and Authentication

8. The procedure of establishing secure channel

A secure channel should be established before starting communication between client and server. There

are two methods to establish a secure channel: Symmetric connection and Asymmetric connection.

Same initiating connection and secure data exchange procedure is used in both methods.

8.1. Initiate connection

The secure connection is initiated by client. Server verifies the package integrity by Hkey and if

permitted the client to add network by “From Link ID”. After client received the “Join Accept”

command, will send “Join Type” to tell server the establishing secure channel method (to judge via first

byte of payload: 0x00(Symmetric connection), 0x01(Asymmetric connection)).

Client(LPC845) Server(RT1050)

Join Request(0x01)

Join Accept(0x02)

Join Type(0x03)

Type Accept(0x04)

Hkey
/HMAC-SHA1

Application Layer
Data Encryption
(Key/Method)

MIC
(Key/Method)

None

Figure 6. Initiate connection

n bytes plain text

n bytes encrypted text 8 bytes tag

Encrypt Decrypt

The procedure of establishing secure channel

IoT Device Secure Connection with LoRa, Application Note, Rev. 0, 09/2018

NXP Semiconductors 13

8.2. Symmetric connection

After client received the “Type Accept” command, client sends “Key Type” command to tell server

which 5 SymmKeys can be used. Server uses TRNG to generate random number to select one

SymmKey(Keyx) and tell client the key number. Then server generates session key by TRNG and sends

it encrypted by Keyx in CBC mode.

Client(LPC845) Server(RT1050)

Key Type(0x10)

Key Num(0x11)

Which type key send TRNG, select
one key

Key confirm(0x12)

Key Compare

session key(0x13)
(Key)

Session key confirm(0x14)

HKey/HMAC-
SHA1

Keyx
/CBC

Hkey
/HMAC-SHA1

MIC
(Key/Method)

Application Layer
Data Encryption
(Key/Method)Initiate connection

None

Figure 7. Symmetric connection

8.3. Asymmetric connection

After client received the “Type Accept” command, client and server get each other’s Crt and verify it by

ECDSA. Then they can get same shared key(keyp) by ECDH and use it to encrypt/decrypt Application

Layer Data. The session key is generated by server’s TRNG.

The procedure of establishing secure channel

IoT Device Secure Connection with LoRa, Application Note, Rev. 09/2018

14 NXP Semiconductors

Client(LPC845) Server(RT1050)

Verify Crt/ECDSA

Request server CA(0x20)

Response server CA(0x21)

Server CA confirmed(0x22)

Request client CA(0x23)

Response client CA(0x24)

Client CA confirmed(0x25)

Verify Crt/ECDSA

Shared Key confirmed(0x26)

session key(0x27)
(Key)

Gen shared Key
(ECDH)

HKey/HMAC-
SHA1

Gen shared Key
(ECDH)

Session key confirm(0x28)

HKey/HMAC-
SHA1

Keyp
/CBC

MIC
(Key/Method)

Application Layer
Data Encryption
(Key/Method)

Initiate connection

None

Figure 8. Asymmetric connection

8.4. secure data exchange

MIC is calculated by session key in CMAC mode, after the session key is generated. Server generates

Data Key(including Key, Nonce, AAD) by TRNG and sends it encrypted by Keyp or Keyx in CBC

mode. When client received the command with CID 0x32, the security channel is established. Server

and client can communicate with command with CID 0x3A and 0x3B under security. the command with

CID 0x3F means that the sender requests disconnect secure connection.

NOTE

 In a while, the session key and data key should be updated.

Hardware platform

IoT Device Secure Connection with LoRa, Application Note, Rev. 0, 09/2018

NXP Semiconductors 15

DATA(0x3A)

Disconnect(0x3F)

Session
Key/CMAC

Data Key(0x30)
(Key/Nonce/AAD=0)

Data Key Confirmed(0x31)

TRNG

Session
Key/CMAC

Data Key
/CCM

Keyp/Keyx
/CBC

ACK(0x3B)

Change Session Key(0x35)

Change Session Key Confirmed(0x36)

Change Data Key(0x37)

Change Data Key Confirmed(0x38)

Security Connected(0x32)

Initiate connection

Symmetric/Asymmetric
connection

Client(LPC845) Server(RT1050) MIC
(Key/Method)

Application Layer
Data Encryption
(Key/Method)

Figure 9. Secure data exchange

9. Hardware platform

This section presents introduction of the hardware platform for the demo application.

9.1. LoRa board

The LoRa board consists of LoRa module and LoRa baseboard with Arduino interface.

➢ Key features of LoRa module

• Radio frequency: 400 ~ 500 MHz

• Up to +20 dBm constant RF output

• High sensitivity: down to -135 dBm.

• Preamble detection

Hardware platform

IoT Device Secure Connection with LoRa, Application Note, Rev. 09/2018

16 NXP Semiconductors

• Packet engine up to 256 bytes with CRC

➢ Key features of LoRa baseboard

• Arduino interface

• User LEDs to show the status of LoRa module

• Temperature sensor: PCT2075

• SMA interface

Figure 10. LoRa board

9.2. Server hardware

i.MX RT1050 EVK board is as LoRa board’s baseboard.

9.2.1. i.MXRT1050 EVK board introduction

➢ The key features of i.MXRT1050 EVK

• Memory: 256 Mbit SDRAM, 64 Mbit Quad SPI Flash, 512 Mbit Hyper Flash, TF Card Slot

• Communication interfaces: USB 2.0 OTG connector, USB 2.0 host connector, 10/100 Mbit/s

Ethernet connector, CAN bus connector

• Multimedia interfaces: CMOS sensor connector, LCD connector

• Audio interfaces: 3.5 mm stereo headphone hack, board-mounted microphone, SPDIF connector

(not mounted by default)

• Hardware and software platforms

• Debug interfaces: On-board debug adapter with DAP-Link, JTAG 20-pin connector

• Arduino interface

• User button and LEDs

Hardware platform

IoT Device Secure Connection with LoRa, Application Note, Rev. 0, 09/2018

NXP Semiconductors 17

Figure 11. Server hardware

9.2.2. i.MXRT1050 EVK board settings

To enable spi and some GPIOs features, EVK board settings need to be changed.

Remove resistors: R341

Weld resistors: R278, R279, R280, R281, R288, R289, R276, R277

After changing these settings, i.MXRT1050 EVK board and LoRa board can work.

Hardware platform

IoT Device Secure Connection with LoRa, Application Note, Rev. 09/2018

18 NXP Semiconductors

9.3. Client hardware

LPC845 MAX board is as LoRa board’s controller board.The key features of LPC845 MAX board are:

• On-board CMSIS-DAP (debug probe) with VCOM port, based on LPC11U35 MCU

• Debug connector to allow debug of target MCU using an external probe

• Red, green and blue user LEDs

• Target ISP and user/wake buttons

• Target reset button

• LPCXpresso expansion connector

• DAC output via speaker driver and speaker

• Arduino™ connectors compatible with the “Arduino UNO” platform

Figure 12. Client hardware

Don’t need to modify LPC845 MAX board to comply with LoRa board.

Software platform

IoT Device Secure Connection with LoRa, Application Note, Rev. 0, 09/2018

NXP Semiconductors 19

10. Software platform

There are two software platforms: one is server software platform on i.MXRT1050 SDK, another is

client software platform on LPC845 code bundle. The application code is implemented in C++ language.

The toolchain is Keil MDK 5.24.

10.1. Server software

The server code implements the functions of adding asymmetric client and symmetric client. Related

device information be can found in “ConfigurationInfo.c” file.

Software platform

IoT Device Secure Connection with LoRa, Application Note, Rev. 09/2018

20 NXP Semiconductors

Figure 13. Server software

10.2. Client software

Due to limited resources of LPC845, C++ framework is removed and do not have task scheduler.

Hands-on

IoT Device Secure Connection with LoRa, Application Note, Rev. 0, 09/2018

NXP Semiconductors 21

Figure 14. Client software

11. Hands-on

In this hands-on, client 1 with asymmetric connection and client 2 with symmetric connection will be

added to the star network. See Figure 15.

Hands-on

IoT Device Secure Connection with LoRa, Application Note, Rev. 09/2018

22 NXP Semiconductors

Figure 15. Demo boards

To let the 3 boards to work, follow the below steps:

1) Connect a micro USB cable between PC host and the OpenSDA USB port on the board for the three

boards.

2) Open a serial terminal on PC for OpenSDA serial device with these setting:

- 115200 baud rate

- 8 data bits

- One stop bit

- No flow control

3) Build the related projects(note: if symmetric connection, remember to define “DefSYMMETRIC”),

download the program to the target board.

Hands-on

IoT Device Secure Connection with LoRa, Application Note, Rev. 0, 09/2018

NXP Semiconductors 23

4) Press the reset button on the 3 boards.

When the code runs successfully, you can see the similar information from the terminal as in Figure 16.

below is asymmetric connection.

Transfer Server Crt

Server Client

Figure 16. Asymmetric connection

Figure 17. shows a symmetric connection

Use cases

IoT Device Secure Connection with LoRa, Application Note, Rev. 09/2018

24 NXP Semiconductors

Server Client

Figure 17. Symmetric connection

12. Use cases

This AN involves secure library and how to establish secure channel, so these can be used in different

situations. We list some use cases.

12.1. Point to point secure connection

Two devices want to communicate under secure channel by wireless or wired way.

Device 1 Device 2
Secure channel

Figure 18. Point to point secure connection

12.2. Secure star/mesh network

In a local area network, sometimes need to create a secure network to prevent the man-in-the-middle

attack. E.g. LoRa/GFSK network doesn't have standard secure protocol, it is an appropriate choice to

copy this AN.

Device 1 Device n

Gateway

Secure channel

Secure channel

Revision history

IoT Device Secure Connection with LoRa, Application Note, Rev. 0, 09/2018

NXP Semiconductors 25

Figure 19. Secure star/mesh network

12.3. Secure connection for RS484/CAN

In industrial field, RS485/CAN is a low-level protocol and does not support any security features. In

most implementations, applications are expected to deploy their own security mechanisms, we have

given an example for this situation.

Master

Slave 1 Slave 2 Slave n

Secure RS485/CAN...

Figure 20. Secure connection for RS485/CAN

13. Conclusion

This application note describes how to set up secure connection between devices. An IoT secure library

is provided for NXP MCU customers. You can use similar secure connection for your products.

If you are interested in the hardware and software of this reference design, please send email to

marketing team to request.

14. Reference

• Bluetooth Security

• LoRaWAN Specification

• https://www.mbed.com/en/technologies/security/mbed-tls

• ARM Cortex-M7 Processor Technical Reference Manual (Revision: r1p1)

• i.MX RT1050 Processor Reference Manual

• LoRa SX1276/77/78/79 data sheet

15. Revision history
Revision history

Revision number Date Substantive changes

0 09/2018 Initial release

https://epdf.tips/bluetooth-security.html
https://www.rs-online.com/designspark/rel-assets/ds-assets/uploads/knowledge-items/application-notes-for-the-internet-of-things/LoRaWAN%20Specification%201R0.pdf
https://www.mbed.com/en/technologies/security/mbed-tls
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0489b/DDI0489B_cortex_m7_trm.pdf
https://www.nxp.com/docs/en/reference-manual/IMXRT1050RM.pdf
https://www.semtech.com/uploads/documents/DS_SX1276-7-8-9_W_APP_V5.pdf

How to Reach Us:

Home Page:

nxp.com

Web Support:

nxp.com/support

Information in this document is provided solely to enable system and software implementers

to use NXP products. There are no express or implied copyright licenses granted hereunder

to design or fabricate any integrated circuits based on the information in this document. NXP

reserves the right to make changes without further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its products

for any particular purpose, nor does NXP assume any liability arising out of the application or

use of any product or circuit, and specifically disclaims any and all liability, including without

limitation consequential or incidental damages. “Typical” parameters that may be provided in

NXP data sheets and/or specifications can and do vary in different applications, and actual

performance may vary over time. All operating parameters, including “typicals,” must be

validated for each customer application by customer's technical experts. NXP does not

convey any license under its patent rights nor the rights of others. NXP sells products

pursuant to standard terms and conditions of sale, which can be found at the following

address: nxp.com/SalesTermsandConditions.

While NXP has implemented advanced security features, all products may be subject to

unidentified vulnerabilities. Customers are responsible for the design and operation of their

applications and products to reduce the effect of these vulnerabilities on customer’s

applications and products, and NXP accepts no liability for any vulnerability that is discovered.

Customers should implement appropriate design and operating safeguards to minimize the

risks associated with their applications and products.

NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD,

COOLFLUX, EMBRACE, GREENCHIP, HITAG, I2C BUS, ICODE, JCOP, LIFE VIBES,

MIFARE, MIFARE CLASSIC, MIFARE DESFire, MIFARE PLUS, MIFARE FLEX, MANTIS,

MIFARE ULTRALIGHT, MIFARE4MOBILE, MIGLO, NTAG, ROADLINK, SMARTLX,

SMARTMX, STARPLUG, TOPFET, TRENCHMOS, UCODE, Freescale, the Freescale logo,

AltiVec, C 5, CodeTEST, CodeWarrior, ColdFire, ColdFire+, C Ware, the Energy Efficient

Solutions logo, Kinetis, Layerscape, MagniV, mobileGT, PEG, PowerQUICC, Processor

Expert, QorIQ, QorIQ Qonverge, Ready Play, SafeAssure, the SafeAssure logo, StarCore,

Symphony, VortiQa, Vybrid, Airfast, BeeKit, BeeStack, CoreNet, Flexis, MXC, Platform in a

Package, QUICC Engine, SMARTMOS, Tower, TurboLink, and UMEMS are trademarks of

NXP B.V. All other product or service names are the property of their respective owners. Arm,

AMBA, Arm Powered, Artisan, Cortex, Jazelle, Keil, SecurCore, Thumb, TrustZone, and

μVision are registered trademarks of Arm Limited (or its subsidiaries) in the EU and/or

elsewhere. Arm7, Arm9, Arm11, big.LITTLE, CoreLink, CoreSight, DesignStart, Mali, Mbed,

NEON, POP, Sensinode, Socrates, ULINK and Versatile are trademarks of Arm Limited (or its

subsidiaries) in the EU and/or elsewhere. All rights reserved. Oracle and Java are registered

trademarks of Oracle and/or its affiliates. The Power Architecture and Power.org word marks

and the Power and Power.org logos and related marks are trademarks and service marks

licensed by Power.org.

© 2018 NXP B.V.

© 2018 NXP B.V.

http://www.freescale.com/
http://www.freescale.com/support
http://www.freescale.com/SalesTermsandConditions
http://www.freescale.com/SalesTermsandConditions

	IoT Device Secure Connection with LoRa
	1. Introduction
	2. Abbreviations
	3. Overview
	4. Software architecture
	4.1. Secure library
	4.2. C++ framework

	5. Secure Link Layer Message Formats
	5.1. Link Header
	5.2. Link IDs
	5.3. PayLoad
	5.4. MIC

	6. Key management
	7. Application Layer Data Encryption
	7.1. AES128-CBC encryption/decryption
	7.2. AES128-CCM encryption/decryption

	8. The procedure of establishing secure channel
	8.1. Initiate connection
	8.2. Symmetric connection
	8.3. Asymmetric connection
	8.4. secure data exchange

	9. Hardware platform
	9.1. LoRa board
	9.2. Server hardware
	9.2.1. i.MXRT1050 EVK board introduction
	9.2.2. i.MXRT1050 EVK board settings

	9.3. Client hardware

	10. Software platform
	10.1. Server software
	10.2. Client software

	11. Hands-on
	12. Use cases
	12.1. Point to point secure connection
	12.2. Secure star/mesh network
	12.3. Secure connection for RS484/CAN

	13. Conclusion
	14. Reference
	15. Revision history

