
S12(X) Debugger
Manual

 Revised: August 10, 2010

Freescale, the Freescale logo and CodeWarrior are trademarks of Freescale Semiconductor, Inc., Reg. U.S. Pat. & Tm.
Off. Flexis and Processor Expert are trademarks of Freescale Semiconductor, Inc. All other product or service names
are the property of their respective owners.

© 1989–2010 Freescale Semiconductor, Inc. All rights reserved.

Information in this document is provided solely to enable system and software implementers to use Freescale Semicon-
ductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any inte-
grated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale
Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any partic-
ular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product
or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental dam-
ages. “Typical” parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and
do vary in different applications and actual performance may vary over time. All operating parameters, including “Typ-
icals”, must be validated for each customer application by customer's technical experts. Freescale Semiconductor does
not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not de-
signed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other
applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semi-
conductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use
Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold
Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all
claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of
personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale
Semiconductor was negligent regarding the design or manufacture of the part.

How to Contact Us

Corporate Headquarters Freescale Semiconductor, Inc.

6501 William Cannon Drive West

Austin, Texas 78735

U.S.A.

World Wide Web http://www.freescale.com/codewarrior

Technical Support http://www.freescale.com/support

http://www.freescale.com/codewarrior
http://www.freescale.com/support

Table of Contents

 Introduction
Manual Contents . 21

 Book I - Debugger Engine
Book I Contents . 23

1 Introduction 25
Freescale Debugger. 25

Debugger Application. 25

Debugger Features . 26

Demonstration Version Limitations . 26

2 Debugger Interface 27
Application Programs . 27

Debugger Main Window. 28

Debugger Main Window Toolbar . 28

Debugger Main Window Status Bar . 29

Main Window Menu Bar. 29

Component Menu . 42

Window Menu . 43

Help Menu. 45

Component Associated Menus . 45

Component Main Menu . 45

Component Windows Object Information Bar . 46

Component Context Menu . 46

Features of the User Interface . 47

Activating Services with Drag and Drop. 47
3S12(X) Debugger Manual

Table of Contents
Drag and Drop an Object. .48

Drag and Drop Combinations .48

3 Debugger Components 53
Debugger Kernel Components .53

CPU Components .53

Window Components. .53

Connection Components .53

Loading Component Windows .54

General Debugger Components .55

Assembly Component .55

Command Line Component. .61

ComMaster Component. .64

Coverage Component .65

DA-C Link Component .68

Data Component .70

HCS12XAdrMap Component .81

MCURegisters Component .83

Memory Component .89

Module Component .102

Procedure Component .103

Profiler Component .105

Recorder Component .109

Register Component .111

Source Component .114

Terminal Component .125

Trace Component. .129

Visualization Utilities .135

Inspect Component .135

Visualization Tool Component .143

4 Control Points 163
Control Point Configuration .163

Breakpoints .164

Breakpoints Tab .166
4 S12(X) Debugger Manual

Table of Contents
Multiple Selections in List Box. 166

Checking Expressions . 167

Saving Breakpoints . 167

Setting Breakpoints . 169

Watchpoints. 176

Watchpoints Tab . 178

Multiple Selections . 179

Checking Syntax . 179

Setting Watchpoints. 179

Watchpoints in Multi Core Projects . 185

Markpoints . 186

Markpoints Tab . 189

Setting Markpoints . 189

Halting on a Control Point . 192

Counting Control Point . 192

Conditional Control Point . 193

Control Point with Command . 193

5 Real-Time Kernel Awareness 195
Inspecting Task State . 195

RTK Interface . 196

Task Description Language. 196

Application Example . 197

Inspecting Kernel Data Structures . 198

RTK Awareness Register Assignments. 200

OSEK Kernel Awareness . 200

OSEK RTI . 201

ORTI File and Filename . 201

ORTI Aware Debugging System . 201

ORTI File Structure. 202

OSEK RTK Inspector Component . 202

6 How To... 207
Configuring the Debugger . 207

For Use from Desktop (Windows 2000) . 208
5S12(X) Debugger Manual

Table of Contents
Starting the Debugger .208

Starting with WinEdit .208

Starting from within the IDE .209

Debugger Command Line Start .211

Switching Connections .212

Loading the Full Chip Simulation Connection .212

Loading the P&E Multilink/Cyclone Pro Connection.214

Switching to SofTec HCS12 .218

Switching to HCS12 Serial Monitor Connection .219

Using the Stationery Wizard to Create a Project. .221

CodeWarrior IDE Integration .232

Debugger Configuration .232

Automating Debugger Startup. .233

Loading an Application. .234

Starting an Application .235

Stopping an Application .235

Stepping in the Application. .235

On Source Level .236

Step on Assembly Level .237

Working on Variables .238

Display Local Variable from a Function .238

Display Global Variable from a Module .238

Change Format for Variable Value Display .239

Modify a Variable Value .240

Retrieve the Variable Allocation Address .240

Inspect Memory Starting at a Variable Location Address241

Load an Address Register with the Variable Address241

Working on the Register .241

Change Format of Register Display. .241

Modify a Register Content. .242

Start Memory Dump at Selected Register Address243

Modify Content of Memory Address .243

Consulting Assembler Instructions Generated by a Source Statement244

Viewing Code .244

Communicating with the Application .245
6 S12(X) Debugger Manual

Table of Contents
About startup.cmd, reset.cmd, preload.cmd, postload.cmd 246

7 CodeWarrior Integration 247
Debugger Configuration . 247

8 Debugger COM Capabilities 249
COM Implementation . 249

Driving Debugger through COM . 249

9 Synchronized Debugging through DA-C IDE 251
Configuring DA-C IDE for Freescale Tool Kit. 251

Create New Project . 252

Configure Working Directories . 252

Configure File Types . 253

Configure Library Path . 254

Configure the Tools . 258

Debugger Interface . 261

DA-C IDE and Debugger Communication . 262

Synchronized Debugging . 265

Troubleshooting . 266

 Book II - HC(S)12(X) Debug
Connections

Book II Contents . 269

10 HC(S)12(X) Full Chip Simulation Connection 271
Technical Considerations . 271

Full Chip Simulation Menu . 271

Memory Configuration . 275

Clock Frequency Setup . 281

Bus Trace. 281
7S12(X) Debugger Manual

Table of Contents
Full Chip Simulation Warnings .283

FCS and Silicon On-Chip Peripherals Simulation .284

Supported HC(S)12(X) Derivatives .285

Communication Modules .285

Analog to Digital Converter Module .288

Memory Modules .289

Miscellaneous Modules .290

Port I/O Modules .291

Timer Modules. .292

Legacy HC12 (CPU12) Derivatives Simulation .300

FCS Visualization Utilities .318

Stimulation Component .318

Terminal Component .320

True-Time I/O Stimulation .325

Stimulation Program Examples .325

Stimulation Input File Syntax .333

Electrical Signal Generators and Signals Application to Device Pins 334

Signal IO Component .335

Signal Description File EBNF. .335

Base Signal Files Provided .338

Virtual Wire Connections with the Pinconn IO Component339

Command Set to Apply Signal on ATD Pin .339

FCS Tutorials .339

Guess the Number .339

PWM Channel 0 .347

11 P&E Multilink/Cyclone Pro Connection 353
P&E Multilink/Cyclone Pro Technical Considerations 353

Connection Menu .353

HC12MultilinkCyclonePro Menu Options .354

12 OSBDM Connection 365
OSBDM Technical Considerations .365

CodeWarrior Integration .365

Minimum Firmware Version .365
8 S12(X) Debugger Manual

Table of Contents
Support and Licensing . 366

13 SofTec HCS12 Connection 367
SofTec HCS12 Technical Considerations . 367

Connection Menu . 367

inDART-HCS12 Menu Entries . 367

14 HCS12 Serial Monitor Connection 373
Serial Monitor Technical Considerations . 373

CodeWarrior IDE and Serial Monitor Connection . 373

HCS12 Serial Monitor Interface . 373

MONITOR-HCS12 Menu Options . 377

15 Abatron BDI Connection 381
Abatron BDI Technical Considerations . 381

Abatron BDI Highlights . 381

Abatron BDI Requirements . 381

Abatron BDI Connection Introduction . 382

Interfacing Abatron BDI and Your System. 382

BDI Interface Software Setup. 383

Running the ABATRON Configuration Tool . 383

Loading the Abatron BDI Connection . 387

Abatron BDI Connection Menu Entries . 389

Abatron BDI Connection Dialog Boxes . 391

Communication Device Specification Dialog Box 391

Setup Dialog Box . 392

Terminal Emulation . 393

16 TBDML Connection 395
TBDML Technical Considerations . 395

Connection Menu . 395

TBDML HCS12 Menu Entries . 395
9S12(X) Debugger Manual

Table of Contents
 Book III - HC(S)12(X) Debugger
Common Features

Book III Contents .399

17 On-Chip DBG Module for S12, S12S, S12G, S12P, S12X
Platforms401

DBG Features .401

Specific Connection Menu Options .402

Context Menu Entries .402

Source and Assembly Windows .402

Storing Triggers as Markpoints .406

Data and Memory Windows .410

Trigger Settings .413

Trigger Module Usage .414

DBG Support Status Bar Item. .416

Trigger Module Settings Window .416

S12 DBG Module Tabs .416

S12G, S12P, S12S DBG Module Tabs .426

S12X DBG Module Tabs. .433

General Settings Tab .445

Trace Component Window .447

Instructions Display. .448

Recorded Data Display .452

Demonstration Mode Limitations .453

18 Debugging Memory Map 455
Debugging Memory Map GUI .455

Enabling the Memory Module and Changing the Memory Range457

Remarks .460

CPU Core Priorities and Types .460

HC12 (CPU12) Core .461

HCS12 Core. .462
10 S12(X) Debugger Manual

Table of Contents
HCS12X Core . 464

DMM Commands . 465

Debugging Memory Map Manager Command Set 465

19 Flash Programming 467
Automated Application Programming . 467

Setup . 468

Advanced Options: Erase Prevention . 468

NVMC Graphical User Interface . 470

NVMC Dialog Box . 471

Flash Module Handling. 472

MCU Speed Information. 473

Configuration: FPP File Loading . 473

Loading an Application in Flash . 475

Preparing and Loading an Application . 476

Hardware Considerations . 477

HC12 (CPU12) CPU Devices . 477

HCS12 and HCS12X CPU Devices . 480

HCS12 EEPROM Relocation . 482

EB386 Compliance and RAM Moving. 482

HCS12X Emulated EEPROM. 483

Legacy Flash Programming Commands in Preload and Postload Command
Files . 483

S12G, S12P, S12X, S12XE, S12XS D-Flash memory 484

20 Unsecure HCS12 Derivatives 485
Information Required to Unsecure the Device . 485

Unsecure Command File . 487

21 On-Chip Hardware Breakpoint Module 491
Hardware Breakpoint Configuration dialog . 491

Breakpoint Module Mode . 492
11S12(X) Debugger Manual

Table of Contents
 Book IV - Commands and Environment
Variables

Book IV Contents .497

22 Debugger Engine Commands 499
Commands Overview .499

Available Command Lists .500

Command Syntax Terms .507

Debugger Commands .510

A .510

ACTIVATE .511

ADDXPR. .511

ATTRIBUTES .512

AT .523

AUTOSIZE .524

BASE .524

BC .525

BCKCOLOR .526

BD .527

BS .527

CALL. .530

CD .530

CF .531

CLOCK .533

CLOSE. .534

COLLAPSE. .534

COM_START .535

COM_EXE .535

COM_EXIT .536

COPYMEM. .536

CMDFILE .537

CR .537
12 S12(X) Debugger Manual

Table of Contents
CYCLE . 538

DASM . 538

DB . 540

DDEPROTOCOL . 541

DEFINE. 542

DETAILS. 543

DL . 544

DUMP . 545

DW . 545

E . 547

ELSE . 548

ELSEIF . 548

ENDFOCUS . 549

ENDFOR. 549

ENDIF . 550

ENDWHILE . 550

EXECUTE. 551

EXIT . 551

EXPAND. 552

FILL . 552

FILTER . 553

FIND . 553

FINDPROC . 554

FOCUS . 555

FOLD . 555

FONT . 556

FOR . 556

FPRINTF. 557

FRAMES. 558

G . 558

GO . 559

GOTO . 559

GOTOIF . 560

GRAPHICS . 561

HELP. 561
13S12(X) Debugger Manual

Table of Contents
ICD12EXEC HELP. .562

IF .562

INSPECTOROUTPUT .563

INSPECTORUPDATE. .564

LF. .564

LOAD .565

LOADCODE .567

LOADSYMBOLS .567

LOG .568

LS. .572

MEM .573

MS .574

NB .575

NOCR .577

NOLF. .577

OPEN. .577

OUTPUT .578

P .579

PAUSETEST .580

PRINTF .580

PTRARRAY .581

RD .581

RECORD .582

REPEAT. .583

RESET .583

RESTART .584

RETURN .584

RS .585

S .586

SAVE .586

SAVEBP .587

SET .588

SETCOLORS .588

SLAY .589

SLINE .590
14 S12(X) Debugger Manual

Table of Contents
SMEM . 590

SMOD . 591

SPC . 592

SPROC . 592

SREC. 593

STEPINTO . 594

STEPOUT . 594

STEPOVER. 595

STOP . 596

T . 596

TESTBOX. 597

TUPDATE . 598

UNDEF . 598

UNFOLD. 601

UNTIL. 601

UPDATERATE . 602

VER. 602

WAIT. 603

WB . 605

WHILE . 605

WL. 606

WW . 607

ZOOM . 607

SETSIGNALFILE Command . 608

CLOSESIGNALFILE Command . 609

CONNECT . 610

DISCONNECT . 610

CONNECT_STATE . 610

-T=<time>: Test mode. 611

-Target=<targetname> . 611

-W: Wait mode . 611

-Instance=%currentTargetName . 612

-Prod= <fileName> . 612

-Nodefaults . 612

-Cmd = <Command> . 612
15S12(X) Debugger Manual

Table of Contents
-C <cmdFile>. .613

-ENVpath: "-Env" <Environment Variable> "=" <Variable Setting>613

23 Connection-Specific Commands 615
Abatron BDI Connection Commands .615

BDI .616

PROTOCOL. .616

RESET .617

NVMC Commands .617

FLASH. .618

[<blockNo>] .621

DMM Commands .624

Debugging Memory Map Manager Commands .624

DMM .625

DMM ADD .625

DMM DEL .626

DMM SAVE .626

DMM DELETEALLMODULES .626

DMM RELEASECACHES .627

DMM CACHINGON .627

DMM CACHINGOFF. .627

DMM WRITEREADBACKON .628

DMM WRITEREADBACKOFF. .628

DMM HCS12MERHANDLINGON. .628

DMM HCS12MERHANDLINGOFF .629

DMM OPENGUI. .629

DMM SETAHEADREADSIZE .629

Full Chip Simulator Commands .630

ADCPORT. .632

ADDCHANNEL .632

CPORT. .633

DELCHANNEL .633

ITPORT .634

ITVECT. .635

KPORT .635
16 S12(X) Debugger Manual

Table of Contents
LCDPORT. 636

LINKADDR . 636

PBPORT . 637

PORT. 638

REGBASE. 638

RESETCYCLES . 639

RESETMEM . 639

RESETRAM . 640

RESETSTAT . 641

SEGPORT . 641

SETCONTROL. 642

SETCPU . 642

SHOWCYCLES . 643

WPORT . 643

Full Chip Simulation Connection Commands . 644

ADCx_SETPAD . 645

BGND_CYCLES . 645

HALT_ON_TRAP. 646

HCS12_SUPPORT . 646

MESSAGE_HIDE_ID. 648

MESSAGE_HIDE_RESET. 648

MESSAGE_SHOW_ID. 649

PSMODE. 649

SELECTCORE . 650

STACK_AREA_CHECK . 650

STACK_POINTER_INFO . 651

WARNING_SETUP . 651

On-Chip Hardware Breakpoint Module Commands . 653

HWBPM . 653

Unsecure Commands . 657

CHIPSECURE . 658

XGATE-Specific Hardware Connection Commands . 658

HCS12X_MAP4000 . 659

SELECTCORE . 660

STEPBOTHCORES . 660
17S12(X) Debugger Manual

Table of Contents
XDBG* .661

XGATECODERANGE .661

XGATECODERANGESRESET .662

Other Hardware Connection Commands .662

HWBREAKONLY .662

ISRDISABLEDSTEP .663

24 Debugger Engine Environment Variables 667
Debugger Environment .667

The Current Directory .668

Global Initialization File (MCUTOOLS.INI - PC Only) 668

Local Configuration File (usually project.ini). .669

Default Layout Configuration (PROJECT.INI) .670

Environment Variable Paths. .673

Search Order for Source Files .675

In the Debugger for C Source Files (*.c, *.cpp) .675

In the Debugger for Assembly Source Files (*.dbg)675

In the Debugger for Object Files (HILOADER) .675

Debugger Files .675

Environment Variables .678

ABSPATH: Absolute Path .678

DEFAULTDIR: Default Current Directory .678

ENVIRONMENT=: Environment File Specification679

GENPATH: #include “File” Path. .680

LIBRARYPATH: ‘include <File>’ Path .681

OBJPATH: Object File Path .682

TMP: Temporary directory .683

USELIBPATH: Using LIBPATH Environment Variable.684

25 Connection-Specific Environment Variables 685
Abatron BDI Connection Environment Variables. .685

BDICONF .686

COMDEV .686

COMPRESS .687

SHOWPROT .688
18 S12(X) Debugger Manual

Table of Contents
SKIPILLEGALBREAK . 688

VERIFY . 689

Banked Memory Location-Associated Environment Variables 690

BANKWINDOWn . 690

Unsecure Environment Variable . 691

CHIPSECURE . 691

On-Chip Hardware Breakpoint Module Environment Variables 692

HWBPD_MCUIDnnn_BKPT_REMAPn . 692

HWBPMn . 693

 Book V - Debugger Legacy
Book V Contents. 697

26 HC(S)12 (X) Full-Chip Simulator Components No Longer
Supported699

List of HC(S)12(X) FCS Components No Longer Supported 699

27 Debugger DDE Capabilities 701
DDE Implementation . 701

Driving Debugger through DDE . 701

Index 703
19S12(X) Debugger Manual

Table of Contents
20 S12(X) Debugger Manual

Introduction

Manual Contents
The S12(X) Debugger Manual consists of the following books:

Book I: Debugger Engine – describes the HC12, HCS12 and HC(S)12(X) common and
base features, their functionality, and a description of the components that are available in
the debugger.

• Chapter 1 - Introduction

• Chapter 2 - Debugger Interface

• Chapter 3 - Debugger Components

• Chapter 4 - Control Points

• Chapter 5 - Real-Time Kernel Awareness

• Chapter 6 - How To...

• Chapter 7 - CodeWarrior Integration

• Chapter 8 - Debugger COM Capabilities

• Chapter 9 - Synchronized Debugging through DA-C IDE

Book II: HC(S)12(X) Debug Connections – describes the connections available for
debugging code written for HC12 CPUs.

• Chapter 10 - HC(S)12(X) Full Chip Simulation Connection

• Chapter 11 - P&E Multilink/Cyclone Pro Connection

• Chapter 12 - OSBDM Connection

• Chapter 13 - SofTec HCS12 Connection

• Chapter 14 - HCS12 Serial Monitor Connection

• Chapter 15 - Abatron BDI Connection

• Chapter 16 - TBDML Connection

Book III: HC(S)12(X) Debug Connections - Common Features – describes the common
connections available for debugging code.

• Chapter 17 - On-Chip DBG Module for S12, S12S, S12G, S12P, S12X Platforms

• Chapter 18 - Debugging Memory Map

• Chapter 19 - Flash Programming

• Chapter 20 - Unsecure HCS12 Derivatives

• Chapter 21 - On-Chip Hardware Breakpoint Module
21S12(X) Debugger Manual

Manual Contents
Book IV: Commands and Environment Variables – lists available debugger commands,
and connection-specific commands, with a brief description of each. Lists environment
variables for the debugger engine and connection-specific environment variables, with
provides a brief description of each

• Chapter 22 - Debugger Engine Commands

• Chapter 23 - Connection-Specific Commands

• Chapter 24 - Debugger Engine Environment Variables

• Chapter 25 - Connection-Specific Environment Variables

Book V: Debugger Legacy

• Chapter 26 - HC(S)12 (X) Full-Chip Simulator Components No Longer Supported

• Chapter 27 - Debugger DDE Capabilities
22 S12(X) Debugger Manual

Book I - Debugger Engine

Book I Contents
Each section of the Debugger manual includes information to help you become more
familiar with the Debugger, to use all its functions, and understand how to use the
environment.

Book I, the Debugger Engine, defines the HC12, HCS12 and HCS12X common and base
features and their functionality, and gives a description of the available debugger
components.

This book is divided into the following chapters:

• Chapter 1 - Introduction describes the Debugger application and its features.

• Chapter 2 - Debugger Interface provides all details about the Debugger user interface
environment i.e., menus, toolbars, status bars and drag and drop facilities.

• Chapter 3 - Debugger Components contains descriptions of each basic component
and visualization utility.

• Chapter 4 - Control Points describes the control points and associated windows.

• Chapter 5 - Real-Time Kernel Awareness contains descriptions of the Real Time
concept and related applications.

• Chapter 6 - How To... provides answers for common questions and describes how to
use advanced features of the Debugger.

• Chapter 7 - CodeWarrior Integration explains how to configure the Debugger for use
with CodeWarrior IDE.

• Chapter 8 - Debugger COM Capabilities provides information on the Component
Object Model (COM) Interface which allows the user to control debugger using
scripts or other application

• Chapter 9 - Synchronized Debugging through DA-C IDE explains the use of tools
with the DA-C IDE from RistanCase
23S12(X) Debugger Manual

Book I Contents
24 S12(X) Debugger Manual

1
Introduction

This section is an introduction to the Freescale Debugger used in 8/16-bit embedded
applications.

Freescale Debugger
The Debugger is a member of the tool family for Embedded Development. It is a
multipurpose tool that you can use for various tasks in the embedded system and industrial
control world. Some typical tasks are:

• Simulation and debugging of embedded applications

• Simulation and debugging of real-time embedded applications

• Simulation and/or cross-debugging of embedded applications

• Multi-Language Debugging: Assembly, C and C++

• True-Time Simulation

• Creation of user components with the Peripheral Builder

• Simulation of a hardware design (e.g., board, processor, I/O chip)

• Building a target application using an object-oriented approach

• Building a host application controlling a plant using an object-oriented approach

Debugger Application
A Debugger Application contains the Debugger Engine and a set of debugger components
which perform specific tasks. The Debugger Engine monitors and coordinates the
component tasks. Each Debugger Component has its own functionality (e.g., source level
debugging, profiling, I/O stimulation).

You can adapt your Debugger application to your specific needs, integrating or removing
the Debugger Components at will. You can add additional Debugger Components (for
example, for simulation of a specific I/O peripheral chip) and integrate them with your
Debugger Application.

You can also open several components of the same type.
25S12(X) Debugger Manual

Introduction
Debugger Features
Debugger Features
• True 32-bit application

• Powerful features for embedded debugging

• Special features for real-time embedded debugging

• Powerful true-time simulation features

• Powerful simulation and debugging capabilities

• Variety of target interfaces

• User Interface

• Graphical user interface (GUI) version including command line

• Configurable GUI with tool bar

• Visualization functions

• Versatile and intuitive drag and drop functions between components

• Folding and unfolding of objects like functions, structures, classes

• Graphical editing of user-defined objects

• Smart interactions with objects

• Extensibility function

• Show Me How Tool

• Context-sensitive help

• Smooth integration into third-party tools

• Supports both Freescale and ELF/DWARF Object File Format and S-Records.

Demonstration Version Limitations
When you start the Debugger in demonstration mode or with an invalid engine license,
then all components protected with FLEXlm are in demonstration mode. The limitations
of all components are described in their respective chapters.
26 S12(X) Debugger Manual

2
Debugger Interface

This chapter describes the Debugger Graphic User Interface (GUI).

The CodeWarrior IDE main window acts as a container for all debugger component
windows. The main window provides a main menu bar, a tool bar, a status bar for status
information, and object information bars for several components.

The Debugger main window allows you to manage the layout of the different component
windows (Window menu of the Debugger application). Component windows are
organized as follows:

• Tiled component windows automatically resize when you resize main window

• Component windows overlap

• Minimized component windows appear as Debugger Main window icons

Application Programs
The CodeWarrior installer places executable programs in the prog subdirectory of the
CodeWarrior installation directory. For example, if you install the CodeWarrior IDE
software in C:\Program Files\Freescale, all program files are in the folder
C:\Program Files\Freescale\CWS12v5.1\Prog.

The CodeWarrior IDE uses the following files for C/C++ debugging:

hiwave.exe Debugger executable file

hibase.dll Debugger main function dll

elfload.dll Debugger loader dll

*.wnd Debugger component files

*.tgt Debugger target files

*.cpu Debugger CPU awareness files
27S12(X) Debugger Manual

Debugger Interface
Debugger Main Window
Debugger Main Window
Once you start the Debugger, the True-Time Simulator & Real-Time Debugger window
opens in the right side of the IDE Main Window.

Figure 2.1 Debugger Main Window

Debugger Main Window Toolbar
The Debugger Main Window toolbar is the default toolbar. Most of the Main Window
menu commands have a related shortcut icon on this toolbar. Figure 2.2 identifies each
default icon.

Figure 2.2 Debugger Main Window Toolbar

A tool tip is available when you point the mouse at an icon.

New
Ope

n
Sav

e
Cut

Cop
y

Pas
te

Help

Help
 o

n
to

pic Run

Sing
le

ste
p

Ste
p

ov
er

Ste
p

ou
t

Ass
em

bly
 st

ep
Halt

Res
et

 ta
rg

et
28 S12(X) Debugger Manual

Debugger Interface
Debugger Main Window
Debugger Main Window Status Bar
The status bar at the bottom of the Debugger Main Window, shown in Figure 2.3, contains
a context sensitive help line for connection-specific information, including the number of
CPU cycles for the Simulator connection and execution status.

Figure 2.3 Debugger Status Bar

Main Window Menu Bar
The Debugger Main Window Menu Bar, shown in Figure 2.4, is associated with the main
function of the debugger application, connection, and selected windows.

Figure 2.4 Debugger Window Menu Bar

NOTE You can select menu commands from the keyboard by clicking the ALT key. A
line appears under the initial letter in each item in the menu bar. Click the key
corresponding to the menu of your choice, and click enter. Or use the
directional arrows to move to the menu entry you want and click enter again.

Table 2.1 describes menu entries available in the menu bar.

Table 2.1 Description of the Main Menu Toolbar Entries

Menu Entry Description

File Use to manage debugger configuration files

View Use to configure the toolbar

Run Use to monitor a simulation or debug session

Connection Use to select the debugger connection. Once you select a
connection, the heading name changes.

Component Use to select and configure extra component windows

Data Use to select Data component functions

Window Use to set the component windows

Help Use to access a standard Windows Help menu
29S12(X) Debugger Manual

Debugger Interface
Debugger Main Window
File Menu
The File menu shown in Figure 2.5 is dedicated to the debugger project.

Figure 2.5 File Menu

Table 2.2 describes File menu entries.

Table 2.2 File Menu Entry Description

Menu Entry Description

New Creates a new project

Load Application Loads an executable file (or debugger connection if nothing is
selected)

Recent
Applications

Opens recently used applications

Open
Configuration

Opens debugger project window. You can load a project file (.PJT
or .INI) containing component names, associated window
positions and parameters, window parameters, connection name,
and .ABS application file to load. You can also load an existing .HWC
file corresponding to a debugger configuration file.

Save
Configuration

Saves the project file

Save
Configuration As

Opens debugger project window to save the project file under a
different path and name and/or format (such as *.PJT, *.INI)

Configuration Opens Preferences window to set environment variables for current
project
30 S12(X) Debugger Manual

Debugger Interface
Debugger Main Window
Use the toolbar icons as shortcuts for some of these functions (refer to the Debugger Main
Window Toolbar section).

Configuration Window
Open the Configuration window by selecting File > Configuration. Use this window
(shown in Figure 2.6) to set up environment variables for the current project. Click the OK
button to save new variables in the current project file.

NOTE The File > Configuration menu entry is only enabled if a project file is loaded.

Figure 2.6 Configuration Window - Environment Tab

The Environment tab contains the following controls:

• A list box containing all available environment variables. Select a variable using the
mouse or directional arrow keys.

1. Project.ini
2.Test.ini

Recent project file list

Exit Quits the Debugger

Table 2.2 File Menu Entry Description (continued)

Menu Entry Description
31S12(X) Debugger Manual

Debugger Interface
Debugger Main Window
• Command Line Arguments are displayed in the text box. You can add, delete, or
modify options, and specify a directory with the browse button (...).

• A second list box contains the arguments for all of the environment variables defined
in the corresponding Environment section. Select a variable using the mouse or
directional arrow keys.

• OK: Confirms changes and saves in current project file.

• Cancel: Closes dialog box without saving changes.

• Help: Opens the help file.

The Load tab shown in Figure 2.7 contains the following controls:

• A checkbox that specifies automatic erase and program into Flash and EEPROM

• Advanced button specifies affected memory block

• Enable automatic memory image verification after loading code

• Enable automatic run after successful load

• Enable automatic stop at Function specified in text box.

Figure 2.7 Configuration Window - Load Tab

32 S12(X) Debugger Manual

Debugger Interface
Debugger Main Window
View Menu
In the Main Window View menu (Figure 2.8) you can choose to show or hide the toolbar,
status bar, window component titles and headlines (see Component Windows Object
Information Bar). You can select smaller window borders and customize the toolbar.
Table 2.3 describes the View menu entries.

Figure 2.8 View Menu

Customizing the Toolbar
When you select View > Customize, the Customize Toolbar dialog box appears. You can
customize the toolbar of the Debugger, adding and removing component shortcuts and
action shortcuts in this dialog box. You can also insert separators to separate icons. Almost
all functions in View, Run and Window menus are available as shortcut buttons, as shown
in Figure 2.9.

Table 2.3 View Menu Description

Menu Entry Description

Toolbar Check/clear Toolbar to display or hide it.

Status Bar Check/clear Status Bar to display or hide it.

Hide Tile Check/clear Hide Title to display or hide the window title.

Hide Headline Check/clear Hide Headline to display or hide the headline.

Small Borders Check/clear Small Border to display or hide small window borders.

Customize Opens the debugger Customize Toolbar window.
33S12(X) Debugger Manual

Debugger Interface
Debugger Main Window
Figure 2.9 Customize Toolbar Dialog Box

• Select the desired shortcut button in the Available buttons list box and click Add to
install it in the toolbar.

• Select a button in the Current Toolbar buttons list box and click Remove to
remove it from the toolbar.

Demo Version Limitations
The default toolbar cannot be configured.

Examples of View Menu Options
Figure 2.10 shows a typical component window display.

Figure 2.10 Typical Component Window Display

Figure 2.11 shows a component window without a title and headline.
34 S12(X) Debugger Manual

Debugger Interface
Debugger Main Window
Figure 2.11 Component Window without Title and Headline

Figure 2.12 shows a component window without a title and headline, and with a small
border.

Figure 2.12 Component Window without Title and Headline, and with Small Border

Figure 2.13 shows a component window without headline and small border.

Figure 2.13 Component Window without Headline and Small Border
35S12(X) Debugger Manual

Debugger Interface
Debugger Main Window
Run Menu
The Main Window Run menu, shown in Figure 2.14 is associated with the debug session.
You can monitor a simulation or debug session from this menu. Run menu entries are
described in Table 2.4.

Figure 2.14 Run Menu

.

Table 2.4 Run Menu Description

Menu
entry

Shortcut Description

Start/
Continue

F5 Starts or continues execution of loaded application from
current program counter (PC) until it reaches a breakpoint or
watchpoint, detects a runtime error, or user stops application
by selecting Run > Halt.

 Restart CTRL +
Shift + F5

Starts execution of application from its entry point.

 Halt F6 Interrupts and halts a running application.Examine state of
each variable in the application, set breakpoints,
watchpoints, and inspect source code.

Single
Step

F11 Performs a single step at source level in halted application.
Execution continues until application reaches next source
reference. If current statement is a procedure call, the
debugger steps into procedure. Treats a function call as
multiple statements, and steps into function.

Step Over F10 Similar to Single Step, but does not step into called
functions. Treats a function call as one statement.

Step Out Shift +
F11

If application halts inside a function, Step Out continues
execution and stops at instruction following current function
invocation. Has no effect if no function calls are present.
36 S12(X) Debugger Manual

Debugger Interface
Debugger Main Window
You can provide toolbar shortcuts for some of these functions. Refer to Debugger Main
Window Toolbar and Customizing the Toolbar for details. You can also set breakpoints
and watchpoints from within the Source and Assembly component windows.

NOTE For more information about breakpoints and watchpoints, refer to Control
Points.

Connection Menu
This menu entry (Figure 2.15) appears between the Run and Component menus when no
connection is specified in the PROJECT.INI file and no connection has been set. The
Connection name is replaced by an actual connection name when the connection is set. If
a connection has been set, the number of menu entries is expanded, depending on the
connection. To set the connection, select Component > Set Connection. Refer to
Component Menu for details.

Assembly
Step

CTRL +
F11

Performs a single step at assembly level in halted
application. Execution continues for one CPU instruction
from the point at which it halted. Similar to Single Step
command, but executes one machine instruction rather than
a high-level language statement.

Assembly
Step Over

CRTL +
F10

Similar to Step Over, but steps over subroutine call
instructions.

Assembly
Step Out

CTRL +
Shift +
F11

If application halts inside a function, command continues
execution and stops on CPU instruction following current
function invocation. Similar to Step Out, but stops before
assignment of result from function call.

Control
Points

None Opens Controlpoints Configuration Window to allow you to
control breakpoints, watchpoints and markpoints (see
Control Points).

Table 2.4 Run Menu Description (continued)

Menu
entry

Shortcut Description
37S12(X) Debugger Manual

Debugger Interface
Debugger Main Window
Figure 2.15 Connection Menu

Table 2.5 describes the Connection menu entries.

Loading a Connection
Choose Connection > Load in the Connection menu to load a debugger connection. This
displays the Load Executable File window shown in Figure 2.16.

Load Executable File Window
From the Connection menu, choose Load to open the Load Executable File window,
shown in Figure 2.16, then set the load options and choose a Simulation Execution
Framework (an .ABS application file).

Table 2.5 Connection Menu Common Options Description

Menu Entry Description

 Load Loads a connection

 Reset Resets the current connection
38 S12(X) Debugger Manual

Debugger Interface
Debugger Main Window
Figure 2.16 Load Executable File Window

Open Button

Clicking this button loads the application code and symbols.

Advanced Commands Buttons

These three buttons allow you to select which part of the executable file to load:

• Load Code Button: Loads only the application code into the target system. Use this
button if no debugging is needed.

• Load Symbols Button: Loads symbols only. Only debugging information is loaded.
Use this button if the code is already loaded into the target system or is programmed
into a non-volatile memory device (ROM/Flash).

• Add Symbols Button: Loads additional symbolic information. Appends the loaded
debugging information to the existing symbol table instead of replacing it. You can
use this button if the executable file consists of several applications and code is
already loaded into the target system or programmed into a non-volatile memory
device.
39S12(X) Debugger Manual

Debugger Interface
Debugger Main Window
• Verify Code Button: Loader loads no data into memory, but reads back current data,
matching the same areas from the target memory, and compares all data with the data
from the selected file.

Open and Load Code Options Area

The checkboxes and buttons of this area of the Load Executable File window offer the
following options:

• A checkbox specifying an automatic erase and program into Flash and EEPROM.

• A checkbox to automatically verify the memory image after loading code, with two
radio buttons that let you define the memory image.

• Checkbox to automatically run after successful load.

• A checkbox to enable automatically stopping at the function specified in the textbox.

Connection Command Files Window
Choose Connection > Command Files to open the Connection Command Files window.
Each tab of this window, shown in Figure 2.17, corresponds to an event on which a
command file can be automatically run. See Startup Command File, Reset Command File,
Preload Command File, and Postload Command File.

Figure 2.17 Connection Command Files Window

The command file in the edit box executes when the corresponding event occurs. Click the
Browse button to set the path and name of the command file.

The Enable Command File check box allows you to enable/disable a command file on an
event. By default, all command files are enabled:

• The default Startup command file is STARTUP.CMD,

• The default Reset command file is RESET.CMD,

• The default Preload command file is PRELOAD.CMD,
40 S12(X) Debugger Manual

Debugger Interface
Debugger Main Window
• The default Postload command file is POSTLOAD.CMD.

NOTE Startup settings performed in this dialog are stored for subsequent debugging
sessions in the [Simulator] section of the PROJECT file using the variable
CMDFILE0.

NOTE Setting a CPU stores the settings in this dialog for subsequent debugging
sessions in the [Simulator XXX] (where XXX is the processor) section of the
PROJECT file using variables CMDFILE0, CMDFILE1...CMDFILEn.

Startup Command File
The Startup command file executes after the connection loads.

Specify the Startup command file full name and status (enable/disable) either with the
CMDFILE STARTUP Command Line command or using the Startup property tab of
the Connection Command Files Window.

By default the STARTUP.CMD file located in the current project directory is enabled as
the current Startup command file.

Reset Command File
The Reset command file executes after the reset button, menu entry or Command Line
command has been selected.

Specify the Reset command file full name and status (enable/disable) either with the
CMDFILE RESET Command Line command or using the Reset property tab of the
Connection Command Files Window.

By default the RESET.CMD file located in the current project directory is enabled as the
current Reset command file.

Preload Command File
The Preload command file executes before an application loads to the target system
through the connection.

Specify the Preload command file full name and status (enable/disable) either with the
CMDFILE PRELOAD Command Line command or using the Preload property tab of
the Connection Command Files Window.

By default the PRELOAD.CMD file located in the current project directory is enabled as
the current Preload command file.
41S12(X) Debugger Manual

Debugger Interface
Debugger Main Window
Postload Command File
The Postload command file executes after an application loads to the target system
through the connection.

Specify the Postload command file full name and status (enable/disable) either with the
CMDFILE POSTLOAD Command Line command or using the Postload property tab of
the Connection Command Files Window.

By default the POSTLOAD.CMD file located in the current project directory is enabled as
the current Postload command file.

Component Menu
Figure 2.18 shows the Component menu.

Figure 2.18 Component Menu

Table 2.6 describes the Component Menu entries.

NOTE To enhance display readability, use a proportional font such as Courier or
Terminal.

Table 2.6 Component Menu Description

Menu entry Description

Open Loads an extra component window not loaded by Debugger at
startup. Presents a set of components introduced in Typical
Component Window Display.

Set Connection Sets the Debugger connection.

Fonts Opens standard Font Selection dialog to set font used by Debugger
components.

Background
Color

Opens standard Color Selection dialog to set background color used
by Debugger component windows.
42 S12(X) Debugger Manual

Debugger Interface
Debugger Main Window
Select Component > Open to load a component window not loaded by the Debugger at
startup. The context dialog presents a set of different components that are introduced in
Debugger Components.

Open the Set Connection dialog box shown in Figure 2.19 by selecting Component > Set
Connection.

Figure 2.19 Set Connection Dialog Box

1. Use the Processor context menu to select the desired processor.

2. Use the Connection context menu to select the desired connection.

A text panel displays information about the selected connection.

NOTE When a connection cannot be loaded, the combo box displays the path where
the missing dll must be installed.

3. Click OK to load connection in debugger.

NOTE For more information about which connection to load and how to set/reset a
connection, refer to the How To... section of this manual.

Window Menu
In this menu, shown in Figure 2.20, you can set the general arrangement of the component
windows. Figure 2.21 shows the Submenu Window > Options and Figure 2.22 shows the
Submenu Window > Layout.
43S12(X) Debugger Manual

Debugger Interface
Debugger Main Window
Figure 2.20 Window Menu

Figure 2.21 Window Menu Options Submenu

Figure 2.22 Window Menu Layout Submenu

Table 2.7 describes the Window menu entries.

Table 2.7 Window Menu Description

Menu entry Description

Cascade Use to arrange all open windows in cascade (overlapping).

Tile Use to display all open windows in tile format (non-overlapping).

Arrange Icons Arranges icons at the bottom of windows.

Options -
Autosize

Component windows always fit into debugger window when you
modify debugger window size.

Options -
Component
Menu

Select to display the component menu in the main menu when you
select a component. For example, if you select the Source window,
the Source menu displays in the main menu.

Layout - Load/
Store

Option to Load / Store your arrangements from a .HWL file.
44 S12(X) Debugger Manual

Debugger Interface
Component Associated Menus
NOTE Autosize and Component Menu are checked by default.

Help Menu
This is the Debugger Main window Help menu (Figure 2.23). Table 2.8 describes menu
entries.

Figure 2.23 Help Menu

About Box
Select Help > About to display the About box. The about box lists directories for the
current project, system information, program information, version number, copyright and
registration information.

For more information on all components, click on the Extended Information button. Two
hypertext links allow you to send an E-mail for a license request or information, and open
the Freescale internet home page. Click OK to close this dialog box.

Component Associated Menus
Various Debugger Component windows are shown in Figure 2.1. Each component
window has two menus. One menu is in the main menu and the other one is a context
menu (also called Associated Context Menu) that you can open by right-clicking in an
active window component.

Component Main Menu
This menu, shown in Figure 2.24, is always between the Component entry and the
Window entry of the Debugger main window toolbar. It contains general entries of the

Table 2.8 Help Menu Description

Menu entry Description

Help Topics Choose to activate online help for specific information about a topic.

About Displays information about debugger version, copyright, and license.
45S12(X) Debugger Manual

Debugger Interface
Component Associated Menus
current active component. Hide this menu by clearing Window > Options > Component
Menu.

Figure 2.24 Example of Source Component Main Menu

Component Files
Each component is a windows file with a .wnd extension

Component Windows Object Information
Bar
The object information bar of the debugger window, shown in Figure 2.25, provides
information about the selected object.

Figure 2.25 Object Information Bar of Debugger Component Windows

Component Context Menu
The context menu is a dynamic context-sensitive menu. It contains entries for additional
facilities available in the current component. Context menus differ depending on the
position of the mouse in the window. For example, if you click the mouse on a breakpoint,
menu options allow you to delete, enable, or disable the breakpoint.
46 S12(X) Debugger Manual

Debugger Interface
Features of the User Interface
Figure 2.26 Example of a Component’s Context Menu

Features of the User Interface
This section describes some of the main features of the Debugger user interface.

Activating Services with Drag and Drop
You can activate services by dragging objects from one component window to another.
This is known as drag and drop. Figure 2.27 shows an example.

Figure 2.27 Drag and Drop Example

When an item cannot be dropped into a specific destination, the following cursor symbol
appears:
47S12(X) Debugger Manual

Debugger Interface
Features of the User Interface
Example
Activate the display of coverage information on assembler and C statements by dragging
the chosen procedure name from the Coverage component to the Source and Assembly
components (Figure 2.28).

Figure 2.28 Dragging Procedure Name from Coverage to Source Component Window

Display the memory layout corresponding to the address held in a register by dragging the
address from the Register Component to the Memory Component.

Drag and Drop an Object
To drag an object from one component window to another:

1. Select the component containing the object you want to drag.

2. Make sure the destination component window to which you want to drag the object is
visible.

3. Select the object you want.

4. Click and hold the left mouse button and drag the object into the destination
component window.

5. Release the mouse button.

Drag and Drop Combinations
This section describes the possible combinations of drag and drop between components
and associated actions. Dragging and dropping objects between different component
windows is explained in each component description section.
48 S12(X) Debugger Manual

Debugger Interface
Features of the User Interface
Dragging from Assembly Component Window
Table 2.9 summarizes dragging from the Assembly Component.

Dragging from Data Component Window
Table 2.10 summarizes dragging from the Data Component.

Table 2.9 Dragging from the Assembly Component Window

Destination
Component Window

Action

Command Line Appends address of selected instruction to current
command.

Memory Dumps memory starting at selected instruction program
counter (PC). Select PC location in Memory component.

Register Loads destination register with PC of selected instruction.

Source Source component scrolls to source statement and
highlights it.

Table 2.10 Dragging from the Data Component Window

Destination
Component Window

Action

Command Line Appends address range of variable to current command in
Command Line window. Dragging appends variable value to
current command in Command Line window.

Memory Dumps memory starting at the address where selected
variable is located. Selects the memory area where the
variable is located in memory component.

Register Dragging the name loads destination register with address
of selected variable. Dragging the value loads destination
register with variable value.

Source Dragging the name of a global variable in the source window
displays the module in which the variable is defined. Source
text is searched for the first occurrence of the variable and is
highlighted.
49S12(X) Debugger Manual

Debugger Interface
Features of the User Interface
NOTE It is not possible to drag an expression defined with the Expression Editor. The
“forbidden” cursor appears.

Dragging from Source Component Window
Table 2.11 summarizes dragging from the Source Component.

Dragging from the Memory Component Window
Table 2.12 summarizes dragging from the Memory Component.

Table 2.11 Dragging from the Source Component Window

Destination
Component Window

Action

Assembly Displays disassembled instructions starting at first high-
level language instruction selected. Highlights assembler
instructions corresponding to selected high-level language
instructions in Assembly component.

Register Loads destination register with PC of first instruction
selected.

Memory Displays memory area corresponding with selected high-
level language source code. Memory area corresponding to
selected instructions appears gray in memory component.

Data A selection in the Source window is considered an
expression in the Data window, as if entered through Data
component Expression Editor (see Data Component and
Expression Editor).

Table 2.12 Dragging from the Memory Component Window

Destination
Component Window

Action

Assembly Displays disassembled instructions starting at first address
selected. Highlights instructions corresponding to selected
memory area in Assembly component.

Command Line Appends selected memory range to Command Line
window.
50 S12(X) Debugger Manual

Debugger Interface
Features of the User Interface
Dragging from Procedure Component Window
Table 2.13 summarizes dragging from the Procedure Component.

Dragging from Register Component Window
Table 2.14 summarizes dragging from the Register Component window.

Register Loads destination register with start address of selected
memory block.

Source Displays high-level language source code starting at first
address selected. Instructions corresponding to selected
memory area appear gray in the source component.

Table 2.13 Dragging from the Procedure Component Window

Destination
Component Window

Action

Data > Local Displays local variables from selected procedure in data
component.

Source Displays source code of selected procedure. Highlights
current instruction in Source component.

Assembly Highlights current assembly statement inside the procedure
in Assembly component.

Table 2.14 Dragging from the Register Component Window

Destination
Component Window

Action

Assembly Assembly component receives an address range, scrolls to
corresponding instruction and highlights it.

Memory Dumps memory starting at address stored in selected
register. Selects corresponding address in memory
component.

Table 2.12 Dragging from the Memory Component Window (continued)

Destination
Component Window

Action
51S12(X) Debugger Manual

Debugger Interface
Features of the User Interface
Dragging from Module Component Window
Table 2.15 summarizes dragging from the Module Component.

Selection Dialog Box
This dialog box is used in the Debugger for opening general components or source files.
Select the desired item with the arrow keys or mouse and then click the OK button to
accept, or CANCEL to ignore your choice. The HELP button opens this section in the
Help File.

Use this dialog box to do the following:

• Set Connection

• Open IO component

• Open Source File

• Open Module

• Open individual component windows

Table 2.15 Dragging from the Module Component Window

Destination
Component Window

Action

Data > Global Displays global variables from selected module in data
component.

Memory Dumps memory starting at address of first global variable in
module. Selects memory area where variable is located in
the memory component.

Source Displays source code from selected module.
52 S12(X) Debugger Manual

3
Debugger Components

This chapter explains how the different components of the Debugger work.

Debugger Kernel Components
The Debugger kernel includes various components. This section explains the types of
components and their uses.

CPU Components
CPU components handle processor-specific properties such as register naming, instruction
decoding (disassembling), and stack tracing. A specific implementation of the CPU
module must be provided for each processor type supported in the debugger. The CPU-
related component is not covered in this section. However, this system component is
reflected in the Register component, Memory component, and all other Connection-
dependent components. The appropriate CPU component automatically loads when
loading a framework (.ABS) file, therefore it is possible to mix frameworks for different
MCUs. The Debugger automatically detects the MCU type and loads the appropriate CPU
component, if available.

Window Components
The Debugger main window components are small applications loaded into the debugger
framework at run-time. Window components can access all global facilities of the
debugger engine, such as the connection (to communicate with different connections), and
the symbol table. The Debugger window components are implemented as dynamic link
libraries (DLLs) with a .WND extension. This section introduces these components.

Connection Components
Different debugger connections are available. For example, you can set a CPU awareness
to simulate your .ABS application files, and also set a background debugger.

Different connections are available to connect the target system (hardware) to the
debugger. For example, the connection may be connected using a Full Chip Simulator, an
Emulator, a ROM monitor, a BDM pod cable, or any other supported device.
53S12(X) Debugger Manual

Debugger Components
Debugger Kernel Components
NOTE Connection components are covered in their respective manuals.

Loading Component Windows
In the Debugger Main Window Menu Bar, shown in Figure 3.1, you can use the
Component menu to load all framework components. Each Debugger component you
select appears as a window in the Debugger main window.

Figure 3.1 Debugger Window Menu Bar

To open the window to choose one or more components:

1. Choose Component > Open

2. In the Open Window Component window shown in Figure 3.2, select the desired
component.

NOTE To open more than one component, select multiple components.

Figure 3.2 Open Window Component Window

3. In the Open Window Component window, use the mouse to select a component.
54 S12(X) Debugger Manual

Debugger Components
General Debugger Components
4. Click the OK button to open the selected component.

There are three tabs in the Open Window Component window:

• The Icon tab shows components with large icons

• The List tab shows components with small icons

• The Details tab shows components with their descriptions

Multiple Component Windows
If you load a project that targets both HC12 and XGATE cores, the Debugger shows
component windows as follows:

• One Assembly window for the HC12 source code and one assembly window for the
XGATE source code

• One Data window for the HC12 portion of the application and one Data window for
the XGATE portion of the application

• One Procedure window for the HC12 call chain and one Procedure window for the
XGATE call chain

• One Register window for the HC12 core and one Register window for the XGATE
core

• One Source window for the HC12 source code and one Source window for the
XGATE source code

General Debugger Components
This chapter describes the various features and usage of the debugger components.

Assembly Component
The Assembly window, shown in Figure 3.3, displays program code in disassembled
form. Its function is similar to that of the Source component window but on a much lower
abstraction level. Thus it is possible to view, change, monitor and control the current
location of execution in a program.
55S12(X) Debugger Manual

Debugger Components
General Debugger Components
Figure 3.3 Assembly Window

This window contains all on-line disassembled instructions generated by the loaded
application. Each disassembled line in the window can show the following information:
the address, machine code, instruction and absolute address in case of a branch instruction.
Default settings show the instruction and absolute address.

Any breakpoints set in the application are marked in the Assembly component with a
special symbol, depending on the kind of breakpoint.

If execution stops, the current position is marked in the Assembly component by
highlighting the corresponding instruction.

The Object Information Bar of the component window contains the procedure name,
which contains the currently selected instruction. Double clicking a procedure in the
Procedure component highlights the procedure’s current assembly statement in the
Assembly component.

Assembly Menu
The Assembly menu shown in Figure 3.4 contains all functions associated with the
assembly component. Table 3.1 describes these entries.

Figure 3.4 Assembly Menu
56 S12(X) Debugger Manual

Debugger Components
General Debugger Components
Setting Breakpoints
Use the context menu to set, edit and delete breakpoints. Right-click on any statement in
the Source component window, then choose Set Breakpoint, Delete Breakpoint, etc.

NOTE For information on using breakpoints, see Control Points.

Show PC Dialog Box
If a hexadecimal address is entered in the Show PC dialog box shown in Figure 3.5,
memory contents are interpreted and displayed as assembler instructions starting at the
specified address.

Figure 3.5 Show PC Dialog Box

Associated Context Menu
To open the context menu, right-click in the text area of the Assembly component
window. The context menu contains default menu entries for the Assembly component. It
also contains some context-dependent menu entries described in Table 3.2, depending on
the current state of the debugger.

Table 3.1 Assembly Menu Description

Menu Entry Description

Address Opens a dialog box prompting for an address: Show PC.

Display Code Displays machine code in front of each disassembled instruction.

Display Symbolic Displays symbolic names of objects.

Display Address Displays the location address at the beginning of each
disassembled instruction.

Display Absolute
Address

In a branch instruction, displays the absolute address at the end of
the disassembled instruction.
57S12(X) Debugger Manual

Debugger Components
General Debugger Components
Figure 3.6 Assembly Context Menu

Table 3.2 Assembly Context Menu Description

Menu Entry Description

Set Breakpoint Appears in context menu if no breakpoint is set or disabled on
specified instruction. Select to set a permanent breakpoint on
instruction. When program execution reaches instruction, program
halts and current program state displays in all window components.

Delete
Breakpoint

Appears in context menu if a breakpoint is set or disabled on the
specified instruction. Select to delete breakpoint.

Enable
Breakpoint

Appears in context menu only if a breakpoint is disabled on an
instruction. Select to enable breakpoint.

Disable
Breakpoint

Appears in context menu if a breakpoint is set on an instruction.
Select to disable breakpoint.

Run To Cursor Select to set a temporary breakpoint on specified instruction and
continue program execution. Disabling a permanent breakpoint at
this position disables the temporary breakpoint as well and the
program will not halt. Temporary breakpoints are automatically
removed once reached.

Show
Breakpoints

Opens Controlpoints Configuration Window Breakpoints Tab and
displays list of breakpoints defined in application (refer to Control
Points).

Show Location Select to highlight source statement that generated the specified
assembler instruction and the assembler instruction. Also highlights
the memory range corresponding to this assembler instruction in
memory component.
58 S12(X) Debugger Manual

Debugger Components
General Debugger Components
Retrieving Source Statement
Retrieve a source statement using one of these methods:

• Point to an instruction in the Assembly component window, drag and drop it into the
Source component window.

The Source component window scrolls to the source statement generating this
assembly instruction and highlights it.

• Left click the mouse and click the L key.

This highlights a code range in the Assembly component window corresponding to
the first line of code selected in the Source component window in which the
operation is performed. This line or code range is also highlighted.

Drag Out
Table 3.3 shows the drag actions possible from the Assembly component.

Set Markpoint Select to set a markpoint at this location.

Delete
Markpoint

Appears in context menu only if a markpoint is set at the nearest
code position (visible with marks). When selected, disables
markpoint.

Show
Markpoints

Opens Controlpoints Configuration Window Markpoints Tab and
displays list of markpoints defined in application (refer to Control
Points).

Address Table 3.1 describes remaining context menu entries.

Table 3.3 Assembly Component Drag Actions

Destination
Component Window

Action

Command Line The Command Line component appends the address of the
specified instruction to the current command.

Memory Dumps memory starting at the selected instruction PC.
Selects the PC location in the memory component.

Table 3.2 Assembly Context Menu Description (continued)

Menu Entry Description
59S12(X) Debugger Manual

Debugger Components
General Debugger Components
Drop Into
Table 3.4 shows the drop actions possible in the Assembly component.

Demo Version Limitations
No limitations.

Associated Commands
Following commands are associated with the Assembly component:

ATTRIBUTES, SMEM, SPC.

Register Loads the destination register with the PC of the selected
instruction.

Source Source component scrolls to the source statements and
highlights it.

Table 3.4 Drop Into Assembly Component

Source Component
Window

Action

Source Displays disassembled instructions starting at first high-level
language instruction selected. Highlights assembler
instructions corresponding to selected high-level language
instructions in Assembly component.

Memory Displays disassembled instructions starting at first address
selected. In Assembly component, highlights instructions
corresponding to selected memory area.

Register Displays disassembled instructions starting at address stored
in source register. Highlights instruction starting at address
stored in register.

Procedure In Assembly component, highlights current assembly
statement inside procedure.

Table 3.3 Assembly Component Drag Actions (continued)

Destination
Component Window

Action
60 S12(X) Debugger Manual

Debugger Components
General Debugger Components
Command Line Component
The Command Line window shown in Figure 3.7 interprets and executes all Debugger
commands and functions. The command entry always occurs in the last line of the
Command component. Characters can be typed in or pasted on to the edit line.

Figure 3.7 Command Line Window

Keying In Commands
You can type Debugger commands after the in> terminal prompt in the Command Line
Component window.

Recalling a Line from the Command Line History
To recall a command in the DOS window use the up or down arrow, or the F3 function
key, to retype the previous command.

Scrolling the Command Component Window Content
Use the left and right arrow keys to move the cursor on the line, the HOME key to move
the cursor to the beginning of the line, or the END key to move the cursor to the end of the
line. To scroll a page, use the PgDn (scroll down a page) or PgUp (scroll up a page) keys.

Clearing the Line or a Character of the Command Line
Selected text can be deleted by clicking the left arrow. To clear the current line, click the
ESC key.

Command Interpretation
The component executes the command entered and displays results or error messages, if
any. Ten previous commands can be recalled using the up arrow key to scroll up or the
down arrow key to scroll down. Commands are displayed in blue. Prompts and command
responses appear in black. Error messages appear in red.

When a command executes and runs from the Command Line component, the component
cannot be closed. In this case, closing the Command Line component with the window
61S12(X) Debugger Manual

Debugger Components
General Debugger Components
close button (X) or with the Close entry of the system menu displays the following
message:

Command Component is busy. Closing will be delayed

The Command Line component closes as soon as command execution completes.
Applying the CLOSE command to this Command Line component (for example, from
another Command Line component), closes the component as soon as command execution
finishes.

Variable Checking in the Command Line
When you specify a single name as an expression in a command line, the system checks
for the expression in the following manner:

• First checked as a local variable in the current procedure.

• Next, as a global variable in the current module.

• Next, as a global variable in the application.

• Next, as a function in the current module.

• Then, as a function in the application,

• Finally if the expression is not found an error is generated.

Closing the Command Line during an execution
When a command is executed from a Command Line component, it cannot be closed. If
you close the Command Line component with the close button or with the Close entry of
the system menu, the following message displays:

Command Component is busy. Closing will be delayed

The Command component closes as soon as command execution completes. If you apply
the Close command to this Command component, the Command component closes as
soon as command execution completes.

Command Menu
Figure 3.8 shows the Command menu, which is identical to the Command context menu.

Figure 3.8 Command Menu
62 S12(X) Debugger Manual

Debugger Components
General Debugger Components
Clicking Execute File opens a dialog in which you can select a file containing Debugger
commands to be executed. These files generally have the .cmd default extension.

Copy selected text in the Command Line window to the clipboard by:

• Selecting the menu entry Command > Copy.

• Pressing CTRL + C

• Clicking the button in the toolbar.

The Command > Copy menu entry and the button are only enabled if something is
selected in the Command Line window.

Paste the first line of text contained in the clipboard where the caret is blinking (end of
current line) by:

• Selecting the menu entry Command > Paste

• Pressing CTRL + V

• Clicking the icon in the toolbar.

Cache Size
Select Cache Size in the menu to bring up the Size of the Cache dialog box and set the
cache size in lines for the Command Line window, as shown in Figure 3.9.

Figure 3.9 Cache Size Dialog Box

This Cache Size dialog box is the same for the Terminal Component and the TestTerm
Component.

Drag Out
Nothing can be dragged out.

Drop Into
Memory range, address, and value can be dropped into the Command Line Component
window, as described in Table 3.5. The command line component appends corresponding
items of the current command.
63S12(X) Debugger Manual

Debugger Components
General Debugger Components
Demo Version Limitations
Only 20 commands can be entered and the command component closes. It is no longer
possible to open a new command component in the same Debugger session.

NOTE Command files with more than 20 commands cannot be executed.

Associated Commands
BD, CF, E, HELP, NB, LS, SREC, SAVE.

NOTE For more details about commands, refer to Debugger Engine Commands.

ComMaster Component
The ComMaster component allows you to easily control one more debugger instance from
the master debugger like you do it through the COM interface from within another
application.

NOTE The ComMaster component is accessible through the debugger commands
only. Its window is always minimized and has no associated menus.

Table 3.5 Drop Into Command Component

Source Component
Window

Action

Assembly Command Line component appends address of specified
instruction to current command.

Data Dragging the name appends the variable address range to
the current command in the Command Line window.
Dragging the value appends the variable value to the current
command in the Command Line window.

Memory Appends selected memory range to Command Line window.

Register Appends address stored in selected register to current
command.
64 S12(X) Debugger Manual

Debugger Components
General Debugger Components
Associated Commands
COM_START, COM_EXE, COM_EXIT

Coverage Component
The Coverage window, shown in Figure 3.10, contains source modules and procedure
names as well as percentage values representing the proportion of executed code in a
given source module or procedure.

NOTE In cases of advanced code optimizations (like linker overlapping ROM/code
areas) the coverage output/data is affected. In such a case, it is recommended to
switch off such linker optimizations.

Figure 3.10 Coverage Window

The Coverage window contains percentage numbers and graphic bars. From this
component, you can split views in the Source window and Assembly window, as shown in
Figure 3.11. A red check mark is displayed in front of each source or assembler instruction
that has been executed. Split views are removed when the Coverage window is closed or
by selecting Delete in the split view context menu.

Figure 3.11 Split Views

Coverage Operations
Click the fold/unfold icons () to unfold/fold the source module and display/hide the
functions defined.
65S12(X) Debugger Manual

Debugger Components
General Debugger Components
Coverage Menu
The Coverage menu and submenus are shown in Figure 3.12.

Figure 3.12 Coverage Menu

Output File
You can redirect Coverage component results to an output file by selecting Output File >
Save As in the menu or context menu.

Output File Filter

Select Output Filter to display the dialog box shown in Figure 3.13. Select what you want
to display, i.e. modules only, modules and functions, or modules, functions and code lines.
You can also specify a range of coverage to be logged in your file.

Table 3.6 Coverage Menu Description

Menu Entry Description

Reset Resets all simulator statistic information.

Details Opens a split view in the chosen component (Source or Assembly).

Graphics Toggles graphic bars.

Timer Update Switches periodic update on or off. If activated, updates statistics each
second.

Output File Opens Output File options.
66 S12(X) Debugger Manual

Debugger Components
General Debugger Components
Figure 3.13 Output File Filter Dialog Box

Output File Save
The Save As entry opens a Save As dialog in which you can specify the output file name
and location. Listing 3.1 shows an example.

Listing 3.1 Example Output File with Modules and Functions

--
Coverage: Item:
--
 94.4 % Application
 FULL fibo.c
 FULL Fibonacci()
 FULL main()
 86.0 % startup.c
 80.5 % Init()
 FULL _Startup()

Split-View Associated Context Menu
The context menu for the split view (Figure 3.14) contains the Delete entry, which is used
to remove the split view.
67S12(X) Debugger Manual

Debugger Components
General Debugger Components
Figure 3.14 Coverage Split-View Associated Context Menu

Drag Out
All displayed items can be dragged into a Source or Assembly component. The destination
component displays marks in front of the executed source or assembler instruction.

Drop Into
Nothing can be dropped into the Coverage Component window.

Demo Version Limitations
Displays only modules and disables the Save function.

Associated Commands
DETAILS, FILTER, GRAPHICS, OUTPUT, RESET, TUPDATE

DA-C Link Component
The DA-C Link window shown in Figure 3.15 is an interface module between the DA-C
(Development Assistant for C - from RistanCASE GmbH) and the IDE, allowing
synchronized debugging features.

Figure 3.15 DA-C Link Window

DA-C Link Operation
When you load the DA-C Link component, you establish communication with DA-C (if
open) in order to exchange synchronization information.

The Setup entry of the DA-C Link main menu allows you to define the connection
parameters.
68 S12(X) Debugger Manual

Debugger Components
General Debugger Components
NOTE For related information refer to Synchronized Debugging through DA-C IDE.

DA-C Link Menu
Selecting Setup from the DA-C Link menu opens the Connection Specification dialog
box.

Figure 3.16 DA-C Link Menu

Connection Specification Dialog Box
Set the DA-C debugger name in the Connection Specification dialog box.

Figure 3.17 Connection Specification Dialog Box

The DA-C debugger name must be the same as the one selected in the DA-C IDE. Check
the Show Protocol checkbox to display the communication protocol in the Command
component of the Debugger. To validate the settings, click the OK button. A new
connection is established and the Connection Specification is saved in the current
Project.ini file. The HELP button opens the help topic for this dialog.

NOTE If problems exist, refer to Troubleshooting in the DA-C documentation.

Drag Out
Nothing can be dragged out.

Table 3.7 DA-C Link Menu Description

Menu Entry Description

Setup Opens the Connection Specification dialog box.
69S12(X) Debugger Manual

Debugger Components
General Debugger Components
Drop Into
Nothing can be dropped into the DA-C Component window.

Demo Version Limitations
None.

Data Component
The Data window shown in Figure 3.18 contains the names, values and types of global or
local variables.

Figure 3.18 Data Window

The Data window shows all variables present in the current source module or procedure.
Changed values are in red.

The Component Windows Object Information Bar contains the address and size of the
selected variable. It also contains the module name or procedure name in which the
displayed variables are defined, the display mode (automatic, locked, etc.), the display
format (symbolic, hex, bin, etc.), and current scope (global, local or user variables).

Various display formats, such as symbolic representation (depending on variable types),
and hexadecimal, octal, binary, signed and unsigned formats may be selected.

Structures can be expanded to display their member fields.

Pointers can be traversed to display data to which they point.

Watchpoints can be set in this component. Refer to Control Points chapter.

Data Operations
• Double click a variable line to edit the value.

• Click the fold/unfold icons to unfold/fold the structured variable.
70 S12(X) Debugger Manual

Debugger Components
General Debugger Components
• Double click a blank line: Opens the Expression editor so you can insert an
expression in the Data Component window.

• Select a variable in the Data component, and click the left mouse button + R key to
set a Read watchpoint on the selected variable. A green vertical bar appears on the
left side of the variables on which a read watchpoint is defined. If a read access on
the variable is detected during execution, the program halts and the current program
state displays in all window components.

• Select a variable in the Data component, and click the left mouse button + W key to
set a Write watchpoint on the selected variable. A red vertical bar appears on the left
side of the variables on which a write watchpoint is defined. If write access is
detected on the variable during execution, the program halts and the current program
state displays in all window components.

• Select a variable in the Data component, and click the left mouse button + B key to
set a Read/Write watchpoint on the selected variable. A yellow vertical bar appears
for the variables on which a read/write watchpoint is defined. If the variable is
accessed during execution, the program halts and the current program state displays
in all window components.

• Select a variable on which a watchpoint was previously defined in the Data
component, and click the left mouse button + D key to delete the watchpoint on the
selected variable. The vertical bar previously displayed for the variables is removed.

• Select a variable in the Data component, and click the left mouse button + S key to
set a watchpoint on the selected variable. The Watchpoints Setting dialog box opens.
A grey vertical bar appears for the variables on which a watchpoint is defined.

Expression Editor
To add your own expression (in EBNF notation) double click a blank line in the Data
component window to open the Edit Expression dialog box shown in Figure 3.19, or
point to a blank line and right-click to select Add Expression in the context menu.

You may enter a logical or numerical expression in the edit box, using the ANSI-C syntax.
In general, this expression is a function of one or several variables from the current Data
component window.

Figure 3.19 Edit Expression Dialog Box
71S12(X) Debugger Manual

Debugger Components
General Debugger Components
Example

With two variables variable_1, variable_2;

Entering the expression (variable_1<<variable_2)+ 0xFF) <= 0x1000 results in a
boolean type.

Entering the expression (variable_1>>~variable_2)* 0x1000 results in an integer type.

NOTE It is not possible to drag an expression defined with the Expression Editor. The
Forbidden cursor is displayed.

Expression Command File
The Expression Command file is automatically generated when a new application is
loaded or exiting from the Debugger. User-defined expressions are stored in this
command file. The name of the expression command file is the name of the application
with a.xpr extension (.XPR file). When loading a new user application, the debugger
executes the matching expression command file to load the user-defined expression into
the data component.

Example When loading fibo.abs, the debugger executes Fibo.xpr

Data Menu
Figure 3.20 shows the Data component menu; the Scope submenu is shown in Figure 3.21;
the Format submenu in Figure 3.22; the Mode submenu in Figure 3.24; the Options
submenu in Figure 3.26; and the Zoom and Sort submenus in Figure 3.29. Table 3.8
describes Data menu entries.

Figure 3.20 Data Menu

72 S12(X) Debugger Manual

Debugger Components
General Debugger Components
Scope Submenu
Activate the Scope submenu by highlighting the Scope entry on the Data menu.

Figure 3.21 Scope Submenu

 Table 3.9 describes the Scope submenu entries.

Table 3.8 Data Menu Entry Description

Menu Entry Description

Zoom Zooms in or out of selected structure. The member field of structure
replaces the variable list.

Scope Opens a variable display submenu.

Format Symb, Hex (hexadecimal), Oct (octal), Bin (binary), Dec (signed
decimal), UDec (unsigned decimal) display format.

Mode Switches between Automatic, Periodical, Locked, and Frozen update
mode.

Options Opens an options menu for data, for example, Pointer as Array facility.

Sort Opens a Sort submenu from which you select data sort criteria.

Table 3.9 Scope Submenu Entries

Menu Entry Description

Global Switches to Global variable display in the Data component.

Local Switches to Local variable display in the Data component.

User Switches to User variable display in the Data component. Displays
user-defined expression (variables are erased).

External Switches to External variable display in the Data component.
73S12(X) Debugger Manual

Debugger Components
General Debugger Components
NOTE If the data component mode is not automatic, entries are gray (because it is not
allowed to change the scope).

In Local Scope, if the Data component is in Locked or Periodical mode, values of the
displayed local variables could be invalid (since these variables are no longer defined in
the stack).

Format Submenu
Activate the Format submenu by highlighting the format entry on the Data menu.

Figure 3.22 Format Submenu

Table 3.10 describes the Format submenu entries.

Format Selected and Format All Submenu
Activate the Format Selected and Format All submenu by highlighting this entry on the
Data Component menu.

Figure 3.23 Format Selected and All Submenus

Table 3.11 describes the Format Selected Mode and Format All Mode submenu entries.

Table 3.10 Format Submenu Entries

Menu Entry Description

Selected Applies the changes to the selection only

All Applies the changes to all items
74 S12(X) Debugger Manual

Debugger Components
General Debugger Components
Mode Submenu
Activate the Mode submenu by highlighting the Mode entry on the Data menu.

Figure 3.24 Mode Submenu

Table 3.12 describes the Mode submenu entries.

Table 3.11 Format Selected and All Submenu

Menu entry Description

Symbolic Selects Symbolic display format (display format depends on
variable type). Default display.

Hex Selects hexadecimal data display format.

Bin Selects binary data display format.

Oct Selects octal data display format.

Dec Selects signed decimal data display format.

UDec Selects unsigned decimal data display format.

Bit Reverse Selects bit reverse data display format (reverse each bit).

Table 3.12 Mode Submenu

Menu Entry Description

Automatic Switches to Automatic mode (default): updates variables when
connection stops. Displays variables from currently executed module
or procedure in data component.

Periodical Switches to Periodical mode: updates variables at regular time
intervals when connection is running. The default update rate is 1
second, but can be modified by steps of up to 100 ms using the
associated dialog box (see below).
75S12(X) Debugger Manual

Debugger Components
General Debugger Components
NOTE In Locked and Frozen mode, variables from a specific module appear in the
data component. The same variables are always displayed in the data
component.

Update Rate Dialog Box

The Update Rate dialog box shown in Figure 3.25 allows you to modify the default update
rate using steps of 100 ms.

Figure 3.25 Update Rate Dialog Box

Options Submenu
Activates the Options submenu by highlighting the Options entry on the Data menu.

Figure 3.26 Options Submenu

Pointer as Array Option
In the Data menu’s Options submenu, choose Options > Pointer as Array to open the
dialog box shown in Figure 3.27.

Locked Switches to Locked mode: updates values from variables displayed
in data component when connection stops.

Frozen Switches to Frozen mode: Does not update values from variables
displayed in data component when the connection stops.

Table 3.12 Mode Submenu (continued)

Menu Entry Description
76 S12(X) Debugger Manual

Debugger Components
General Debugger Components
Figure 3.27 Pointer as Array Dialog Box

Within this dialog box, you can display pointers as arrays, assuming that the pointer points
to the first item (pointer[0]). Note that this setup is valid for all pointers displayed in the
Data window. Check the Display Pointer as Array checkbox and set the number of items
that you want to be displayed as array items.

Name Width Option
In the Data Menu’s Options submenu, choose Options > Name Width to open the dialog
box shown in Figure 3.28.

Figure 3.28 Edit Name Width Dialog Box

This dialog box allows you to adjust the width of the variable name displayed in the Data
window. Maximum name width is 16 characters. By increasing the value you can adapt
the window to longer names.

Zoom and Sort Submenus

Figure 3.29 Zoom and Sort Submenus
77S12(X) Debugger Manual

Debugger Components
General Debugger Components
Associated Context Menu

Figure 3.30 Data Context Menu

Table 3.13 describes the Data context menu entries.

Table 3.13 Data Context Menu

Menu Entry Description

Open Module Opens the Open Module dialog box.

Set
Watchpoint

Appears only in context menu if no watchpoint is set or disabled on
specified variable. When selected, sets a read/write watchpoint on this
variable. Displays a yellow vertical bar for the variables on which a
read/write watchpoint is defined. If variable is accessed during
execution, the program halts and current program state displays in all
window components.

Delete
Watchpoint

Only appears in context menu if a watchpoint is set or disabled on the
specified variable. When selected, deletes this watchpoint.

Enable
Watchpoint

Only appears in context menu if a watchpoint is disabled on the
specified variable. When selected, enables this watchpoint.

Disable
Breakpoint

Only appears in context menu if a breakpoint is set on the specified
instruction. When selected, disables this watchpoint.
78 S12(X) Debugger Manual

Debugger Components
General Debugger Components
Open Module Submenu
The dialog shown in Figure 3.31 lists all source files bound to the application. Displays
global variables from the selected module in the data component. This is only supported
when the component is in Global scope mode.

Figure 3.31 Open Modules Dialog Box

Drag Out
Table 3.14 describes the drag actions possible from the Data component.

Show
Watchpoints

Opens the Watchpoints Setting dialog box and allows you to view the
list of watchpoints defined in the application (refer to Control Points).

Show location Forces all open components to display information about the specified
variable (e.g., the Memory component selects memory range where
variable is located).

Table 3.14 Dragging Data Possibilities

Destination
Component Window

Action

Command Line Dragging the name appends the address of the variable to
the current command in the Command Line Window.
Dragging the value appends the variable value to the
current command in the Command Line Window.

Memory Dumps memory starting at the address at which selected
variable is located. Selects memory area at which the
variable is located in memory component.

Table 3.13 Data Context Menu (continued)

Menu Entry Description
79S12(X) Debugger Manual

Debugger Components
General Debugger Components
NOTE It is important to distinguish between dragging a variable name and dragging a
variable value. Both operations are possible. Dragging the name drags the
address of the variable. Dragging the variable value drags the value.

NOTE Expressions are evaluated at run time. They do not have a location address, so
you cannot drag an expression name into another component. Values of
expressions can be dragged to other components.

Drop Into
Table 3.15 describes the drop actions possible in the Data component.

Demo Version Limitations
Only two variables can be displayed.

Only two members of a structure are visible when unfolded.

Source Dragging the name of a global variable in source Window
displays the module at which the variable is defined and
highlights first occurrence of the variable.

Register Dragging the name loads the destination register with the
address of the selected variable.
Dragging the value loads the destination register with the
value of the variable.

Table 3.15 Data Drop Possibilities

Source Component
Window

Action

Source A selection in the Source window is considered an expression
in the Data window, as if entered through the Data
component Expression Editor. Refer to Data Component,
Expression Editor.

Module Displays global variables from the selected module in Data
component.

Table 3.14 Dragging Data Possibilities (continued)

Destination
Component Window

Action
80 S12(X) Debugger Manual

Debugger Components
General Debugger Components
Only one expression can be defined.

Associated Commands
ADDXPR, ATTRIBUTES, DUMP, PTRARRAY, SMOD, SPROC, UPDATERATE,
ZOOM.

HCS12XAdrMap Component
The HCS12XAdrMap window, shown in the Figure 3.32 displays the address on Logical,
Global and XGATE memory maps for HCS12X derivatives.

Figure 3.32 HCS12XAdrMap Window

The object information bar of the component window contains the derivative's memory
settings.

HCS12XAdrMap Operations
Input the address into appropriate edit box in hex format. The rest two edit boxes will
display representation of this address in the corresponding memory maps. If any of the
edit boxes is empty that means that the address cannot be mapped to the corresponding
memory map.

Text boxes in the right part of the component window display the following information
for each memory map.

1. Name of the memory where the displayed address is located (Flash, Ram, etc.)

2. An example of assembly code that illustrates how to obtain data from the displayed
address.
81S12(X) Debugger Manual

Debugger Components
General Debugger Components
HCS12XAdrMap Menu
Figure 3.33 shows the HCS12XAdrMap menu.

Figure 3.33 HCS12XAdrMap Menu

Table 3.16 describes HCS12XAdrMap menu entries.

Drag Out
 NONE

Drop Into
Table 3.17 describes the drop actions possible in the HCS12XAdrMap component.

Demo Version Limitations
NONE

Associated Commands
NONE

Table 3.16 HCS12XAdrMap Menu Description

Menu Entry Description

Show Location Forces the Memory component to select
data at the address displayed in the
HCS12XAdrMap component window

Table 3.17 HCS12XAdrMap Drop Possibilities

Source Component Window Action

Assembly Maps memory address at selected PC
instruction.

Data Maps memory address where selected
variable is located.

Register Maps memory address stored in selected
register.
82 S12(X) Debugger Manual

Debugger Components
General Debugger Components
MCURegisters Component
The MCURegisters window, shown in Figure 3.34 displays the names, values and details
(access, size, address (id in case of CPU registers)) of CPU and device registers. The
registers are arranged on the basis of groups and modules in tree view structure. The root
item of the tree view contains the board name. The content of child node can be hidden or
displayed by folding or unfolding corresponding parent node.

Figure 3.34 MCURegisters Window

The purpose of the MCURegisters component is to provide the user with convenient
representation of the CPU and device registers. The changed register values are displayed
in red. Register values can be displayed in binary, hexadecimal, octal, decimal or unsigned
decimal format. When binary or hexadecimal format is set the values are formatted to the
size of the register. These values can be edited.

Editing Registers
• To modify the value, double-click on a register to open an edit box.

• Click the ESC key to ignore changes and retain previous content of the register.

• Click the Enter key to confirm the chnages. If the new value is valid the register
content is changed.
83S12(X) Debugger Manual

Debugger Components
General Debugger Components
MCURegisters Menu
Figure 3.35 shows the MCURegisters component menu.

Figure 3.35 MCURegisters Menu

 Table 3.18 describes MCURegisters Menu entries.

Format Submenu
Figure 3.36 shows the Format submenu. The Format submenu is activated by highlighting
the Format entry on the MCURegisters menu.

Table 3.18 MCURegisters Menu Entry Description

Menu Entry Description

Show Memory Location Forces the Memory component to select the
memory range where the pointed register is
located (applicable only for memory mapped
registers).

Format Displays Bin (binary), Hex (hexadecimal),
Oct (octal), Dec (signed decimal), UDec
(unsigned decimal) format.

Mode Switches between Automatic and Periodical
update mode.

Refresh Refreshes the display.

Tree Expands and collapses the whole register
tree.
84 S12(X) Debugger Manual

Debugger Components
General Debugger Components
Figure 3.36 Format Submenu

Table 3.19 describes the Format submenu entries.

NOTE Format can be applied to a register only. For board, module and group items
Selected Format is not ticked, however after activating Selected Format is
applied for all the child register items.

Format Selected and All Submenu
Figure 3.37 shows Format Selected and All submenu. The Format Selected and All
submenu is activated by highlighting this entry on the MCURegisters component menu.

Figure 3.37 Format Selected and All Submenus

Table 3.20 describes the Format Selected and All Submenu entries.

Table 3.19 Format Submenu Entries

Menu Entry Description

Selected Apply changes to the selection only.

All Apply changes to all items.

Table 3.20 Format Selected and All Submenus

Menu Entry Description

Bin Select the binary MCURegisters display
format.

Hex Select the hexadecimal MCURegisters
display format.

Oct Select the octal MCURegisters display
format.
85S12(X) Debugger Manual

Debugger Components
General Debugger Components
Mode Submenu
Figure 3.38 shows the Mode submenu. The Mode submenu is activated by highlighting
the Mode entry on the MCURegisters menu.

Figure 3.38 Mode Submenu

Table 3.21 describes the Mode submenu entries.

NOTE The Selected Mode can be applied to a board, modules and register group items
only. For register items selected mode is not ticked.

Mode Selected and All Submenu
Figure 3.39 shows Mode Selected and All submenu. The Mode Selected and All submenu
is activated by highlighting this entry on the MCURegisters component menu.

Figure 3.39 Mode Selected and All Submenus

Dec Select the signed decimal MCURegisters
display format.

Udec Select the unsigned decimal MCURegisters
display format.

Table 3.21 Mode Submenu Entries

Menu Entry Description

Selected Apply changes to the selection only.

All Apply changes to all items.

Table 3.20 Format Selected and All Submenus

Menu Entry Description
86 S12(X) Debugger Manual

Debugger Components
General Debugger Components
Table 3.22 describes the Mode Selected and All submenu entries.

Update Rate Dialog Box
Figure 3.40 shows Updat Rate dialog box. The Update Rate dialog box allows you to
modify the default update rate using steps of 100 ms.

Figure 3.40 Update Rate Dialog Box

Tree Submenu
Figure 3.41 shows the Tree submenu. The Tree submenu is activated by highlighting the
Tree entry on the MCURegisters menu.

Figure 3.41 Tree Submenu

Table 3.23 describes Tree submenu entries.

Table 3.22 Mode Selected and All Submenu

Menu Entry Description

Automatic Switches to Automatic mode (default);
registers are updated when the connection is
stopped.

Periodical Switches to Periodical mode; registers are
updated at regular time intervals when the
connection is running. The default update
rate is 1 second, but it can be modified by
steps of up to 100 ms using the associated
dialog box as shown in Figure 3.40.
87S12(X) Debugger Manual

Debugger Components
General Debugger Components
Drag Out
Table 3.24 describes the drag actions possible from the MCURegisters component.

Drop Into
NONE

Demo Version Limitations
NONE

Associated Commands
DUMP, ATTRIBUTES, UPDATERATE, EXPAND, COLLAPSE

Table 3.23 Tree Submenu

Menu Entries Description

Expand Unfolds the whole register tree

Collapse Folds the whole register tree

Table 3.24 Dragging MCURegisters Possibilities

Destination Component Window Action

Command Line Dragging the register appends the register
value to the current command in the
Command Line Window.

Memory Dumps memory starting at the address of the
selected register value.

Register Dragging the register loads the destination
register with the value of the register.
88 S12(X) Debugger Manual

Debugger Components
General Debugger Components
Memory Component
The Memory window shown in Figure 3.42 displays unstructured memory content, or
memory dump, that is, continuous memory words without distinction between variables.

Figure 3.42 Memory Window

You can define watchpoints and specify various data formats (byte, word, double) and
data displays (hexadecimal, binary, octal, decimal, unsigned decimal) for the display and
editing of memory content.

NOTE Refer to Control Points for more information about watchpoints.

Use the Fill Memory Dialog Box box to initialize memory areas with a fill pattern.

Checking/unchecking ASCII in the Display menu entry adds or removes an ASCII dump
on the right side of the numerical dump.

Checking/unchecking Address in the Display menu entry adds or removes the location
address on the left side of the numerical dump.

To specify the start address for the memory dump, use the Address menu entry.

The Component Windows Object Information Bar contains the procedure or variable
name, structure field and memory range matching the first selected memory word.

"uu" memory value means: not initialized (for Simulation only).

"pp" memory value means: protected from being read, or protected from being read and
written.

"rr" memory value means: not accessible because the hardware is running.

"--" memory values mean: not configured (no memory available).
89S12(X) Debugger Manual

Debugger Components
General Debugger Components
NOTE Memory values that have changed since the last refresh status are displayed in
red. However, if a memory item is edited or rewritten with the same value, the
display for this memory item remains black.

Memory Address Spaces
Some devices might have one or more additional address spaces. Select the Address Space
menu entry to display the different address spaces in the Memory window.

TIP HCS12X devices have three address spaces. The Logical address space covers
physical/local and logical displays (see Banked/Window Paged Memory:
Physical/Local vs. Logical display for further details). The Global address space
covers the Global Memory range (covering the memory as one single linear
range), as accessed by Global core instruction set. The XGATE address space
covers the memory as seen by the XGATE on-chip core.

Figure 3.43 Example: HCS12X Device Address Space Selection
90 S12(X) Debugger Manual

Debugger Components
General Debugger Components
Banked/Window Paged Memory: Physical/Local
vs. Logical display
This section applies only to devices having on-chip program pages or data pages. For
Legacy reasons, the debugger provides two ways to display the banked/window paged
memory, such as the PPAGE window $8000-$BFFF range with HCS12 devices with on-
chip banked memory, or EEPROM windows EPAGE selectable:

• The Debugging Memory Map (DMM) interface calls the default display the physical
memory. Device specifications sometimes call the default display local memory, and
it matches exactly what the CPU sees for silicon memory. This means that what
displays in the Memory window at a specific suspended time (debugger halted)
matches the current setup of page registers, like PPAGE or EPAGE for EEPROM.
Changing the page registers, then refreshing the Memory window immediately
shows changes in the window range.

• The logical display gives a constant Memory view at a specific address. For
example, if we define, in a window address range, the concatenation of PPAGE<<16
added with the physical/local address, we obtain a 24-bit address that does not
represent anything for the CPU, but that is directly readable by the user in the
Memory window.

By default, for 8/16-bit devices, the debugger displays memory addresses greater than
address 0xFFFF as logical. These addresses no longer represent real addresses, but are
required by the debugger to synchronize the program flow display and data accesses
within all windows.

The debugger defines page range accessibility in the DMM interface. For 8/16-bit devices,
window ranges in the physical/local memory $0000-$FFFF can be defined as logical in
the DMM interface, to make them constant at display. For example, changing the $8000-
$BFFF program window from physical to paged (or EEPROM paged for paged
EEPROM) in the DMM graphical user interface makes the debugger display the PPAGE
$00 instead of what the CPU sees, when looking at addresses in the $008000-$00BFFF
range.

The default debugger display is mixed. You can change the display when you edit the
module setup in the DMM interface. Refer to the Debugging Memory Map section for
further details.
91S12(X) Debugger Manual

Debugger Components
General Debugger Components
Memory Operations
• Double click a memory position to edit it. If the memory is not initialized, this

operation is not possible.

• Drag the mouse in the memory dump to select a memory range.

• Hold down the left mouse button + A key to jump to a memory address. The
specified value is interpreted as an address and the memory component dumps
memory starting at this address.

• Select a memory range, and hold down the left mouse button + R key to set a Read
watchpoint for the selected memory area. Memory ranges at which a read watchpoint
is defined are underlined in green. If read access on the memory area is detected
during execution, the program halts and the current program state displays in all
window components.

• Select a memory range, and hold down the left mouse button + W key to set a Write
watchpoint on the selected memory area. Memory ranges at which a write
watchpoint is defined are underlined in red. If write access on the memory area is
detected during execution, the program halts and the current program state displays
in all window components.

• Select a memory range, and hold down the left mouse button + B key to set a Read/
Write watchpoint on the selected memory area. Memory ranges at which a read/
write watchpoint is defined are underlined in black. If the memory range is exceeded
during execution, the program halts and the current program state displays in all
window components.

• Select a memory range on which a watchpoint was previously defined, and hold
down the left mouse button + D key to delete the watchpoint on the selected memory
area. The underline disappears.

• Select a memory range, and hold down the left mouse button + S key to set a
watchpoint on the selected memory area. The Watchpoints Setting dialog box opens.
Memory ranges at which a watchpoint is defined are underlined in black.
92 S12(X) Debugger Manual

Debugger Components
General Debugger Components
Memory Menu
The Memory menu shown in Figure 3.44 provides access to memory commands. Table
3.25 describes the menu entries.

Figure 3.44 Memory Menu

Table 3.25 Memory Menu Description

Menu Entry Description

Word size Opens a submenu to specify the display unit size.

Format Opens a submenu to select item display format.

Mode Opens a submenu to choose update mode.

Display Opens a submenu to toggle display of addresses and ASCII dump.

Fill Opens Fill Memory Dialog Box to fill a memory range with a bit pattern.

Address Opens memory dialog and prompts for an address.

CopyMem Opens CopyMem dialog box that allows you to copy memory range
values to a specific location.

Search Pattern Opens Search Pattern dialog box.
93S12(X) Debugger Manual

Debugger Components
General Debugger Components
Word Size Submenu
With the Word Size submenu shown in Figure 3.45, you can set the memory display unit.
Table 3.26 describes the menu entries.

Figure 3.45 Word Size Submenu

Format Submenu
With the Format submenu shown in Figure 3.46, you can set the memory display format.
Table 3.27 describes the menu entries.

Figure 3.46 Format Submenu

Table 3.26 Word Size Submenu Description

Menu Entry Description

Byte Sets display unit to byte size

Word Sets display unit to word size (2 bytes)

Lword Sets display unit to long word size (4 bytes)

Table 3.27 Format Submenu Description

Menu Entry Description

Hex Selects hexadecimal memory display format

Bin Selects binary memory display format

Oct Selects octal memory display format

Dec Selects signed decimal memory display format
94 S12(X) Debugger Manual

Debugger Components
General Debugger Components
Mode Submenu
With the Mode submenu shown in Figure 3.47, you can set the memory mode format.
Table 3.28 describes the menu entries.

Figure 3.47 Mode Submenu

UDec Selects unsigned decimal memory display format

Bit Reverse Selects bit reverse memory display format (reverses each bit)

Table 3.28 Mode Submenu Description

Menu Entry Description

Automatic Selects Automatic mode (default). Updates memory dump when
connection stops.

Periodical Selects Periodical mode. Updates memory dump at regular time
intervals while connection runs. Default update rate is 1 second, but
can be modified by steps of up to 100 ms using associated dialog box.

Frozen Selects Frozen mode. Does not update memory dump displayed in the
memory component when connection stops.

Table 3.27 Format Submenu Description (continued)

Menu Entry Description
95S12(X) Debugger Manual

Debugger Components
General Debugger Components
Display Submenu
With the Display submenu shown in Figure 3.48, you can set the memory display
(Address/ASCII). Table 3.29 describes the menu entries.

Figure 3.48 Display Submenu

Fill Memory Dialog Box
The Fill Memory dialog box shown in Figure 3.49 allows you to fill a memory range
(from Address edit box and to Address edit box) with a bit pattern (value edit box).

Figure 3.49 Fill Memory Dialog Box

NOTE If Hex Format is checked, numbers and letters are interpreted as hexadecimal
numbers. Otherwise, type expressions and prefix Hex numbers with 0x or $.

Display Address Dialog Box
With the Display Address dialog box, shown in Figure 3.50, the memory component
dumps memory starting at the specified address.

Table 3.29 Display Submenu Description

Menu Entry Description

Address Toggle the display of address dump.

ASCII Toggle the display of ASCII dump.
96 S12(X) Debugger Manual

Debugger Components
General Debugger Components
Figure 3.50 Display Address Dialog Box

NOTE The Show PC dialog box is the same as the Display Address dialog box. In
this dialog box, the Assembly component dumps assembly code starting at the
specified address.

CopyMem Dialog Box
The CopyMem dialog box shown in Figure 3.51 allows you to copy a memory range to a
specific address.

Figure 3.51 CopyMem Dialog Box

To copy a memory range to a specific address, enter the source range and the destination
address. Click the OK button to copy the specified memory range. Click the Cancel
button to close the dialog without changes. Click the Help button to open the help file
associated with this dialog.

If you check Hex Format, all given values are in Hexadecimal Format. It is not necessary
to add 0x. For instance, type 1000 instead of 0x1000.

NOTE If you try to read or write to an unauthorized memory address, an error dialog
box appears.
97S12(X) Debugger Manual

Debugger Components
General Debugger Components
Search Pattern
The Search Pattern dialog box shown in Figure 3.52 allows you to search memory or a
memory range for a specific expression.

Figure 3.52 Search Pattern Dialog Box

Using ANSI-C syntax, enter a list of hexadecimal bytes separated by white spaces (e.g.,
0x0F 0x2F 0x20) in the Find Expression text box. The hexadecimal string entered
must be at least one byte.

When you check the ASCII checkbox, you can enter a text string in the text box (e.g., my
&%\ string).

Check the Range checkbox and enter a Start Expression and an End Expression in the text
fields. The string must be a hexadecimal value using ANSI-C syntax (e.g., 0xF000).

NOTE Checking Range and using a Start Expression and an End Expression is
recommended. Without these values, the debugger searches through the entire
device memory mapped in the Memory window.

The lower part of the dialog box displays the search results at the end of the search, in the
format: SEARCHPATTERN: Pattern “my &%”\ string” Found at 20C0’L.

Click Search button to start the search, or click Cancel to close the dialog box.

Refresh
Select the Refresh menu entry to refresh the Memory window current data cache. The
debugger refreshes the data cache as if the debugger was halted or stepped.
98 S12(X) Debugger Manual

Debugger Components
General Debugger Components
Only memory ranges defined with the Refresh memory when halting option in the
Debugging Memory Map (DMM) interface will be refreshed. The Refresh menu entry
addresses, by DMM factory setup, the volatile memory, i.e. the RAM and on-chip I/O
Registers.

TIP To refresh other memory ranges, either set the Refresh memory when halting
option for those ranges in the DMM dialog, or enter the DMM RELEASECACHES
command in the Command window. You can disable caching for the debug
session when entering the DMM CACHINGOFF command in the Command
window.

Update Rate
This dialog box shown in Figure 3.53 allows you to modify the update rate in steps of
100ms.

Figure 3.53 Update Rate Dialog Box

NOTE Periodical mode is not available for all hardware connections and some
hardware connections require additional configuration to work.

When you set the Refresh memory periodically when halted checkbox, the debugger
continues refreshing caches even if it is not running. This allows you to see I/O Register
changes even if the CPU is not running.

Associated Context Menu
The memory context menu, shown in Figure 3.54, gives the user access to memory
commands.
99S12(X) Debugger Manual

Debugger Components
General Debugger Components
Figure 3.54 Memory Context Menu

The Memory context menu entries shown in Table 3.30 allow you to execute memory
associated commands.

Table 3.30 Memory Context Menu Description

Menu Entry Description

Set
Watchpoint

Appears in context menu only if no watchpoint is set or disabled on
selected memory range. When selected, sets a Read/Write watchpoint
at this memory area. Memory ranges at which a read/write watchpoint
is defined are underlined in yellow. If memory area is accessed during
application execution, program halts and current program state
displays in all window components.

Delete
Watchpoint

Appears in context menu only if a watchpoint is set or disabled on
selected memory range. When selected, deletes this watchpoint.

Show
Watchpoints

When selected, brings up the Controlpoints Configuration Window -
Watchpoints Tab. This is the interface through which watchpoints are
controlled (see Control Points).

Set Markpoint Appears in Context Menu only if no watchpoint is set or disabled on
selected memory range. When selected, sets a Read/Write watchpoint
at this memory area.

Show
Markpoints

When selected, brings up Controlpoints Configuration Window -
Markpoints Tab. This is the interface through which markpoints are
controlled (see Control Points).
100 S12(X) Debugger Manual

Debugger Components
General Debugger Components
Drag Out
Table 3.31 describes the drag actions possible from the Memory component.

Drop Into
Table 3.32 shows the drop actions possible in the Memory component.

Show
Location

Forces all opened windows to display information about selected
memory area.

Word Size Table 3.25 describes remaining menu entries.

Table 3.31 Memory Component Drag Possibilities

Destination
Component Window

Action

Assembly Displays disassembled instructions starting at first address
selected. Highlights instructions corresponding to selected
memory area in Assembly component.

Command Line Appends selected memory range to Command Line window.

Register Loads destination register with start address of selected
memory block.

Source Displays high-level language source code starting at first
address selected. Instructions corresponding to selected
memory area are gray in source component.

Table 3.32 Memory Component Drop Possibilities

Source Component
Window

Action

Assembly Dumps memory starting at selected PC instruction. Selects
PC location in memory component.

Data Dumps memory starting at address where selected variable
is located. Selects memory area where variable is located in
memory component.

Table 3.30 Memory Context Menu Description (continued)

Menu Entry Description
101S12(X) Debugger Manual

Debugger Components
General Debugger Components
Demo Version Limitations
No limitations.

Associated Commands
ATTRIBUTES, FILL, SMEM, SMOD, SPC, UPDATERATE.

Module Component
The Module window shown in Figure 3.55 gives an overview of source modules building
the application.

Figure 3.55 Module Window

The Module component displays all source files (source modules) bound to the
application. The Module window displays all modules in the order they appear in the
absolute file.

Register Dumps memory starting at address stored in selected
register. Selects corresponding address in memory
component.

Module Dumps memory starting at address of first global variable in
module. Selects memory area where this variable is located
in memory component.

Table 3.32 Memory Component Drop Possibilities (continued)

Source Component
Window

Action
102 S12(X) Debugger Manual

Debugger Components
General Debugger Components
Module Operations
Double clicking a module name forces all open windows to display information about the
module: the Source component window shows the module's source and the global Data
component window displays the module's global variables.

Module Menu
The Module component window has no menu.

Drag Out
Table 3.33 shows the drag actions possible from the Module component.

.

Drop Into
Nothing can be dropped into the Module component window.

Demo Version Limitations
Displays only two modules.

Procedure Component
The Procedure window shown in Figure 3.56 displays the list of procedure or function
calls that have been made up to the moment the program halts. This list is known as the
procedure chain or the call chain.

Table 3.33 Module Component Drag Possibilities

Destination
Component Window

Action

Data > Global Displays global variables from selected module in data
component.

Memory Dumps memory starting at address of first global variable
in module. Select memory area at which this variable is
located in memory component.

Source Displays source code from selected module.
103S12(X) Debugger Manual

Debugger Components
General Debugger Components
Figure 3.56 Procedure Window

In the Procedure component window, entries in the call chain display in reverse order
from the last call (most recent on top) to the first call (initial on bottom). Types of
procedure parameters are also displayed.

The Object Information bar of the component window contains the source module and
address of the selected procedure.

Procedure Operations
Double clicking on a procedure name forces all open windows to display information
about that procedure: the Source component window shows the procedure's source, the
local Data component window displays the local variables and parameters of the selected
procedure. The current assembly statement inside this procedure is highlighted in the
Assembly component.

NOTE When a procedure of a level greater than 0 (the top most) is double clicked in
the Procedure component, the statement corresponding to the call of the lower
procedure is selected in the Source window and Assembly window.

Procedure Menu
Figure 3.57 shows the Procedure menu and Table 3.34 describes its entries.

Figure 3.57 Procedure Menu
104 S12(X) Debugger Manual

Debugger Components
General Debugger Components
Drag Out
Table 3.35 shows the drag actions possible from the Procedure component.

Drop Into
Nothing can be dropped into the Procedure component.

Demo Version Limitations
Displays only the last two procedures.

Associated Commands
ATTRIBUTES, FINDPROC

Profiler Component
The Profiler window shown in Figure 3.58 provides information on application profile.

NOTE Advanced code optimizations (like linker overlapping ROM/code areas)
affects the profiler output/data. In such cases, switching off such linker
optimizations is recommended.

Table 3.34 Procedure Menu Description

Menu Entry Description

Show Values Displays function parameter values in procedure component.

Show Types Displays function parameter types in procedure component.

Table 3.35 Procedure Component Drag Possibilities

Destination
Component Window

Action

Data > Local Displays local variables from selected procedure in data
component.

Source Displays source code of selected procedure. Highlights
current instruction inside procedure in Source component.

Assembly Highlights current assembly statement inside procedure in
Assembly component.
105S12(X) Debugger Manual

Debugger Components
General Debugger Components
Figure 3.58 Profiler Window

The Profiler window contains source module and procedure names and percentage values
representing the time spent in each source module or procedure. The Profiler component
window also contains percentages and graphic bars.

The Profiler window can set a split view in the Source and Assembly windows, as shown
in Figure 3.59. To obtain a split view in either the Source or Assembly windows, select:
Details > Source or Details > Assembly or both from the Profiler menu and submenu.
The split windows effect ends when you close the Profiler window.

Figure 3.59 Split View in the Source and Assembly Windows

Percentage values representing the time spent in each source or assembler instruction are
displayed on the left side of the instruction. The split view can also display graphic bars.
Split views close when you close the Coverage component or if you open the split view
list menu and select Delete.

The value displayed may reflect percentages either from total code or from module code.

Profiler Operations
Click the fold/unfold icon to unfold/fold the source module.
106 S12(X) Debugger Manual

Debugger Components
General Debugger Components
Profiler Menu
Figure 3.60 shows the Profiler menu entries, with the Details submenu and the Base
submenu. Figure 3.61 shows the Profiler Output File submenu. Table 3.36 describes
menu entries.

Figure 3.60 Profiler Menu and Submenus

Figure 3.61 Profiler Output File Submenu

Split View Associated Context Menu
Figure 3.62 shows the Profiler context menu, Table 3.37 describes the Delete and
Graphics menu entries.

Figure 3.62 Profiler Split View Associated Context Menu

Table 3.36 Profiler Menu Entries Description

Menu Entry Description

Reset Resets all statistics.

Details Sets a split view in chosen component (Source or Assembly)

Base Sets base of percentage (total code or module code).

Graphics Toggles display from graphics bar.

Timer Update Switches periodic update of the Coverage component on or off. If
activated, statistics update once per second.

Output File Sets up Profiler Output File Functions.
107S12(X) Debugger Manual

Debugger Components
General Debugger Components
Profiler Output File Functions
You can redirect the Profiler component results to an output file by choosing Output File
> Save As in the menu or context menu.

Output File Filter
By choosing Output Filter, the dialog box shown in Figure 3.63 lets you select what you
want to display, i.e. modules only, modules and functions, or modules, functions and code
lines. You can also specify a range of coverage to be logged in your file.

Figure 3.63 Output File Filter Dialog Box

Output File Save
The Save As entry opens a Save As dialog box in which you can specify the output file
name and location.

Associated Context Menu
Identical to menu.

Drag Out
All displayed items can be dragged out. Destination windows may display information
about the time spent in some codes in a split view.

Table 3.37 Profiler Split View Associated Context Menu Description

Menu Entry Description

Delete Removes split view from host component.

Graphics Toggles graphic bars display in split view.
108 S12(X) Debugger Manual

Debugger Components
General Debugger Components
Drop Into
Nothing can be dropped into the Profiler component window.

Demo Version Limitations
Displays only modules, and the Save function is disabled.

Associated Commands
 GRAPHICS, TUPDATE, DETAILS, RESET, BASE.

Recorder Component
The Recorder window shown in Figure 3.64 provides record and replay facilities for
debug sessions.

Figure 3.64 Recorder Window

The Recorder window enables the user to record and replay command files. The recorded
file may also contain the command execution time.

Click the buttons shown below to play, record, stop and pause.

 Play Record Stop Pause

An animation occurs during recording, replaying, and pausing.

The current action (record, play or pause) and path of the involved file displays in the
Object Information bar of the window.

Recorder Operations
When the window is open but no record or play session is in progress, only the Record
and Play buttons are enabled.

When you click the Record button, the debugger prompts you to enter a file name. Then a
recording session starts and the Stop button is enabled. Click the Stop button to end the
recording session.
109S12(X) Debugger Manual

Debugger Components
General Debugger Components
Clicking the replay button prompts for a file name. Command files have a .rec default
extension and can be edited. A replay session starts and enables only the stop and pause
buttons. Click the Pause button to stop file execution and enable the play and stop buttons.
Click the Play button to resume file execution from the point at which it stopped. Click the
Stop button to stop the replay session.

Terminal and TestTerm Record
Data typed in the Terminal component and TestTerm component is recorded during a
recording session.

NOTE You must record the time as well to be able to replay the recording (Record
Time menu entry of the recorder must be checked before recording).

Recorder Menu
The Recorder menu shown in Figure 3.65 changes according to the current session. Table
3.38 describes the menu items.

Figure 3.65 Recorder Menu

The code in Listing 3.2 loads an .abs file, sets a breakpoint, and configures the assembly
component to display the code and addresses. The Data1 component switches the display
to local variables, starts the application, and stops at the breakpoint.

Listing 3.2 Record File Example

at 4537 load C:\Freescale\DEMO\fibo.abs
at 9424 bs 0x1040 P

Table 3.38 Recorder Menu Description

Menu Entry Description

Record Starts recording from a debug session.

Replay Starts replaying from a debug session.

Record Time If set, records evolution time also. Instant 0 corresponds to the
beginning of the recording.
110 S12(X) Debugger Manual

Debugger Components
General Debugger Components
at 11917 Assembly < attributes code on
at 14481 Assembly < attributes adr on
at 20540 Data:1 < attributes scope local
at 24425 g
wait ;s

Drag Out
Nothing can be dragged out.

Drop Into
Nothing can be dropped in.

Demo Version Limitations
Records and replays only 20 commands.

Register Component
The Register window, shown in Figure 3.66, displays the content of registers and status
register bits of the target processor.

Figure 3.66 Register Window

Register values can be displayed in binary or hexadecimal format. These values are
editable.

Status Register Bits
Set bits display dark, whereas reset bits display gray. Double click a bit to toggle it.
During program execution, contents of registers that have changed since the last refresh
are displayed in red, except for status register bits.

The Object Information bar of the window contains the number of CPU cycles as well as
the processor's name.
111S12(X) Debugger Manual

Debugger Components
General Debugger Components
Editing Registers
Double click on a register to open an edit box over the register, so that the value can be
modified.

Press the ESC key to ignore changes and retain previous content of the register.

Pressing the Enter key outside the edited register validates the new value and changes the
register content.

Pressing the Tab key validates the new value, changes the register content, and selects the
next register value for modification if desired.

Double clicking a status register bit toggles it.

Holding down the left mouse button and clicking the A key changes the contents of
Source, Assembly and Memory component windows. The Source window shows the
source code located at the address stored in the register. The Assembly window shows the
disassembled code starting at the address stored in the register. The Memory window
dumps memory starting at the address stored in the register.

Register Menu (Format Submenu)
The Register menu contains the items shown in Figure 3.67. Table 3.39 describes the
menu entries.

Figure 3.67 Register Menu

Table 3.39 Register Menu Description

Menu Entry Description

Hex Selects hexadecimal register display format

Bin Selects binary register display format

Oct Selects octal register display format

Dec Selects signed decimal register display format
112 S12(X) Debugger Manual

Debugger Components
General Debugger Components
Drag Out
Table 3.40 contains the drag actions possible from the Register window.

Drop Into
Table 3.41 shows the drop actions possible into the Register component.

UDec Selects unsigned decimal register display format

Float Selects float register display format (displays all 32/64 bit registers as
floats, all others as hex)

Auto Selects auto register display format (displays all floating point 32/64 bit
registers as floats, all others as hex)

Bit Reverse Selects bit reverse data display format (reverses each bit)

Table 3.40 Register Component Drag Possibilities

Destination
Component Window

Action

Assembly Assembly component receives an address range, scrolls up
to corresponding instruction and highlights it.

Memory Dumps memory starting at address stored in selected
register. Selects corresponding address in memory
component.

Command Line Appends address stored in selected register to current
command.

Table 3.39 Register Menu Description (continued)

Menu Entry Description
113S12(X) Debugger Manual

Debugger Components
General Debugger Components
Demo Version Limitations
No limitations.

Associated Commands
ATTRIBUTES.

Source Component
The Source window shown in Figure 3.68 displays the source code of your program, i.e.
your application file.

Table 3.41 Register Component Drop Possibilities

Source Component
Window

Action

Assembler Loads destination register with PC of selected instruction.

Data Dragging the name loads destination register with start
address of selected variable.
Dragging the value loads destination register with value of the
variable.

Source Loads destination register with PC of first instruction selected.

Memory Loads destination register with start address of selected
memory block.
114 S12(X) Debugger Manual

Debugger Components
General Debugger Components
Figure 3.68 Source Window

The Source window allows you to view, change, monitor and control the current execution
location in the program. The Source component window emphasizes language keywords,
comments and strings with blue, green, and red, respectively. Select a word by double
clicking it. Select a section of code by holding down the left mouse button and dragging
the mouse.

The object information bar displays the line number in the source file of the first visible
line at the top of the source.

Source code can be folded and unfolded. Marks (places where breakpoints may be set) can
be displayed.

When the source statement matching the current PC is selected in this window, (e.g., in a
C source:), the matching assembler instruction in the Assembler component
window is also selected. The CPU executes this instruction next.

If breakpoints have been set in the program, a special symbol marks the breakpoint in the
program source. The type of symbols depends on the types of breakpoint. For information
on breakpoints, refer to Control Points. If execution stops, the current position is marked
in the source component by highlighting the corresponding statement.

The complete path of the displayed source file is written in the Object Information bar of
this window.
115S12(X) Debugger Manual

Debugger Components
General Debugger Components
NOTE You cannot edit the visible text in the Source window. This is a file viewer
only.

ToolTips Features
The Debugger source component provides tool tips to display variable values. The tool tip
is a small rectangular pop-up window that displays the value of the selected variable
(shown in Figure 3.69) or the parameter value and address of the selected procedure.
Select a parameter or procedure by double clicking it.

Figure 3.69 ToolTips Features

Select ToolTips > Enable from the source menu entry to enable or disable the tool tips
feature.

Select ToolTips > Mode from the source menu entry to select normal or details mode,
which provides more information on a selected procedure.

Select ToolTips > Format from the source menu entry to select the tool tip display format
(decimal, hexadecimal, octal, binary or ASCII).

On-Line Disassembling
For information about performing on-line disassembly, refer to Consulting Assembler
Instructions Generated by a Source Statement.

• Select a range of instructions in the source component and drag it into the assembly
component. The corresponding range of code is highlighted in the Assembly
component window, as shown in Figure 3.70.

• Holding down the left mouse button and clicking the T key highlights a code range in
the Assembly component window corresponding to the first line of code selected in
116 S12(X) Debugger Manual

Debugger Components
General Debugger Components
the Source component window in which the operation is performed. This line or code
range is also highlighted.

Figure 3.70 On Line Disassembling

Setting Temporary Breakpoints
 For information on how to set breakpoints refer to Control Points.

• Point to an instruction in the Source component window and click the right mouse
button to display the Source window context menu. Select Run To Cursor from the
context menu. The application continues execution and stops at this location.

• Holding down the left mouse button and pressing the T key sets a temporary
breakpoint at the nearest code position (visible with marks). Thereafter the program
runs and breaks at this location, as shown in Figure 3.71.

Figure 3.71 Setting Breakpoints

Setting Permanent Breakpoints
• Point to an instruction in the Source component Window and click the right mouse

button to display the Source component context menu. Select Set Breakpoint from
117S12(X) Debugger Manual

Debugger Components
General Debugger Components
the context menu. This displays the permanent breakpoint icon in front of the
selected source statement.

• Holding down the left mouse button and pressing the P key sets a permanent
breakpoint at the nearest code position (visible with marks). The permanent
breakpoint icon displays in front of the selected source statement.

Folding and Unfolding
Use this feature to show or hide a section of source code (e.g., source code of a function).
For example, if a section is free of bugs, you can hide it. All text unfolds at loading.

Sections of code that can be folded are enclosed between and .

Sections of code that can be unfolded are hidden under .

Double click a folding mark (or) to fold the text located between the marks.

Double click an unfolding mark () to unfold the text that is hidden behind the mark.

Source Menus
Figure 3.72 shows the Source menu and Figure 3.73 shows the functions associated with
the Source context menu. Table 3.42 describes these functions.

Figure 3.72 Source Menu
118 S12(X) Debugger Manual

Debugger Components
General Debugger Components
Figure 3.73 Source Associated Context Menu

Table 3.42 Associated Context Menu Description

Menu Entry Description

Set Breakpoint Appears in context menu only if no breakpoint is set or disabled at
nearest code position (visible with marks). When selected, sets a
permanent breakpoint at this position. If program execution reaches
this statement, program halts and current program state displays in
all window components.

Delete
Breakpoint

Appears in context menu only if a breakpoint is set or disabled at
nearest code position (visible with marks). When selected, deletes
this breakpoint.

Enable
Breakpoint

Appears in context menu only if a breakpoint is disabled at nearest
code position (visible with marks). When selected, enables this
breakpoint.

Disable
Breakpoint

Appears in context menu only if a breakpoint is set at nearest code
position (visible with marks). When selected, disables this breakpoint.

Run To Cursor When selected, sets a temporary breakpoint at nearest code position
and continues program execution immediately. Disabling a
breakpoint at this position disables the temporary breakpoint also and
the program will not halt. Temporary breakpoints are automatically
removed when reached.
119S12(X) Debugger Manual

Debugger Components
General Debugger Components
Show
Breakpoints

Opens Controlpoints Configuration window’s Breakpoints Tab, which
allows you to view the list of breakpoints defined in application and
modify their properties (see Control Points).

Show Location Highlights a code range in Assembly component window matching
the line or selected source code. Highlights the line or the source
code range as well.

Set Markpoint Appears in context menu only if a markpoint is disabled at nearest
code position (visible with marks). When selected, enables this
markpoint.

Delete
Markpoint

Appears in context menu only if a markpoint is set at nearest code
position (visible with marks). When selected, disables this markpoint.

Show
Markpoints

Opens Controlpoints Configuration Window’s Markpoints Tab which
allows you to view the list of markpoints defined in application and
modify their properties (see Control Points).

Set Program
Counter

Sets Program Counter to the address of selected source code.

Open Source
File

Opens Source File dialog if a CPU is loaded (see next section).

Copy
(CTRL+C)

Copies selected area of source component into the clipboard. Select
a word by double clicking it. You can select a text area with the
mouse by moving the pointer to the left of the lines until it changes to
a right-pointing arrow, and then drag up or down; automatic scrolling
is activated when the text is not visible in the windows.

Go to Line
(CTRL+G)

Opens dialog box to scroll window to a number line.

Find
(CTRL+F)

Opens a dialog box prompting for a string and then searches file
displayed in source component. To start searching, click Find Next.
Search begins at current selection or at first line visible in source
component.

Find Procedure
(CTRL+I)

Opens a dialog box for searching a procedure.

Foldings Opens folding window (see chapter below)

Table 3.42 Associated Context Menu Description (continued)

Menu Entry Description
120 S12(X) Debugger Manual

Debugger Components
General Debugger Components
NOTE If some statements do not show marks although the mark display is switched
on, the following may be the cause:
- The statement did not produce any code due to optimizations done by the
 compiler.
- The entire procedure was not linked in the application, because it was never
used.

Open Source File
The Open Source File dialog box shown in Figure 3.74 allows you to open the Source File
(if a CPU is loaded). A source file is a file that has been used to build the currently loaded
absolute file. An assembly file (*.dbg) is searched for in the directory given by the
OBJPATH and GENPATH variables. C and C++ files (*.c,*.cpp,*.h, etc.) are
searched for in the directories given by the GENPATH variable.

Figure 3.74 Open Source File Dialog Box

Go To Line
This menu entry is only enabled if a source file is loaded. It opens the dialog box shown in
Figure 3.75. In this dialog box, enter the line number you want to go to in the source

Marks Toggles display of source positions where breakpoints may be set. If
on, these positions are marked by small triangles.

ToolTips Allows you to enable or disable the source tool tips feature, to set up
the tool tip mode, and to set up tool tip format.

Table 3.42 Associated Context Menu Description (continued)

Menu Entry Description
121S12(X) Debugger Manual

Debugger Components
General Debugger Components
component: the selected line displays at the top of the source window. If the line number is
incorrect, a message displays.

Figure 3.75 Go To Line Dialog Box

When this dialog box is open, the line number of the first visible line in the source is
displayed and selected in the Enter Line Number edit box.

Find Operations
Use the Find dialog box, shown in Figure 3.76, to perform find operations for text in the
Source component. Enter the string you want to search for in the Find what edit box. To
start searching, click Find Next; the search starts at the current selection or at first line
visible in the source component when nothing is selected.

Use the Up / Down buttons to search backward or forward. If the string is found, the
source component selection is positioned at the string. If the string is not found, a message
displays.

Figure 3.76 Find Dialog Box

This dialog box allows you to specify the following options:

• Match whole word only: If this box is checked, only strings separated by special
characters are recognized.

• Match case: If this box is checked, the search is case sensitive.

NOTE If an item (single word or source section) has been selected in the Source
component window before opening the Find dialog, the first line of the
selection is copied into the Find what edit box.
122 S12(X) Debugger Manual

Debugger Components
General Debugger Components
Find Procedure
Use the Find Procedure dialog box, shown in Figure 3.77, to find the procedure name in
the currently loaded application. Enter the procedure name you want to search for in the
Find Procedure edit box. To start searching, click OK, the search starts at the current
selection or at the first line visible in the source component when nothing is selected.

Figure 3.77 Find Procedure Dialog Box

If a valid procedure name is given as a parameter, the source file where the procedure is
defined opens in the Source Component. The procedure’s definition displays and
highlights the procedure’s title.

The drop-down list allows you to access the last searched items (classified from first to
older input). Recent search items are stored in the current project file.

Folding Menu
The Folding menu shown in Figure 3.78 allows you to select the Fold functions described
in Table 3.43.

Figure 3.78 Folding Menu

Table 3.43 Folding Menu Description

Menu Entry Description

Unfold Unfolds the displayed source code

Fold Folds the displayed source code

Unfold All Text Unfolds all displayed source code
123S12(X) Debugger Manual

Debugger Components
General Debugger Components
Drag Out
Table 3.44 shows the drag actions possible from the Source component.

Drop Into
Table 3.45 shows the drop actions possible into the Source component.

Fold All Text Folds all displayed source code

All Text Folded At Loading Folds all source code at load time

Table 3.44 Source Drag Possibilities

Destination
Component Window

Action

Assembly Displays disassembled instructions starting at first high-level
language instruction selected. Highlights assembler
instructions corresponding to selected high-level language
instructions in Assembly component.

Register Loads destination register with PC of first instruction
selected.

Data A selection in the Source window is considered an
expression in the Data window, as if entered through the
Expression Editor of the Data component (see Data
Component or Expression Editor).

Table 3.45 Source Drop Possibilities

Source Component
Window

Action

Assembly Source component scrolls to source statement corresponding
with selected assembly instruction and highlights it.

Memory Displays high-level language source code starting at first
address selected. Instructions corresponding to selected
memory area are gray in source component.

Module Displays source code from selected module.

Table 3.43 Folding Menu Description (continued)

Menu Entry Description
124 S12(X) Debugger Manual

Debugger Components
General Debugger Components
Demo Version Limitations
Displays only one source file of the currently loaded application.

Associated Commands
ATTRIBUTES, FIND, FOLD, FINDPROC, SPROC, SMOD, SPC, SMEM, UNFOLD.

Terminal Component
The Terminal Component window shown in Figure 3.79 can be used to simulate input and
output. It can receive characters from several input devices and send them to other
devices.

Figure 3.79 Terminal Window

You can use a virtual Serial Communication Interface (SCI) port provided by the
framework for communication with the target, but it is also possible to use the keyboard,
the display, some files or even the serial port of your computer as I/O devices.

To control and configure a terminal component use the Terminal menu of the terminal
window, shown in Figure 3.80.

Figure 3.80 Terminal Context Menu
125S12(X) Debugger Manual

Debugger Components
General Debugger Components
To open the context menu, right click in the terminal window.

Configure Terminal Connections
The terminal window is very flexible and can redirect characters received from any
available input device to any available output device. You can specify these connections
by choosing Configure Connections in the context menu of the terminal component. This
opens the dialog box shown in Figure 3.81.

Figure 3.81 Configure Terminal Connections Dialog Box

You can simply choose one of the default configurations in the Default Configuration
combo box. In the Connections section all active connections are listed in a list box.
There you can customize which input devices will be redirected to which output devices
by adding and removing connections.

To add a connection, specify the source and target devices using the From and To list
boxes and then click the Add button. The new connection then appears in the list below,
which shows all active connections.

To remove connections, select them in the list of active connections and click the Remove
button.

In the Serial Port section you can specify which serial port to use and its properties. This
is only possible if there is at least one connection from or to the serial port.

If a connection from or to the virtual SCI port has been chosen it is also possible to specify
in the Virtual SCI section which ports will be taken as virtual SCI ports. This enables you
to make a connection to any port in the Full Chip Simulation framework.
126 S12(X) Debugger Manual

Debugger Components
General Debugger Components
Input and Output File
It is also possible to take a file as an input stream for the terminal component or redirect
the output to a file.

To use a file as an input stream, make sure that there exists at least one connection from
the input file to any output device. Then you can open an input file by choosing Input File
from the context menu. As soon as you click the OK button in the File Open dialog, input
from the file starts. The file closes as soon as the end of file is reached or you choose
Close Input File from the context menu.

When the input file reaches its end a CTRL-Z character (ASCII code 26 decimal) is sent to
all output devices receiving characters from the input file, to notify them that the file
transfer is finished.

You can redirect some input devices to an output file in a similar fashion. Make sure that
you have chosen your connections from input devices to the output file. Then open or
create your output file by choosing Output File from the context menu. If the file does not
exist it is created. Otherwise you can choose to overwrite or append the existing file. To
stop writing to the output file choose Close Output File from the context menu.

File Control Commands
It is also possible to open and close input and output files through special Escape
sequences in the data stream from serial port or virtual SCI. Table 3.46 illustrates the
different possible commands and associated Escape sequences where filename is a
sequence of characters terminated by a control character (e.g. CR) and is a valid filename,
and ESC is the ESC Character (ASCII code 27 decimal).

Table 3.46 Terminal File Control Commands

Escape Sequence Function

ESC “h” “1” Close output file.

ESC “h” “2” filename Open output file.

ESC “h” “3” filename Open output file and suppress output to terminal display.

ESC “h” “4” Close input file

ESC “h” “5” filename Open input file.

ESC “h” “6” filename Append to existing output file.

ESC “h” “7” filename Append to existing output file and suppress output to terminal
display.
127S12(X) Debugger Manual

Debugger Components
General Debugger Components
You can give these commands in the data stream sent from the serial port or virtual SCI
port, but not from the input file or the keyboard. They only have an effect if there are any
connections reading from the input file or writing to the output file.

The TERM_Direct function declared in terminal.h is used to send such commands
from a target via SCI to the terminal. Listing 3.3 shows the source code in terminal.c.

Listing 3.3 TERM_Direct Source Code

void TERM_Direct(TERM_DirectKind what, const char* fileName) {
 /* sets direction of the terminal */
 if (what < TERM_TO_WINDOW || what > TERM_APPEND_FILE) return;
 TERM_Write(ESC); TERM_Write('h');
 TERM_Write((char)(what + '0'));
 if (what != TERM_TO_WINDOW && what != TERM_FROM_KEYS) {
 TERM_WriteString(fileName); TERM_Write(CR);
 }
}

In the example, the parameter what is one of the following constants:

• TERM_TO_WINDOW: send output to terminal window

• TERM_TO_BOTH: send output to file and window

• TERM_TO_FILE: send output to file fileName

• TERM_FROM_KEYS: read from keyboard (close input file)

• TERM_FROM_FILE: read input from file fileName

• TERM_APPEND_BOTH: append output to file and window

• TERM_APPEND_FILE: append output to file fileName

See also terminal.h for further details.

Using Virtual SCI
In its default Virtual SCI configuration, the terminal component accesses the target
through the Object Pool interface.

To make the terminal component work in this default configuration, the target must
provide an object with the name Sci0. If no Sci0 object is available, no input or output
happens. It is possible to check, through the Inspector component, if the environment
currently provides an Sci0 object.

NOTE Not all Full Chip Simulation components currently have an Sci0 object. For all
other Full Chip Simulation components the default virtual SCI port does not
128 S12(X) Debugger Manual

Debugger Components
General Debugger Components
work unless a user-defined Sci0 object with the specified register name is
loaded.

Write access to the target application is done with the Object Pool function OP_SetValue
at the address Sci0.SerialInput.

Input from the target application is handled with a subscription to an Object Pool register
with the name Sci0.SerialOutput. When this register changes (sends a notification), a
new value is received.

For implementations of this register with help of the IOBase class, use the
IOB_NotifyAnyChanges flag. Otherwise only the first of two identical characters are
received.

It is also possible to configure the terminal to use another object in the Object Pool instead
of Sci0 with which to communicate. Refer to Configure Terminal Connections for
information about how to do this.

Cache Size
The item Cache Size in the context menu allows you to set the number of lines in the
terminal window with the dialog shown in Figure 3.82.

Figure 3.82 Size of the Cache Dialog Box

Trace Component
The Trace window shown in Figure 3.83 records and displays instruction frames and time
or cycles if the information is available from the hardware. The capability of the trace
component depends on the selected derivative and connection.
129S12(X) Debugger Manual

Debugger Components
General Debugger Components
Figure 3.83 Trace Window

Trace Operations
Pointing at a frame and dragging the mouse forces all open windows to show the
corresponding code or location. All other frames evaluate time and cycles relative to this
base.

Holding down the left mouse button and pressing the Z key sets the zero base frame to the
selected frame.

Holding down the left mouse button and pressing the D key forces all open component
windows to show the code matching the selected frame.

Trace Menu
The Trace menu shown in Figure 3.84 contains the functions described in Table 3.47. The
exact content of the Trace menu can vary depending on the connection and derivative.
130 S12(X) Debugger Manual

Debugger Components
General Debugger Components
Figure 3.84 Trace Menu

Associated Context Menu
The Trace context menu shown in Figure 3.85 contains functions described in Table 3.47
associated with the selected frame.

Table 3.47 Trace Menu Description

Menu Entry Description

Textual Displays window contents in text.

Graphical Displays window content in graphical format.

Instructions Displays instructions in window.

Items Specifies the window display items.

Dump Selects a file to dump or a range of frames to
dump.

Go to Frame Searches for specific frame.

Enabled Disable or enable tracing function.

Records memory accesses Enables recording of memory accesses.

Clear Clears the trace comp
131S12(X) Debugger Manual

Debugger Components
General Debugger Components
Figure 3.85 Trace Assocaited Context Menu

Selecting Show Location in the Trace window context-sensitive menu displays the frame
matching source and assembly code in the Source and Assembly windows.

Display Modes
The information collected by the Trace component can be presented in different modes -
Instructions, Textual and Graphical display.

Instructions Display
The Instruction display is the default display mode or you can switch to this mode by
selecting Instructions in the Trace window menu. This mode provides the display of
disassemble information.

Figure 3.86 Trace Window - Instruction Display
132 S12(X) Debugger Manual

Debugger Components
General Debugger Components
Textual Display
Activate this display mode by selecting Textual in the Trace window menu. Textual
display mode simply expands instruction assembly code in the Trace window.

Figure 3.87 Trace Window - Textual Display

Graphical Display
Graphical Display mode provides a graphical representation of the same information.
Activate this display mode by selecting Graphical in the Trace window menu.

Figure 3.88 Trace Window - Graphical Display

Column Display and Moving
The information columns shown by the Trace component can be configured with the
configuration dialog shown on Figure 3.89. The Items menu item shall be used to open
this dialog. This dialog allow to specify columns to view in each display mode. The
133S12(X) Debugger Manual

Debugger Components
General Debugger Components
Displaying mode list allows selection for Textual, Instructions or Graphical mode. Use the
right arrow to move items to the Displayed Items list, and the left arrow to hide the item.
Moving the item Up in the list moves it to the left in the Trace component window.

Select More for more options. Select OK to save your changes.

Figure 3.89 Items Configuration Dialog Box

Dumping Frames to File
Selecting Dump in the Trace window contest-sensitive menu opens a dialog that allows
you to specify the number of Trace component frames to save, and the name of the text
file to which to save the frames.

Figure 3.90 Dump Trace Frames Dialog Box

Go to Frame
Selecting Go to Frame in the Trace window context-sensitive menu opens a Search Frame
dialog to allow you to look for a specific frame in the Trace window.
134 S12(X) Debugger Manual

Debugger Components
Visualization Utilities
Drag Out
Nothing can be dragged out.

Drop Into
Nothing can be dropped in.

Demo Version Limitations
Limits the number of frames to 50.

Associated Commands
CLOCK, CYCLE, FRAMES, RECORD, RESET.

Visualization Utilities
Besides components that provide the Debugger engine a well-defined service dedicated to
the task of application development, the debugger component family includes utility
components that extend to the productive phase of applications, such as the host
application builder components, and process visualization components.

Among these components, there are visualization utilities that graphically display values,
registers, and memory cells, or provide an advanced graphical user interface to simulated
I/O devices, program variables, and so forth.

The following components of the visualization utilities belong to the standard Debugger
installation.

Inspect Component
The Inspect window shown in Figure 3.91 displays information about loaded components,
the visible stack, pending events, pending exceptions and loaded I/O devices.
135S12(X) Debugger Manual

Debugger Components
Visualization Utilities
Figure 3.91 Inspect Component Window

The hierarchical content of the items displays in a tree structure. Select any item on the left
side and additional information displays on the right side.

In the figure above, for example, the Object Pool is expanded. The Object Pool contains
the TargetObject, which contains LEDs and Swap peripheral devices. Select the Swap
peripheral device to display Swap device registers.

Components Icon
Select the components icon in the Inspect window, as shown in Figure 3.92, and the right
side displays various information about all loaded components. A Component is the unit
of dynamic loading, therefore all windows, the CPU, the connection and perhaps the
connection simulator are listed.

Figure 3.92 Inspect Window Components Icon

Stack Icon
The Stack icon shown in Figure 3.93 displays the current stack trace. Every function on
the stack has a separate icon on the trace. In the stack-trace, the content of a local variable
is accessible.
136 S12(X) Debugger Manual

Debugger Components
Visualization Utilities
Figure 3.93 Inspector Window Stack Icon

Symbol Table
The symbol table shown in Figure 3.94 displays all loaded symbol table information in
raw format. There are no stack frames associated with functions, therefore the content of
local variables is not displayed. Global variables and their types are displayed.

Figure 3.94 Inspector Window Symbol Table

Events Icon
The Inspect window Events icon shown in Figure 3.95 shows all currently installed
events. Events are handled by peripheral devices, and notified at a given time. The Event
display shows the name of the event and remaining time until the event occurs.
137S12(X) Debugger Manual

Debugger Components
Visualization Utilities
Figure 3.95 Inspector Window Events Icon

Events are only used in the HC(S)12(X) Full Chip Simulator. Use this information for
simulation I/O device development.

When simulating a watchdog/COP, the Event View displays an event with the remaining
time.

Exceptions Icon
The Inspect window Exceptions icon shown in Figure 3.96 shows all currently raised
exceptions. Exceptions are pending interrupts.

Figure 3.96 Inspector Window Exceptions Icon

Events are only used in the HC(S)12(X) Full Chip Simulator. Use this information for
simulation I/O device development.

Since interrupts are usually simulated immediately when they are raised, the Exceptions
are usually empty. Only when interrupts are disabled or an interrupt is handled is
something visible in this item.
138 S12(X) Debugger Manual

Debugger Components
Visualization Utilities
When simulating a watchdog/COP, an Exception is raised as soon as the watchdog time
elapses.

Object Pool
The Object Pool shown in Figure 3.97 is a pool of objects. It can contain any number of
Objects, which can communicate together and also with other parts of the Debugger.

Figure 3.97 Inspector Window Object Pool

The most common use of Objects is to simulate special hardware with the I/O
development package, however, other connections also use the Object Pool. For example,
the Terminal Component exchanges its input and output by the Object Pool. The Terminal
Component also operates with some hardware connections.

For the HC(S)12(X) Full Chip Simulator, the Object Pool usually contains the
TargetObject, which represents the address space. All loaded Objects display in the Object
Pool. The TargetObject also shows the objects that are mapped to the address space.

Inspector Operations
• Click the folded/unfolded icons to unfold/fold the tree and display/hide

additional information.

• Click on any icon or name to see the corresponding information displayed on the
right side.

On the right side, some value fields can be edited by double clicking on them. Only
accessible values can be edited. Usually, if a value is displayed, it can be changed. I/O
Devices in the Object Pool do not accept all new values, depending on the I/O Device.
Enter values in hexadecimal (with preceding 0x), decimal, octal (with preceding 0), or
binary (with preceding &).

To see the component in the Inspector, for example VisualizationTool, as shown in Figure
3.98, open the VisualizationTool with the context menu Component-Open and then
open the Inspector. If the Inspector is already loaded, select Update from the context
139S12(X) Debugger Manual

Debugger Components
Visualization Utilities
menu in the Inspector. Then click on the Components icon to see the Component list,
which now includes the "VisualizationTool" component.

Figure 3.98 Seeing the VisualizationTool in the Inspect Window

Now, you can create the instrument in the VisualizationTool and view it in Inspector
Window. Use Add New Instrument menu in the VisualizationTool and select required
instrument type, for example "Value as Text", please see “Visualization Tool
Component” on page 143 for more details. Specify kind of port as "Substitute" and port
to display as "TargetObject.MyField".

Expand Object Pool to see the added PortIO icon. Click on the PortIO icon. On the right
side, the MyField is displayed with current value. Double click on the values to change
them. Figure 3.99 displays PortIO icon and MyField value.
140 S12(X) Debugger Manual

Debugger Components
Visualization Utilities
Figure 3.99 Changing MyField Value in the Inspector Window

Inspect Menu
The Inspect menu contains entries described in Table 3.48.

Associated Context Menu
Commands in the Inspect context menu depend on the selected item. Table 3.49 describes
possible context menu entries.

Table 3.48 Inspect Menu Entries

Menu Entry Description

Update Updates all displayed information.
Removes items that no longer exist and adds new items.

Periodical
Update

Switches to Periodical mode.

Updates displayed information at regular time intervals when
connection is running. The update rate is 1 second.
141S12(X) Debugger Manual

Debugger Components
Visualization Utilities
Drag Out
Items that can be dragged depend on which icon is selected. Table 3.50 gives a brief
description.

Table 3.49 Inspector Context Menu Entries Description

Menu Entry Context Description

Update All items Updates all displayed information.
Removes items that no longer exist and adds new
items.

Periodical
Update

All items Switches to Periodical mode.

Updates displayed information at regular time
intervals when connection is running. The update
rate is 1 second.

Max.
Elements

All items Configure the maximum number to display large
arrays element by element. It is also possible to
display a dialog that prompts the user.

Format All items Use to display numerical values in different
formats.

Close Single selected
Component only

Closes the corresponding component

Table 3.50 Inspector Component Drag Possibilities

Dragging
Item

Description

Components The components cannot be dragged

Stack The Stack Icon itself cannot be dragged.

Subitems can be dragged depending on their type:

• Modules: Modules can be dragged to the source and global
data window to specify a specific module.

• Functions: Functions can be dragged to display the function or
code range.

• Variables: Variables can be dragged to display their content in
memory.

• Indirections: Indirections can be dragged to display their
content in memory.
142 S12(X) Debugger Manual

Debugger Components
Visualization Utilities
Drop Into
Nothing can be dropped in.

Visualization Tool Component
The VisualizationTool component is a very convenient tool for presenting your data. For
software demonstration, or for your own debugging session, take advantage of all its
virtual instruments.

The VisualizationTool window, shown in Figure 3.100, consists of a plain workspace that
can be equipped with many different instruments.

Figure 3.100 VisualizationTool Window

Symbol
Table

The Symbol Table icon cannot be dragged out.

Subitems can be dragged depending on their type:

• Modules: Modules can be dragged to the source and global
data window to specify a specific module.

• Functions: Functions can be dragged to display the function or
code range.

• Variables: Variables can be dragged to display their content in
memory.

• Indirections: Indirections can be dragged to display their
content in memory.

Table 3.50 Inspector Component Drag Possibilities (continued)

Dragging
Item

Description
143S12(X) Debugger Manual

Debugger Components
Visualization Utilities
Edit Mode and Display Mode
The VisualizationTool operates in two modes:

• Edit mode

Use Edit mode to design the workspace to suit your needs.

• Display mode

In Display mode you can use what you have done in the Edit mode to view values,
interact with your application and instruments, and click buttons.

To switch between these two modes, use the toolbar, the context menu, or the shortcut
Ctrl+E.

Add New Instrument
Use the context menu (see VisualizationTool Menu) to add a new instrument.

Instrument Selection
You can select a single instrument by left clicking the mouse on it, and change the
selection by clicking the tab-key.

To make multiple selections, hold down the control key and left click on the desired
instruments. You can also left click, hold and move to create a selection rectangle.

Move Instruments
There are two ways to move instruments. First, make your desired selection. Then use the
mouse to drag the instruments, or use the cursor keys to move them step by step (hold
down the control key to move the instrument in steps of ten). The move process performed
with the mouse can be broken off by pressing the escape key.

Resize Instruments
When you select a instrument, sizing handles appear at the corners and along the edges of
the selection rectangle. Resize an object by dragging its sizing handles, or by using the
directional arrow keys while holding down the shift key. The resize process performed
with the mouse can be broken off by pressing the escape key. Only one instrument can be
resized at a time. Furthermore, each instrument has its own size minimum.

VisualizationTool Menu
Once you launch the Visualization Tool component, its menu appears in the debugger
menu bar. Figure 3.101 displays the Visualization Tool menu.
144 S12(X) Debugger Manual

Debugger Components
Visualization Utilities
Figure 3.101 Visualization Tool Menu

Table 3.51 describes the visualization tool menu entries.

Associated Context Menu
The context menu of the VisualizationTool varies depending on the current selection.

 Table 3.52 describes possible menu entries.

Table 3.51 VisualizationTool Menu Description

Menu Entry Shortcut Description

Properties <Ctrl+P> Displays the properties of the currently selected
instrument.

Add New
Instrument

None Enables you to choose an instrument from the list
and add it to the view.

Edit Mode <Ctrl+E> Switches between Display mode and Edit mode.
Checked in Edit mode.

Load Layout... <Ctrl+L> Loads a VisualizationTool Layout (*.vtl). The
actual instruments are not removed.

Save Layout
as...

<Ctrl+S> Saves the current layout to a file (*.vtl).
145S12(X) Debugger Manual

Debugger Components
Visualization Utilities
Table 3.52 VisualizationTool Context Menu

Menu
entry

Appears in
Menu

Shortcut Description

Edit mode Always None Switches between Display mode and Edit
mode. In Edit mode, this entry is checked.

 Setup Always None Shows Setup dialog of the
VisualizationTool.

Load
Layout

Edit mode None Loads a VisualizationTool Layout (*.vtl).

Save
Layout

Always None Saves current layout to a file (*.vtl).

Add New
Instrument

Edit mode None Shows new context menu with all available
instruments.

Properties Only one
instrument
selected

Ctrl + P Shows property dialog box for currently
selected instrument.

Remove At least one
selection

Delete Removes all currently selected
instruments.

Copy At least one
selection

Ctrl + C Copies data of currently selected
instruments into clipboard.

Cut At least one
selection

Ctrl + X Cuts currently selected instruments into
clipboard.

Paste Edit mode Ctrl + V Adds instruments, which are temporarily
stored in clipboard, to workspace.

Send to
Back

At least one
selection

None Sends current instrument to back of Z
order.

Send to
Front

At least one
selection

None Brings current instrument to front of Z
order.

Clone
Attributes

More than
one selection

<Ctrl +
Enter>

Clones common attributes to all selected
instruments according to the last selected.

Align At least two
selections

None Gives access to new menu for alignment.

Top Align None Aligns instruments to top line of last
selected instrument.
146 S12(X) Debugger Manual

Debugger Components
Visualization Utilities
VisualizationTool Properties
Like other instruments, the VisualizationTool itself has Properties. There are several
configuration possibilities for the VisualizationTool, shown in Table 3.53. To view the
property dialog box of the VisualizationTool, use the shortcut <CTRL+P> or double click
on the background.

Bottom Align None Aligns instruments to bottom line of last
selected instrument.

Left Align None Aligns instruments to left line of last
selected instrument.

Right Align None Aligns instruments to right line of last
selected instrument.

Size Align None Makes size of all selected instruments the
same as last selected.

Vertical
Size

Align None Makes vertical size of all selected
instruments same as last selected.

Horizontal
Size

Align None Makes horizontal size of all selected
instruments same as last selected.

Table 3.53 VisualizationTool Properties

Menu Entry Description

Edit Mode Switches from Edit mode to Display mode.

Display Scrollbars Switches scrollbars on, off, or sets to automatic mode.

Display Headline Switches headline on or off.

Backgroundcolor Specifies background color of VisualizationTool.

Grid Mode Specifies grid mode. There are four possibilities: Off, Show grid but
no snap, Snap to grid without showing the grid, or Show the grid
and snap on it.

Grid Size Specifies distance between two grid points (vertical, horizontal).

Table 3.52 VisualizationTool Context Menu (continued)

Menu
entry

Appears in
Menu

Shortcut Description
147S12(X) Debugger Manual

Debugger Components
Visualization Utilities
Instruments
When you first add an instrument, it is in Move mode. Place it at the desired location on
the workspace. All new instruments are set to their default attributes. To configure an
instrument, right click on an instrument and choose Properties, or double click on the
instrument. Table 3.54 shows attributes common to all instruments.

Grid Color Specifies color of the grid points.

Refresh Mode Specifies window refresh mode. You may choose between:
Automatic, Periodical, Each access, CPU Cycles.

Table 3.54 Instruments Properties Attributes

Attribute Description

X-Position Specifies X-coordinate of the upper left corner.

Y-Position Specifies Y-coordinate of the upper left corner.

Height Specifies instrument height.

Width Specifies instrument width.

Bounding Box Specifies look of the bounding box.

Available displays are: No Box, Flat (outline only), Raised, Sunken,
Etched, and Shadowed.

Backgroundcolor Defines color of instrument’s background. Allows setting a color or
letting instrument be transparent.

Kind of Port Specifies kind of port to be used to get the value to display. The
location must be specified in Port to Display field.

Table 3.53 VisualizationTool Properties (continued)

Menu Entry Description
148 S12(X) Debugger Manual

Debugger Components
Visualization Utilities
Kind of Port
Table 3.55 lists the kind of port.

Port to Display Defines location of value to be used for instrument’s visualization.

Examples:

Substitute: TargetObject.#210

Subscribe: TargetObject.#210

Subscribe: PORTB.PORTB (check exact spelling using Inspector)

Variable: counter

Register: SP

Memory: 0x210

Size of Port If you use the Memory Port, you can also specify width of memory
to display (up to 4 bytes).

Table 3.54 Instruments Properties Attributes (continued)

Attribute Description
149S12(X) Debugger Manual

Debugger Components
Visualization Utilities
Table 3.55 Kind of Port

Attribute Description

Substitute Used to substitute a field of an object from the Object Pool.

Objects can substitute other objects' fields, that is they can
replace a certain field range of the substituted object, and hence
become the actor for these fields. In this case, the substituted
object forwards all requests concerning such fields to the
appropriate substituting object.

Requests for subscription to substituted fields are forwarded to
the appropriate substituting object, i.e. subscribers always deal
with the corresponding object which manages the fields (that is:
the actor).

Objects' fields are identified by their names. Names have the
following syntax:

objSpec = objname ["." fieldname].

objname = ident [":" index].

fieldname = identnum [".." identnum]["." size].

identnum = ident | "#" hexnumber.

size = "B" | "W" | "L".

Example:

Use it to create IO Port with needed name or address

Substitute: TargetObject.MyField

New temporary PortIO object is created in the Object Pool. It
contains field with name MyField. The field's address equals to
zero. Instrument displays and controls the field's value. If the
instrument is removed the temporary PortIO object will be
removed too.

Example:

Substitute: TargetObject.#0x210

New temporary PortIO object is created in the Object Pool. It
contains field that has no name. The address of this field equals
to 210. Instrument displays and controls the field's value. If the
instrument is removed the temporary PortIO object will be
removed too.
150 S12(X) Debugger Manual

Debugger Components
Visualization Utilities
Used to subscribe to a field of an object from the Object Pool.

Objects can subscribe to other objects' fields. The subscribing
object is called subscriber, and the subscribed object is called
actor. If a subscribed field of an actor changes, it notifies all
subscribers of that fact.

Objects' fields are identified by their names. Names have the
following syntax:

objSpec = objname ["." fieldname].

objname = ident [":" index].

fieldname = identnum [".." identnum]["." size].

identnum = ident | "#" hexnumber.

size = "B" | "W" | "L".

Example:

• Use it to subscribe the instrument to existing IO Port
(field of an object from the Object Pool).

Subscribe: PORTB. fieldname (check exact
spelling using Inspector)

New temporary PortIO object is created in the Object
Pool. It contains no fields.

If the instrument is removed the temporary PortIO
object will be removed too.

The Instrument exchanges data with fieldname field
of PORTB object.

Subscribe: TargetObject.#210

New temporary PortIO object is created in the Object
Pool. It contains no fields.

If the instrument is removed the temporary PortIO
object will be removed too.

The Instrument exchanges data with the field located
at 0x210.

Attribute Description
151S12(X) Debugger Manual

Debugger Components
Visualization Utilities
Analog Instrument
The Analog instrument (Figure 3.102) represents the classical pointer instrument.

Figure 3.102 Analog Instrument

Table 3.56 shows the analog instrument attributes.

Example:

• PORTA is defined in the MEBI block.

The name of the field for Pin0 from PORTA is
PORTAPin0

In order to be able to stimulate this Pin by means of
visualization tool:

 - Add a LED component

 - Set Kind of port to "subscribe"

 - Set Port to display to Mebi.PORTAPin0

 - Set Visualization tool to Display Mode

Starting from here you can toggle the Pin by clicking
on the LED in the component.

Variable Used to display value of a variable with given name

Variable: counter

Register Used to display value of a register with given name

Register: SP

Memory Used to display value of memory with given address (you can
also specify width of memory to display)

Memory: 0x210

Attribute Description
152 S12(X) Debugger Manual

Debugger Components
Visualization Utilities
Bar Instrument
Using the Bar instrument, values are displayed by a bar strip. This instrument (see Figure
3.103) may be used as a position state of a water tank.

Figure 3.103 Bar Instrument

Table 3.57 shows bar instrument attributes.

Bitmap Instrument
You can use the Bitmap instrument to give a special look to your visualization, or to
display a warning picture.

Table 3.56 Analog Instrument Attributes

Attribute Description

Low Display Value Defines zero point of the indicator. Values below this definition
are not displayed.

High Display Value Defines highest position of the indicator: the value at which
indicator reads 100%.

Indicatorlength Defines length of the small indicator. Minimal value is set to 20.

Indicator Defines color of the indicator. Default color is red.

Marks Defines color of the marks. Default color is black.

Table 3.57 Bar Instrument Attributes

Attribute Description

Low Display Value Defines zero point of the indicator. The values below this definition
are not displayed.

High Display Value Defines highest position of the indicator: the value at which the
indicator reads 100%.

Bardirection Sets desired direction of the bar that displays the value.

Barcolor Specifies color of the bar. Default color is red.
153S12(X) Debugger Manual

Debugger Components
Visualization Utilities
Figure 3.104 Bitmap Instrument

Additionally, it can also be used as a bitmap animation. Table 3.58 shows the Bitmap
instrument attributes.

In general, to show the bitmap, the following condition must be true:

(port_memory & ANDmask) == EQUALmask

Example using the AND and EQUAL masks

You want to show a taillight of a car in the visualization. For this you need bitmaps (e.g.
from a digital camera) of all possible states of the taillight (e.g., flasher on, brake light on,
etc.). Usually the status of all lamps are encoded into a port or memory cell in your
application, and each bit in this cell describes whether a lamp is on (e.g., bit 0 says that the
flasher is on, where bit 1 says that the brake light is on). For your simple application you
need the following bitmaps with their settings:

• no light on bitmap: AND mask 3, EQUAL mask 0

• flasher on bitmap: AND mask 3, EQUAL mask 1

• brake light on bitmap: AND mask 3, EQUAL mask 2

• brake and flasher light on: AND mask 3, EQUAL mask 3

Chart Instrument
The Chart instrument helps you to graphically represent any change in data.

Table 3.58 Bitmap Instrument Attributes

Attribute Description

Filename Specifies location of the bitmap. With the button behind, you can
browse for files.

AND Mask Performs bitwise-AND operation with this value. AND the value of
selected port. Default value is 0.

EQUAL Mask Compares this value to the result of the AND operation. Bitmap
displays only if both values are the same. Default value is 0.
154 S12(X) Debugger Manual

Debugger Components
Visualization Utilities
Figure 3.105 Chart Instrument

Table 3.59 Chart Instrument Attributes

DILSwitch Instrument
Use the Dual-in-Line Switch (DILSwitch) instrument (Figure 3.106) for configuration
purposes. Use it for viewing or setting bits of one to four bytes.

Attribute Description

High Display Value Defines the maximum value for the Y axis.

Low Display Value Defines the minimum value for the Y axis, the crossing with X
axis.

Display Mode Specify what type of chart will be used - Point, Line or Surface
can be used to display the chart.

Type of Unit The capturing of the value for the chart can be driven either the
host or target time. Select Target Periodical to capture values
relative to target time.

Unit Size Defines the period of update.

Number of Units Defines the number of items displayed on time axis (X).

Line / Fill Color Defines color of points, line or surface.

Draw Frame Specifies whether the axis are displayed or not.

Horiz. Index Step Defines the interval between markers on horizontal axis (in
frames).

Vert. Index Step Defines the interval between markers on vertical axis.
155S12(X) Debugger Manual

Debugger Components
Visualization Utilities
Figure 3.106 DILSwitch Instrument

Table 3.60 lists DILSwitch instrument attributes.

Knob Instrument
The Knob instrument is normally known as an adjustment instrument. For example, it can
simulate the volume control of a radio (Figure 3.107).

Figure 3.107 Knob Instrument

Table 3.61 shows the Knob instrument attributes.

Table 3.60 DILSwitch Instrument Attributes

Attribute Description

Display 0/1 When enabled, displays value of bit under each plot of DILSwitch
instrument.

Switch Color Specifies the color of the switch.

Table 3.61 Knob Instrument Attributes

Attribute Description

Low Display Value Defines zero point of the indicator. Values below this definition
are not displayed.

High Display Value Defines highest position of the indicator: the value at which the
indicator reads 100%.

Indicator Color Defines color and width of pen used to draw the indicator.

Knob Color Defines color of the knob side.
156 S12(X) Debugger Manual

Debugger Components
Visualization Utilities
LED Instrument
Use the LED instrument for observing one definite bit of one byte (Figure 3.108). There
are only two states: On and Off.

Figure 3.108 LED Instrument

Table 3.62 shows LED instrument attributes.

7-Segment Display Instrument
This is a 7-Segment Display instrument for numbers and characters. It has seven segments
and one point. These eight units represent eight bits of one byte (Figure 3.109).

Figure 3.109 7-Segment Display Instrument

Table 3.63 shows 7-Segment Display instrument attributes.
.

Table 3.62 LED Instrument Attributes

Attribute Description

Bitnumber to Display Defines bit of the given byte to be displayed.

Color if Bit = = 1 Defines color if the given bit is set.

Color if Bit = = 0 Defines color if the given bit is not set.

Table 3.63 7-Segment Display Instrument Attributes

Attribute Description

Decimalmode Displays first or second four bits of one byte in hexadecimal mode.
When switched off, each segment represents one bit of one byte.

Sloping Switches sloping on or off.

Display Version Selects appearance of instrument. Two versions available.

Color if Bit = = 1 Defines color of activated segment. Color may be set to transparent.
157S12(X) Debugger Manual

Debugger Components
Visualization Utilities
Switch Instrument
Use the Switch instrument to set or view a definite bit (Figure 3.110). The Switch
instrument also provides an interesting debugging feature: you can let it simulate bounces,
and thus check whether your algorithm is robust enough. Four different looks of the
switch are available: slide switch, toggle switch, jumper or push button.

Figure 3.110 Switch Instrument

Table 3.64 shows Switch instrument attributes.

Color if Bit = = 0 Defines color of deactivated segment. May be set to transparent.

Outlinecolor Defines color of segment outlines. Color may be set to transparent.

Table 3.64 Switch Instrument Attributes

Attribute Description

Bitnumber to
Display

Specifies number of bit to display.

Display 0/1 Allows display of the bit value in its upper left corner.

Top Position is Specifies whether the 'up' position is zero or one. Especially useful
to easily transform push button into a reset button.

Kind of Switch Changes look of the instrument. The following kinds of switches are
available: Slide Switch, Toggle Switch, Jumper, Push Button.

The behavior of the Push Button slightly differs from the others,
since it returns to its initial state as soon as it has been released.

Switch Color Specifies color of switch.

Bounces If enabled, gives access to following other attributes to configure the
way the switch bounces.

Nb Bounces Specifies the number of bounces before stabilization.

Bounces on
Edge

Specifies whether switch bounces on falling, rising or both edges.

Table 3.63 7-Segment Display Instrument Attributes (continued)

Attribute Description
158 S12(X) Debugger Manual

Debugger Components
Visualization Utilities
Text Instrument
The Text instrument has several functions: Static Text, Value, Relative Value, and
Command (Figure 3.111).

Figure 3.111 Text Instrument

Use Text Mode to switch between the five available modes. Table 3.65 shows Text
instrument common attributes.

Use Static Text for adding descriptions on the workspace. Table 3.66 shows Static Text
attributes.

Type of Unit Synchronizes frequency of bouncing either on timer of host
machine, or on CPU cycles.

Pulse Width
(100ms)

Defines duration of one bounce. Fill in if you chose Host Periodical
in the Type of Unit attribute.

CPU Count Represents number of CPU cycles to reach before switch changes
state. Fill in if you chose CPU Cycles in Type of Unit attribute.

Table 3.65 Text Instrument Attributes

Attribute Description

Text Mode Specifies mode. Choose among four modes: Static Text, Value,
Relative Value, and Command

Displayfont Defines desired font. All installed Windows® fonts are available.

Horiz. Text
Alignment

Specifies desired horizontal alignment of text in given bounding box.

Vert. Text
Alignment

Specifies desired vertical alignment of text in given bounding box.

Textcolor Defines color of given text.

Table 3.64 Switch Instrument Attributes (continued)

Attribute Description
159S12(X) Debugger Manual

Debugger Components
Visualization Utilities
Use Value for displaying a value in different ways (decimal, hexadecimal, octal, or
binary). Table 3.67 shows Value attributes.

Use Relative Value for showing a value in a range of 0 up to 100% or 1000‰. Table 3.68
shows Relative Value attributes.

Use Command instrument mode to specify a command that will be executed by clicking
on this field. For more information about commands, read the chapters on Debugger
Commands. Table 3.69 shows Command mode attributes.

Table 3.66 Static Text Attributes

Attribute Description

Field Description Contains the text to display

Table 3.67 Value Attributes

Attribute Description

Field Description Contains additional description to display in front of value. Add a
colon and/or space as you wish. The default setting is Value:

Format mode Defines format. Choose from: Decimal, Hexadecimal, Octal, and
Binary formats.

Table 3.68 Relative Value Attributes

Attribute Description

Field Description Add additional description text to display in front of value. Add a
colon and/or space if desired. The default setting is Value:

Low Display
Value

Fixes minimal value that will represent 0%. Values below this
definition appear as an error: #ERROR.

High Display
Value

Fixes maximal value that will represent 100%. Values above this
definition appear as an error: #ERROR.

Relative Mode Switches between percent and permill.
160 S12(X) Debugger Manual

Debugger Components
Visualization Utilities
CMD Callback is the same as Command, but shows the returned value as text instead of
Field Description. Table 3.70 shows CMD Callback attributes.

Drop Into
In Edit mode, the drag and drop functionality supplies an easy way to automatically
configure an instrument.

To assign a variable, simply drag it from the Data Window onto the instrument.

The Kind of Port is immediately set on Memory and the Port to Display field now
contains the address of the variable. Repeat the drag-and-drop on a bare portion of the
VisualizationTool window: a new text instrument is created, with correct port
configuration.

Some other components allow this operation:

• The Memory window: select bytes and drag-and-drop them onto the instrument.

• The Inspect component: pick an object from the object pool.

Demo Version Limitations
Only one VisualizationTool window can be loaded. The number of instruments is limited
to three.

Table 3.69 Command Attributes

Attribute Description

Field Description Contains text that will be displayed on the button.

Command Contains command-line command to be executed after clicking
button.

Table 3.70 CMD Callback Attributes

Attribute Description

Field Description Warning: text written in this field is overwritten the first time you
execute specified command.

Command Contains command line command to be executed after clicking
button.
161S12(X) Debugger Manual

Debugger Components
Visualization Utilities
162 S12(X) Debugger Manual

4
Control Points

This chapter provides an overview of the three kinds of debugger control points:

• Breakpoints (also called data breakpoints)

Breakpoints are located at an address. They can be temporary or permanent.

• Watchpoints

Watchpoints are located at a memory range. They start from an address, have a
range, and a read and/or write state.

• Markpoints

Markpoints are marked points of observation that give the programmer easily
accessible program markers. They can be located in data, source or memory.

Control Point Configuration
You can set or disable a control point, set a condition and an optional command, and set
the current count and counting interval, using the context menu of the Source, Memory or
Assembly window.

You can see and edit control point characteristics through the Controlpoints Configuration
Window using the Breakpoint, Watchpoints and Markpoints tabs. These three tabs have
common properties that allow you to interactively perform the following operations on
control points:

• Select a single control point from a list box and click Delete.

• Select multiple control points from a list box and click Delete.

• Enable/disable a selected control point by checking or unchecking the related
checkbox.

• Enable/disable multiple control points by checking or unchecking the related
checkbox.

• Enter or modify the condition of a selected control point.

• Enable/disable the condition of a selected control point by checking/unchecking the
related checkbox.

• Enter or modify the command of a selected control point.

• Enable/disable the command of a selected control point by checking/unchecking the
related checkbox.
163S12(X) Debugger Manual

Control Points
Breakpoints
• Enable/disable multiple control point commands by selecting control points and
checking/unchecking the related checkbox.

• Modify the counter and/or limit of a single control point.

With breakpoints, you can also perform the following operations:

• Enable/disable halting on a single temporary breakpoint by checking/unchecking the
matching checkbox.

• Enable/disable halting on multiple temporary breakpoints by checking/unchecking
the matching checkbox.

With watchpoints, you can also perform the following operations:

• Enable/disable halting on a single read and/or write access by checking/unchecking
the corresponding checkboxes.

• Enable/disable halting on multiple read and/or write accesses by checking/
unchecking the corresponding checkboxes.

• Define the memory range controlled by the watchpoint.

Breakpoints
Breakpoints are control points associated with a program counter (PC) value. That is,
program execution stops as soon as the PC reaches the value defined in a breakpoint. The
Debugger supports four different types of breakpoints:

• Temporary breakpoints, which activate the next time the instruction executes.

• Permanent breakpoints, which activate each time the instruction executes.

• Counting breakpoints, which activate after the instruction executes a certain number
of times.

• Conditional breakpoints, which activate when a given condition is TRUE.

Breakpoints are controlled through the Breakpoints tab of the Controlpoints Configuration
window. Open this window using the Source window context menu, by following these
steps:

1. Point at a C statement in the Source window, and click the right mouse button.

The Source Window context menu appears (see Figure 4.1).
164 S12(X) Debugger Manual

Control Points
Breakpoints
Figure 4.1 Source Window Context Menu

2. Select Show Breakpoints from this menu

The Breakpoints tab of the Controlpoints configuration window opens (Figure 4.2).

Figure 4.2 Controlpoints Configuration Window (Breakpoints Tab)
165S12(X) Debugger Manual

Control Points
Breakpoints
Breakpoints Tab
The Breakpoints tab contains:

• List box that displays the list of currently defined breakpoints

• Breakpoint group box that displays the address of the currently selected breakpoint,
name of procedure in which the breakpoint has been set, state of the breakpoint
(disabled/enabled), and type of breakpoint (temporary or permanent).

• Condition group box that displays the condition string to evaluate, and the state of
the condition (disabled/enabled).

• Command group box that displays the command string to execute and the state of
the command (disable or continue after command execution).

• Counter group box that displays the current counter value and interval counter
value.

NOTE Current and Interval values are limited to 2,147,483,647; if entering a number
greater than this value, a beep occurs and the character is not appended.
Changing the Interval value automatically sets the Counter value to the Interval
value.

• Delete button to remove the currently selected breakpoint.

• Update button to update all modifications in the dialog.

• Add button to add new breakpoints; specify the Address (in hexadecimal when Hex
format is checked, or as an expression when Hex format is unchecked).

• OK button to validate all modifications.

• Cancel button to ignore all modifications.

• Help button to open related help information.

Multiple Selections in List Box
The list box allows you to select multiple consecutive breakpoints by clicking the first
breakpoint, Pressing the Shift key, and clicking the last breakpoint you want to select.

The list box allows you to select multiple breakpoints that are not consecutive by clicking
the first breakpoint then pressing the Ctrl key and clicking another breakpoint.

When multiple breakpoints are selected in the list box, the name of the group box
Breakpoint is changed to Selected Breakpoints.

When selecting multiple breakpoints, the Address (hex), Name, Condition, Disable for
condition, Command, Current, and Interval controls are disabled.
166 S12(X) Debugger Manual

Control Points
Breakpoints
When multiple breakpoints are selected, the Disable and Temporary controls in the
Selected breakpoints group box are enabled and Disable in the Command group box is
enabled.

Checking Expressions
You can enter an expression in the Condition group edit box. The debugger checks the
expression syntax when you select another breakpoint in the list box or click OK. The
syntax is parameters = = expression. For a register condition the syntax is
$RegisterName = = expression.

If the debugger detects a syntax error, a message box appears:

Incorrect Condition. Do you want to correct it?

If you click OK, correct the error in the Condition edit box.

If you click Cancel, the Condition edit box is cleared.

Saving Breakpoints
The Debugger provides a way to store all defined breakpoints of the currently loaded
application (.ABS file) into the matching breakpoints file. The matching file has the same
name as the loaded .ABS file but its extension is .BPT (for example, the FIBO.ABS file
has a breakpoint file called FIBO.BPT). This file is generated in the same directory as the
.ABS file. This is a text file, in which a sequence of commands is stored. This file
contains the following information:

• The Save & Restore on load flag (Save & Restore on load checkbox in the
Breakpoints tab): the SAVEBP command is used: SAVEBP on when checked,
SAVEBP off when unchecked.

NOTE For more information about this, see the SAVEBP command.

• List of defined breakpoints: the BS command is used, as shown in Listing 4.1.

Listing 4.1 Breakpoint (.BPT) File Syntax

BS address [P|T[state]][;cond=”condition”[state]]
[;cmd=”command”[state]][;cur=current[inter=interval]]
[;cdSz=codeSize[srSz=sourceSize]]

In the code above:

– address is the address where the breakpoint is to be set. This address is
specified in ANSI C format. address can also be replaced by an expression as
shown in the example below.
167S12(X) Debugger Manual

Control Points
Breakpoints
– P specifies the breakpoint as a permanent breakpoint.

– T specifies the breakpoint as a temporary breakpoint. A temporary breakpoint is
deleted once it is reached.

– state is E, D or C where E is for enabled (state is set by default to E if nothing
is specified), D is for disabled and C for Continue.

– condition is an expression. It matches the Condition field in the Breakpoints
tab for conditional breakpoint.

– command is any debugger command. It matches the Command field in the
Breakpoints tab for associated commands.

– current is an expression. It matches the Current field (Counter) in the
Breakpoints tab for counting breakpoints.

– interval is an expression. It matches the Interval field (Counter) in the
Breakpoints tab for counting breakpoints.

– codeSize is an expression. It is usually a constant number to specify (for
security) the code size of a function where a breakpoint is set. If the size specified
does not match the size of the function currently loaded in the .ABS file, the
breakpoint is set but disabled.

– sourceSize is an expression. It is usually a constant number to specify (for
security) the source (text) size of a function where a breakpoint is set. If the size
specified does not match the size of the function in the source file, the breakpoint
is set but disabled.

• If Save & Restore on load is checked and the user quits the Debugger or
loads another .ABS file, all breakpoints will be saved.

• If Save & Restore on load is unchecked (default), only this flag (SAVEBP
off) is saved.

Breakpoint File (.BPT) Example
Case 1: if FIBO.ABS is loaded, and Save & Restore on load was checked in a previous
session of the same .ABS file, and breakpoints have been defined, the FIBO.BPT looks
as shown in Listing 4.2.

Listing 4.2 Breakpoint File with Save & Restore on load Checked

savebp on
BS &fibo.c:Fibonacci+19 P E; cond = "fibo > 10" E; cdSz = 47 srSz = 0
BS &fibo.c:Fibonacci+31 P E; cdSz = 47 srSz = 0
BS &fibo.c:main+12 P E; cdSz = 42 srSz = 0
BS &fibo.c:main+21 P E; cond = "fiboCount==5" E; cmd = "Assembly < spc
0x800" E; cdSz = 42 srSz = 0
168 S12(X) Debugger Manual

Control Points
Breakpoints
Case 2: if FIBO.ABS is loaded, and Save & Restore on load was unchecked in a
previous session of the same .ABS file and breakpoints have been defined, the
FIBO.BPT looks as shown below:

savebp on

This saves only the flag and removes the breakpoints.

NOTE If only one or a few functions change after a recompilation, not all BPs are lost.
To achieve that, BPs are disabled only if the size of a function changes. The
size of a function is evaluated in bytes (when it is compiled) and in characters
(number of characters contained in the function source text). When an .ABS
file is loaded and the matching .BPT file exists, for each BS command, the
Debugger checks if the code size (in bytes) and the source size (in characters)
are different in the matching function (given by the symbol table). If there is a
difference, the breakpoint is set and disabled. If there is no difference, the
breakpoint is set and enabled.

NOTE For more information about this syntax, see BS and SAVEBP commands.

Setting Breakpoints
The Debugger supports different types of breakpoints:

• Temporary breakpoints activate the next time the instruction executes.

• Permanent breakpoints activate each time the instruction executes.

• Counting breakpoints activate after the instruction executes a certain number of
times.

• Conditional breakpoints activate when a given condition is TRUE.

Set breakpoints in a Source or Assembly component window.

Possible Breakpoint Positions
A compound statement is one that can be split into several base instructions. When using a
high-level language some compound statements can be generated, as shown in the
following example.
169S12(X) Debugger Manual

Control Points
Breakpoints
Figure 4.3 Source and Assembly Windows

The Debugger helps you detect all positions where you can set a breakpoint.

1. Right click in the Source component to display the Source context menu on the screen.

2. Choose Marks from the context menu. All statements where a breakpoint can be set
are identified by a red inverted check mark:

To remove the breakpoint marks, right click in the Source component and choose Marks
again.

Temporary Breakpoints
Temporary breakpoints activate the next time the instruction executed. The following icon
identifies a temporary breakpoint:

Setting Temporary Breakpoints

Using the Source Window Context Menu

1. Point at a C statement in the Source window and right click to display the Source
context menu.

2. Choose Run To Cursor from the context menu. The application continues execution
and stops before executing the statement. You have executed a temporary breakpoint.
170 S12(X) Debugger Manual

Control Points
Breakpoints
Holding down the left mouse button, pressing the T key

1. Point at a C statement in the Source window, hold down the left mouse button, and
click the T key. This defines a temporary breakpoint.

2. Choose Run To Cursor from the context menu. The application continues execution
and stops before executing the statement.

Temporary breakpoints are automatically deleted once they have been activated. If you
continue program execution, it no longer stops on the statement that contained the
temporary breakpoint.

Permanent Breakpoints
Permanent breakpoints activate each time the instruction executes. The following icon
identifies a permanent breakpoint:

Setting Permanent Breakpoints

Using the Source Window Context Menu

1. Point at a C statement in the Source window and right click. The Source context menu
appears.

2. Select Set BreakPoint from the context menu. A permanent breakpoint mark appears
in front of the selected statement.

Holding down the left mouse button, pressing the P key

1. Point at a C statement in the Source window.

2. Hold down the left mouse button and click the P key. A permanent breakpoint mark
appears in front of the selected statement.

Once you define a permanent breakpoint, you can continue program execution. The
application stops before executing the statement. Permanent breakpoints remain active
until they are disabled or deleted.
171S12(X) Debugger Manual

Control Points
Breakpoints
Counting Breakpoints
Counting breakpoints activate after the instruction executes a certain number of times. The
following icon identifies a Counting breakpoint:

Setting Counting Breakpoints
Counting breakpoints can only be set using the Breakpoints tab. There are two ways to set
a counting breakpoint:

Hold down the left mouse button, click the S key

1. Point at a C statement in the Source window.

2. Hold down the left mouse button and click the S key.

The Controlpoints Configuration window with the Breakpoints tab opens and inserts a
new breakpoint in the list of breakpoints defined in the application.

3. Select the breakpoint you want to modify by clicking on the corresponding entry in the
list of defined breakpoints at the top of the tab.

4. In the Counter group of this tab specify the interval for the breakpoint detection in the
Interval field.

5. Close the window by clicking the OK button.

Use the Source Context Menu

1. Point at a C statement in the Source window and right click to display the Source
context menu.

2. Choose Set BreakPoint from the context menu. This defines a breakpoint on the
selected instruction.

3. Point in the Source window and right click again.

4. Choose Show Breakpoints from the context menu to display the Controlpoints
Configuration Window (Breakpoints Tab).

5. Select the breakpoint you want to modify by clicking on the corresponding entry in the
list of defined breakpoints at the top of the tab.

6. In the Counter group of this tab specify the interval for the breakpoint detection in the
Interval field.

7. Close the window by clicking the OK button.
172 S12(X) Debugger Manual

Control Points
Breakpoints
If you continue program execution, the content of the Current field decrements each time
the program reaches the instruction containing the breakpoint. When Current equals zero,
the application stops. If the Temporary checkbox is unchecked (not a temporary
breakpoint), Current is reloaded with the value stored in Interval to enable the counting
breakpoint again.

Conditional Breakpoints
Conditional breakpoints activate when a given condition is TRUE. The following icon
identifies a conditional breakpoint:

Setting Conditional Breakpoints
Conditional breakpoints can only be set from the Controlpoint Configuration window’s
Breakpoints tab. There are two ways to set a conditional breakpoint:

Hold down the left mouse button, click the S key

1. Point at a C statement in the Source component window, hold down the left mouse
button, and click the S key.

The Breakpoints tab opens and inserts a new breakpoint in the list of breakpoints
defined in the application.

2. Select the breakpoint you want to modify by clicking on the corresponding entry in the
list of defined breakpoints.

3. Specify the condition for breakpoint activation in the Condition group Condition box.
You must use ANSI-C syntax to specify the condition (for example, counter == 7).
You can use register values in the breakpoint condition field with the following syntax:
$RegisterName (for example, $RX == 0x10)

4. Close the window by clicking OK.

Use the Source Window Context Menu

1. Point at a C statement in the Source component window and right click to display the
Source context menu.

2. Select Set BreakPoint from the context menu to define a breakpoint on the selected
instruction.

3. Point in the Source component window and right click to display the Source context
menu.
173S12(X) Debugger Manual

Control Points
Breakpoints
4. Select Show Breakpoints from the context menu. The Breakpoints tab opens and
inserts a new breakpoint in the list of breakpoints defined in the application.

5. Select the breakpoint you want to modify by clicking on the corresponding entry in the
list of defined breakpoints.

6. Specify the condition for breakpoint activation in the Condition group Condition box.
You must specify the condition using the ANSI C syntax (for example, counter == 7).
You can use register values in the breakpoint condition field with the following syntax:
$RegisterName (for example, $RX == 0x10)

7. Close the window by clicking OK.

If you continue program execution, the condition is evaluated each time the program
reaches the instruction containing the conditional breakpoint. When the condition is
TRUE, the application stops.

Deleting Breakpoints
The Debugger provides three ways to delete a breakpoint:

Use Delete Breakpoint from Source Context Menu

1. In the Source component window, point at a C statement where a breakpoint exists and
right click. This displays the Source context menu.

2. Choose Delete Breakpoint from the context menu to delete the breakpoint.

Hold down the left mouse button, click the D key

1. Point at a C statement in the Source component window where a breakpoint exists.

2. Hold down the left mouse button and click the D key.

This deletes the breakpoint.

Choosing Show Breakpoints from Source Context Menu

1. Point in the Source component window and right click. The Source context menu
appears.

2. Choose Show Breakpoints from the context menu. The Breakpoints Setting dialog
appears.

3. In the list of defined breakpoints, select the breakpoint to delete.

4. Click Delete. The selected breakpoint is removed from the list of defined breakpoints.
174 S12(X) Debugger Manual

Control Points
Breakpoints
5. Click OK to close the Breakpoints Setting dialog box and remove the icon associated
with the deleted breakpoint from the Source component.

Associate a Command with a Breakpoint
Each breakpoint (temporary, permanent, counting or conditional) can be associated with a
debugger command. Specify this command in the Breakpoints tab of the Controlpoints
Configuration window. To open this window:

Choose Show Breakpoints from Source Window Context
Menu

1. Point in the Source component window and right click to display the Source context
menu.

2. Choose Show Breakpoints from the context menu. The Controlpoints Configuration
window, with the Breakpoints tab displayed, appears.

In the Breakpoints tab of the Controlpoints Configuration
window

1. Select the breakpoint to modify by clicking on the corresponding entry in the list of
defined breakpoints.

2. Enter the command in the Command field. The command is a single debugger
command (at this level, the commands G, GO and STOP are not allowed). Associate a
command file with a breakpoint using the command CALL or CF (Example: CF
breakCmd.cmd).

3. Click OK to close the window.

When the breakpoint is detected, the command executes and the application stops.

The Continue check button of the Controlpoints Configuration window allows the
application to continue after the command executes.

Demo Version Limitations
Only two breakpoints can be set.
175S12(X) Debugger Manual

Control Points
Watchpoints
Watchpoints
Watchpoints are control points associated with a memory range. Program execution stops
when the memory range defined by the watchpoint has been accessed. The Debugger
supports different types of watchpoints:

• Read Access Watchpoints activate when a read access occurs inside the specified
memory range.

• Write Access Watchpoints activate when a write access occurs inside the specified
memory range.

• Read/Write Access Watchpoints activate when a read or write access occurs inside
the specified memory range.

• Counting Watchpoints activate after a specified number of accesses occur inside the
memory range.

• Conditional Watchpoints activate when an access occurs inside the memory range
and a given condition is TRUE.

Control Watchpoints through the Watchpoints tab of the Controlpoints Configuration
window. Open this window through the Memory or Data component window context
menu, as described below.

To open the Controlpoints Configuration window with the Watchpoints tab exposed:

1. Position your cursor in either the Memory or Data component window.

2. Click the right mouse button.

3. Select Show Watchpoints from either menu.

4. Click the left mouse button.

The ControlPoints Configuration window appears. Figure 4.6 shows the Watchpoints tab
of this window.
176 S12(X) Debugger Manual

Control Points
Watchpoints
Figure 4.4 Memory Context Menu

Figure 4.5 Data Context Menu
177S12(X) Debugger Manual

Control Points
Watchpoints
Figure 4.6 Controlpoints Configuration Window (Watchpoints Tab)

Watchpoints Tab
The Watchpoints tab of the Controlpoints Configuration window contains:

• List box that displays the list of currently defined watchpoints.

• Watchpoint group box that displays the address of the currently selected
watchpoint, size of the watchpoint, name of the procedure or variable on which the
watchpoint is set, state of the watchpoint (disabled or not), read access of the
watchpoint (enabled or not) and write access of the watchpoint (enabled or not).

• Condition group box that displays the condition string to evaluate and the state of
the condition (disabled or not).

• Command group box that displays the command string to execute and state of the
command (disabled or continue after command execution).

• Counter group box that displays the current value of the counter and interval value
of the counter.

• Add button to add new watchpoints; specify the Address in hexadecimal when Hex
format is checked or as an expression when Hex format is unchecked.

• Update button to Update all modifications in the dialog.

• Delete button to remove currently selected watchpoint and select the watchpoint that
is below the removed watchpoint.

• OK button to validate all modifications.
178 S12(X) Debugger Manual

Control Points
Watchpoints
NOTE Current and Interval values are limited to 2,147,483,647. A beep occurs and the
character is not appended if a number greater than this value is entered.

NOTE When the Interval value changes, the Counter value automatically resets to the
Interval value.

• Cancel button to ignore all modifications.

• Help button to display help file and related help information.

Multiple Selections
For watchpoints, you can do multiple selections in the Watchpoints tab of the
Controlpoints Configuration window using the Shift and Ctrl keys.

When multiple watchpoints in the list box are selected, the name of the group box
Watchpoint is changed to Selected Watchpoints.

When multiple watchpoints are selected, the Address (hex), Size, Name, Condition,
Disable for condition, Command, Current, and Interval controls are disabled.

When multiple watchpoints are selected in the list box, the Disable, Read and Write
controls in the Selected watchpoints group box are enabled.

When multiple watchpoints are selected, Disable in the Command group box is enabled.

Click Delete when multiple watchpoints are selected to remove watchpoints from the list
box.

Checking Syntax
You can enter an expression in the Condition group edit box. The debugger checks the
syntax of the expression when you select another watchpoint in the list box or when you
click OK.

If a syntax error is detected, a message box appears:

Incorrect Condition. Do you want to correct it?

Click OK to correct the error in the condition edit box.

Click Cancel to clear the condition edit box.

Setting Watchpoints
Watchpoints may be set in a Data or Memory window.
179S12(X) Debugger Manual

Control Points
Watchpoints
NOTE Due to hardware restrictions, the watchpoint function might not be
implemented on hardware connections.

Setting a Read Watchpoint
A green vertical bar appears in front of a variable associated with a read access
watchpoint. The Debugger provides two ways to define a read access watchpoint:

Use the Data Context Menu

1. Point at a variable in the Data window and right click to display the Data Context
Menu.

2. Choose Set Watchpoint from the context menu to define a Read/Write watchpoint.

3. Point in the Data window and right click to display the Data context menu.

4. Choose Show WatchPoints from the context menu. The Controlpoints Configuration
window Watchpoints tab appears.

5. Select the watchpoint you want to define as read access from the list.

6. Select the Read type in the list box to define a read access watchpoint for the selected
variable.

Use the Left Mouse Button, click the R Key

1. Point at a variable in the Data window.

2. Hold down the left mouse button and click the R key.

This defines a read access watchpoint for the selected variable.

Once you define a read access watchpoint, you can continue program execution. The
application stops after detecting the next read access on the variable. Read access
watchpoints remain active until they are disabled or deleted.

Setting a Write Watchpoint
A red vertical bar appears in front of a variable associated with a write access watchpoint.

The Debugger provides two ways to define a write access watchpoint:
180 S12(X) Debugger Manual

Control Points
Watchpoints
Using the Data Context Menu

1. Point at a variable in the Data window and right click. The Data context menu appears.

2. Choose Set Watchpoint from the context menu to define Read/Write Watchpoint.

3. Point in the Data component window and right click. The Source context menu
appears.

4. Choose Show WatchPoints from the context menu. The Controlpoints Configuration
window Watchpoints tab appears.

5. From the list, select the watchpoint you want to define as write access.

6. Select the Write type in the list box to define a write access watchpoint for the selected
variable.

Using the Left Mouse Button and pressing the W Key

1. Point at a variable in the Data window.

2. Hold down the left mouse button and click the W key. This defines a write access
watchpoint for the selected variable.

Once a write access watchpoint has been defined, you can continue program execution.
The application stops after the next write access on the variable. Write access watchpoints
remain active until they are disabled or deleted.

Defining a Read/Write Watchpoint
A yellow vertical bar appears in front of a variable associated with a read/write access
watchpoint.

The Debugger provides two ways to define a read/write access watchpoint:

Use the Data Context Menu

1. Point at a variable in the Data window and right click. The Data context menu appears.

2. Choose Set Watchpoint from the context menu to define a Read/Write Watchpoint.
181S12(X) Debugger Manual

Control Points
Watchpoints
Use the Left Mouse Button and click the B Key

1. Point at a variable in the Data window.

2. Hold down the left mouse button and click the B key.

This defines a read/write access watchpoint for the selected variable.

Once a read/write access watchpoint is defined, you can continue program execution. The
application stops after the next read or write access on the variable. Read/write access
watchpoints remain active until they are disabled or deleted.

Defining a Counting Watchpoint
A counter can be associated with any type of watchpoint (read, write, read/write). The
Debugger provides two ways to define a counting watchpoint:

Use the Data Context Menu

1. Point at a variable in the Data window and right click. The Data context menu appears.

2. Choose Set Watchpoint from the context menu to define a read/write watchpoint.

3. Point in the Data component window and right click to display the Source context
menu.

4. Choose Show WatchPoints from the context menu. The Controlpoints Configuration
window Watchpoints tab appears.

5. Select the watchpoint you want to define as a counting watchpoint.

6. From the list box, select the type of access you want to track.

7. In the interval field, specify the interval count for the watchpoint.

8. Click OK to close the window and define a counting watchpoint for the selected
variable.

Use the Left Mouse Button and click the S Key

1. Point at a variable in the Data window.

2. Hold down the left mouse button and click the S key. The Watchpoints tab of the
Controlpoints Configuration window appears.

3. Select the watchpoint you want to define as a counting watchpoint from the list.

4. From the list box, select the type of access you want to track.
182 S12(X) Debugger Manual

Control Points
Watchpoints
5. In the interval field, specify the interval count for the watchpoint. Click OK to close
the window and define a counting watchpoint for the selected variable.

If you continue program execution, the Current field decrements each time an
appropriate access on the variable is detected. When Current equals zero, the application
stops. Current reloads with the value stored in the interval field to enable the counting
watchpoint again.

Defining a Conditional Watchpoint
You can associate a condition with any type of watchpoint (read, write, read/write). The
Debugger provides two ways to define a conditional watchpoint:

Use the Data Context Menu

1. Point at a variable in the Data window and right click. The Data context menu appears.

2. Choose Set Watchpoint from the context menu to define a read/write watchpoint.

3. Point in the Data window and right click. The Source context menu appears.

4. Choose Show WatchPoints from the context menu. The Controlpoints Configuration
window Watchpoints tab appears.

5. Select the watchpoint you want to define as a conditional watchpoint.

6. From the list box, select the type of access you want to track.

7. Specify the condition for the watchpoint in the Condition field. The condition must be
specified using the ANSI-C syntax (Example: counter == 7).

8. Click OK to close the window and define a conditional watchpoint for the selected
variable.

Use the Left Mouse Button and click the S Key

1. Point at a variable in the Data window.

2. Hold down the left mouse button and click the S key. The Watchpoints tab of the
Controlpoints Configuration window appears.

3. Select the watchpoint you want to define as a conditional watchpoint.

4. From the list box, select the type of access you want to track.

5. Specify the condition for watchpoint activation in the Condition field. The condition
must be specified using the ANSI-C syntax (Example: counter == 7). You can use
register values in the breakpoint condition field with the following syntax:
$RegisterName (Example $RX == 0x10)
183S12(X) Debugger Manual

Control Points
Watchpoints
6. Click OK to close the window and define a conditional watchpoint for the selected
variable.

If you continue program execution, the condition is evaluated each time an appropriate
access on the variable is detected. When the condition is TRUE, the application stops.

Deleting a Watchpoint
The Debugger provides three ways to delete a watchpoint:

Use Delete Breakpoint from Context Menu

1. In the Data window, point to a variable where a watchpoint has been defined and right
click. The Data context menu appears.

2. Select Delete Watchpoint from the context menu to delete the watchpoint and remove
the vertical bar in front of the variable.

Use the Left Mouse Button and click the D Key

1. Point at a variable in the Data window.

2. Hold down the left mouse button and click the D key. This deletes the watchpoint and
removes the vertical bar in front of the variable.

Choosing Show Watchpoints from Data Context Menu

1. Point in the Data window and right click. The Data context menu appears.

2. Choose Show Watchpoints from the context menu. The Watchpoints tab of the
Controlpoints Configuration window appears.

3. Select the watchpoint you want to delete.

4. Click Delete. This removes the selected watchpoint from the list of defined
watchpoints.

5. Click OK to close the window. This deletes the watchpoint and removes the vertical
bar in front of the variable.
184 S12(X) Debugger Manual

Control Points
Watchpoints
Associate a Command with a Watchpoint
You can associate each watchpoint type (read, write, read/write, counting, or conditional)
with a debugger command. Specify this command in the Watchpoints tab of the
Controlpoints Configuration window. To open this window:

Choosing Show Watchpoints from Data Context Menu

1. Point in the Data component window and right click. The Data Context Menu appears.

2. Select Show Watchpoints from the context menu. The Watchpoints tab of the
Controlpoints Configuration window appears.

3. Click on the corresponding entry in the list of defined breakpoints to select the
watchpoint you want to modify.

4. Enter the command in the Command field.

The command is a single debugger command. At this level, the commands G, GO and
STOP are not allowed. Associate a command file with a watchpoint using the
commands CALL or CF (Example CF breakCmd.cmd).

5. Click OK to close the window.

When the watchpoint is detected, the command executes and the application stops at
this point. The Continue check button allows the application to continue after
command execution.

Demo Version Limitations
Only two watchpoints can be set.

Watchpoints in Multi Core Projects
HCS12X multicore derivative debug module allows setting of watchpoint to either
CPU12X or XGATE data bus. Correspondingly, for multicore HCS12X derivatives
debugger sets watchpoint to either CPU12X or XGATE data bus, so when watchpoint for
the variable shared between CPU12X and XGATE is set it will work only for access from
the corresponding core.

Watchpoint is set to XGATE data bus in two cases:

• watchpoint memory area is identified as variable defined in XGATE source code;

• watchpoint is set directly to memory area with XGATE space.

In all other cases watchpoint is set to CPU12X data bus.
185S12(X) Debugger Manual

Control Points
Markpoints
Setting Watchpoint to the variable shared
between CPU12X and XGATE
1. Variable shall be defined in CPU12X source code, otherwise watchpoint to CPU12X

data bus can not be set;

2. Set first watchpoint to the variable or directly to the memory area with Logical or
Global space. This watchpoint will be set to CPU12X data bus;

3. Set second watchpoint directly to the memory area with XGATE space. Use
HCS12XAdrMap component to convert address to XGATE space. This watchpoint
will be set to XGATE data bus.

Figure 4.7 Watchpoint Configuration for Shared Variable

Markpoints
Markpoints are control points associated with a source line, memory or data range. They
give the programmer accessible program markers.

Program execution does NOT stop when the Source line, data or memory range defined by
the markpoint has been accessed.
186 S12(X) Debugger Manual

Control Points
Markpoints
Markpoints are controlled through the Markpoint tab of the Controlpoints Configuration
window. Open the window with the Source, Memory or Data window context menu, as
described below.

To open the Controlpoints Configuration window with the Markpoints tab exposed:

1. Position your cursor in either the Source, Memory or Data window.

2. Click the right mouse button.

3. Select Show Watchpoints from the window’s context menu.

4. Click the left mouse button.

The ControlPoints Configuration window appears with the Markpoints tab of this window
exposed, as shown in Figure 4.6.

Figure 4.8 Source Window Context Menu
187S12(X) Debugger Manual

Control Points
Markpoints
Figure 4.9 Memory Context Menu

Figure 4.10 Data Context Menu
188 S12(X) Debugger Manual

Control Points
Markpoints
Figure 4.11 Controlpoints Configuration Window (Markpoints Tab)

Markpoints Tab
The Markpoints tab of the Controlpoints Configuration window contains:

• List box that displays the list of currently defined markpoints.

• Markpoint group box that displays the address of the currently selected markpoint,
size of the markpoint, name of the procedure or variable on which the markpoint has
been set, and type of the markpoint.

• General group box that contains a checkbox that allows you to save and restore the
markpoint selected.

• Add button to add new markpoints. Specify the Address in hexadecimal when Hex
format is checked or as an expression when Hex format is unchecked.

• Delete button to remove currently selected markpoint and select the markpoint that is
below the removed markpoint.

• Update button to update all modifications in the window.

• OK button to validate all modifications.

• Cancel button to ignore all modifications.

• Help button to display help file and related help information.

Setting Markpoints
Markpoints may be set in a Source, Data or Memory window.
189S12(X) Debugger Manual

Control Points
Markpoints
Setting a Source Markpoint
A blue letter L appears in front of a code line associated with a markpoint. To define a
markpoint in source code:

Use the Source Context Menu

1. Point at a code line in the Source window and right click. The Source Window context
menu appears (see Figure 4.8).

2. Choose Set Markpoint from the context menu to define a markpoint at the beginning
of the line.

3. Point in the Source window and right click. The Source context menu appears.

4. Choose Show WatchPoints from the context menu. The Controlpoints Configuration
Window Markpoints Tab appears.

5. Make any modifications to any markpoints listed.

6. Click OK to close the window.

Setting a Data Markpoint
A blue letter L appears in front of a variable associated with a markpoint. To define a data
range markpoint:

Use the Data Context Menu

1. Point at a variable in the Data window and right click. The Data context menu appears
(see Figure 4.10).

2. Choose Set Markpoint from the context menu to define a markpoint at the beginning
of the data range selected.

3. Point in the Data window and right click. The Data context menu appears.

4. Choose Show WatchPoints from the context menu. The Controlpoints Configuration
window Markpoints tab appears.

5. Make any modifications to any markpoints listed.

6. Click OK to close the window.

Setting a Memory Markpoint
A blue letter L appears in front of a memory range associated with a markpoint.

To define a Memory markpoint:
190 S12(X) Debugger Manual

Control Points
Markpoints
Use the Memory Context Menu

1. Point at a line in the Memory window and right click. The Memory context menu
appears (see Figure 4.9).

2. Choose Set Watchpoint from the context menu to define a Markpoint.

3. Point in the Memory window and right click. The Memory context menu appears.

4. Choose Show WatchPoints from the context menu. The Controlpoints Configuration
window Markpoints tab appears.

5. Make any modifications to any markpoints listed

6. Click OK to close the window.
191S12(X) Debugger Manual

Control Points
Halting on a Control Point
Deleting a Markpoint
To delete a markpoint:

Use the Left Mouse Button, click the D Key

1. Point at the markpoint variable in the Data window, the memory range in the Memory
window, or the codeline in the Source window.

2. Hold down the left mouse button and click the D key.

3. This deletes the markpoint and removes the blue letter L in front of the variable,
memory range or codeline.

Choose Show Markpoints from Appropriate Context
Menu

1. Point in the Data, Memory or Source component window and right click. The
associated context menu appears.

2. Choose Show Markpoints from the context menu. The Markpoints tab of the
Controlpoints Configuration window appears.

3. In this tab’s list box, select the markpoints you want to delete.

4. Click Delete. This removes the selected markpoint from the list of defined markpoints.

5. Click OK to close the window. This deletes the markpoint and removes the blue letter
L in front of the variable, memory range, or code line.

Halting on a Control Point
Code execution halts when the program reaches either a breakpoint or a watchpoint, if the
conditions specified in the definition of the breakpoint or watchpoint have been reached.
Code execution is NOT halted when the program reaches a markpoint.

Counting Control Point
If the interval property is greater than one, a counting control point has been defined.
When the Debugger is running, every time code reaches the control point, its current value
decrements. The Debugger halts when the value reaches zero. When the Debugger stops
on the control point, a command executes (if defined and enabled).
192 S12(X) Debugger Manual

Control Points
Halting on a Control Point
Conditional Control Point
If a condition is defined and enabled for a control point that halts the Debugger, a
command executes (if defined and enabled).

Control Point with Command
When the Debugger halts on the control point, the specified command executes.
193S12(X) Debugger Manual

Control Points
Halting on a Control Point
194 S12(X) Debugger Manual

5
Real-Time Kernel
Awareness

The Debugger allows you to load and control applications on the target system or
simulated on the host. It also allows you to inspect the state of the application, which
includes global variables, processor registers and the procedure call chain including the
local (automatic) variables.

Often, operating systems (Real-Time Kernels) are used to coordinate the different tasks in
more complex systems. This chapter describes how applications built of several tasks can
be handled with the Debugger. There are two main topics to be considered:

• Debugging any task in the system (e.g., viewing the state of any task in the system).
It is possible to switch the debugging context from the current task to any other task
and between any tasks in the system.

• Real-time kernels use data structures to describe the state of the system (such as
scheduling information, queues, timers). Some of these data structures are of interest
to operating system users and are described in this chapter.

Inspecting Task State
Each multitasking operating system stores the context of each task at a specific location,
usually called the task descriptor. This descriptor consists of the CPU context (CPU
registers) and the content of the associated stack. The task descriptor contains further
information depending on the specific kernel implementation.

The Debugger allows you to inspect the CPU registers and stack containing all procedure
activation frames (return addresses, parameters, local variables). Therefore, it must
retrieve this information for each task to be debugged. The debugger reads this
information from a file called OSPARAM.PRM, which contains the algorithm for
retrieving all the needed data from the target memory task descriptors. To describe this
algorithm, a simple procedural language is used. The only parameter to the algorithm is a
user-specified address which identifies the task to be inspected. The result is the CPU
context (CPU registers) and status of the task, which allows the debugger to display the
procedure activation stack in a symbolic way.
195S12(X) Debugger Manual

Real-Time Kernel Awareness
Task Description Language
RTK Interface
When the application halts, the debugger displays the state of the current task. To identify
the task to be inspected, follow these steps:

1. Make the task descriptor, or a pointer to it, visible in any of the debugger's data
windows.

2. While holding down the left mouse button on a variable of type pointer to task
descriptor, click the P key.

The current state of the selected task and procedure chain of that task appears in the
Procedure Chain window. By clicking on the procedures in the call chain list, the local
data of that function appears in the Data1 window. All the usual debugging functions are
available to inspect this task (including displaying the register contents).

Task Description Language
To perform debugging on any task, create a file named OSPARAM.PRM and store it in one
of the directories specified in GENPATH: #include “File” Path.

OSPARAM.PRM contains the algorithm for collecting the context information for a
specific task (the PC, SP, DL, SR and registers).

Use the following syntax (in EBNF) to specify the algorithm:

StatSequence = [Statement] {';' Statement;}.
Statement = Assignment | ErrorMsg | If.
Assignment = Ident ':=' Expression.
ErrorMsg = 'MSG' ':=' String.
IfStatemen = 'IF' BoolExpr 'THEN' StatSequence {ELSIFPart} [ELSEPart]
'END'.
ELSIFPart = 'ELSIF' BoolExpr 'THEN' StatSequence.
ELSEPart = 'ELSE' StatSequence.
String = '"' {char} '"'.
BoolExpr = Expression RelOp Expression.
Expression = Term {Op Term}.
Term = Ident | Function | Number.
Ident = 'a'..'z' | 'R00'..'R31' | 'DL' | 'SP' | 'SR' | 'PC' | 'STATUS'
| 'B'.
Function = ('MB' | 'MW' | 'MD' | 'MA') '[' Expression ']'.
RelOp = '#' | '<' | '<=' | '=' | '>=' | '>'.
Op = '+' | '-'.
196 S12(X) Debugger Manual

Real-Time Kernel Awareness
Application Example
Table 5.1 shows the terminal symbol meanings:

On activation of the task debugging command, the file OSPARAM.PRM opens and stores
the selected address in variable B. Then the commands in the file are interpreted. The CPU
context of the task is then expected in the variables PC, SP, SR, DL, Rnn and EN. EN
describes the status of the task. If EN is greater than 1000, the string MSG expects the
status.

Application Example
Listing 5.1 shows an example of OSPARAM.PRM file for SOOM System/REM.

Listing 5.1 OSPARAM.PRM File

{ File OSParam.PRM, implementation for SOOM System/REM }
{ R0..R7 = D0..D7, R8..R15 = A0..A7 }

Table 5.1 Terminal Symbol Meanings

Terminal
Symbol

Meaning

B Given reference to the task descriptor (initialized upon start)

a–z Variables for intermediate storage

MB Retrieves value of memory BYTE at given address

MW Retrieves value of memory WORD at given address

MD Retrieves value of DOUBLE WORD at given address

MA Retrieves value at given address interpreted as DOUBLE WORD

PC Program counter to be set

SP Stack pointer to be set

SR Status register value to be set

DL Dynamic link (data base) to be set (if not available, same as SP)

STATUS Error number to be set (refer to manual)

Rnn Processor registers to be set (mapping to CPU registers; see manual)

MSG Error message (must be specified if N >= 1000)
197S12(X) Debugger Manual

Real-Time Kernel Awareness
Inspecting Kernel Data Structures
{ MSG = message displayed in Procedure Chain window }

DL := MD(B+8); { A6 in PD, dynamic link }
SP := MD(B+4); { A7 in PD, stack pointer }
PC := MD(B+14); { PC in PD, program counter }
SR := MW(B+12); { SR in PD, status register }
STATUS := 1000; { Initialized with 1000 }
IF MW(B+18) = 1 THEN
{ IF (registers are saved in task Control Block) THEN }
R0 := MD(B+22); R1 := MD(B+26); R2 := MD(B+30);
R3 := MD(B+34); R4 := MD(B+38); R5 := MD(B+42);
R6 := MD(B+46); R7 := MD(B+50); R8 := MD(B+54);
R9 := MD(B+58); R10 := MD(B+62); R11 := MD(B+66);
R12 := MD(B+70)
END;
R13 := B;
R14 := DL;
R15 := SP;
i := MB(B+112); { i contains the current state of the selected task. }
IF i = 0 THEN MSG := "ReadyInCQSc"
ELSIF i = 1 THEN MSG := "BlockedByAccept"
ELSIF i = 2 THEN MSG := "WaitForDReply"
ELSIF i = 3 THEN MSG := "WaitForMail"
ELSIF i = 4 THEN MSG := "DelayQueue"
ELSIF i = 5 THEN MSG := "BlockedByReceive"
ELSIF i = 6 THEN MSG := "WaitForSemaphore"
ELSIF i = 7 THEN MSG := "Dummy"
ELSIF i = 8 THEN MSG := "SysBlocked"
ELSE MSG := "invalid"
END;

Inspecting Kernel Data Structures
To allow the debugger to display the data structures of the operating system, the
corresponding symbol information (in this case, for SOOM System/REM) must be
available. To use another kernel, its source code must be available and must be compiled.
However, if only the object code is available, generate the needed symbol information by
describing the kernel data structures of interest using ANSI-C language, as shown in
Listing 5.2.

Listing 5.2 Kernel Data Structure Description

 typedef struct PD {
 int status;
 struct PD *next;
198 S12(X) Debugger Manual

Real-Time Kernel Awareness
Inspecting Kernel Data Structures
 long regs[6];
 } PD;

Define a simple task descriptor by collecting variables in a structure and assigning them to
a segment (for example, OS_DATA shown in Listing 5.3). Define this structure to fit the
same layout as the operating system. If necessary, use filler variables to get the correct
alignment.

Listing 5.3 OS_DATA Structure

 #pragma DATA_SEG OS_DATA
 struct {
 PD *readyList; /* list of tasks ready to be executed */
 char filler[6]; /* unimportant variables */
 int processes; /* total number of tasks */
 PD processes[10]; /* the 10 possible tasks */
 } OS_DATA;

The linker uses a PRM file like the one shown in Listing 5.4 to place the segment at the
correct address.

Listing 5.4 Linker PRM File

 NAMES ... rtk.o+ ... END
 SECTIONS
 ...
 RTK_SEC = NO_INIT 0x1040 TO 0x1F80;
 ...
 END

 PLACEMENT
 ...
 OS_DATA INTO RTK_SEC;
 ...
 END

Compile the source file (for example, rtk.c) and list it in the NAMES section of the
linker parameter file. To force linking, follow the name of the object file immediately by
+. In this example the variable is linked to the address 0x1040.

If you prepare an application in this way, you may inspect all declared variables in the data
windows of the Debugger. There is no restriction in the complexity of the structures to
describe the global data of the kernel.
199S12(X) Debugger Manual

Real-Time Kernel Awareness
RTK Awareness Register Assignments
NOTE Do not open the terminal window during testing. Errors detected during
reading of a PRM file are written to this window.

RTK Awareness Register Assignments
Table 5.2 shows the register assignments for the RTK awareness for the HC12 processor.

OSEK Kernel Awareness
The OSEK Kernel provides a framework for building real-time applications. OSEK
Kernel awareness within the debugger allows you to debug your application from the
operating system perspective.

The CodeWarrior Debugger supports OSEK ORTI-compliant real-time operating systems
and offers dedicated kernel awareness, using the information stored in your application's
ORTI file. With CodeWarrior OSEK kernel awareness, you can monitor kernel task

Table 5.2 HC12 RTK Awareness Register Assignments

Register Register Name Size (in bits)

R0 A 8 (high byte of D)

R1 B 8 (low byte of D)

R2 CCR 8

R6 D 16 (concatenation of A:B)

R7 X 16

R8 Y 16

R9 SP 24 (concatenation of xPAGE:SP if in banked area)

R10 PC 16

R11 PPAGE 8

R12 EPAGE 8

R13 DPAGE 8

R14 IP 24 (concatenation of PPAGE:PC if in banked area)
200 S12(X) Debugger Manual

Real-Time Kernel Awareness
OSEK Kernel Awareness
information, semaphores, messages, queues, resources allocations, synchronization, and
communication between tasks.

ORTI describes the applications in any OSEK implementation:

• A set of attributes for system objects.

• A method for interpreting the data obtained.

OSEK RTI
The OSEK Run-Time Interface (ORTI) is a development tool interface to the OSEK
operating system. It is a part of the OSEK standard (see www.osek-vdx.org).

The ORTI enables the attached tool to evaluate and display information about the
operating system, its state, its performance, the different task states, and different
operating system objects.

ORTI File and Filename
The ORTI file name has the same name as the application file name, but with the
extension .ort. For instance, if the application file name is winLift_demo.abs, the
ORTI file name is winLift_demo.ort. Otherwise the debugger cannot use the ORTI
file.

The ORTI file contains dynamic information as a set of attributes that are represented by
formulas to access corresponding dynamic values. Formulas for dynamic data access are
comprised of constants, operations, and symbolic names within the target file. The given
formula can then be evaluated by the debug tool to obtain internal values of the required
OS objects.

ORTI Aware Debugging System
Two types of data are made available to the CodeWarrior debug tool. One type describes
static configuration data that remains unchanged during program execution. The second
type of data is dynamic and this data is re-evaluated each time by the CodeWarrior debug
tool. The static information is useful for display of general information and in combination
with the dynamic data. The dynamic data gives information about the current status of the
system.

The information given to the CodeWarrior debug tool is represented in an ORTI text file.
The file describes the different objects configured in the OS and their properties. The
information is presented as direct text, enumerated values, symbolic names, or an equation
that may be used for evaluating the attribute.

Building the project through the OSEK System Generator generates the ORTI file. The
generated file has the same name and location as the executable file but with the .ort
extension.
201S12(X) Debugger Manual

http://www.osek-vdx.org

Real-Time Kernel Awareness
OSEK Kernel Awareness
ORTI File Structure
The ORTI file structure builds on the structure of the OSEK OIL file. It consists of the
following parts:

• Version Section describes the version of the ORTI standard used for the current
ORTI file.

• Implementation Definition Section describes the proper method for interpreting the
data obtained for the value. This section may also detail the suggested display name
for a given attribute.

• Application Definition Section contains information on all objects currently
available for a given system. This section also describes the proper method for
referencing or calculating each required attribute. Supply this information either as a
static value or as a formula to calculate the required value.

OSEK RTK Inspector Component
This section describes the OSEK RTK Inspector component.

Open the Inspect window by selecting Component > Open and clicking on the Inspect
icon in the Open Window Component window.

CodeWarrior RTK Inspect Window
When you select the RTK components icon in the hierarchical content of the items, the
right side displays a variety of information about OSEK Awareness. The OSEK RTK
Inspect Window provides access to all this information. The ORTI file definition groups
objects of the same type so they can be viewed together. The following object types are
accessible through the Inspect window:

• Task

• Stack

• SystemTimer

• Alarm

• Message

The following sections describe typical objects, their attributes and their presentation.

NOTE Objects and their attributes depend on the OSEK implementation and OSEK
configuration, and therefore may differ from this description.
202 S12(X) Debugger Manual

Real-Time Kernel Awareness
OSEK Kernel Awareness
Inspector Task
The Task, shown in Figure 5.1, displays the current state of the OSEK task trace.

Figure 5.1 Inspector Task

When selecting a Task in the hierarchical tree on the left side of the Inspect window,
additional information concerning tasks appears on the right side of the window under the
following headings:

• Name: displays the name of the task.

• Task Priority: displays the priority of the task.

• Task State: describes the current state of the task. Possible values are READY,
SUSPENDED, WAITING, RUNNING or INVALID_TASK. The ORTI file defines
the different states.

• Events State: the event is represented by its mask. The event mask is a number in the
range from 1 to 0xFFFFFFFF. Setting the event mask value to 1 activates the event.
Clearing the event mask value to 0 disables the event.

• Waited Events: when the bit is cleared to 0, the event is not expected. When the bit
is set to 1, the event is expected.

• Task Event Masks: describes the current task event mask.

• Current Task Stack: displays the name of the current stack used by the task.

• Task Properties: describes task properties. Possible value are BASIC,
EXTENDED, NONPREMPT, FULLPREMPT, Priority value, and AUTO. The
ORTI file defines the possible values.

Inspect Stack
The Stack displays the current state of OSEK stack trace.

When selecting Stack in the hierarchical tree on the left side, additional information
concerning the stack appears on the right side of the window under the following
headings:

• Name: displays the name of the stack.

• Stack Start Address: displays the start address of the stack.

• Stack End Address: displays the end address of the stack.
203S12(X) Debugger Manual

Real-Time Kernel Awareness
OSEK Kernel Awareness
• Stack Size: displays the size of the stack.

Inspect SystemTimer
The SystemTimer shown in Figure 5.2 displays the current state of OSEK SystemTimer
trace.

Figure 5.2 Inspector SystemTimer

When selecting SystemTimer in the hierarchical tree on the left side, additional
information concerning the timer appears on the right side of the window under the
following headings:

• Name: displays name of the system timer.

• MAXALLOWEDVALUE: displays the maximum allowed counter value. When the
counter reaches this value it rolls over and restarts the count from zero.

• TICKSPERBASE: displays the number of ticks required to reach a counter-specific
value.

• MINCYCLE: displays the minimum allowed number of counter ticks for a cyclic
alarm linked to the counter.

• Current Value: displays the current value of the system timer.

• Activated Alarm: displays associated alarms.

Inspect Alarm
The Alarm shown in Figure 5.3 displays the current state of OSEK alarm trace.

Figure 5.3 Inspect Alarm
204 S12(X) Debugger Manual

Real-Time Kernel Awareness
OSEK Kernel Awareness
When selecting Alarm in the hierarchical tree on the left side, additional information
concerning the alarm appears on the right side of the window under the following
headings:

• Name: displays the name of the alarm.

• Alarm State: displays the current state of the alarm. Possible values are
ALARMRUN and ALARMSTOP.

• Assigned Counter: based on counters, the OSEK OS offers an alarm mechanism to
the application software. Assigned Counter is the name of the counter used by alarm.

• Notified Task: alarm management allows the user to link task activation to a certain
counter value, the assignment of an alarm to a counter, and the action to be
performed when an alarm expires. Notified Task defines the task to be notified (by
activation or event setting) when the alarm expires.

• Event to Set: alarm management allows the user to link event setting to a certain
counter value, the assignment of an alarm to a counter, and the action to be
performed when an alarm expires. Event to Set specifies the event mask to be set
when the alarm expires.

• Time to expire: displays time remaining before the time expires and the event is set.

• Cycle period: displays period of a tick.

Inspect Message
The Message shown in Figure 5.4 displays the current state of OSEK message trace.

Figure 5.4 Inspect Message

When selecting Message in the hierarchical tree on the left side, additional information
concerning task appears on the right side:

• Name: displays the name of the message.

• Message Type: displays message type. Possible values are: UNQUEUED/
QUEUED.

• Notified Task: displays the task that activates when the message is sent.

• Event to be set: displays the event to set when the message is sent.
205S12(X) Debugger Manual

Real-Time Kernel Awareness
OSEK Kernel Awareness
206 S12(X) Debugger Manual

6
How To...

This chapter provides methods for accomplishing common tasks.

• Configuring the Debugger

• Starting the Debugger

• Switching Connections

• Using the Stationery Wizard to Create a Project

• CodeWarrior IDE Integration

• Automating Debugger Startup

• Loading an Application

• Starting an Application

• Stopping an Application

• Stepping in the Application

• Working on Variables

• Working on the Register

• Modify Content of Memory Address

• Consulting Assembler Instructions Generated by a Source Statement

• Viewing Code

• Communicating with the Application

• About startup.cmd, reset.cmd, preload.cmd, postload.cmd

Configuring the Debugger
If you have installed the Debugger under Windows® 2000 or higher, you can start the
Debugger from the CodeWarrior IDE, from the desktop, from the Start menu, or from an
external editor such as WinEdit or CodeWright. To work efficiently (find all requested
configuration and component files), you must associate the Debugger with a working
directory.
207S12(X) Debugger Manual

How To...
Starting the Debugger
For Use from Desktop (Windows 2000)
When starting the Debugger from Windows (without WinEdit), you can define the
working directory in the file MCUTOOLS.INI, located in the Windows directory.

Defining the Default Directory in the
MCUTOOLS.INI
When starting from the desktop or Start menu, set the working directory in the
configuration file MCUTOOLS.INI.

Define the working directory, including the path, in the environment variable DefaultDir
in the [Options] group or WorkDir [WorkingDirectory].

Starting the Debugger
This section explains starting the debugger using WinEdit, from within the Codewarrior
IDE or from a DOS command line.

Starting with WinEdit
Start the Debugger by selecting Project > Debug or by clicking the Debugger icon (bug)
in the WinEdit tool bar (when configured). The Debugger window looks like Figure 6.1.
208 S12(X) Debugger Manual

How To...
Starting the Debugger
Figure 6.1 Debugger after Startup

READY displayed in the status bar indicates that the simulator is ready.

Starting from within the IDE
There are two ways to start the debugger from within the IDE:

• From a Project window icon

• From the IDE Main Window menu bar

Starting Debug from the Project Window
To start the debugger from the Project window, click the Debug icon (Figure 6.2), at the
top of the Project window.
209S12(X) Debugger Manual

How To...
Starting the Debugger
Figure 6.2 Project Window Make and Debug Icons

Starting Debug from the Main Window Menu Bar
You can also start the debugger from the main menu bar of the CodeWarrior IDE. To start
the debugger from the main menu bar, select Project > Debug.
210 S12(X) Debugger Manual

How To...
Starting the Debugger
Figure 6.3 Main Window Project Menu

Debugger Command Line Start
You can start the debugger from a DOS command line. The command syntax is as
follows:

HIWAVE.EXE [<AbsFileName> {-<options>}]

AbsFileName is the name of the application to load in the debugger. Precede each
option with a dash. Refer to Command Line Options for available command line
commands.

Order of Commands
Commands specified by options are executed in the following order:

1. Load (activate) the project file (see below). The debugger uses project.ini by
default, unless you specify another project file.

2. Load <exeFile> if available and start running (unless option |(W) was specified)

3. Execute command file <cmdFile> if specified

4. Execute command if specified

NOTE In version 6.0 of the debugger, the loaded program starts after all command and
command files are executed.
211S12(X) Debugger Manual

How To...
Switching Connections
NOTE The function Open in the File menu interprets any file without an .ini
extension as a command file and not a project file.

Example

C:\Program Files\Freescale\CWS12v5.1\Prog\DEMO\TEST.ABS -w -
d

Switching Connections
It is possible to switch connections from within an existing HC12 debugging project. The
following paragraphs explain how to change the connection in debugger, although it is
recommended to switch connection in project in IDE to keep consistency. If you are not
using CodeWarrior IDE project then this information might be important for you.

Loading the Full Chip Simulation
Connection
Because there is no actual hardware involved in switching from another project, such as
the SofTec inDart HCS12 connection, to the FCS connection, the process is simple. To
load the FCS connection from within an existing project, take the following steps:

1. From the Debugger main menu, select Component > Set Connection, as shown
below.

Figure 6.4 Component Menu

The Set Connection dialog box now appears.
212 S12(X) Debugger Manual

How To...
Switching Connections
Figure 6.5 Set Connection Dialog Box

2. Set the Processor as HC12 and the Connection as Full Chip Simulation.

3. Click the OK button. The Debugger main menu entry bar for the connection now
changes to HCS12X FCS.

Figure 6.6 HCS12X FCS Menu

You have successfully switched connections to the FCS connection. The values and use of
each HCS12X FCS menu entry is explained in the Full Chip Simulation chapter of this
manual.
213S12(X) Debugger Manual

How To...
Switching Connections
Loading the P&E Multilink/Cyclone Pro
Connection
To load the Multilink/Cyclone Pro (ICD-12) connection from within an existing project,
take the following steps:

1. From the Debugger main menu, select Component > Set Connection, as shown
below.

Figure 6.7 Component Menu

The Set Connection dialog box now appears.

Figure 6.8 Set Connection Dialog Box - Connection Menu

2. Within the Set Connection dialog box, click the Down Arrow button next to the
Connection list box to display the list of available connections.

3. Select P&E Multilink/Cyclone Pro.

The Connection menu selection P&E Multilink/Cyclone Pro loads the proper
drivers, and other things for the connection.

4. In the Debugger Main window, the Connection heading has been renamed
HC12MultilinkCyclonePro. Click on this heading to display its menu with the list of
possible selections.
214 S12(X) Debugger Manual

How To...
Switching Connections
Figure 6.9 HC12MultilinkCyclone Pro Menu

• The menu selection HC12MultilinkCyclonePro > Load loads an executable
(.abs) file into connection memory. The file’s program counter points to the first
instruction of the startup section.

• The menu selection HC12MultilinkCyclonePro > Reset triggers a reset of the
connection and executes the command file reset.cmd.

• The menu selection HC12MultilinkCyclonePro > Connect takes you to the P&E
ICD-12, Multilink, Cyclone Pro dialog box. The two tabs of this dialog box allow
you to set the Communications and Special Setup parameters for the connection.
215S12(X) Debugger Manual

How To...
Switching Connections
Figure 6.10 P&E Multilink, Cyclone Pro Connection Dialog Box

• The menu selection HC12MultilinkCyclonePro > Select Derivative takes you to
the Set Derivative dialog box. This dialog box allows you to choose the target MCU
for the connection.
216 S12(X) Debugger Manual

How To...
Switching Connections
Figure 6.11 Set Derivative Dialog Box

• The menu selection MultilinkCyclonePro > Set Communication Speed lets you
control the various factors associated with communication speed for the connection.

Figure 6.12 Set Communication Speed Dialog Box

• The menu selection MultilinkCyclonePro > Command Files takes you to the
Command Files window.
217S12(X) Debugger Manual

How To...
Switching Connections
Figure 6.13 Command Files Window

Switching to SofTec HCS12
To take the first steps toward debugging with CodeWarrior and setting the SofTec HCS12
connection from within an existing debugging project, such as the Full Chip Simulation
connection, take the following steps:

1. In the Debugger window menubar, display the Component menu.

2. Choose Component > Set Connection from this menu to select another connection in
the Set Connection dialog box.

Figure 6.14 Set Connection Dialog Box - SofTec HCS12 Selection

3. Select HC12 as Processor.

4. Select SofTec HCS12 as connection.
218 S12(X) Debugger Manual

How To...
Switching Connections
Figure 6.15 MCU Configuration Dialog Box

5. In the MCU Configuration dialog box, choose the correct target processor.

6. Click the OK button to start debugging.

Switching to HCS12 Serial Monitor
Connection
To take the first steps toward debugging with CodeWarrior IDE choosing the HCS12
Serial Monitor connection from within an existing debugging project that uses another
connection, such as the Full Chip Simulation, take the following steps:

1. In the Debugger Main window select the Component menu.

2. Choose Component > Set Connection to select another connection.

Figure 6.16 Set Connection Dialog Box - HCS12 Serial Monitor Selection

3. Select HC12 as Processor then HCS12 Serial Monitor as the connection in the Set
Connection dialog box and click the OK button.
219S12(X) Debugger Manual

How To...
Switching Connections
4. In the Monitor Setup window Monitor Communication tab, choose the correct Host
serial communication port if necessary.

Figure 6.17 Monitor Setup Window - Monitor Communication Tab

5. Click the OK button. The HCS12 Serial Monitor connection reads the device silicon
ID. This ID can match several derivatives.

6. Set the correct derivative, matching your hardware, in the Derivative Selection dialog
box.

Figure 6.18 Derivative Selection Dialog Box

7. Click the OK button.

The Monitor Setup window opens again, showing the Vector Table Mirroring Tab.
We recommend that you use the Vector Table Mirroring feature. Otherwise, vectors
cannot be programmed as captured, or protected from erasing or overwriting by the
HCS12 Serial Monitor.

8. To enable this specific feature, check the Enable Vector Table Mirroring checkbox.
220 S12(X) Debugger Manual

How To...
Using the Stationery Wizard to Create a Project
Figure 6.19 Monitor Setup Window - Vector Table Mirroring Tab

9. Click the Auto Detect button to make the debugger search for the vector table address
and vectors reserved by the HCS12 Serial Monitor.

10. Once the auto-detection completes, click the OK button to start debugging.

Using the Stationery Wizard to Create a
Project

Debugging HC12 code using the CodeWarrior IDE requires that a project be created or
exist which specifies a connection that can be used to debug the code. To take the first
steps toward debugging with CodeWarrior IDE using the stationery Wizard:

1. Run the CodeWarrior IDE with the shortcut created in the program group.

2. Choose File > New Project to create a new project from a stationery - the HC(S)12(X)
Microcontrollers New Project wizard screen appears.
221S12(X) Debugger Manual

How To...
Using the Stationery Wizard to Create a Project
Figure 6.20 HC(S) 12(X) Microcontrollers New Project Screen

3. In the tree navigate to the family and select derivative, for example HCS12X >
HCS12XA Family > MC9S12XA512.

4. Select the connection by clicking on the appropriate connection.

Selecting any of the options results in the following conditions:

• Full Chip Simulation — Connects to Freescale Full Chip Simulation with
simulation of on-chip peripherals. With this selection, you can switch to
hardware debugging later in the debugging session.

• P&E USB BDM Multilink — Connect to P&E USB BDM Multilink. This
development tool allows access to the Background Debug Mode (BDM) on
Freescale HCS12(X) microcontrollers to directly control the target's execution,
read/write registers and memory values, debug code on the processor, and
program internal or external FLASH memory devices.

• P&E Cyclone PRO (USB) — Connect to P&E Cyclone PRO via USB port. This
flexible tool is designed for in-circuit flash programming, debugging, and testing
of Freescale HCS12(X) microcontrollers in development and production
environments. The Cyclone PRO can be operated in interactive or batch mode.
Once loaded with data it can be disconnected and operated manually in stand-
alone mode via the LCD menu and control buttons. The Cyclone PRO has over 3
MB of non-volatile memory, which allows the onboard storage of multiple
programming images. When connected to a computer for programming or
loading it can communicate via Ethernet, USB, or serial interfaces.
222 S12(X) Debugger Manual

How To...
Using the Stationery Wizard to Create a Project
• P&E Cyclone PRO (Serial) — Connect to P&E Cyclone PRO via serial port.
This flexible tool is designed for in-circuit flash programming, debugging, and
testing of Freescale HCS12(X) microcontrollers in development and production
environments. The Cyclone PRO can be operated in interactive or batch mode.
Once loaded with data it can be disconnected and operated manually in stand-
alone mode via the LCD menu and control buttons. The Cyclone PRO has over 3
MB of non-volatile memory, which allows the onboard storage of multiple
programming images. When connected to a computer for programming or
loading it can communicate via Ethernet, USB, or serial interfaces.

• P&E Cyclone PRO (TCP/IP) — Connect to P&E Cyclone PRO via Ethernet
port. This flexible tool is designed for in-circuit flash programming, debugging,
and testing of Freescale HCS12(X) microcontrollers in development and
production environments. The Cyclone PRO can be operated in interactive or
batch mode. Once loaded with data it can be disconnected and operated
manually in stand-alone mode via the LCD menu and control buttons. The
Cyclone PRO has over 3 MB of non-volatile memory, which allows the onboard
storage of multiple programming images. When connected to a computer for
programming or loading it can communicate via Ethernet, USB, or serial
interfaces.

• OSBDM — Connect to Freescale Open Source BDM circuit via USB port. This
on-board interface provides basic run control and internal FLASH programming
support for a resident processor on an evaluation platform.

• SofTec HCS12 — Connects to any of the USB-based SofTec Microsystems
tools for the HC12 (inDart-HCS12, etc.).

Depending on derivative selected, the following connections may also be available:

• Abatron BDI — Connect to the hardware board using Abatron hardware (BDI-
HS or BDI 1000) through the BDM connection.

• TBDML — Connect to a board through Freescale TBDML (TurboBDM Light).

NOTE CodeWarrior IDE provides Change MCU/Connection wizard to easily modify
a project later. For more information, refer to Change MCU/Connection
Wizard section in S12(X) Build Tools Reference Manual (C:\Program
Files\Freescale\CWS12v5.1\Help\pdf).

5. Click Next to display next page of the wizard. The XGATE Setup screen appears.
223S12(X) Debugger Manual

How To...
Using the Stationery Wizard to Create a Project
Figure 6.21 XGATE Setup Screen

6. This screen appears only for selected derivatives that support XGATE. Unless you
need XGATE support, select the Single Core (HCS12X) format by clicking its radio
button.

Selecting any of the options results in the following conditions:

• Single Core (HCS12X) - The created project only contains source code for the
HCS12X. However, it is possible to add XGATE support at a later date manually.

• Multi Core (HCS12X and XGATE) - The created project contains source code for
the HCS12X and the XGATE.

7. Click Next to continue. The Project Parameters screen appears.
224 S12(X) Debugger Manual

How To...
Using the Stationery Wizard to Create a Project
Figure 6.22 Project Parameters Screen

8. Select the language format by checking its checkbox.

You can make multiple selections, creating the code in multiple formats. Selecting any
of the options results in the following conditions:

• Absolute Assembly - Using only one single assembly source file with absolute
assembly. There is no support for relocatable assembly or linker.

• Relocatable Assembly - It supports to split up the application into multiple assembly
source files. The source files are linked together using the linker.

• C - This sets up your application with ANSI C-compliant startup code, and
initializes global variables.

• C++ - This sets up your application with ANSI C++ startup code, and performs
global class object initialization.

9. In the Project name textbox, type the name of your new project.

10. Click Next to continue. The Add Additional Files screen appears.
225S12(X) Debugger Manual

How To...
Using the Stationery Wizard to Create a Project
Figure 6.23 Add Additional Files Screen

11. Select files to be added to the new project and click Add button. You can also select
checkbox to:

• Copy files to project - To copy the added files to the project folder.

• Create main.c/main.asm file - To have the wizard generate default main.c and/or
main.asm files.

12. Click Next to continue. The Processor Expert screen appears.

Figure 6.24 Processor Expert Screen
226 S12(X) Debugger Manual

How To...
Using the Stationery Wizard to Create a Project
13. This screen appears only for selected derivatives that offer Processor Expert support as
well as it also depends on other project settings. For example

• Processor Expert is not available for projects with XGATE, and

• Processor Expert is not available for projects with absolute assembly or C++.

Selecting any of the rapid application development options results in the following
conditions:

• None - No device initialization code is generated. Only generates startup code.
See readme.txt in project to know how Processor Expert can be enabled (if not
done here).

• Device Initialization - The tool can generate initialization code for on-chip
peripherals, interrupt vector table and template for interrupt vector service
routines.

• Processor Expert - Processor Expert can generate for you all the device
initialization code. It includes many low-level drivers.

14. Click Next to continue. The C/C++ Options screen appears.

Figure 6.25 C/C++ Options Screen

15. The C/C++ options screen lets you select the level of Startup Code you wish to
produce. Selecting either of the options results in the following conditions:

• Minimal startup code — This option produces the best code density. The startup
code initializes the stack pointer and calls the main function. No initialization of
global variables is done, giving the user the best speed/code density and a fast
startup time. The application code must address variable initialization. This means
this option is not ANSI compliant, since ANSI requires variable initialization.
227S12(X) Debugger Manual

How To...
Using the Stationery Wizard to Create a Project
• ANSI startup code — This ANSI-compliant startup code initializes global variables/
objects and calls the application main routine.

16. Select the Memory Model by clicking the appropriate radio button. Selecting any of
the options results in the following conditions:

• Small — Use the Small memory model if both the code and the data fit into the 64-
kilobyte address space. By default all variables and functions are accessed with 16-
bit addresses. The compiler supports banked functions or paged variables in this
memory model, but all accesses must be explicitly handled.

• Banked — Banked memory model uses banked function calls by default, but the
default data access is still 16-bit. Because the overhead of the far function call is
not very large, this memory model suits all applications with more than 64-kilobytes
of code. Data paging can be used, however all far objects and pointers to them
must be specially declared.

• Large — The Large memory model supports both code banking and data paging by
default. However, data paging requires a lot of overhead and should be used with
care. Overhead is significant with respect to both code size and speed. If it is
possible to manually use far accesses to any data which does not fit into the 64-bit
address space, then use the banked memory model instead.

• Custom — The Custom memory model allows you to configure the project to
support both code banking and data paging. It allows the build tools to optimize
accesses and generate more efficient code than the Large memory model, without
the need for the programmer to manually place data. Note that any application can
be written using the Banked memory model instead, and the generated code will be
more efficient than using the custom memory model. The cost is that the user must
manually place data that does not fit in the first 64k by means of pragmas.

17. Select the floating point format by clicking the appropriate radio button. Selecting any
of the options results in the following conditions:

• None — Don’t use floating point for the HC12.

• Float is IEEE32, double is IEEE32 — All float and double variables are 32-bit
IEEE32 for the HC12.

• Float is IEEE32, double is IEEE64 — Float variables are 32-bit IEEE32. Double
variables are 64-bit IEEE64 for the HC12.

18. Click Next to continue. The Memory model options screen appears. The Memory
model options are available for derivatives from HCS12X family.
228 S12(X) Debugger Manual

How To...
Using the Stationery Wizard to Create a Project
Figure 6.26 Memory model options Screen

19. The Memory model options screen lets you select if all non-constant data fit in the
non-paged RAM or all constants and the code fit into the non-paged flash.

• I don’t know — Choose this option if you are not sure whether non-constant data fit
in the non-paged RAM or constants and the code fit into the non-paged flash.

• All non-constant data fit in the non-paged RAM — Choose this in either one of the
following situations:

– Your non-constant data fit into 12k and you do not plan on accessing non-paged
RAM areas through RPAGE. If you choose this and still do accesses through the
RPAGE register the compiler generated code may be incorrect. Accesses through
RPAGE include accesses through __rptr-qualified pointers and accessed to
variables defined in __RPAGE_SEG sections.

– You have less than 8k non-constant data. If this is the case you can also do
accesses through RPAGE.

WARNING! This will induce non-ANSI behavior in the compiler. When accessing
constant data by means of pointer to non-const the compiler may
produce code that will not meet the required functionality.

• All constants and the code fit into the non-paged flash — Choose this in either one of
the following situations:

– Your constants and code fit into 48k of flash and you do not plan on accessing
non-paged flash areas through PPAGE. If you choose this and still do accesses
through the PPAGE register (e.g. calling a far function) the code may be
incorrect.
229S12(X) Debugger Manual

How To...
Using the Stationery Wizard to Create a Project
– You have less than 32k constants and code. If this is the case you can also do
accesses through PPAGE.

WARNING! This will induce non-ANSI behavior in the compiler: when accessing
non-constant data by means of pointer to const the compiler may
produce code that will not meet the required functionality. This is also
true when accessing constant members of structures that are not
constant by means of pointer to const.

20. Select the Memory Mapping format by clicking the appropriate radio button. The
Memory Mapping option is supported on some of HCS12X devices as new mode. The
default selection is FLASH. Selecting any of the options results in the following
conditions:

• RAM — Maps accesses to 0x4000-0x7FFF to 0x0F_C000-0x0F_FFFF in the global
memory space (RAM area). More RAM will be available in the local memory map.

• FLASH — Maps accesses to 0x4000-0x7FFF to 0x7F_4000-0x7F_7FFF in the
global memory space (FLASH). More flash will be available in the local memory
map.

• External — Maps accesses to 0x4000-0x7FFF to 0x14_4000-0x14_7FFF in the
global memory space (external access).

21. Select the Use MemoryBanker by clicking the appropriate check box.
MemoryBanker is an automation tool that optimizes the layout of code and data in
order to minimize the application's memory footprint. In the first pass it gathers
information about the application and generates the layout, while in the second pass it
generates the optimized code. It can be used to generate an optimal distribution for
functions, for data or for both functions and data.

Selecting any of the options results in the following conditions:

• Code — The project will be setup for code optimization.

• Data — The project will be setup for data optimization. The data optimization is
available for Custom memory only, this selection is disabled for Banked memory
model.

NOTE It is not possible to use MemoryBanker for project with Processor Expert,
XGATE or OSEK.

22. Click Next to continue. The PC-lint options screen appears.
230 S12(X) Debugger Manual

How To...
Using the Stationery Wizard to Create a Project
Figure 6.27 PC-lint Options Screen

23. Unless you wish to create a project set up for PC-lint, select No.

While Lint tools can find common programming mistakes or suspicious lines in source
code by analyzing it, you need to install the PC-lint software from Gimpel to use the
CodeWarrior plug-in. You can enable PC-lint later by manually cloning a target and
changing the linker to PC-lint linker.

Selecting the Yes option adds an additional target to the project with the name PC-
Lint. Using the PC-lint plug-in requires a professional license.

24. Click the Finish button. The IDE opens.

25. In the IDE main window, choose Project > Make.

26. Now choose Project > Debug to start the debugger.
231S12(X) Debugger Manual

How To...
CodeWarrior IDE Integration
Figure 6.28 Your Project in Debugger Main Window

CodeWarrior IDE Integration
This section provides information on how to use and configure the Simulator/Debugger
within the CodeWarrior IDE using the CodeWarrior IDE - HC12 version 4.5 or later.

Debugger Configuration
To configure the Simulator/Debugger in the CodeWarrior IDE, open the Target Settings
Panel by clicking on the Targets panel of the IDE main window, then double clicking on
the name of your target in the list displayed in this panel.

1. Select Build Extras as shown in Figure 6.29.

2. In the Build Extras pane check the Use External Debugger checkbox.

3. In the Application field, type the Debugger path, or select from the Open window by
clicking the Browse button; for example: {Compiler}prog\hiwave.exe.

4. In the Arguments field, type the arguments; for example, %targetFilePath -
Target=sim.

5. Click on Apply to validate these changes.
232 S12(X) Debugger Manual

How To...
Automating Debugger Startup
Figure 6.29 IDE Target Window - Build Extras Panel

Automating Debugger Startup
Often you must perform the same tasks every time you start the Debugger. Automate these
tasks by writing a command file that contains all commands to be executed after startup of
the Debugger, as shown in Listing 6.1.

Listing 6.1 Example of a Command File to Automate Tasks

load fibo.abs
bs &main t
g

This file above first loads an application, then sets a temporary breakpoint at the start of
the function main, and then starts the application. The application stops on entering main
(after executing the startup and initialization code).

There are several ways to execute this command file:

• Specify the command file on the command line using the command line option -c:
Do this in the application that starts the Debugger (for example, Editor, Explorer, or
Make utility).

Example:

\Freescale\PROG\HIWAVE.EXE -c init.cmd
233S12(X) Debugger Manual

How To...
Loading an Application
When you start the Debugger with this command line, it executes the command
specified in the file init.cmd after loading the layout (or project file).

• Call the command file from the project file (Listing 6.2). The project file, where the
layout and connection component can be saved (File > Save), is a normal text file
that contains command line commands to restore the context of a project. After
creating this file with the save command, you can extend it with a call to the
command file (CALL INIT.CMD). When this project is loaded by the File > Open
command or by the corresponding entry in the Project file, commands in this file are
executed.

Listing 6.2 Calling a Command File from the Project File

set Sim
CLOSE *
call \Freescale\DEMO\test.hwl
call init.cmd

• Call the command file when the Connection component is loaded. Most connection
components execute the command file STARTUP.CMD once the connection
component is loaded and initialized. By adding the call command file in this file (for
example, CALL INIT.CMD), it automatically executes when the connection
component loads.

NOTE Refer to section Starting the Debugger.

Loading an Application
1. Choose HC12FCS > Load. The LoadObjectFile dialog box opens.

2. Select an application (for example FIBO.ABS).

3. Click OK. The dialog box closes and the application loads in the Debugger.

The Source component contains source from the module containing the entry point for the
application (usually the startup module). The highlighted statement is the entry point.

The Assembly component contains the corresponding disassembled code. The highlighted
statement is the entry point.

The Global Data component contains the list of global variables defined in the module
containing the application entry point.

The Local Data component is empty.

The PC in the Register component is initialized with the PC value from the application
entry point.
234 S12(X) Debugger Manual

How To...
Starting an Application
Starting an Application
There are two different ways to start an application:

• Choose Run > Start/Continue

• Click the Start > Continue icon in the debugger tool bar

RUNNING in the status line indicates that the application is running.

The application continues execution until:

• You decide to stop the execution (See Stopping an Application).

• The application reaches a breakpoint or watchpoint.

• The application detects an exception (watchpoints or breakpoints).

Stopping an Application
There are two different ways to stop program execution:

• Choose Run > Halt

• Click on the Halt icon in the debugger tool bar

HALTED in the status line indicates that execution has been stopped.

The blue highlighted line in the source component is the source statement at which the
program was stopped (next statement to be executed).

The blue highlighted line in the Assembly component is the assembler statement at which
the program was stopped (next assembler instruction to be executed).

Data window with attribute Global displays the name and values of the global variables
defined in the module where the currently executed procedure is implemented. The name
of the module is specified in the Data info bar.

Data window with attribute Local displays the name and values of the local variables
defined in the current procedure. The name of the procedure is specified in the Data info
bar.

Stepping in the Application
The Debugger provides stepping functions at the application source level and assembler
level (Figure 6.30).
235S12(X) Debugger Manual

How To...
Stepping in the Application
On Source Level
Figure 6.30 Stepping on Source Level

On the Next Source Instruction
The Debugger provides two ways of stepping to the next source instruction:

• Choose Run > Single Step

• Click the Single Step icon from the Debugger tool bar

STEPPED in the status line indicates that the application is stopped by a step function.

If the application was previously stopped on a subroutine call instruction, a Single Step
stops the application at the beginning of the invoked function.

The display in the Assembly component is always synchronized with the display in the
Source component. The highlighted instruction in the Assembly component is the first
assembler instruction generated by the highlighted instruction in the Source component.

Elements from Register, Memory, or Data components that appear in red are the register,
memory position, local or global variables, and the values that changed during execution
of the source statement.

Step Over a Function Call (Flat Step)
The Debugger provides two ways of stepping over a function call:

• Choose Run > Step Over

• Click the Step Over icon from the Debugger tool bar

STEPPED OVER (STEPOVER) or STOPPED (STOP) in the status line indicates that
the application is stopped by a step over function.
236 S12(X) Debugger Manual

How To...
Stepping in the Application
If the application was previously stopped on a function invocation, a Step Over stops the
application on the source instruction following the function invocation.

The display in the Assembly component is always synchronized with the display in the
Source component. The highlighted instruction in the Assembly component is the first
assembler instruction generated by the highlighted instruction in the Source component.

Elements from Register, Memory, or Data components that appear in red are the register,
memory position, local or global variables, and the values that changed during execution
of the invoked function.

Step Out from a Function Call
The Debugger provides two ways of stepping out from a function call:

• Choose Run > Step Out

• Click the Step Out icon from the debugger tool bar

STOPPED (STOP) in the status line indicates that the application is stopped by a step out
function.

If the application was previously stopped in a function, a Step Out stops the application
on the source instruction following the function invocation.

The display in the Assembly component is always synchronized with the display in the
Source component. The highlighted instruction in the Assembly component is the first
assembler instruction generated by the highlighted instruction in the Source component.

Elements from Register, Memory, or Data components that appear in red are the register,
memory position, local or global variables, and the values that changed since the Step Out
was executed.

Step on Assembly Level
The Debugger provides two ways of stepping to the next assembler instruction:

• Choose Run > Assembly Step

• Click the Assembly Step icon from the debugger tool bar

TRACED in the status line indicates that the application is stopped by an assembly step
function.

The application stops at the next assembler instruction.

The display in the Source component is always synchronized with the display in the
Assembly component. The highlighted instruction in the Source Component is the source
instruction that has generated the highlighted instruction in the Assembly component.
237S12(X) Debugger Manual

How To...
Working on Variables
Elements from Register, Memory, or Data components that appear in red are the register,
memory position, local or global variables, and the values that changed during execution
of the assembler instruction.

Working on Variables
This section shows the different methods to work on variables.

Display Local Variable from a Function
The Debugger provides two different ways to see the list of local variables defined in a
function:

• Using Drag and Drop

– Drag a function name from the Procedure component to a Data component with
attribute local.

• Using Double click

– Double click a function name in the Procedure component.

The Data component (with attribute local that is neither frozen or locked) displays the list
of variables defined in the selected function with their values and type.

Display Global Variable from a Module
The Debugger provides two ways to see a list of global variables defined in a module:

Opening Module Component

1. Choose Component > Open. The list of all available components appears on the
screen.

2. Double click the entry Module. A module component opens, which contains the list of
all modules building the application.

3. Drag a module name from the Module component to a Data component with attribute
Global.
238 S12(X) Debugger Manual

How To...
Working on Variables
Using Context Menu

1. Right click in a Data component with attribute Global.

2. Choose Open Module in context menu. A dialog box opens, which contains the list of
all modules building the application.

3. Double click on a module name. The Data component with attribute global, which is
neither frozen nor locked, is the destination component.

The destination Data component displays the list of variables defined in the selected
module with their values.

Change Format for Variable Value Display
The Debugger allows you to see the value of variables in different formats. This is set by
entries in the Format menu (Table 6.1).

The following variances apply for different variable types:

• Values for pointer variables appear in hexadecimal format.

• Values for function pointer variables appear as function name.

• Values for character variables appear in ASCII character and decimal format.

• Values for other variables appear in signed or unsigned decimal format depending on
the condition of the variable.

Activate the Format menu as follows:

1. Right click in the Data component. The Data context menu appears on the screen.

2. Choose Format from the context menu. The list of all formats appears on the screen.

Table 6.1 Debugger Display Format

Menu entry Description

Hex Variable values display in hexadecimal format.

Oct Variable values display in octal format.

Dec Variable values display in signed decimal format.

UDec Variable values display in unsigned decimal format.

Bin Variable values display in binary format.

Symbolic Displayed format depends on variable type.
239S12(X) Debugger Manual

How To...
Working on Variables
The format selected is valid for the whole Data component. Values from all variables in
the data component appear according to the selected format.

Modify a Variable Value
The Debugger allows you to change the value of a variable, as shown in Figure 6.31.

Figure 6.31 Modifying a Variable Value

Double click on a variable. The current variable value is highlighted and can be edited.

• Formats for the input value follow the rule from ANSI-C constant values

– Prefixed hexadecimal value with 0x

– Prefixed octal values with 0

– Otherwise considered as decimal value

For example, if the data component is in decimal format and if a variable input
value is 0x20, the variable is initialized with 32. If a variable input value is 020,
the variable is initialized with 16.

• To validate the input value you can either click the Enter or Tab key.

• If you validate an input value using the Tab key, the value of the next variable in the
component is automatically highlighted (this value can also be edited).

• To restore the previous variable value, click the Esc key or select another variable.

A local variable can be modified when the application is stopped. Since these variables are
located on the stack, they do not exist while the function where they are defined is
inactive.

Retrieve the Variable Allocation Address
The Debugger provides you with the start address and size of a variable if you do the
following:
240 S12(X) Debugger Manual

How To...
Working on the Register
1. Point to a variable name in a Data Component

2. Click the variable name

The start address and size of the selected variable appears in the Data information bar.

Inspect Memory Starting at a Variable
Location Address
The Debugger provides two ways to dump the memory starting at a variable allocation
address.

• Using Drag and Drop, drag a variable name from the Data Component to Memory
component.

• Holding down the left mouse button and clicking the A key

– Point to a variable name in a Data Component.

– Hold the left mouse button down and click the A key.

The Memory component scrolls until it reaches the address where the selected variable is
allocated. The memory range corresponding to the selected variable is highlighted in the
memory component.

Load an Address Register with the
Variable Address
The Debugger allows you to load a register with the address where a variable is allocated.

Drag a variable name from the Data Component to Register component. This updates the
destination register with the start address of the selected variable.

Working on the Register
This section describes working with the Register component.

Change Format of Register Display
The Debugger allows you to display the register content in hexadecimal or binary format.

1. Right click in the Register component. The Register context menu appears.

2. Choose Options from the context menu. The list menu containing the possible formats
appears.

3. Select either binary or hexadecimal format.
241S12(X) Debugger Manual

How To...
Working on the Register
The format selected is valid for the entire Register component. The contents from all
registers appear according to the selected format.

Modify a Register Content
The Debugger allows you to change the content of indexes, accumulators or bit registers.

Modify Index or Accumulator Register Content
Double click a register. The current register content is highlighted and may be edited.

Figure 6.32 Modifying Index or Accumulator Register Content

• The format of the input value depends on the format selected for the data component.

– If the format of the component is Hex, the input value is treated as a Hex value.

– If the input value is 10 the variable will be set to 0x10 = 16.

• To validate the input value click either the Enter or Tab key, or select another
register.

• If you validate an input value using the Tab key, the content of the next register in
the component is automatically highlighted. This register can also be edited.

• To restore the previous register content, click the Esc key.

Modify Bit Register Content
In a bit register, each bit has a specific meaning (a Status Register (SR) or Condition Code
Register (CCR)).

Mnemonic characters for bits that are set to 1 appear in black, whereas mnemonic
characters for bits that are cleared to 0 appear in gray.

Toggle single bits inside the bit register by double clicking the corresponding mnemonic
character.
242 S12(X) Debugger Manual

How To...
Modify Content of Memory Address
Start Memory Dump at Selected Register
Address
The Debugger provides two ways to dump memory starting at the address to which a
register points.

• Using Drag and Drop, drag a register from the Register component to Memory
component.

• Choose Address

Figure 6.33 Memory menu Display Address

1. Right click in the Memory component. The Memory context menu appears.

2. Choose Address from the context menu. The Memory dialog box shown in Figure
6.33 opens.

3. Enter the register content in the Edit Box and choose OK to close the dialog box.

The Memory component scrolls until it reaches the address stored in the register.

This feature allows you to display a memory dump from the application stack.

NOTE If Hex Format is checked, numbers and letters are treated as hexadecimal
numbers. Otherwise, type expressions and prefix Hex numbers with 0x or $.

Modify Content of Memory Address
The Debugger allows you to change the content of a memory address. Double click the
memory address you want to modify. Content from the current memory location is
highlighted and can be edited.

• The format for the input value depends on the format selected for the Memory
component.

– If the format for the component is Hex, the input value is treated as a Hex value.

– If input value is 10 the memory address will be set to 0x10 = 16.

• Once a value has been allocated to a memory word, it is validated and the next
memory address is automatically selected and can be edited.
243S12(X) Debugger Manual

How To...
Consulting Assembler Instructions Generated by a Source Statement
• To stop editing and validate the last input value, click either the Enter or Tab key, or
select another variable.

• To stop editing and restore the previous memory value, click the Esc key.

Consulting Assembler Instructions
Generated by a Source Statement

The Debugger provides an on-line disassembly facility, which allows you to disassemble
the hexadecimal code directly from the Debugger code area. Perform online disassembly
in one of the following ways:

Using Drag and Drop

1. In the Source component, select the section you want to disassemble.

2. Drag the highlighted block to the Assembly component.

Holding down the left mouse button and pressing the R
key

1. In the Source component window, point to the instruction you want to disassemble.

2. Hold down the left mouse button and click the R key

The disassembled code associated with the selected source instruction appears gray in the
Assembly component.

Viewing Code
The Debugger allows you to view the code associated with each assembler instruction.
244 S12(X) Debugger Manual

How To...
Communicating with the Application
Figure 6.34 Viewing Code Associated with Assembler instruction.

Perform online disassembly in one of the following ways:

Using Context Menu

1. Point in the Assembly component and right click. The Assembly Context Menu
appears.

2. Choose Display > Code (Figure 6.34).

Using Assembly Menu

1. Click the title bar of the Assembly component. The Assembly menu appears in the
debugger menu bar.

2. Choose Assembly > Display > Code

The Assembly component displays the corresponding code on the left of each assembler
instruction.

Communicating with the Application
The Debugger has a pseudo-terminal facility. Use the TestTerm or Terminal component
window to communicate with the application using specific functions defined in the
TERMINAL.H file and used in the calculator demonstration file.

1. Start the Debugger and choose Open from the Component menu.

2. Open the TestTerm or Terminal Component.

3. Choose Load from the Simulator menu.

4. Load the program CALC.ABS.
245S12(X) Debugger Manual

How To...
About startup.cmd, reset.cmd, preload.cmd, postload.cmd
The target application retrieves data entered in the TestTerm or Terminal component
window through the keyboard using the Read function. The target application sends data
to the Terminal component window of the host with the Write function.

About startup.cmd, reset.cmd, preload.cmd,
postload.cmd

The command files startup.cmd, reset.cmd, preload.cmd, and
postload.cmd are Debugger system command files. All these command files do not
exist automatically. They could be installed when installing a new connection.

However, the Debugger recognizes these command files and executes them.

• startup.cmd executes when a connection is loaded (the target defined in the
project.ini file or loaded when you select Component > Set Connection).

• reset.cmd executes when you select Connection Name > Reset in the menu
(Connection Name is the real name of the connection, such as MMDS0508, etc.).

• preload.cmd executes before loading an .ABS application file or S-Records file
(when you select Connection Name > Load in the menu).

• postload.cmd executes after loading an .ABS application file or S-Records file
(when you select Connection Name > Load in the menu).

Depending on the connection used, the Debugger recognizes other command files. Refer
to the appropriate connection manual for information and properties of these command
files.
246 S12(X) Debugger Manual

7
CodeWarrior Integration

This chapter provides information on how to use and configure the Simulator/Debugger
within the CodeWarrior IDE using the following software:

• CodeWarrior IDE - HC12 version 4.5 or later

• Debugger Configuration

Debugger Configuration
To configure the Simulator/Debugger in the CodeWarrior IDE, open the Target Settings
Panel by clicking on the Targets panel of the IDE main window, then double clicking on
the name of your target in the list displayed in this panel.

1. Select Build Extras as shown in Figure 7.1.

2. In the Build Extras pane check the Use External Debugger checkbox.

3. In the Application field, type the Debugger path, or select from the Open window by
clicking the Browse button; for example: {Compiler}prog\hiwave.exe.

4. In the Arguments field, type the arguments in the Argument field; for example,
%targetFilePath -Target=sim.

5. Click on Apply to validate these changes.
247S12(X) Debugger Manual

CodeWarrior Integration
Debugger Configuration
Figure 7.1 IDE Target Window - Build Extras Panel
248 S12(X) Debugger Manual

8
Debugger COM Capabilities

The debugger provides the Component Object Model (COM) Interface which allows the
user to control debugger using scripts or other application.

This chpater has following two sections:

• COM Implementation

• Driving Debugger through COM

COM Implementation
The debugger has COM server and client implementation.

The COM application name of the server is Metrowerks.Hiwave.

The Debugger COM support allows you to execute almost any command available from
within the debugger (from Command line).

Driving Debugger through COM
The COM implementation in the Debugger allows you to drive it easily by using the
commands from a script or application or another Hiwave instance. You can find simple
script example in the (CodeWarrior_Examples)\Scripting\PERL) directory.

There are the following commands implemented in Hiwave to support COM -
COM_START, COM_EXE, COM_EXIT.

To use the COM interface one should create the instance of Hiwave and register it as
COM server, this could be done with starting it with option -RegServer. Once the
COM server registered it is possible to execute any command available in command
window.
249S12(X) Debugger Manual

Debugger COM Capabilities
Driving Debugger through COM
250 S12(X) Debugger Manual

9
Synchronized Debugging
through DA-C IDE

This chapter provides information on using and configuring Freescale tools within the
Development Assistant for C (DA-C) IDE. For more information on DA-C, refer to the
Development Assistant for C documentation v 3.5.

You must be running DA-C - version 3.5 build 555 or later - (Development Assistant for C
- RistanCASE).

This chapter contains the following sections:

• Configuring DA-C IDE for Freescale Tool Kit

• Debugger Interface

• Synchronized Debugging

• Troubleshooting

Configuring DA-C IDE for Freescale Tool Kit
Install the DA-C software. The Freescale CD contains a demonstration version located in
\Addons\DA-C. Run Setup to install the Typical installation.

Complete the following steps to make efficient use of Freescale Tools within DA-C IDE:

• Create a new project

• Configure the working directories

• Configure the file types

• Configure the Freescale library path

• Add files to project

• Build the Database

• Configure the tools

In the following sections, we assume that the Freescale tool kit is installed in
C:\Freescale directory. You may need to adapt the paths to your current installation.
An example configuration for the M68000 CPU is provided, which can be adapted to each
CPU supported by Freescale.
251S12(X) Debugger Manual

Synchronized Debugging through DA-C IDE
Configuring DA-C IDE for Freescale Tool Kit
Create New Project
Start DA-C.exe and choose Project > New Project from the main menu. Browse to the
directory and enter a project file name, for example:

C:\Freescale\work\<processor>c\myproject

Change the <processor> field to your CPU. A specific project file is created with
.dcp extension (for example myproject.dcp).

Configure Working Directories
Choose Options > Project from the main menu of DA-C. The window shown in Figure
9.1 contains options which establish project directories.

Figure 9.1 DA-C Project Options Window - Directories Tab

Project Root Directory
This text box determines the project root directory. In our case, enter a single dot to
specify that the same directory in which the project file resides is the root directory. All
project files are considered relative to the Project root directory, if the full file path is not
given. You can also enter the full file path if desired.

Referential Project Root Directory
For the purposes of this project, leave this field empty. If used, this text box specifies an
alternate Project Root Path for locating files not found in the original project path.
252 S12(X) Debugger Manual

Synchronized Debugging through DA-C IDE
Configuring DA-C IDE for Freescale Tool Kit
Filenames in the original path with referential extensions are tried before those in the
referential path. The specified path may be either full or relative to project root, and it may
not specify a subdirectory in the project root directory tree.

Database Directory
For the purposes of this project, leave this field empty. You can use this text box to specify
the directory in which to save the symbols and software metrics database. This directory
can be absolute or relative to the Project Root Directory.

User Help File
This text box determines the user help file. For this project, browse in the \prog
directory of your Freescale installation and select the help file matching your CPU. Define
the hot key for the User Help File in the Keyboard definition file (default is Ctrl-Shift-F1).

Configure File Types
From the Project Option window of DA-C choose the File Types tab to configure the
basic file types. Use the text boxes on this page to determine project file types (see Figure
9.2).

Figure 9.2 DA-C Project Options Window - File Types Tab
253S12(X) Debugger Manual

Synchronized Debugging through DA-C IDE
Configuring DA-C IDE for Freescale Tool Kit
Configure Library Path
You must define an additional configuration path to specify the location of library header
files (needed for DA-C symbol analysis). To do this, choose Options > Analysis for
Symbols > C Source in the main menu of DA-C.

Use the window shown in Figure 9.3 to specify C source code analysis parameters.

Figure 9.3 Analysis for Symbols Options Window - C Source Tab

Use the following parameters for fields in this window:

• Source

Select the supported C dialects of the C language used in the current project in this
text field. In our example we chose the Freescale M68k language (adapt it to your
needs).

• Preprocessor - Header Directories

This text box determines the list of directories to search for files named within the
#include directive. A semicolon separates directories. Only listed directories are
searched for files, named between < and >. Searching for files, named between
quotation marks (""), starts in the directory of the source file containing #include
directive.
254 S12(X) Debugger Manual

Synchronized Debugging through DA-C IDE
Configuring DA-C IDE for Freescale Tool Kit
You can assign the list of header directories in a file. To do this, enter the file name
(absolute or relative in relation to the project root) with the prefix @ in this field.
Separate directories with a semi-colon or start a new line.

Define the library path matching your CPU (assuming Freescale tools are installed
on C:\Freescale):

C:\Freescale\lib\<processor>c\include.

• Preprocessor - Preinclude File

In this text box specify the name of the file to include automatically at the beginning
of every source module during analysis, as if #include "string" were present
in the first line. Use the preinclude file to specify non-default predefined macros and
variable and function declarations for a particular compiler. We selected the one
corresponding to our example: M68k preinclude file (adapt it to your needs).

Add Files to Project
In the Project window, the Explorer View Tab replaces Windows Explorer and supplies
you with additional information on project file directories. It also gives you the option to
add files into the project. For example, we will now set all files needed to run the fibo
example.

In the Explorer View, browse to the >Freescale>WORK><processor>c directory
of your Freescale installation and select fibo.c file. Then right click the mouse and
choose Add to Project from the context menu. This adds the file to the current project and
a green mark appears in front of it (Figure 9.4).

Figure 9.4 Adding Files to Project Using Explorer Tab

In the same way, select the fibo.prm file and add it to this project.
255S12(X) Debugger Manual

Synchronized Debugging through DA-C IDE
Configuring DA-C IDE for Freescale Tool Kit
You can also add a directory to the project in the following way:

1. Select Explorer View Tab in Project Window.

2. In the left section, select the directory containing the files to be added to the project
(you may also add files from subdirectories to the project).

3. From context menu, choose Add to project.

You may also perform this operation from Folder view, if the directory is in the left
section.

NOTE When adding an entire directory to the project, only files with extensions
defined in Options > Project > File types (as described in Configure File
Types) will be added to the project.

Build the Database
Development Assistant for C provides the static code analysis of C source files and
generates various data based on the results.

Results of the analysis of the project source files and individual program modules are
saved in database files on the disk. You can choose between the unconditional analysis of
all project files using Start > Build or analysis of changed source files only, using Start >
Build database and Start > Update database. When analyzing changed files only, you
can optionally check modified include files used in program modules.

Data about global symbols usage, resulting from analysis, is saved in database files on the
disk, enabling their use later in DA-C.

To build the database in our example, use the Start > Build database command, which
makes the unconditional analysis of all project files and creates a database containing
information about analyzed source code. Errors and Warnings detected during this
operation appear in the Messages window as shown in Figure 9.5 (for Fibo.c sample
file):

Figure 9.5 DA-C Message Window
256 S12(X) Debugger Manual

Synchronized Debugging through DA-C IDE
Configuring DA-C IDE for Freescale Tool Kit
After the analysis of all project files, the new database file containing information about
global symbols is constructed. Refer to the DA-C manual for more information on using
symbol information.

In the Project Manager window of DA-C, select the Logical View Tab shown in Figure
9.6 and unfold all fields. You now have the overview of your project.

Figure 9.6 Logical View Tab

Double click on Fibo.c file to open it.
257S12(X) Debugger Manual

Synchronized Debugging through DA-C IDE
Configuring DA-C IDE for Freescale Tool Kit
Configure the Tools
We will now configure the compiler and maker into DA-C IDE. Define procedures using
Project > User Defined Actions from the main menu of DA-C.

Compiler Configuration
First, set up a new action:

1. In Menu "Start" Actions, click on New.

The New Action box appears.

2. Type C&ompile in the New Action box.

3. Click ENTER (Figure 9.7).

Next, associate a bitmap with each tool using the Toolbar field:

1. Click on the Picture radio button

2. Browse to the \Bitmap directory of your current DA-C installation

3. Choose Compiler.bmp.

This is a default bitmap delivered with DA-C IDE. You can also add your own bitmap.

Figure 9.7 DA-C Compiler Settings
258 S12(X) Debugger Manual

Synchronized Debugging through DA-C IDE
Configuring DA-C IDE for Freescale Tool Kit
Now fill in the Action Script field to associate related compiler actions:

1. Copy the code shown in Listing 9.1 into the Action Script field

2. Change the directory in the code to your compiler directory.

Listing 9.1 Script for Compiler Action Association

.%If(%HasModuleExt(%CurrFile),,%Message(Not a module file!)%Cancel)

.%SaveAll

.c:\Freescale\prog\cm68k.exe %CurrFile

.%if(%Exist(edout),,%Message(No Messages found!)%Cancel)

.%ErrClr(Compiler)

.%ErrGet(edout,Compiler)

.%Reset(%CurrFile)

3. Click on OK to validate these settings.

4. Select Fibo.c file.

5. Click on the Compiler button (or from the main menu of DA-C select Start >
Compile).

This file now compiles and generates the corresponding object file (Fibo.o).

Linker Configuration
In the same way, you can now configure the linker as shown in Figure 9.8:

1. In the Menu "Start" Actions, click on New.

The New Action box appears.

2. Type &Link in the New Action box.

3. Validate by clicking ENTER.

Set the corresponding Linker bitmap:

1. Copy the lines shown in Listing 9.2 into the Action Script field

2. Change the directory in the code to your linker directory.

Listing 9.2 Script for Linker Action Association

+c:\Freescale\prog\linker.exe fibo.prm
.%if(%Exist(edout),,%Message(No Messages found!)%Cancel)
.%ErrClr()
.%ErrGet(edout)
259S12(X) Debugger Manual

Synchronized Debugging through DA-C IDE
Configuring DA-C IDE for Freescale Tool Kit
Figure 9.8 DA-C Linker Settings

Maker Configuration
Now configure the maker as shown in Figure 9.9:

1. In the Menu "Start" Actions, click on New.

The New Action box appears.

2. Type &Make into the New Action box.

3. Click ENTER

Set the corresponding Maker bitmap

1. Copy the code from Listing 9.3 into the Action Script field

2. Change the directory in the code to your maker directory.

Listing 9.3 Script for Maker Action Association

+c:\Freescale\prog\maker.exe fibo.mak
.%if(%Exist(edout),,%Message(No Messages found!)%Cancel)
.%ErrClr()
.%ErrGet(edout)
260 S12(X) Debugger Manual

Synchronized Debugging through DA-C IDE
Debugger Interface
Figure 9.9 DA-C Maker Settings

Debugger Interface
DA-C v3.5 currently integrates a Debugging support Application Programming Interface
(DAPI). This interface enables the DA-C to exchange messages with the Debugger. This
shows that it is possible to set or delete breakpoints from within DA-C (in an editor,
flowchart, graph, browser) and to execute other debugger operations. DA-C follows the
Debugger in its operation, since it is always in the same file and on the same line as the
debugger. Thus, usability of both the DA-C and Debugger increases. Make the following
configurations to ensure efficient use of this Debugger Interface:

• Install communication DLL

• Configure Debugger properties

• Configure the Debugger project file
261S12(X) Debugger Manual

Synchronized Debugging through DA-C IDE
Debugger Interface
DA-C IDE and Debugger Communication
DA-C and the Debugger are both Microsoft® Windows® applications and base
communication on the DDE protocol, as shown in Figure 9.10. The system contains:

• DA-C

• Debugger

• cDAPI interface implementation DLL, used by DA-C (Cdgen32.dll)

• nDAPI communication DLL (provided by DA-C), used by Debugger

• Debugger-specific DLL, for bridging its interface to the debugging environment and
DA-C's nDAPI (DAC.wnd)

Figure 9.10 Communication between DA-C IDE and Debugger

Communication DLL Installation
The Debugger needs the nDAPI communication DLL (provided by DA-C IDE). This dll
(called Ndapi.dll) installs automatically during the Freescale Tool Kit installation.
However, if you install a new release of DA-C you must follow this procedure:

1. In the \Program directory of your DA-C installation, copy the Ndapi32.dll
(Ndapi32.dll version 1.1 or later).

2. Paste it in your current Freescale\PROG directory (where Debugger is located).

3. Rename it to Ndapi.dll.
262 S12(X) Debugger Manual

Synchronized Debugging through DA-C IDE
Debugger Interface
Debugger Properties Configuration
Now configure the debugger properties:

1. In the DA-C main menu, choose Options > Debugger.

The dialog box shown in Figure 9.11 opens.

Figure 9.11 DA-C Debugger Options Dialog Box

2. In the Debugger Options box, select the corresponding debugger: HI-WAVE 6.0.

3. Now specify the binary file to open: in our example we want to debug the fibo.abs
file.

4. Then click on the Setup button.

The dialog box shown in Figure 9.12 opens.

Figure 9.12 DDE Debugger Setup Dialog Box

5. Specify the path to the hiwave.exe file or use the Browse button

6. Click OK.
263S12(X) Debugger Manual

Synchronized Debugging through DA-C IDE
Debugger Interface
Debugger Project File Configuration
Now configure the debugger project file:

NOTE Before configuring the project file, close DA-C.

1. Open Debugger and select File > Open Project from the main menu bar.

2. Select the Project.ini file from the currently defined working directory (in our
case C:\Freescale\WORK\<processor>c\project.ini).

Now add in the layout of the project the Debugger DAC component (dac.wnd).

3. In the Debugger select Component > Open from the main menu bar

4. Choose Dac, as shown in Figure 9.13.

Figure 9.13 DA-C Component Opening

The Debugger DA-C window, needed for communication with DA-C IDE, opens
(Figure 9.14).
264 S12(X) Debugger Manual

Synchronized Debugging through DA-C IDE
Synchronized Debugging
Figure 9.14 DA-C Window

5. Save this configuration by selecting File > Save Project from the main menu of the
Debugger.

This component loads automatically the next time this project is called.

6. Close the Debugger.

Synchronized Debugging
We can now test the synchronization between DA-C IDE and Debugger:

1. Run DA-C.exe and open the previously created project.

2. Open Fibo.c if it's not already open.

3. Right click the mouse button on Fibo.c source window.

4. Select Main in the context menu.

The cursor points to the void main(void) { statement.

5. In the main DA-C menu, select Debug > Set Breakpoint (or click on the
corresponding button on the debug toolbar).

The selected line is highlighted in red, indicating that a breakpoint has been set.

6. Select Debug > Run.

The Debugger starts and after a while stops on the specified breakpoint. You can
debug from DA-C IDE with the toolbar, as shown in Figure 9.15, or from the
Debugger.

Figure 9.15 DA-C Toolbar

NOTE If you make changes to your source code, remember to rebuild the Database
when generating new binary files to avoid misalignment between the Debugger
and DA-C source positions.
265S12(X) Debugger Manual

Synchronized Debugging through DA-C IDE
Troubleshooting
Troubleshooting
This section describes possible trouble when trying to connect the Debugger with the DA-
C IDE.

Load the DA-C component into the Debugger. If the message box shown in Figure 9.16
appears, find out if the Ndapi.dll is located in the \prog directory of your current
Freescale installation. If not, copy the specified DLL into this directory.

Figure 9.16 DA-C Component Loading Error Message

If the message box shown in Figure 9.17 appears in DA-C IDE, then the current name
specified in the Options > Debugger main menu of DA-C doesn't match the debugger
name specified in the Debugger.

Figure 9.17 DA-C Debugger Support Message

Open the setup dialog in the Debugger by clicking on the DA-C Link component and
choose DA-C Link > Setup from the main menu. The Connection Specification dialog
box opens (Figure 9.18).

Figure 9.18 DA-C Connection Specification Dialog Box
266 S12(X) Debugger Manual

Synchronized Debugging through DA-C IDE
Troubleshooting
Compare the Debugger Name from this dialog box with the selected Debugger in DA-C
IDE (Options > Debugger), as shown in Figure 9.19.

Figure 9.19 DA-C Debugger Options Dialog Box

Both must be the same. If not, change the Debugger name in the Debugger Connection
Specification and click OK. This establishes a new connection and saves the Connection
Specification in the current Project.ini file in the section shown in Listing 9.4.

Listing 9.4 DA-C Section in Project File

[DA-C]
DEBUGGER_NAME=HI-WAVE 6.0
SHOWPROT=1
267S12(X) Debugger Manual

Synchronized Debugging through DA-C IDE
Troubleshooting
268 S12(X) Debugger Manual

Book II - HC(S)12(X) Debug
Connections

Book II Contents
Each section of the Debugger manual includes information to help you become more
familiar with the Debugger, to use all its functions and help you understand how to use the
environment.

Book II: HC(S)12(X) Debug Connections defines the connections available for debugging
code written for HC12 CPUs.

• Chapter 10 HC(S)12(X) Full Chip Simulation Connection

• Chapter 11 P&E Multilink/Cyclone Pro Connection

• Chapter 12 OSBDM Connection

• Chapter 13 SofTec HCS12 Connection

• Chapter 14 HCS12 Serial Monitor Connection

• Chapter 15 Abatron BDI Connection

• Chapter 16 TBDML Connection
269S12(X) Debugger Manual

Book II Contents
270 S12(X) Debugger Manual

10
HC(S)12(X) Full Chip
Simulation Connection

This section provides information about debugging with the CodeWarrior debugger and
the HC(S)12X Full Chip Simulation connection.

Technical Considerations
The Full Chip Simulation (FCS) connection runs a complete simulation of all processor
peripherals and I/O on the user's Personal Computer. No development board is required.
Each derivative has a unique simulation engine to accurately simulate the memory ranges,
I/O, and peripherals for a given derivative (for more information on selecting a specific
derivative, see Supported HC(S)12(X) Derivatives.

Full Chip Simulation Menu
This menu, shown in Figure 10.1, is associated with the Full Chip Simulation connection,
and allows you to load an application in the FCS. Table 10.1 describes the FCS menu
entries.
271S12(X) Debugger Manual

HC(S)12(X) Full Chip Simulation Connection
Full Chip Simulation Menu
Figure 10.1 HCS12 FCS Menu

NOTE The menu changes slightly for a project that uses an XGATE coprocessor.

Table 10.1 Simulator Menu Entry Description

Menu Entry Description

 Load Opens the Load Executable Window menu.

 Reset Resets the FCS.

Set Derivative Selects the current simulated derivative.

Configure Opens the Memory Configuration Window.

Reset RAM Resets the RAM to undefined

Reset Mem Resets all configured memory to undefined

Reset Statistic Resets the statistical data

Load I/Os Opens I/O components

Close I/Os Closes I/O components

Clock Frequency Opens the Clock Frequency Setup dialog box to set the FCS real-
time clock.

Command Files Opens the Command Files Window
272 S12(X) Debugger Manual

HC(S)12(X) Full Chip Simulation Connection
Full Chip Simulation Menu
Debugger Status Bar with Full Chip Simulation
The status bar (Figure 10.2 and Figure 10.3) shows status and other information. As well
as execution status, it includes a context-sensitive menu help line, and connection-specific
information like the number of CPU cycles (64 bits) or the elapsed time in
hours:minutes’seconds”milliseconds(float) format since the application
started.

Figure 10.2 Debugger Status Bar with CPU Cycles

Figure 10.3 Debugger Status Bar with Elapsed Time

The selected simulated derivative or simulated “CORE” or core “SAMPLE” is shown, and
the current derivative CPU frequency in MHz.

NOTE Clicking on the CPU frequency opens the Clock Frequency Setup.

NOTE Double clicking on the CPU cycles or true time resets the value.

NOTE Clicking on the displayed derivative or CORE, or on the core SAMPLE opens
the Set Derivative dialog box.

NOTE The CPU information in the Status Bar, such as HC12, might be displayed with
XGATE, when simulating an HCS12X core device. The debugger indicates its
current halt or step location on the core thread.

Bus Trace Opens the Bus Trace dialog box to enable instructions and memory
accesses recording and display recording captures.

Select Core Selects the processor with which to communicate.

Table 10.1 Simulator Menu Entry Description (continued)

Menu Entry Description
273S12(X) Debugger Manual

HC(S)12(X) Full Chip Simulation Connection
Full Chip Simulation Menu
Open I/O Component Dialog Box
From the Simulator menu, choose Load I/Os to open the Open I/O Component dialog
box. This dialog box, shown in Figure 10.4, allows you to open an I/O device (peripheral)
simulation. The Browse button allows you to specify a location for the I/O.

Figure 10.4 Open IO Component Dialog Box

NOTE I/O simulation components are either designed by Freescale and delivered with
the tool-kit installation or designed by the user with the Peripheral Builder
(separate product).

Demo Version Limitations
Only two I/O components can be loaded.

Command Files Window

Figure 10.5 Full Chip Simulation Connection Command Files Window
274 S12(X) Debugger Manual

HC(S)12(X) Full Chip Simulation Connection
Full Chip Simulation Menu
Setcpu Command File
The Setcpu command file is a specific FCS command file executed by the Debugger after
a CPU has been set or modified. Set or modify the CPU using either of two methods:

• By using the setcpu command, or

• By loading an application in the FCS when the corresponding CPU is not set.

Specify the full name and status of the Setcpu command file by using either the
CMDFILE SETCPU Command Line command or the Setcpu property tab of the
connection Command Files dialog.

The default Setcpu command file is SETCPU.CMD, located in the current project
directory. Other Command Files are described in the Debugger Interface section, in the
Debugger Engine book.

Memory Configuration
The memory configuration interface is an FCS advanced configuration feature, that
divides the emulated memory into blocks. A memory manager handles the list of memory
blocks. The memory configuration facility allows you to specify types and properties of
memory blocks (such as RAM and ROM) and offers a degree of automation, but does not
restrict the flexibility of manual adjustment.

The memory configuration facility uses a binary file format to read and set the FCS
configuration. The extension for binary files is .mem; the default memory file is
default.mem.

Memory Configuration Dialog Box Features
The memory configuration dialog box (Figure 10.6) lets you perform these memory-block
operations interactively:

• Select the configuration mode for simulation

• Define a memory block name

• Define how the FCS verifies the memory

• Set the type of the memory: RAM, ROM, Flash, EEPROM or I/O

• Define start and end addresses

• Define the wait state (the time for each read or write access)

• Set the width of the bus that accesses the memory

• Set access details like:

– auto configure: automatically computing read and write access

– misaligned access: allowing misaligned access on words and longs
275S12(X) Debugger Manual

HC(S)12(X) Full Chip Simulation Connection
Full Chip Simulation Menu
• Open and save memory configuration

• Add, delete, or update memory blocks

Figure 10.6 Memory Configuration Dialog Box

Memory Configuration Modes
Use the Memory Configuration dialog box to select the memory configuration mode:
auto configuration on access, auto configuration on load, or user defined. Depending
on your settings, the FCS component initializes the FCS memory as Table 10.2 explains.

Table 10.2 Memory Configuration Modes

Mode Description

Auto Configuration
on Access (Standard
Configuration)

Defines memory as RAM of unlimited size. Mode combo box
displays auto on access.
276 S12(X) Debugger Manual

HC(S)12(X) Full Chip Simulation Connection
Full Chip Simulation Menu
Memory Configuration Settings
Depending on the configuration mode, the Memory Configuration dialog box lets you
redefine memory settings within certain limits. You always must set I/O devices manually.

Standard Configuration: Auto on Access: The Memory Configuration dialog box
contains a single RAM entry with unspecified (*) starting and ending addresses. You
cannot modify these addresses. You can adjust wait states, and other such settings, only
for the whole RAM block.

Auto Configuration on Load: Initially, the dialog box lists a single RAM and a single
ROM block, with unspecified (*) starting and ending addresses. You can adjust wait
states, and other such settings, separately for RAM and ROM blocks.

For the ELF/DWARF object file format, the Memory Configuration dialog box lists
separate RAM and ROM blocks for each data and code segment in the absolute file, once
an application is loaded. The segment addresses and lengths determine the starting and
ending addresses of each block; you cannot modify these addresses. Initial attributes of
each code and data block come from the corresponding initial RAM and ROM blocks; you
can modify these attributes independently.

Manual Configuration: The Memory Configuration dialog box lists an entry for each
memory block. You can modify such entries without restriction.

NOTE To simulate an absolute file generated in Freescale object file format, you must
open the Memory Configuration dialog box, set the auto on load mode, then
add a new RAM segment. The start and end addresses of this segment must
match the associated .prm file. Once you close the dialog box, you can load
your application and start a simulation.

Auto Configuration
on Load (default)

Defines memory as RAM and ROM, according to code and
data area defined in a loaded absolute file.
Defines code segments as ROM. Defines data segments as
RAM. (Memory outside these segments is not implemented;
access to unimplemented locations result in error messages.)
Mode combo box displays auto on load.

Manual Configuration
(User Defined)

Defines memory as RAM, ROM, or non-volatile RAM,
depending on configuration. Use Memory Configuration dialog
box to construct definition interactively, or read it in from a file.
Mode combo box displays user defined.

Table 10.2 Memory Configuration Modes (continued)

Mode Description
277S12(X) Debugger Manual

HC(S)12(X) Full Chip Simulation Connection
Full Chip Simulation Menu
Open Memory Block
Click the Open button to load a memory blocks file. The Open Memory blocks standard
dialog box appears. Select a memory map file, then click the OK button. The dialog box
closes, and the system loads the memory blocks file.

The Mode combo box changes to indicate the mode contained in the memory map file.

The list box lists the memory blocks loaded from the file, selecting the first memory block.
Appropriate data appears in the fields Name, Type, Start, End, Wait state, Bus width
and Access Details.

Save Memory Block
Click the Save button to store the current memory blocks configuration. The Save
Memory blocks standard dialog box appears. Enter a file name, then click the OK button.
The dialog box closes, and the system stores the memory block configuration into the file.

Memory Check Options
The Memory Check group box consists of three checkboxes, all checked when you bring
up the Memory Configuration dialog box:

• Stop if no memory — Check this box to have the FCS stop when an access to non-
existent memory occurs. Clear this box to ignore this condition.

• Stop on read undefined — Check this box to have the FCS stop when a read of
undefined memory occurs. Clear this box to ignore this condition.

• Stop on write protected — Check this box to have the FCS stop when a write to read-
only (write-protected) memory occurs. Clear this box to ignore this condition.

Memory Configuration Module Startup
Memory configuration is a dynamically loaded facility. That is, the new entry Configure
appears in the Simulator menu upon loading the FCS (the FCS dll). Selecting Configure
opens the Memory Configuration dialog box, so that you can configure memory.

Memory Block Setting
You must set memory blocks within the available memory, and each block must cover a
certain range. The start address and end address define each memory block.

Memory Block Properties
 Table 10.3 lists the properties you may specify for a memory block.
278 S12(X) Debugger Manual

HC(S)12(X) Full Chip Simulation Connection
Full Chip Simulation Menu
Memory Configuration Dialog Box Command Buttons
The command buttons of the Memory Configuration dialog box are:

• Add — Fills a new memory block according to the current data in the Name, Type,
Start, End, Bus width, and Access Details controls. This new memory block
appears at the end of the list box. If there are any errors in this new block (such as an
improper field value), a message box appears that informs you of the problem.

• Update — Updates the current memory block according to the current data of the
Name, Type, Start, End, Bus width, and Access Details controls.

• Delete — Removes the currently selected memory block from the list box. The list
box contents adjust to reflect this deletion.

• OK — Closes the dialog box and validates the list of modified memory blocks. The
parent class can access this list, updating its own list.

Table 10.3 Memory Block Properties

Item Description

name Name of the memory block.

type RAM, ROM, Flash, EEPROM or I/O

start Start address of the memory block

end End address of the memory block

wait state Time used for reading or writing a specific number of bytes

bus width Width of the bus that accesses the memory

read access Table that defines read-access details on Byte, Word, Word
misaligned, Long, and Long misaligned

write access Table that defines write-access details on Byte, Word, Word
misaligned, Long, and Long misaligned

auto configure Flag that directs automatic computation of read and write
accesses

allow misaligned access Flag that allows Word misaligned and Long misaligned

block type USER_DEF (block you define),
AUTO_GEN (block automatically generated),
AUTO_MEM (master block for standard configuration),
AUTO_RAM (RAM master block for auto configuration), or
AUTO_ROM (ROM master block for auto configuration)
279S12(X) Debugger Manual

HC(S)12(X) Full Chip Simulation Connection
Full Chip Simulation Menu
• Cancel — Closes the dialog box, canceling your modifications.

• Help — Opens the dialog box help file.

Access Details Dialog Box
Figure 10.7 shows the Access Details dialog box, which lets you change read and write
access values for seven types.

Figure 10.7 Memory Configuration Dialog Box - Access Details Dialog Box

Follow this guidance to use the Access Details dialog box:

• A check box indicates if an access kind is allowed or not.

• To modify the value of each read or write type, change the value of the associated
spin box.

– The lowest possible value is 0.

– The highest possible value is 127.

• To store changes into currently selected memory block, click the OK button. The
Access Details dialog box disappears, and the system clears the Auto Configure
checkbox.

• To abandon changes, click the Cancel button. The Access Details dialog box
disappears; the system discards your changes.

• To bring up appropriate help information, click the Help button.
280 S12(X) Debugger Manual

HC(S)12(X) Full Chip Simulation Connection
Full Chip Simulation Menu
Output
You can save the current memory configuration into the file you defined at the outset.

Clock Frequency Setup
The FCS provides true time information. It is possible to provide an oscillator clock
frequency to the debugger. The debugger CPU awareness and IO modules provide the
clock factor to apply to this input frequency to derive the CPU cycle frequency.

Figure 10.8 Clock Frequency Setup Dialog Box

Derivative specific IO simulations caring of bus speed change (multiply or divide) through
PLL modules dynamically update the clock factor, i.e. while the application simulation is
running.

Accumulated elapsed time will not be affected and a new cycle time is applied to next
simulated instructions in real time.

Open the Clock Frequency Setup dialog (Simulator > Clock Frequency menu entry) to
set, enter, or edit either the oscillator frequency or the CPU frequency. However, the
frequency saved in the project is the oscillator frequency. Two radio buttons allow you to
choose whether cycles or true-time displays in the debugger status bar.

Unchecking Reset cycles/time makes the debugger accumulate cycles/time other than
CPU reset. The true-time unit is the microsecond. The TRUETIME debugger command
line command gives the time as a number in microseconds. The OSCFREQUENCY
variable displays/sets the oscillator frequency.

Bus Trace
The FCS can record all executed instructions and memory accesses in the Trace
component, up to one million frames. To enable recording, open the Trace component and
use the Trace menu/context-sensitive menu.
281S12(X) Debugger Manual

HC(S)12(X) Full Chip Simulation Connection
Full Chip Simulation Menu
NOTE Refer to the HCS12 (or HCS12X) Onchip DBG Module manual for Trace
window common functionality and common menu entries.

Figure 10.9 Trace Window Context Menu

By default, the FCS records instructions only (faster). Check Record memory accesses
and choose Textual mode in the Trace menu/context-sensitive menu to record memory
accesses.

Many types of information can be retrieved from the Trace window, including:

• instructions and instruction addresses,

• data addresses, data values and read/write access type,

• true time, cycles and total simulation cycles for each instruction,

• function name and module name for each instruction,

• variable name and module name for each global variable data access.
282 S12(X) Debugger Manual

HC(S)12(X) Full Chip Simulation Connection
Full Chip Simulation Menu
Figure 10.10 Bus Trace Data Access Symbolic Information

Full Chip Simulation Warnings
By default, the FCS generates warning messages when the application accesses on-chip
registers that are not implemented for the selected derivative. These warnings appear in
the Command window.

For example, the following messages can be repeated indefinitely in the Command
window:

...

...
FCS Warning (ID 12): reading from unimplemented register at pc =
0x400a'L. Value: 0x0, Memory Address: 0x106. Flash CONTROL module not
implemented
FCS Warning (ID 12): reading from unimplemented register at pc =
0x400a'L. Value: 0x0, Memory Address: 0x106. Flash CONTROL module not
implemented
FCS Warning (ID 12): reading from unimplemented register at pc =
0x400a'L. Value: 0x0, Memory Address: 0x106. Flash CONTROL module not
implemented
FCS Warning (ID 12): reading from unimplemented register at pc =
0x400a'L. Value: 0x0, Memory Address: 0x106. Flash CONTROL module not
implemented
STOPPING
283S12(X) Debugger Manual

HC(S)12(X) Full Chip Simulation Connection
FCS and Silicon On-Chip Peripherals Simulation
HALTED

Warning message IDs usually belong to a group of registers from the same simulated
block, such as the Flash CONTROL registers block in the listing above. Therefore, any
access to unimplemented Flash CONTROL registers generate the same kind of message.

The debugger provides a set of commands to hide specific ID messages, to stop the FCS
automatically, or to display a warning message box. Execute these commands from a
POSTLOAD command file. These commands are volatile and not saved in current project.
For a list of commands and their uses, see Full Chip Simulation Connection Commands.

FCS and Silicon On-Chip Peripherals
Simulation

FCS not only simulates the core instruction set but also the on-chip I/O devices, such as
CRG, PWM, or ECT. Supported HC(S)12(X) Derivatives lists the supported I/O devices for
each supported derivative.

Generating a new project with the New HC(12) Project Wizard and the Full Chip
Simulation connection sets everything up to run the project with FCS support.

Use the menu option Simulator > Set Derivative to change the derivative to simulate. In
addition to the derivatives, there are special entries: HC(S)12(X) CORE and HC(S)12(X)
SAMPLE. The CORE entries allow you to simulate the chip without FCS support (plain
instructions only) and the SAMPLE entries allow you to simulate a chip with a minimal
set of commonly available on-chip peripherals, like Register Block, Memory Expansion
Registers, Clock and Reset Generator, Serial Communication Interface 0 (SCI0) and
PortB.

Figure 10.11 ‘Set Derivative Dialog Box
284 S12(X) Debugger Manual

HC(S)12(X) Full Chip Simulation Connection
Supported HC(S)12(X) Derivatives
The status bar shows the current mode of Simulation (SAMPLE, CORE or MCU
derivative). You can access the Set Derivative dialog by double clicking on the FCS
support entry in the status bar. See Debugger Status Bar with Full Chip Simulation.

Supported HC(S)12(X) Derivatives
Please refer to release notes section for Full Chip Simulation to get detailed information
on supported derivatives and modules simulated.

<CodeWarrior install directory>\Release_Notes\HC12\FCS_Notes

NOTE To simulate unlisted derivatives, either use a derivative with similar on-chip
peripherals, or use the FCS SAMPLE or CORE mode.

Communication Modules
The communication modules available on the HC(S)12(X) debugger are described in the
corresponding derivative simulation release notes. The following I/O devices are not
simulated unless it is defined otherwise.

• Byteflight (BF)

• J1850 Bus (BLCD)

• Scalable CAN (MSCAN)

• Universal Serial Bus Module (USB20D6E2F)

• Inter-IC Bus (IIC)

Serial Communication Interface
This I/O device simulates the Serial Communication Interface (SCI). The unmapped
registers SCIInput/SCIInputH and SerialInput serve to send characters to the
SCI Module. The unmapped registers SCIOutput/SCIOutputH and
SerialOutput contain the characters sent from the SCI Module.

Table 10.4 Simulated SCI Registers

Register
Acronym

Full Register Name Simulated Fields

SC0BDH SCI Baud Rate Register High SBR12:8

SC0BDL SCI Baud Rate Register Low SBR7:0
285S12(X) Debugger Manual

HC(S)12(X) Full Chip Simulation Connection
Supported HC(S)12(X) Derivatives
Registers not Mapped to Memory
Table 10.5 shows the SCI registers that are not mapped to memory.

SC0CR1 SCI Control Register 1 M ILT

SC0CR2 SCI Control Register 2 TIE
TCIE
RIE
ILIE

TE
RE
SBK

SC0SR1 SCI Status Register 1 TDRE
TC
RDRF

IDLE
OR

SC0SR2 SCI Status Register 2 RAF

SC0DRH SCI Data Register High R8/T8

SC0DRL SCI Data Register Low R7:0/T7:0

Table 10.5 SCI Registers not Mapped to Memory

Register Description

SCIInput Sends a character to the SCI. Value received from the SCI; can be read
via a read access to the SCDR. Ninth bit is taken from SCIInputH
register. Read access to SCIInput has no specified meaning.
Bits 7–0 characters sent to the SCI.

SCIInputH Sends a character to the SCI, containing the ninth bit associated with
SCIInput. Must be written before writing the SCIInput register. Read
access to SCIInputH has no specified meaning.
Bit 0 (ninth bit) sent to the SCI.

SCIOutput Receives a character sent from the SCI. Value received in SCIOutput
is triggered by a write access to the SCDR. Ninth bit is written to the
SCIOutputH register. Write access to SCIOutput has no specified
meaning.
Bit 7–0 characters sent from the SCI.

Table 10.4 Simulated SCI Registers (continued)

Register
Acronym

Full Register Name Simulated Fields
286 S12(X) Debugger Manual

HC(S)12(X) Full Chip Simulation Connection
Supported HC(S)12(X) Derivatives
Serial Peripheral Interface
Table 10.6 details the simulated Serial Peripheral Interface (SPI) registers.

Registers not Mapped to Memory
Table 10.7 shows the registers that are not mapped to memory.

SCIOutputH Receives a character sent from the SCI. Contains the ninth bit
associated with SCIOutput. Write access to SCIOutputH has no
specified meaning.
Bit 0 (ninth bit) sent from SCI.

SerialInput Alias for SCIInput register. SerialInput connects SCI to terminal
window. Ninth bit is not supported. Read access to SerialInput has
no specified meaning.
Bit 7–0 data sent from terminal window to SCI.

SerialOutput Alias for SCIOutput register. SerialOutput connects SCI to terminal
window. Ninth bit is not supported. Write access to SerialOutput has
no specified meaning.
Bit 7–0 data sent from SCI to terminal window.

Table 10.6 Simulated SPI Registers

Register
Acronym

Full Register Name Simulated Fields

SPICR1 SPI Control Register 1 SPIE
SPE
MSTR

CPOL
CPHA
LSBFE

SPICR2 SPI Control Register 2 SPISWAI SPC0

SPIBR SPI Baud Rate Register SPPR2:0 SPR2:0

SPISR SPI Status Register SPIF
SPTEF

MODF

SPIDR SPI Data Register SPIDR7:0

Table 10.5 SCI Registers not Mapped to Memory (continued)

Register Description
287S12(X) Debugger Manual

HC(S)12(X) Full Chip Simulation Connection
Supported HC(S)12(X) Derivatives
Analog to Digital Converter Module
This I/O device simulates the Analog to Digital Converter (ADC). FCS supports eight-
and 16-channel versions of the ADC module. Access the analog inputs (PAD0 to PAD7/
PAD15) separately through the object pool. For ADC module 1, PAD0 input corresponds
to PAD8/PAD16 pin of the microcontroller.

Conversion Results
The analog inputs of ADC module are simulated as 8-bit logic values. Therefore, the
simulation of the conversion itself only has a limited interest. The conversion results are
an image of the simulated input.

For the unsigned right-justified 8-bit conversion, the result displayed in the corresponding
data register is the exact image of the input.

Simulation is accurate on the conversion delays and the modifications that affect the input
(8-10 bits, left/right justified, signed/unsigned). The data registers in which to transfer the
conversion results give a precise image on how to configure the ADC modules for the
proper conversion process.

Table 10.7 SPI Registers not Mapped to Memory

Register Description

SPIValue Sends and receives (swaps) a character from and to the SPI.
Bit 7–0 data sent from/to SPI

Table 10.8 Simulated ADC Registers

Register
Acronym

Full Register Name Simulated Fields

ATDCTL2 ATD Control Register 2 ADPU
AFFC
AWAI
ETRIGLE

ETRIGP
ETRIGE
ASCIE
ASCIF

ATDCTL3 ATD Control Register 3 S8C
S4C

S2C
S1C

ATDCTL4 ATD Control Register 4 SRES8
SMP1:0

PRS4:0
288 S12(X) Debugger Manual

HC(S)12(X) Full Chip Simulation Connection
Supported HC(S)12(X) Derivatives
Registers not Mapped to Memory
The following ADC registers are not mapped to memory:

• PADx

– The PADx registers are eight registers not mapped to memory that serve as the
measured values for the ATD. The format of the PADx registers is IEEE32. To
set up a PAD use the following command:

ATDx_SETPAD <CHANNEL> <VOLTAGE AS FLOAT>

Memory Modules
These memory modules are not simulated:

• EEPROM (EETS)

• Flash (FTS)

ATDCTL5 ATD Control Register 5 DJM
DSGN
SCAN
MULT

CC
CB
CA

ATDSTAT0 ATD Status Register 0 SCF
ETORF

FIFOR
CC2:0

ATDSTAT1 ATD Status Register 1 CCF7:0

ATDDIEN ATD Input Enable Register (8 Channel) IEN7:0

ATDDIEN0 ATD Input Enable Register (16 Channel) IEN15:8

ATDDIEN1 ATD Input Enable Register (16 Channel) IEN7:0

PORTAD Port Data Register (8 Channel) PTAD7:0

PORTAD0 Port Data Register (16 Channel) PTAD15:8

PORTAD1 Port Data Register (16 Channel) PTAD7:0

ATDDRx ATD Conversion Result Registers Entire register

Table 10.8 Simulated ADC Registers (continued)

Register
Acronym

Full Register Name Simulated Fields
289S12(X) Debugger Manual

HC(S)12(X) Full Chip Simulation Connection
Supported HC(S)12(X) Derivatives
Miscellaneous Modules
The following miscellaneous modules are not simulated:

• Voltage Regulator (VREG)

• Compact Flash Host Controller (CFHC)

• Memory Stick Host Controller (MSHC)

• Secure Digital Host Controller (SDHC)

• ATA5HC Module (ATA5HC)

• Integrated Queue Module (IQUE)

• Ethernet Media Access Controller (EMAC)

• Ethernet Physical Transceiver (EPHY)

• Debug Module (DBG)

S12X_INT
Table 10.9 shows the simulated S12X_INT registers.

XGATE
Table 10.10 shows the simulated XGATE registers.

Table 10.9 Simulated S12X_INT Registers

Register
Acronym

Full Register Name Simulated
Fields

IVBR Interrupt Vector Base Register Entire register

INT_XGPRIO XGATE Interrupt Priority Configuration Register Entire register

INT_CFADDR Interrupt Request Configuration Address Register Entire register

INT_CFDATA0:7 Interrupt Request Configuration Data Registers
0–7

All registers

Table 10.10 Simulated XGATE Registers

Register Acronym Full Register Name Simulated Fields

XGMCTL XGATE Module Control Register Entire register

XGCHID XGATE Channel ID Register Entire register
290 S12(X) Debugger Manual

HC(S)12(X) Full Chip Simulation Connection
Supported HC(S)12(X) Derivatives
Port I/O Modules
The following Port I/O modules are not simulated:

• External Bus Interface (EBI)

Module Mapping Control (MMC)
Table 10.11 shows the simulated MMC registers.

XGVBR XGATE Vector Base Address Entire register

XGIF XGATE Interrupt Flag Vector Entire register

XGSWT XGATE Software Trigger Register Entire register

XGSEM XGATE Semaphore Register Entire register

XGCCR XGATE Condition Code Register Entire register

XGPC XGATE Program Counter Entire register

XGR1 XGATE Register 1 Entire register

XGR2 XGATE Register 2 Entire register

XGR3 XGATE Register 3 Entire register

XGR4 XGATE Register 4 Entire register

XGR5 XGATE Register 5 Entire register

XGR6 XGATE Register 6 Entire register

XGR7 XGATE Register 7 Entire register

Table 10.11 Simulated MMC Registers

Register
Acronym

Full Register Name Simulated
Fields

GPAGE Global Page Index Register Entire register

DIRECT Direct Page Register Entire register

Table 10.10 Simulated XGATE Registers (continued)

Register Acronym Full Register Name Simulated Fields
291S12(X) Debugger Manual

HC(S)12(X) Full Chip Simulation Connection
Supported HC(S)12(X) Derivatives
The following MMC registers are not simulated:

• Miscellaneous System Control Register

• MTSTO (Reserved Test Register Zero)

Multiplexed External Bus Interface (MEBI)
This I/O device simulates the Multiplexed External Bus Interface (MEBI). The MEBI
block is part of the Core and its description can be found in the Core manual. This block
controls the behavior of ports A, B, E and K, the IRQ and XIRQ signals, and the operating
mode of the Core (normal/extended/special).

FCS simulates only single-chip mode, therefore ports A and B cannot be used as external
bus lines.

Except for port E, FCS simulates only the I/O behavior of the ports. The IRQ and XIRQ
functionality going through port E pins 0 and 1 are simulated together with the various I/O
enabling conditions of the port E pins described in the PEAR register. When a port E pin is
not selected as an I/O pin, it stays at 0. Other functionalities are not simulated.

Port Integration Module (PIM)
This I/O device simulates the Port Integration Module (PIM). The PIM controls all the
ports that are not directly associated to the CORE. All registers present in the PIM are port
specific apart from the MODRR register that affects ports S, P, M, J and H. All port-
specific registers are implemented together with the associated interrupt logic.

Timer Modules
This section describes the simulated timer modules and specifies which modules, blocks,
and features are not simulated.

RPAGE RAM Page Index Register Entire register

EPAGE EEPROM Page Index Register Entire register

PPAGE Program Page Index Register Entire register

Table 10.11 Simulated MMC Registers (continued)

Register
Acronym

Full Register Name Simulated
Fields
292 S12(X) Debugger Manual

HC(S)12(X) Full Chip Simulation Connection
Supported HC(S)12(X) Derivatives
Clock and Reset Generator (CRG)
This I/O device simulates the PLL, RTI and COP features of the Clock and Reset
Generator (CRG). Additional features of the CRG such as oscillator system hardware
failures are not simulated.

The PLL output clock frequency is (PLLCLK) = 2 OSCCLK ? (SYNR + 1)/
(REFDV + 1). FCS considers the PLL block a frequency converter. FCS ignores other
PLL functionalities in the hardware.

Reference Clock
The CRG module reference clock is CLK24, given at the output. The CLK3 and CLK23
clocks are not simulated.

When you clear PLLSEL to 0, the oscillator clock frequency (used by the RTI and COP) is
the same as the reference clock frequency.

When you set PLLSET to 1, OSCCLK frequency = CLK24 * (REFDV + 1) /
(2 * (SYNR + 1)).

Since some systems do not work with a CLK24 frequency less than the hardware
OSCCLK frequency, the simulation does not accept CLK24 frequencies less than the
hardware OSCCLK frequency and generates a warning message.

Any OSCCLK frequency greater than the CLK24 frequency has the same frequency as
CLK24.

Blocks
The CRG PLL Control Register (PLLCTL) is not simulated.

The following blocks are simulated:

• Phase Lock Loop (PLL)

The simulated PLL clock divider functionality includes the REFDV and the SYNR
registers and the PLLSEL bit in the CLKSEL register.

Changing the value of PLLSEL automatically updates the COP and the RTI events.
This may cause cycle irregularities as described in the manual. For proper use of the
COP and RTI, change PLLSEL before enabling these modules.

The simulated PLL stabilization time ranges from 100 to 1500 clock cycles, after
modifying the REFDV or SYNR registers. Setting PLLSEL to 1 before this
stabilization time elapses generates a warning message. The FCS operates properly
but the corresponding program may not work on the hardware.

• Real-Time Interrupt (RTI) and COP

Both RTI and COP use CLK24 as a reference clock. If OSCCLK is not equal to
CLK24, the simulator adapts the RTI and COP period to the clock difference.
293S12(X) Debugger Manual

HC(S)12(X) Full Chip Simulation Connection
Supported HC(S)12(X) Derivatives
Enhanced Capture Timer (ECT)
This I/O device simulates the Enhanced Capture Timer (ECT). The various functionalities
are cycle accurate up to 99%. Instruction pipelining simulation may differ from the
hardware; some interruptions might be raised with a one-instruction delay.

The functions with errors detected in the hardware are not simulated. One operation mode
is used as default. Further information is given for unimplemented features.

The Delay Counter Control Register (DLYCT) is not simulated.

Modes of Operation
NORMAL and STOP mode are implemented; entering FREEZE or WAIT mode causes
the system to behave like STOP mode.

Table 10.12 Simulated RTI and COP Registers

Register
Acronym

Full Register Name Simulated Fields

SYNR CRG Synthesizer Register SYN5:0

REFDV CRG Reference Divider Register REFDV3:0

CRGFLG CRG Flags Register RTIF

CRGINT CRG Interrupt Enable Register RTIE

CLKSEL CRG Clock Select Register PLLSEL

RTICTL CRG RTI Control Register RTR6:0;
Also RTDEC if supported
by derivative.

COPCTL CRG COP Control Register WCOP
RSBCK
CR2:0

ARMCOP CRG COP Timer Arm/Reset Register Entire register
294 S12(X) Debugger Manual

HC(S)12(X) Full Chip Simulation Connection
Supported HC(S)12(X) Derivatives
Table 10.13 Simulated ECT Registers

Register
Acronym

Full Register Name Simulated Fields

TIOS Timer Input Capture/Output Compare
Select Register

IOS7:0

CFORC Timer Compare Force Register FOC7:0

OC7M Output Compare 7 Mask Register OC7M7:0

OC7D Output Compare 7 Data Register OC7D7:0

TCNT Timer Count Register Partly simulated; Not
writable in test mode

TSCR1 Timer System Control Register 1 TEN TFFCA

TTOV Timer Toggle On Overflow Register 1 TOV7:0

TCTL1/TCTL2 Timer Control Register 1 and 2 OM7:0 OL7:0

TCTL3/TCTL4 Timer Control Register 3 and 4 EDG7B
EDG7A
EDG6B
EDG6A
EDG5B
EDG5A
EDG4B
EDG4A

EDG3B
EDG3A
EDG2B
EDG2A
EDG1B
EDG1A
EDG0B
EDG0A

TIE Timer Interrupt Enable Register C7I
C6I
C5I
C4I

C3I
C2I
C1I
C0I

TSCR2 Timer System Control Register 2 TOI
TCRE

PR2:0

TFLG1 Main Timer Interrupt Flag 1 C7F
C6F
C5F
C4F

C3F
C2F
C1F
C0F

TFLG2 Main Timer Interrupt Flag 2 TOF

TCx Timer Input Capture/Output Compare
Registers 0:7

All registers
295S12(X) Debugger Manual

HC(S)12(X) Full Chip Simulation Connection
Supported HC(S)12(X) Derivatives
PACTL 16-Bit Pulse Accumulator A Control
Register

PAEN
PEDGE

PAOVI

PAFLG Pulse Accumulator A Flag Register PAOVF

PACN3, PACN2 Pulse Accumulators Count Registers 3
and 2

All registers

PACN1, PACN0 Pulse Accumulators Count Registers 1
and 0

All registers

MCCTL 16-Bit Modulus Down-Counter Control
Register

MCZI
MODMC
RDMCL
ICLAT

FLMC
MCEN
MCPR1:0

MCFLG 16-Bit Modulus Down-Counter FLAG
Register

MCZF POLF3:0

ICPAR Input Control Pulse Accumulators
Register

PA3EN
PA2EN

PA1EN
PA0EN

ICOVW Input Control Overwrite Register NOVW7:0

ICSYS Input Control System Control Register SH37
SH26
SH15
SH04

TFMOD
PACMX
BUFEN
LATQ

PTPSR Precision Timer Prescaler Select
Register

Entire register if
derivative supports it

PTMCPSR Precision Timer Module Counter
Prescaler Select Register

Entire register if
derivative supports it

PBCTL 16-Bit Pulse Accumulator B Control
Register

PBEN PBOVI

PBFLG Pulse Accumulator B Flag Register PBOVF

PA3H–PA0H 8-Bit Pulse Accumulators Holding
Registers 3–0

Entire register

Table 10.13 Simulated ECT Registers (continued)

Register
Acronym

Full Register Name Simulated Fields
296 S12(X) Debugger Manual

HC(S)12(X) Full Chip Simulation Connection
Supported HC(S)12(X) Derivatives
Registers not Mapped to Memory
The following registers are not mapped to memory:

• Port T (PORTT)

The functionality linking the PWM module and port T are simulated using the Port T
I/O Register (PTT).

• PORTTBitx

The pins are simulated as ‘not memory mapped’ and can be accessed one by one
through the object pool (PORTTBit0 to PORTTBit7).

Periodic Interrupt Timer (PIT)
The Periodic Interrupt Timer (PIT) I/O device is not simulated.

Pulse Width Modulator (PWM)
This I/O device simulates the Pulse Width Modulator (PWM). Simulation of both 6- and
8-channel PWMs is supported. The 6-channel PWM is a subset of the 8-channel PWM,
with fewer registers, and in some registers, using fewer bits.

The simulation is accurate up to one instruction due to instruction pipelining differences
between the hardware and the simulation. However, the simulation strictly respects the
period and the duty time of the generated pulses.

Changing control registers while the counters are running causes irregularities on the
hardware outputs and cycle duration, as well as in the simulation, although not the same
irregularities as in the hardware. For proper use of the module, disable channels (PWME
register) and reset the counter (PWMCNTx registers) before modifying the corresponding
control register (clock selection, period settings etc.) as described in the manual.

MCCNT Modulus Down-Counter Count Register Entire register

TC0H-TC3H Timer Input Capture Holding Registers
0–3

Entire register

Table 10.13 Simulated ECT Registers (continued)

Register
Acronym

Full Register Name Simulated Fields
297S12(X) Debugger Manual

HC(S)12(X) Full Chip Simulation Connection
Supported HC(S)12(X) Derivatives
Clock Select
Scalers and prescalers are simulated for the clock selection. Changing clock control bits
while channels are operating can cause irregularities that affect the time until the next end
of a period (and duty) and the value displayed in the PWN counter registers.

Polarity, Duty and Period
It is important to note the information given in the inspector component concerning the
various events. The two types of event used in the PWM module are the Duty and Period
events.

In left-aligned mode:

• The End of Period Time represents the number of bus clock cycles remaining before
the counter is reset.

• The End of Duty Time represents the number of bus clock cycles remaining before
the output changes state.

In center-aligned mode:

• The End of Period Time represents the number of bus clock cycles remaining before
the counter changes state. This means that the event period is half the effective
period of the centered output waveform.

• The End of Duty Time represents the number of bus clock cycles remaining before
the output changes state. An End of Duty Time is set after the end of each Period
Event.

Table 10.14 Simulated PWM Registers

Register
Acronym

Full Register Name Simulated Fields

PWME PWM Enable Register PWME7:0

PWMPOL PWM Polarity Register PPOL7:0

PWMCLK PWM Clock Select Register PCLK7:0

PWMPRCLK PWM Prescale Clock Select Register PCKB2:0
PCKA2:0

PWMCAE PWM Center Align Enable Register CAE7:0
298 S12(X) Debugger Manual

HC(S)12(X) Full Chip Simulation Connection
Supported HC(S)12(X) Derivatives
PWMCTL PWM Control Register CON45
CON23
CON01;
PFRZ is not simulated
but system acts as if
PFRZ is always set to 1

PWMSCLA PWM Scale A Register Entire register

PWMSCLB PWM Scale B Register Entire register

PWMCNTx PWM Channel Counter Registers 0-5/7 Entire register

PWMPERx PWM Channel Period Registers 0-5/7 Entire register

PWMDTYx PWM Channel Duty Registers 0-5/7 Entire register

PWMSDN PWM Shutdown Register PWMIF
PWMIE
PWMRSTRT
PWMLVL
PWM7IN
PWM7INL
PWM7EN

PORTP Port P Functionality linking the
PWM module and port
P are simulated using
the PTP (Port P I/O
Register)

Table 10.14 Simulated PWM Registers (continued)

Register
Acronym

Full Register Name Simulated Fields
299S12(X) Debugger Manual

HC(S)12(X) Full Chip Simulation Connection
Supported HC(S)12(X) Derivatives
PWMoutx

As in the hardware, writing to PTP has no effect. The input pins are simulated as ‘not
memory mapped’ and can be accessed one by one through the object pool (PWMout0 to
PWMout7). Only PWMout7 can be configured as an input. Writing to the other pins has
no effect.

Timer Module (TIM)
This I/O device simulates the Timer Module (TIM). This module can be viewed as a
subset of the ECT module. The TIM for example has only two Pulse Accumulator Count
Registers called PACNT_H and PACNT_L. Both registers are simulated. For more
information see Enhanced Capture Timer (ECT).

Legacy HC12 (CPU12) Derivatives
Simulation

MC68HC812A4
This section explains the simulated features of the MC68HC812A4 derivative. The FCS
implements the on-chip peripherals listed here.

Register Block
Table 10.15 shows the register block functionality. You can move all I/O registers
according to the INITRG (Register Block Mapping) at offset $11 inside the register block.

Lite Integration Module
FCS simulates many functions of the Lite Integration Module (LIM), including:

• Interrupt handling

• Watchdog

• Periodic Interrupt

Table 10.15 MC68HC12A4 Register Block

Register
Name

Register
Address

Initial
Value

Remarks

INITRG 0x0011 0x00
300 S12(X) Debugger Manual

HC(S)12(X) Full Chip Simulation Connection
Supported HC(S)12(X) Derivatives
General restrictions:

• FCS does not distinguish normal from special mode. Accordingly, it allows all write
accesses, as if the chip were in special mode.

• Table 10.16 shows restrictions relative to special registers and single bits of
registers.

LIM Simulated Registers
Table 10.16 shows the LIM Simulated Registers.

Table 10.16 LIM Simulated Registers

Register
Name

Register
Address

Initial
Value

Remarks

CLKCTL 0x0047 0x00 LCKF, PLLON, PLLS, BCSC, BCSB,
BCSA: These CLKCTL bits control PLL
settings. FCS does not simulate the PLL;
values of these bits have no effect.

RTICTL 0x0014 0x00 RSWAI: FCS does not support the CPU
Clock stop; this bit has no effect.

RSBCK: FCS does not simulate
background mode; this bit has no effect.

RTIFLG 0x0015 0x00

COPCTL 0x0016 0x0F CME, FCME, FCM: FCS does not support
these COPCTL bits; writing to these bits
has no effect.

COPRST 0x0017 0x00

INTCR 0x001E 0x60 FCS does not distinguish normal from
special mode.

IRQE: The implementation allows any
write access.
In normal mode, write to this register once
only.
In special mode, system ignores the first
write access.

HPRIO 0x001F 0xF2 System may write to HPRIO register if I
mask in CPU condition code register
(CCR) is set. FCS does not simulate this
register.
301S12(X) Debugger Manual

HC(S)12(X) Full Chip Simulation Connection
Supported HC(S)12(X) Derivatives
Standard Timer Module (TIM)
FCS simulates all functions of TIM.

General restrictions:

• The HPRIO register [$001F] may be written if the I mask in the CPU CCR is set.
This is not simulated.

• The external timer output occurs at the PORTT register for testing purposes only.

• Restrictions considering special registers and single bits of registers are covered in
Table 10.17.

TIM Simulated Registers
Table 10.17 shows all simulated TIM registers:

Table 10.17 TIM Simulated Registers

Register
Name

Register
Address

Initial
Value

Remarks

TIOS 0x0080 0x00

CFORC 0x0081 0x00

OC7M 0x0082 0x00

OC7D 0x0083 0x00

TCNT_H 0x0084 0x00

TCNT_L 0x0085 0x00

TSCR 0x0086 0x00 TSWAI: FCS does not support the CPU Clock
stop; setting this bit has no effect.

TSBCK: FCS does not simulate background
mode; this bit has no effect.

TQCR 0x0087 0x00

TCTL1 0x0088 0x00

TCTL2 0x0089 0x00

TCTL3 0x008A 0x00

TCTL4 0x008B 0x00

TMSK1 0x008C 0x00
302 S12(X) Debugger Manual

HC(S)12(X) Full Chip Simulation Connection
Supported HC(S)12(X) Derivatives
TMSK2 0x008D 0x30 TPU: This bit controls a pull-up resistor or a
pin. Since the FCS has no real pins, setting
this bit has no effect.

TDRB: This bit controls the output drive of a
pin. Since the FCS has no real pins, setting
this bit has no effect.

TFLG1 0x008E 0x00

TFLG2 0x008F 0x00

TC0_H 0x0090 0x00

TC0_L 0x0091 0x00

TC1_H 0x0092 0x00

TC1_L 0x0093 0x00

TC2_H 0x0094 0x00

TC2_L 0x0095 0x00

TC3_H 0x0096 0x00

TC3_L 0x0097 0x00

TC4_H 0x0098 0x00

TC4_L 0x0099 0x00

TC5_H 0x009A 0x00

TC5_L 0x009B 0x00

TC6_H 0x009C 0x00

TC6_L 0x009D 0x00

TC7_H 0x009E 0x00

TC7_L 0x009F 0x00

PACTL 0x00A0 0x00

PAFLG 0x00A1 0x00

Table 10.17 TIM Simulated Registers (continued)

Register
Name

Register
Address

Initial
Value

Remarks
303S12(X) Debugger Manual

HC(S)12(X) Full Chip Simulation Connection
Supported HC(S)12(X) Derivatives
Serial Communication Interface (SCI)
Implement the SCI module as a separate class, because there are several nearly-identical
instances of this class.

Supported Features

Table 10.18 shows the supported SCI features.

PACNT_H 0x00A2 0x00

PACNT_L 0x00A3 0x00

TIMTST 0x00AD 0x00 TCBYP, PCBYP: These bits are not simulated;
writing to them has no effect. (These bits have
meaning only for chip testing in special mode.)

PORTT 0x00AE 0x00

DDRT 0x00AF 0x00

Table 10.18 SCI Supported Features

Feature
Acronym

Full Feature
Name

Comments

SBRx Baud Rate Bit transmittal follows current baud rate settings

BTST Reserved for
internal tests

Ignored

BSPL Reserved for
internal tests

Ignored

BRLD Reserved for
internal tests

Ignored

LOOP LOOP Mode LOOP mode determines SCI connection to outer
world. As this SCI is simulated, there is no
connection to simulate.

WOMS Wired Or Mode Special feature of LOOP mode; not simulated

RSRC Receiver Source Special feature of LOOP mode; not simulated

Table 10.17 TIM Simulated Registers (continued)

Register
Name

Register
Address

Initial
Value

Remarks
304 S12(X) Debugger Manual

HC(S)12(X) Full Chip Simulation Connection
Supported HC(S)12(X) Derivatives
M Mode 8 or 9 data bits Supported (different timing, ninth bit)

WAKE Wakeup by
Address Mark/Idle

Not supported

ILT Idle Line Type Considered in the Idle Line Detection

PE Parity Enabled Not simulated

PT Parity Type Not simulated

TIE Transmit Interrupt
Enable

Supported

TCIE Transmit Complete
Interrupt Enable

Supported

RIE Receive Interrupt
Enable

Supported

ILIE Idle Line Interrupt
Enable

Supported

TE Transmitter Enable Transmission process stops if this bit is clear

RE Receiver Enable Receive process stops if this bit is clear. As the
input register is not part of the simulation, it still
receives stimuli.

RWU Receiver Wake Up
Control

Not supported

SBK Send Break When first set, transmitter sends ten (11 if M bit is
set) 0 values. Counter is set only if flag was
previously cleared. After the counter sends the
required number of 0 bits, it continues sending 0
bits as long as the SBK flag remains set.

TDRE Transmit Data
Register Empty
Flag

Set when value to be transmitted moves from
transmit data register to serial shift register.

TC Transmit Complete
Flag

Set when the transmission of one value ends, but
no other value is yet in the transmit data register.

Table 10.18 SCI Supported Features (continued)

Feature
Acronym

Full Feature
Name

Comments
305S12(X) Debugger Manual

HC(S)12(X) Full Chip Simulation Connection
Supported HC(S)12(X) Derivatives
FCS uses non-memory-mapped registers to simulate SCI connection to the outer world.
FCS buffers all values sent to the input registers, then simulates receipt from another SCI
(with maximum speed and no transmission errors). If the buffer contains no values, FCS
simulates an empty input line. All the sent values are available in the output registers,
listed in Table 10.19. Other modules can subscribe to these registers to receive the sent
values.

RDRF Receive Data
Register Full Flag

Set upon the complete read of a value and the
clearing of RDRF.

IDLE Idle Line Detection
Flag

Set after a period without any input. The system
considers the ILT flag.

OR Overrun Error Flag Set if the receipt of value ends, but the processor
has not yet read the value.

NF Noise Error Flag Not supported; no physical transmission takes
place.

FE Framing Error Flag Not supported; no physical transmission takes
place.

PF Parity Error Flag Not supported; no physical transmission takes
place.

RAF Receiver Active
Flag

Supported and cleared only when going into idle
mode. Detection of a false start bit does not clear
this flag, as no physical transmission takes place.

R8 Receive Bit 8 Supported

T8 Transmit Bit 8 Supported

Rx/Tx Receive/Transmit
Bit x

Supported, with autoclear feature

Table 10.18 SCI Supported Features (continued)

Feature
Acronym

Full Feature
Name

Comments
306 S12(X) Debugger Manual

HC(S)12(X) Full Chip Simulation Connection
Supported HC(S)12(X) Derivatives
Serial Peripheral Interface (SPI)
Table 10.20 describes the SPI interface.

Table 10.19 Input, Output, Serial Output Registers

Name Meaning Comments

Input Adds a value to be received. The
system takes the ninth bit from the
last value written to InputH.

Read has no specified
meaning

InputH Ninth Input bit; must be written before
Input.

Read has no specified
meaning

Output Contains the last value sent.
Notification is sent every time a new
value is written.

Write has no specified
meaning

OutputH Ninth Output bit. Must be read
immediately after Output.

Write has no specified
meaning

SerialInput Alias for Input for SCI 0; connects
SCI 0 to terminal window.

Only available in SCI 0. Only
supports eight bits.

SerialOutput Alias for Output for SCI 0; connects
SCI 0 to terminal window.

Only available in SCI 0. Only
supports eight bits.

Table 10.20 SPI Interface

Acronym Full Name Comments

Control Register 1

SPIE Interrupt Enable Implemented

SPE System Enable If set, FCS supports SPI functions

SWOM Port S Wired-OR
Mode

Not simulated; no physical transmission takes
place.

MSTR Master Slave Mode
Select

Select Master or Slave mode

CPOL Clock Polarity Not simulated; no physical transmission takes
place.

CPHA Clock Phase Not simulated; no physical transmission takes
place.
307S12(X) Debugger Manual

HC(S)12(X) Full Chip Simulation Connection
Supported HC(S)12(X) Derivatives
Virtual register Value simulates the data register of a second SPI device. This permits
simulated communication with a second SPI device. The transmission can be in Normal or
Bidirectional Mode; the device can be set as Master or Slave. See also the MC68HC812A4
Technical Summary (MC68HC812A4TS/D).

SSOE Slave Select Output
Enable

Not simulated; no physical transmission takes
place.

LSBF LSB First Enable Not simulated; no physical transmission takes
place.

Control Register 2

PUPS Pull Up Port S Enable Not simulated; no physical transmission takes
place.

RDS Reduce Drive of Port
S

Not simulated; no physical transmission takes
place.

SPC0 Serial Pin Control 0 Selects Normal or Bidirectional transmission
mode

SPRx Baud Rate Register Baud rate of the SPI transmission

SPIF Interrupt Request System sets SPIF after the eighth SCK cycle in
a data transfer. Status Register read followed
by a read or write access to the SPI data
register, clears SPIF.

WCOL Write Collision Status
Register

Set upon the writing of new data to the Data
Register, during a serial data transfer.

MODF Mode Error Interrupt
Status Flag

Not simulated; no physical transmission takes
place.

SP0DR Data Register 8-bit Data Register for SPI data.

PORTS Port S Data Register Not simulated; no physical transmission takes
place.

DDRSx Port S Data Direction
for Bit x

Direction of Data. Only bits 4 and 5 have any
effect.

Table 10.20 SPI Interface (continued)

Acronym Full Name Comments
308 S12(X) Debugger Manual

HC(S)12(X) Full Chip Simulation Connection
Supported HC(S)12(X) Derivatives
Key Wakeups
 Table 10.21 defines the Key Wakeups.

Table 10.21 Key Wakeups

Acronym Full Name Implemented Meaning

PORTD Port D Register Implemented

DDRD Port D Data
Direction Register

Implemented

KWIED Port D Interrupt
Enable Register

Implemented

KWIFD Port D Flag
Register

A falling edge on the associated pin sets each flag,
provided that corresponding DDRD Register bit is
reset. Clear flag by writing 1 to corresponding bit of
KWIFD register.

PORTH Port H Register Implemented

DDRH Port H Data
Direction Register

Implemented

KWIEH Port H Interrupt
Enable Register

Implemented

KWIFH Port H Flag
Register

A falling edge on the associated pin sets each flag,
provided that corresponding DDRH Register bit is
reset. Clear flag by writing 1 to corresponding bit of
KWIFH register.

PORTJ Port J Register Implemented

DDRJ Port J Data
Direction Register

Implemented

KWIEJ Port J Interrupt
Enable Register

Implemented

KWIFJ Port J Flag
Register

A falling edge on the associated pin sets each flag,
provided that corresponding DDRJ Register bit is
reset. Clear flag by writing 1 to corresponding bit of
KWIFJ register.

KPOLJ Port J Polarity
Register

Implemented
309S12(X) Debugger Manual

HC(S)12(X) Full Chip Simulation Connection
Supported HC(S)12(X) Derivatives
The FCS does not implement Port D register mapping in wide expanded modes, or in
special expanded narrow mode with the MODE Register bit EMD set.

Memory-Mapped Page Registers
 Table 10.22 describes the memory-mapped page registers.

PUPSJ Port J Pull-Up/
Pulldown Select
Register

Not simulated, as there are no physical outputs.

PULEJ Port J Pull-Up/
Pulldown Enable
Register

Not simulated, as there are no physical outputs.

Table 10.22 Memory Mapped Page Registers

Acronym Full Name Implemented Meaning

Port F Register

CS Chip Select/General-
Purpose I/O (Bits 0:6)

Not implemented; no physical outputs.

Port G Register

ADDR Memory Expansion/
General-Purpose I/O
(Bits 0:5)

Not implemented; no physical outputs.

DDRF Port F Data Direction
Register (Bits 0:6)

Not implemented; no physical outputs.

DDRG Port G Data Direction
Register (Bits 0:5)

Not implemented; no physical outputs.

PDA Data Page Selects the data page

PPA Program Page Selects the program page

PEA Extra Page Selects the extra page

Window Definition Registers

DWEN Data Window Enable Enables paging of data space

Table 10.21 Key Wakeups (continued)

Acronym Full Name Implemented Meaning
310 S12(X) Debugger Manual

HC(S)12(X) Full Chip Simulation Connection
Supported HC(S)12(X) Derivatives
Non-Supported Modules
A/D Converter Device (ADC).

Register Block Address Map
 Table 10.23 shows the Register Block Address mapping.

PWEN Program Window
Enable

Enables paging of program space

EWEN Extra Window Enable Enables paging of extra space

A21E-
A16E

Memory Expansion
Assignment/ General-
Purpose I/O

Not simulated; no physical outputs.

Table 10.23 Register Block Address Map

Register Block
Address

Description Remarks

$0000-$000D Port access Not simulated; memory configuration
controls correct timing of memory
accesses.

$000E-$000F Reserved

$0010 Internal RAM
mapping

Register not simulated. Use the memory
configuration dialog box to specify
simulated memory configuration.

0x0011 Register Block
mapping

Completely simulated

$0012-$0013 ROM/EEPROM
mapping

Registers not simulated. Use the memory
configuration dialog box to specify
simulated memory configuration.

$0014-$0017 Clock Function
Control

Completely simulated

$001E-$001F Interrupt Control &
Highest Priority I
Interrupt

Completely simulated

Table 10.22 Memory Mapped Page Registers (continued)

Acronym Full Name Implemented Meaning
311S12(X) Debugger Manual

HC(S)12(X) Full Chip Simulation Connection
Supported HC(S)12(X) Derivatives
$0020-$002E Key Wakeup
Control

Completely simulated

$002F Reserved

$0030-$0033 Port Registers Currently not simulated

$0034-$0038 PAGE & memory
configuration
Registers

Page Registers are simulated

$0039-$003B Reserved

$003C-$003F Chip select control
registers

Currently not simulated

$0040-$0043 PLL divider
registers

Currently not simulated

$0044-$0046 Reserved

$0047 Clock Control
Register

Completely simulated

$0048-$005F Reserved

$0060-$0069 Analog to Digital
Converter

Currently not simulated

$006A-$006E Reserved

$006F PORTAD Currently not simulated

$0070-$007F ADRxH/reserved Currently not simulated

$0080-$009F Timer Registers Completely simulated

$00A0-$00A3 Pulse Accumulator
Control Registers

Completely simulated

$00A4-$00AC Reserved

$00AD-$00AF Timer Test, Timer
Port

Completely simulated

$00B0-$00BF Reserved

Table 10.23 Register Block Address Map (continued)

Register Block
Address

Description Remarks
312 S12(X) Debugger Manual

HC(S)12(X) Full Chip Simulation Connection
Supported HC(S)12(X) Derivatives
Related Documentation
The following documents are available from Freescale:

• MC68HC812A4TS/D, Technical Summary for MC68HC812A4 16-Bit
Microcontroller, 1996

• CPU12 Reference Manual (CPU12RM/AD)

HC912DG128x, HC912DT128x
This section explains derivative simulated mechanisms and implemented features that
match the real HC12 derivatives. It also explains simulation limitations. (For technical
specifications of all I/O mechanisms, see MC68HC912DA128/MC68HC912DG128 16-Bit
Microcontroller Technical Summary (MC68HC912DA128TS/D).)

Register Block
You can reassign the 1-kilobyte register block to any 2-kilobyte boundary within the
standard 64-kilobyte address space.

Related Register

INITRG Initialization of Internal Register Position Register, simulated.

$00C0-$00C7 SCI0 Completely simulated

$00C8-$00CF SCI1 Completely simulated

$00D0-$00D3 SPI Completely simulated

$00D4 Reserved

$00D5-$00D7 SPI, PORTS Completely simulated

$00D8-$00EF Reserved

$00F0-$00F3 EEPROM Control Currently not simulated

$00F3-$01FF Reserved

Table 10.23 Register Block Address Map (continued)

Register Block
Address

Description Remarks
313S12(X) Debugger Manual

HC(S)12(X) Full Chip Simulation Connection
Supported HC(S)12(X) Derivatives
Memory Expansion Register
The system fully simulates this mechanism within CALL and RTC instructions for
banked memory model.

Related Register

Program Page Register PPAGE: PIX2/PIX1/PIX0 bits memory defined but NOT updated.

Enhanced Capture Timer
The 16-Bit Modulus Down-Counter is fully simulated, and contains the following:

• Eight Input Capture/Output Compare channels

All channels are non-buffered and identical, except channel 7, with TCRE (Timer
Counter Reset Enable) also implemented.

• PORTT pins

Configure individually as standard, parallel-port I/O pins, or as timer pins. For
standard parallel I/O pins, reading and writing are transparent, behaving like reading/
writing in typical RAM. For this configuration, assign the value 1 to the channel x bit
IOSx, in the TIOS register (for compare mode). Assign the value 0 to the OMx and
OLx bits of the TCL1 or TCTL2 register for Timer disconnected from output pin
logic mode/output action.

– Capture Stimulation on PORTT.

You can simulate rising- and falling-edge input signals on PPORT with the
Stimulate component (I/O Stimulation). In this case, PORTT is bit accessible via
non-memory-mapped I/O registers PORTTBit0 through PORTTBit7.

The stimulation example below periodically stimulates the PORTT bit 5 to
simulate an input capture.

def a = TIMER.PORTTBit5;

PERIODICAL 4000, 500:

 1000 a = 1;

 3000 a = 0;

END

Other user-designed I/O components also can set the PORTT bit value. Use the
OP_SetValue(“RegisterBlock.PORTTBit5”,¶meter,
NO_UPDATE); function (with parameter.n = 0 | 1).
314 S12(X) Debugger Manual

HC(S)12(X) Full Chip Simulation Connection
Supported HC(S)12(X) Derivatives
16-Bit Modulus Down-Counter
Table 10.24 shows the simulated registers and fields of the 16-bit modulus down-counter.

Serial Communication Interface (SCI)
This I/O Device simulates the two SCI signals SCI0 and SCI1. The non-memory-mapped
registers SCIInput/SCIInputH and SerialInput send characters to the SCI
Module. The non-memory-mapped registers SCIOutput/SCIOutputH and
SerialOutput contain the characters sent from the SCI Module.

Table 10.24 16-Bit Modulus Down-Counter Related Registers

Register
Acronym

Full Register Name Simulated
Fields

MCCTL 16-bit modulus down counter control register All bits except
ICLAT

MCCNT Modulus down-counter count register All

Capture / Compare Timer

TIOS Timer input capture/output compare select All

CFORC Timer compare force register All

TCNT Timer count register All

TCTL1/TCTL2 Timer control register - output All

TCTL3/TCTL4 Timer control register - input All

TMSK1 Timer interrupt mask 1 All

TMSK2 Timer interrupt mask 2 TOI
TCRE
PR2:0

TFLG1/TFLG2 Main timer interrupt flags All

TC0 to TC7 Timer input capture/output compare registers All
315S12(X) Debugger Manual

HC(S)12(X) Full Chip Simulation Connection
Supported HC(S)12(X) Derivatives
Table 10.26 contains information about the SCI input and output registers.

Table 10.25 Serial Communication Interface Related Registers

Register
Acronym

Full Register Name Simulated Fields

SC0BDH/
SC1BDH

SCI Baud Rate Register High SBR (bits 4:0) simulated
BTST, BSPL, and BRLD
(bits 7:5) reserved for test
functions

SC0BDL/
SC1BDL

SCI Baud Rate Register Low SBR (bits 7:0) simulated

SC0CR1/
SC1CR1

SCI Control Register 1 M (bit 4) simulated
ILT (bit 2) simulated
LOOPS, WOMS, RSRC,
WAKE, PE, and PT (bits
7:5, 3, 1:0) not simulated

SC0CR2/
SC1CR2

SCI Control Register 2 TIE,
TCIE,
RIE,
ILIE,
TE,
RE,
SBK (bits 7:2, 0) simulated;
RWU (bit 1) not simulated

SC0SR1/
SC1SR1

SCI Status Register 1 TDRE
TC
RDRF
IDLE
OR (bits 7:3) simulated;
NF, FE, and PF (bits 2:0)
not simulated

SC0SR2/
SC1SR2

SCI Status Register 2 RAF (bit 0) simulated;
bits 7:1 unused

SC0DRH/
SC1DRH

SCI Data Register High R8
T8 (bits 7:6) simulated

SC0DRL/
SC1DRL

SCI Data Register Low R7:0
T7:0 simulated
316 S12(X) Debugger Manual

HC(S)12(X) Full Chip Simulation Connection
Supported HC(S)12(X) Derivatives
Table 10.26 Input, Output, Serial Output Registers

Name Meaning Comment

SCIInput Non-memory-mapped register that
sends a character to the SCI. Read
access to the SCDR can read this
value.
System takes the ninth bit from the
SCIInputH register. Read access to
SCIInput has no specified meaning.

bits 7:0 — character sent to
the SCI

SCIInputH Non-memory-mapped register that
sends a character, the ninth bit, to the
SCI.
Write this register value before writing
the SCIInput register value. Read
access to SCIInputH has no specified
meaning.

bits 7:1 — unused
bit 0 — ninth bit sent to the
SCI

SCIOutput Non-memory-mapped register that
receives a character sent from the
SCI. Write access to the SCDR
triggers the value that the SCIOutput
receives.
SCIOutputH register receives the
ninth bit. Write access to SCIOutput
has no specified meaning.

bits 7:0 — character sent
from the SCI

SCIOutputH Non-memory-mapped register that
receives a character, the ninth bit,
sent from the SCI. Write access to
SCIOutput has no specified meaning.

bits 7:1 — unused
bit 0 — ninth bit sent from
the SCI

SerialInput Non-memory-mapped register is an
alias for the SCIInput register.
Connects the SCI to the terminal
window, but does not support the
ninth bit. A read access to SerialInput
has no specified meaning.

bits 7:0 — data sent from
terminal window to SCI

SerialOutput Non-memory-mapped register is an
alias for SCIOutput register.
Connects the SCI to the terminal
window, but does not support the
ninth bit. Write access to SerialOutput
has no specified meaning.

bits 7:0 — data sent from
SCI to terminal window
317S12(X) Debugger Manual

HC(S)12(X) Full Chip Simulation Connection
FCS Visualization Utilities
FCS Visualization Utilities
Besides components that give the Debugger engine a well-defined service dedicated to the
task of application development, the debugger component family includes utility
components that extend to the productive phase of applications, such as the host
application builder components, and process visualization components.

Among these components, there are visualization utilities that graphically display values,
registers, and memory cells, or provide an advanced graphical user interface to simulated
I/O devices, and program variables.

The following components of visualization utilities belong to the standard Debugger
installation.

WARNING! The following visualization components can only be used with the Full
Chip Simulation connection.

Stimulation Component
The Debugger also supports I/O Stimulation. Using this feature you can generate
(stimulate) interrupts or memory access generated by an external I/O device.

NOTE the True-Time I/O Stimulation section describes in detail and with example
how to take advantage of this component.

The Stimulation window component shown in Figure 10.12 provides the basic FCS
functionality. It serves to execute timed action and raise exception events. The Stimulation
component displays and executes I/O stimulation described in a text file.

Figure 10.12 Stimulation Window
318 S12(X) Debugger Manual

HC(S)12(X) Full Chip Simulation Connection
FCS Visualization Utilities
Stimulation Context Menu
Figure 10.13 shows functions associated with the Source component. Table 10.27
describes these functions.

Figure 10.13 Stimulation Context Menu

Cache Size
The Size of the Cache dialog box, shown in Figure 10.14, allows you to define the
number of lines displayed in the Stimulation component. Clear the Limited Size of Cache
checkbox to have an unlimited number of lines. Check the Limited Size of Cache check
box to limit the number of lines to the value displayed in the edit box. Specify a value
between 10 and 1,000,000. By default, the number of lines is 1000.

Figure 10.14 Size of the Cache Dialog Box

NOTE Increasing the cache size may slow performance.

Table 10.27 Stimulation Context Menu Description

Menu Entry Description

Open File Opens a dialog box to load a stimulation file.

Execute Starts execution of the input file.

Display Switches display of stimulated file on or off.

Cache size Opens the Size of the Cache dialog box.
319S12(X) Debugger Manual

HC(S)12(X) Full Chip Simulation Connection
FCS Visualization Utilities
Example of a Stimulation File
Using an editor, open the file named IO_VAR.TXT located in the project directory.
Listing 10.1 shows an example file.

Listing 10.1 Stimulation File Example

def a = TargetObject.#210.B;

PERIODICAL 200000, 50:
 50000 a = 128;
 150000 a = 4;
END
10000000 a = 0;

The first line defines the stimulated object, 1 byte wide, and located at address 0x210.

This code accesses the memory location 0x210 periodically 50 times, once 200000 cycles
have been executed (line 3). First the memory location is set to 128, and then 100000
cycles later, it is set to 4.

NOTE The True-Time I/O Stimulation section describes in detail and with examples
how to take advantage of this component.

Drag Out
Nothing can be dragged out.

Drop Into
Nothing can be dragged in.

Demo Version Limitations
Generates only 15 interrupts and memory accesses.

Terminal Component
Use the Terminal component window shown in Figure 10.15 to simulate input and output.
It can receive characters from several input devices and send them to other devices.
320 S12(X) Debugger Manual

HC(S)12(X) Full Chip Simulation Connection
FCS Visualization Utilities
Figure 10.15 Terminal Window

You can use a virtual SCI port provided by the framework for communication with the
target, but it is also possible to use the keyboard, the display, files or even the serial port of
your computer as I/O devices.

To control and configure a terminal component use the Terminal menu of the terminal
shown in Figure 10.16.

Figure 10.16 Terminal Menu and Context Menu

To open the context menu, right click in the terminal window.

Configure Terminal Connections
Using the terminal window, you can redirect characters received from any available input
device to any available output device. Specify these connections by choosing Configure
Connections in the context menu of the terminal component. This opens the dialog box
shown in Figure 10.17.
321S12(X) Debugger Manual

HC(S)12(X) Full Chip Simulation Connection
FCS Visualization Utilities
Figure 10.17 Configure Terminal Connections Dialog Box

You can choose one of the default configurations in the Default Configuration combo
box. In the Connections section, all active connections are listed in a list box. There you
can customize which input devices will be redirected to which output devices by adding
and removing connections.

To add a connection specify the source and target devices using the From and To combo
boxes and then click the Add button. The new connection will then appear in the list
below, which shows all active connections.

To remove connections, select them in the list of active connections and click the Remove
button.

In the Serial Port section you can specify which serial port to use and its properties. This
is only possible if there is at least one connection from or to the serial port.

If a connection from or to the virtual SCI port has been chosen it is also possible to specify
in the Virtual SCI section which ports will be taken as virtual SCI ports. This enables you
to make a connection to any port in the FCS framework.

Input and Output File
It is also possible to take a file as an input stream for the terminal component or redirect
the output to a file.

To use a file as an input stream, make sure there is at least one connection from the input
file to any output device. Then open an input file by choosing Input File from the context
menu. As soon as you click the OK button in the File Open dialog, input from the file
starts. The file closes as soon as the end of file is reached or as soon as you choose Close
Input File from the context menu.
322 S12(X) Debugger Manual

HC(S)12(X) Full Chip Simulation Connection
FCS Visualization Utilities
When the input file reaches the end a CTRL-Z character (ASCII code 26 decimal) is sent
to all output devices receiving characters from the input file to notify them that the file
transfer is complete.

Redirecting input devices to an output file requires a similar process. Make sure that you
have chosen your connections from input devices to the output file. Then open or create
your output file by choosing Output File from the context menu. If the file does not exist
it is created. Otherwise you can choose to overwrite or append the existing file. To stop
writing to the output file choose Close Output File from the context menu.

File Control Commands
It is also possible to open and close input and output files through special Escape
sequences in the data stream from serial port or virtual SCI. Table 10.28 illustrates the
possible commands and associated Escape sequences in which filename is a sequence of
characters terminated by a control character (e.g. CR) and is a valid filename. ESC is the
ESC Character (ASCII code 27 decimal).

You can give these commands in the data stream sent from the serial port or virtual SCI
port, but not from the input file or the keyboard. They only have an effect if there are any
connections reading from the input file or writing to the output file.

The TERM_Direct function declared in terminal.h is used to send such commands
from a target via SCI to the terminal. Listing 10.2 shows the source code in
terminal.c.

Table 10.28 Terminal File Control Commands

Escape Sequence Function

ESC “h” “1” Close output file.

ESC “h” “2” filename Open output file.

ESC “h” “3” filename Open output file and suppress output to terminal display.

ESC “h” “4” Close input file.

ESC “h” “5” filename Open input file.

ESC “h” “6” filename Append to existing output file.

ESC “h” “7” filename Append to existing output file; suppress output to terminal
display.
323S12(X) Debugger Manual

HC(S)12(X) Full Chip Simulation Connection
FCS Visualization Utilities
Listing 10.2 TERM_Direct Source Code

void TERM_Direct(TERM_DirectKind what, const char* fileName) {
 /* sets direction of the terminal */
 if (what < TERM_TO_WINDOW || what > TERM_APPEND_FILE) return;
 TERM_Write(ESC); TERM_Write('h');
 TERM_Write((char)(what + '0'));
 if (what != TERM_TO_WINDOW && what != TERM_FROM_KEYS) {
 TERM_WriteString(fileName); TERM_Write(CR);
 }
}

In the example, the parameter what is one of the following constants:

• TERM_TO_WINDOW: send output to terminal window

• TERM_TO_BOTH: send output to file and window

• TERM_TO_FILE: send output to file fileName

• TERM_FROM_KEYS: read from keyboard (close input file)

• TERM_FROM_FILE: read input from file fileName

• TERM_APPEND_BOTH: append output to file and window

• TERM_APPEND_FILE: append output to file fileName

See also terminal.h for further details.

How to Use Virtual SCI
In its default Virtual SCI configuration the terminal component accesses the target
through the Object Pool interface.

To make the terminal component work in this default configuration, the target must
provide an object with the name Sci0. If no Sci0 object is available, no input or output
happens. It is possible to check, through the Inspector component, if the environment
currently provides an Sci0 object.

NOTE Only some specific FCS components currently have an Sci0 object. For all
other FCS components the default virtual SCI port does not work unless a user-
defined Sci0 object with the specified register name is loaded.

Write access to the target application is done with the Object Pool function OP_SetValue
at the address Sci0.SerialInput.

Input from the target application is handled with a subscription to an Object Pool register
with the name Sci0.SerialOutput. When this register changes (sends a
notification), a new value is received.
324 S12(X) Debugger Manual

HC(S)12(X) Full Chip Simulation Connection
True-Time I/O Stimulation
For implementations of this register with help of the IOBase class, use the
IOB_NotifyAnyChanges flag. Otherwise only the first of two identical characters are
received.

It is also possible to configure the terminal to use another object in the Object Pool instead
of Sci0 with which to communicate. Refer to Configure Terminal Connections for
information about where you can do this.

Cache Size
The item Cache Size in the context menu allows you to set the number of lines in the
terminal window with the dialog shown in Figure 10.18.

Figure 10.18 Size of the Cache Dialog Box

True-Time I/O Stimulation
Use the FCS I/O Stimulation component to trigger I/O events. With the Stimulation
component loaded, interrupts and register modifications invoked by the hardware can be
simulated. This tutorial introduces and explains examples of stimulation files.

Click any of the following links to jump to the corresponding section of this chapter:

• Stimulation Program Examples

• Stimulation Input File Syntax

Stimulation Program Examples
The following examples demonstrate several uses of true-time I/O stimulation.

Running an Example Program Without
Stimulation
1. Run the debugger with the FCS connection.

Figure 10.19 shows the Main window.
325S12(X) Debugger Manual

HC(S)12(X) Full Chip Simulation Connection
True-Time I/O Stimulation
Figure 10.19 FCS I/O-Simulation Main Window

2. Choose Simulator > Set > Sim.

3. Choose Component > Open > Visualizationtool.

Figure 10.20 shows the LED instruments within Visualization Tool component.

Figure 10.20 Configure LED Instrument

4. Choose Visualization Tool > Add New Instrument > Analog instrument.

Figure 10.21 shows the Analog instrument.
326 S12(X) Debugger Manual

HC(S)12(X) Full Chip Simulation Connection
True-Time I/O Stimulation
Figure 10.21 Analog Instrument

5. Choose Simulator > Load io_demo.abs.

6. Choose Run > Start/Continue or click the green arrow icon.

7. If the program halts in startup, click the Start/Continue command again.

8. Choose Run > Halt to stop execution after a few seconds.

The Analog instrument is a view linked to a specific memory location in TargetObject. In
the source code of the test program, you can find a variable associated with it:

#define PORT_DATA (*((volatile unsigned char *)0x0210))/* Value
with range 0..255 */

The Template component polls this value and displays it in a speedometer-like graphic.

The IO_Show procedure in io_demo.c, shown in Listing 10.3, this value is
incremented or decremented, depending on the raise direction. The raise direction depends
on a global variable dir that is returned when the top or bottom value is reached.

Listing 10.3 IO_Show Procedure in io_demo.c

static void IO_Show(void) {
 for (;;) { // endless loop
 dir = 1;
 do {
 Delay();
 PORT_DATA++;
 } while ((dir == 1) && (PORT_DATA != 255));
 dir = -1;
 do {
 Delay();
 PORT_DATA--;
 } while ((dir == -1) && (PORT_DATA != 0));
 }
}

327S12(X) Debugger Manual

HC(S)12(X) Full Chip Simulation Connection
True-Time I/O Stimulation
Example Program with Periodical Stimulation of
a Variable
1. Choose Simulator > Reset.

2. Choose Simulator > Load Io_demo.abs.

3. Choose Component > Open > Stimulation

Figure 10.22 shows the Stimulation component.

Figure 10.22 Stimulation Component Window

4. Activate Stimulation Window by clicking on it.

5. Choose Stimulation > Open File io_var.txt.

6. Choose Stimulation > Execute.

7. Choose Run > Start/Continue.

The Stimulation component executing io_var.txt accesses TargetObject at address
0x210 associated with PORT_DATA in the source. You can observe this by watching the
Template component. The arrow is not continuously rising, but jumping around. The
value of PORT_DATA is now handled from the Stimulation component.

Using an editor, open the file named io_var.txt in the FCS demo directory. This file
looks like Listing 10.4.

Listing 10.4 io_var.txt

/* Define an identifier a, which is located at address 0x210*/
/* This identifier is 1 Byte wide.*/
def a = TargetObject.#210.B;

/* After 200 000 cycles have expired, repeat 50 time */
/* the code sequence specified between the keywords */
/* PERIODICAl and END. */
PERIODICAL 200000, 50:
 50000 a = 128; /* After 50 000 cycles, write 128 at address 0x210. */
 150000 a = 4; /* After 150 000 cycles, write 4 at address 0x210. */
END
328 S12(X) Debugger Manual

HC(S)12(X) Full Chip Simulation Connection
True-Time I/O Stimulation
10000000 a = 0; /* After 10 000 000 cycles, write 0 at address 0x210. */

First, the simulated object is defined. This object is located at address 0x210 and is 1 byte
wide. Once 200,000 cycles have been executed, the memory location 0x210 is accessed
periodically 50 times. First the memory location is set to 128, then 100,000 cycles later, it
is set to 4.

Example Program with Stimulated Interrupt
1. Choose Simulator > Reset.

2. Activate Stimulation Window by clicking on it.

3. Choose Stimulation > Open File io_int.txt.

4. Select the Source component window.

5. Choose Source > Open Module io_demo.c.

6. Scroll into the procedure Interrupt_Routine.

7. Set a breakpoint in the Interrupt_Routine as shown below.

Figure 10.23 shows the Source component window.

Figure 10.23 Source Component Window

8. Activate Stimulation Window by clicking on it.

9. Choose Stimulation > Execute.

10. Choose Run > Start/Continue.

After about 300,000 cycles the FCS stops on the breakpoint in the interrupt routine and the
corresponding source line is highlighted. The interrupt has been called. Start the FCS. It
stops approximately each 100,000 cycles on the same breakpoint. Restart and repeat these
329S12(X) Debugger Manual

HC(S)12(X) Full Chip Simulation Connection
True-Time I/O Stimulation
actions until 1,200,000 cycles. Start again; the FCS runs until 10,000,000 cycles and stops
on the breakpoint. Start the FCS. It continues to run. The stimulation is finished.

The interrupts have been invoked by the Stimulation component source io_int.txt.
Listing 10.5 shows the listing of the Stimulation file.

Listing 10.5 io_int.txt

def a = TargetObject.#210.B;

PERIODICAL 200000, 10:
 100000 RAISE 7, 3, "test_interrupt";
END

10000000 RAISE 7, 3, "test_interrupt";

In the first line, the stimulated object is defined. The interrupt is raised periodically 10
times. The RAISE command takes the number of the interrupt in the interrupt vector map
as the first argument. This number 7 in our example is arbitrarily chosen. To export this
example to a different target processor, take a look at the interrupt vector map in the
technical data manual of the matching MCU. Using an editor, open the io_demo.prm
file in the same demo directory. You can see at the end of this file how to set the interrupt
vector (adapt it to your needs).

VECTOR 7 Interrupt_Function /* set vector on Interrupt 7 */

If the interrupt vector address is not specified in the prm file, the FCS stops when an
interrupt is generated. The exception mnemonic (matching the interrupt vector number) is
displayed in the FCS status bar.

The second argument specifies the interrupt priority and the third argument is a free
chosen name of the interrupt.

The file io_int.txt is used to generate 11 interrupts. Ten periodical interrupts are
generated every 100’000 CPU cycles from 200’000 + 100’000 = 300’000 to 1’200’000
CPU cycles. A last one is generated when the number of CPU cycles reaches 10’000’000.

Example of a Larger Stimulation File
Listing 10.6 contains this example and is commented below. This example file may not
work as expected if the variables defined here do not refer to a port in TargetObject. In our
example, we have only defined the objects TargetObject.#210 and #212 over the
LED instrument. Definitions of b, c and pbits are only here for illustration. Remove these
definition lines and the lines that refer to them, if the example presented here is not
executable.
330 S12(X) Debugger Manual

HC(S)12(X) Full Chip Simulation Connection
True-Time I/O Stimulation
Listing 10.6 Example File io_ex.txt.

def a = TargetObject.#210.B;
def x = TargetObject.#212;
def b = TargetObject.#216.W;
def c = TargetObject.#220.L;
def pbits = Leds.Port_Register.B[7:3];

#10000 pbits = 3;
20000 a = 0;
+20000 b = pbits + 1;

PERIODICAL 100000, 10:
 10000 a = 128;
30000 RAISE 7, 3, "test_interrupt";
END

1000000 RAISE 7, 3, "test_interrupt";

Detailed Explanation

def a = TargetObject.#210.B;

This code defines a as byte mapped at address 0x210 in TargetObject.

def x = TargetObject.#212;

This code defines x as byte mapped at address 0x212 in TargetObject. Size can be
omitted. .B for byte is default.

def b = TargetObject.#216.W;

This code defines b as word (.W) mapped at address 0x216 in TargetObject.

def c = TargetObject.#220.L;

This code defines c as long (.L) mapped at address 0x220 in TargetObject.

def pbits = Leds.Port_Register.B[7:3];

This code defines pbits as bits 5, 6 and 7 in the byte (.B) register named Port_Register
in LEDs. (In the Full Chip Simulation, names of target objects can be specified. In our
example, it is the name of the port register defined by the IO-LED component).
331S12(X) Debugger Manual

HC(S)12(X) Full Chip Simulation Connection
True-Time I/O Stimulation
#10000 pbits = 3;

This code sets the three bits of LEDs. Port_Register accessed with pbits to binary 011.
Other bits are unaffected. The new value of Port_Register will be 0x75, if the initial value
was 0x55. Values outside the valid BitRange of pbits are truncated (in this example only
values from 0 to 7 are allowed for pbits). The # means that the time of execution of the
instruction is 10000 cycles after the start of the simulation.

20000 a = 0;

This code sets a to 0. Without # or + in front of the time marker, the time refers to the
absolute time after starting execution of the Stimulation file.

NOTE In a periodical loop, the time marker without operator is interpreted as +.

+20000 b = pbits + 1;

This code reads pbits (three bits in Leds. Port_Register), increments this value
and writes it to b. The + in front of the time marker refers to the time relative to the last
encountered time value in the Stimulation file.

PERIODICAL 100000, 10:

This code executes the following block10 times.

 10000 a = 128;
 30000 RAISE 7, 3, "test_interrupt";

Execution starts 100000 cycles after the start of the simulation.

10000 a = 128;

This code assigns 128 to a, 10000 cycles after each start of the periodical event.

30000 RAISE 7, 3, "test_interrupt";

This code raises an interrupt with priority 3 with vector number 7, 40000 cycles after each
start of the periodical event. The time specification in the PERIODICAL loop is always
relative. So 30000 means +30000. The raised interrupt has the name test_interrupt. This
name is not important for the interrupt functionality.
332 S12(X) Debugger Manual

HC(S)12(X) Full Chip Simulation Connection
True-Time I/O Stimulation
END

This code indicates the end of the periodical block. The block is looped again after
finishing, so the loop restarts after 10000 + 30000 = 40000 cycles.

1000000 RAISE 7, 3, "test_interrupt";

This code raises the interrupt for the last time. This instruction marks the terminating point
of the Stimulation, if there are no pending periodical events left.

Stimulation Input File Syntax
This section details the input file syntax required by the FCS.

EBNF

StimulationFile = { IdDeclaration | TimedEvent | PeriodicEvent }.
IdDeclaration = “def” ObjectId “=” ObjectField “;”.
ObjectField = ObjectSpec [“[” BitRange “]”].
BitRange = StartBit “:” NoOfBits.

TimedEvent = [“+” | “#”] Time AssignmentList.
AssignmentList = { Assignment | Exception}.

PeriodicEvent = “PERIODICAL” Start “,” NbTimes “:” { PerTimedEvent }
“END” .
PerTimedEvent = [“+”] Time AssignmentList .

Exception = “RAISE” Vector “,” Priority [“,” ArbPrio] [“,” Name] “;” .
Assignment = (ObjectId | ObjectField) “=” Expression “;”.

Name = ““” {character} “”” .

• Expression = a standard ANSI-C expression. The expression accepts object
identifiers previously defined (ObjectSpec and ObjectField).

• Time = a number which represents a number of cycle.

• ObjectSpec = the name of an object as defined in Requirement specification for
Object Pool.

• Vector = the exception vector number.

• Priority = the exception priority number.
333S12(X) Debugger Manual

HC(S)12(X) Full Chip Simulation Connection
Electrical Signal Generators and Signals Application to Device Pins
• ArbPrio = the arbitration priority of the exception.

• Start = the number of cycle when the periodical event must be called for the first
time after the initial time.

• NbTimes = the number of time the periodical event has to be called (0 = infinity).

Remarks
• Omitting bitRange affects all bits of the object register. Specifying bitRange applies

the mask defined by this bitRange to the value calculated with the Expression. This
value affects only the bits of the object register defined in the bitRange.

• Bits are numbered from right to left (in a byte, bit 7 is the left-most bit). So in
bitRange, noOfBits is always less than or equal to StartBit +1.

• ObjectSpec is defined in Requirement specification for Object Pool as below:

ObjectSpec ::= ObjectName [“.” FieldName].
ObjectName ::= Ident [“:” Index].
FieldName ::= IdentNum ([“..” IdentNum] | [“.” Size]).
IdentNum ::= Ident | “#“ HexNumber.
Size ::= “B” | “W” | “L”.

• The identifiers declared in IdDeclaration are stored in a table of identifiers and can
be also used in Expression.

• If “#” is specified, the time is absolute: it is the number of cycles since FCS began.

• If “+” is specified, the time is relative to the previous time specification.

• If nothing is specified, time is the number of cycles since execution of the
Stimulation file.

• If size is omitted, the default size is byte (B).

• The periodical event is sent for the first time at initial time + start + time specified in
periodical timed event.

• In the PerTimedEvent declaration, the “+” is optional. If specified or not, the
following time is interpreted exactly the same way.

• The periodical events are not displayed in the stimulation screen.

Electrical Signal Generators and Signals
Application to Device Pins

This section describes the FCS-relevant signal generators and device pins.
334 S12(X) Debugger Manual

HC(S)12(X) Full Chip Simulation Connection
Electrical Signal Generators and Signals Application to Device Pins
Signal IO Component
This Signal IO is the first implementation of a Signal Generator reading a file describing
(electrical) levels, in real debugger time. Levels are applied and available at a virtual IO
pin called SignalPin as float value.

Levels are programmed one after the other during the debugger internal FCS Event queue.

If level durations are smaller then cycle time or smaller than cycles, undersampling is
performed in the signal file.

Up to 16 Signal Generators can be run at the same time.

Signal Description File EBNF
This section shows the signal file format and some example signal files.

Signal File Format
FILELOOP=<INF| nbr of file loops to perform> {signal block}*

EOF

Signal Block Description
{signal header}

{signal data}

Signal Header Description
LOOP=<INF| nbr of file loops to perform>

TIMEUNIT=<NONE|CYCLES|SECONDS>

TIMEFACTOR=<double value>

GAIN=<double value>

DCOFFSET=<double value>

OPTION=NORMAL|ONLYPOSITIVE|ONLYNEGATIVE|ABSOLUTE

Signal Data Description
{<level double value> [<time double value (duration in
seconds or cycles)>]}*

File Example 1

FILELOOP=INF
335S12(X) Debugger Manual

HC(S)12(X) Full Chip Simulation Connection
Electrical Signal Generators and Signals Application to Device Pins
LOOP=4
TIMEUNIT=SECONDS
TIMEFACTOR=0.5
GAIN=1
DCOFFSET=0
OPTION=NORMAL
0.000000e+000 3.051758e-005
3.051758e-005 3.051758e-005
6.103516e-005 3.051758e-005
9.155273e-005 3.051758e-005
1.220703e-004 3.051758e-005
1.525879e-004 3.051758e-005
1.831055e-004 3.051758e-005
LOOP=16
TIMEUNIT=SECONDS
TIMEFACTOR=3.6
GAIN=-4.2
DCOFFSET=2.5
OPTION=NORMAL
2.136230e-004 3.051758e-005
2.441406e-004 3.051758e-005
2.746582e-004 3.051758e-005
3.051758e-004 3.051758e-005
3.356934e-004 3.051758e-005
3.662109e-004 3.051758e-005
EOF

File Example 2

FILELOOP=INF
LOOP=INF
TIMEUNIT=NONE
TIMEFACTOR=0.5
GAIN=1
DCOFFSET=0
OPTION=NORMAL
-5
5
2
8
-0.4e-3
300
123
EOF
336 S12(X) Debugger Manual

HC(S)12(X) Full Chip Simulation Connection
Electrical Signal Generators and Signals Application to Device Pins
File Parameters
Table 10.29 shows the available file parameters.

Signal IO Usage
The Signal IO can handle 16 signals at the same time. Each signal block is independent in
parameters and options from other blocks. Open the Signal component within the Open I/
O Component Dialog Box or with the openio signal command. Release the Signal
component within the same dialog or with the close signal command. See Signal
Commands for specific Signal IO commands.

Table 10.29 Signal Description File Parameters

Parameter Description

LOOP/FILELOOP INF means infinite loop. If a block is INF, scanning stays in
this block till the IO is closed or CLOSESIGNALFILE
command is executed.
If a number is specified, scanning loops through the block that
number of times.

TIMEUNIT CYCLES means that the second data field is specified in
cycles.
SECONDS means that the second data field is specified in
seconds.
-NONE means that the second data field does not exist and
the data time unit is forced to 1s. Adjust the data time unit by
the TIMEFACTOR parameter.

TIMEFACTOR At event programming, multiplies the number of cycles or time
duration by this factor.

GAIN At Pin level setup, multiply the level by this gain.

DCOFFSET At Pin level setup, level offset specified after gain is applied.

OPTION NORMAL: do nothing.
ONLYPOSITIVE: at Pin level setup, after gain and offset, set 0
if signal level < 0.
ONLYNEGATIVE: at Pin level setup, after gain and offset, set 0
if signal level > 0.
ABSOLUTE: at Pin level setup, after gain and offset, set
|signal level|.
337S12(X) Debugger Manual

HC(S)12(X) Full Chip Simulation Connection
Electrical Signal Generators and Signals Application to Device Pins
Base Signal Files Provided
You can reuse the base signal files shown in Table 10.30 to create more complex signal
descriptions. These files are usually stored in the prog\FCSsignals folder of the
debugger installation path.

Table 10.30 Base Signal Files

File Properties

saw_11bit_0_5v_1Hz.txt • Sawtooth signal

• 11-bit sampling definition

• Scaled on a 1 Hz frequency

• 0 to 5 Volts voltage range.

saw_8bit_0_5v_1kHz.txt • Sawtooth signal

• 8-bit sampling definition

• Scaled on a 1000 Hz frequency

• 0 to 5 Volts voltage range.

sinus_11bit_0_5v_1Hz.txt • Sinus signal

• 11-bit sampling definition

• Scaled on a 1 Hz frequency

• 0 to 5 Volts voltage range.

sinus_8bit_0_5v_1kHz.txt • Sinus signal

• 8-bit sampling definition

• Scaled on a 1000 Hz frequency

• 0 to 5 Volts voltage range.

square_1_5v_1Hz.txt • Pure square signal

• Scaled on a 1 Hz frequency

• 1 volt at low level

• 5 volts at high level.

square_1_5v_1kHz.txt • Pure square signal

• Scaled on a 1000 Hz frequency

• 1 volt at low level

• 5 volts at high level.
338 S12(X) Debugger Manual

HC(S)12(X) Full Chip Simulation Connection
FCS Tutorials
Virtual Wire Connections with the Pinconn
IO Component
This section explains making virtual wire connections using the Pinconn IO Component.

Pinconn IO
Use the Pinconn IO component to create virtual links/shortcuts between processor device
pins, like a simple wire. Open the Pinconn component within the Open I/O Component
Dialog Box or with the openio pinconn command. Release the Pinconn component
within the same dialog or with the close pinconn command. See Pinconn Commands
for the Pinconn IO commands.

WARNING! It is up to the user to properly connect input pins to output pins without
bus or level conflicts.

Command Set to Apply Signal on ATD Pin
The following example loads the Pinconn and Signal IO components, and creates a signal
generator generating the signal described in square_1_5v_1kHz.txt. The generator
output signal pin is connected to the on-chip ADC via the PAD0 pin.

openio Pinconn
openio Signal
setsignalfile 0 "square_1_5v_1kHz.txt"
connect "SignalGenerator0.SignalPin","Atd0.PAD0"

FCS Tutorials
This chapter contains a tutorial on how to use the Full Chip Simulation. The tutorial is
split up into small steps. After completing the last step a fully functional example exists.

This chapter contains the following sections:

• Guess the Number

• PWM Channel 0

Guess the Number
In this tutorial, we create, step by step, the demonstration run in the executive tutorial. The
application uses the SCI and a terminal window from the debugger. At the end the user
339S12(X) Debugger Manual

HC(S)12(X) Full Chip Simulation Connection
FCS Tutorials
can guess a number between 0 and 9, using the Terminal window. The final application
runs on real hardware as well.

Environment Setup
• The tutorial uses Processor Expert. You can get a free Processor Expert license

(Special Edition) at www.codewarrior.com.

• To run the example on real hardware, you need a serial cable. This cable must
connect COM1 (PC) with the SCI0 (Hardware Board).

Create the project
1. Launch the CodeWarrior IDE.

2. In the CodeWarrior menu, Select File > New Project.

3. Select HCS12 > HCS12D Family > MC9S12DP256B derivative in HC(S)12X
Microcontrollers New Project window.

4. Select Full Chip Simulation connection and click Next to proceed.

5. Select C for the language and enter a project name like MyGuessTheNumber.

6. Change the directory if you want (Location > Set) and click Next.

7. Add existing files to the project if required and click Next.

8. Select Processor Expert radio button from the rapid application developement
options and click Next.

9. Select ANSI startup code, Banked memory model, and float is IEEE 32 and
double is IEEE 32 and click Next.

10. Select No for PCLint support and click Finish.

This creates a new project with Processor Expert available. Several windows are
visible:
340 S12(X) Debugger Manual

HC(S)12(X) Full Chip Simulation Connection
FCS Tutorials
Figure 10.24 Created Project

Target CPU Window
The Target CPU window in the center shows a footprint of the processor selected for the
development. In the device, we see the different on-chip modules such as CPU, Timer, and
ADC. Modules with an icon attached to them are modules used by the application. The
pins used to connect external functions are indicated by a line and an icon symbol of the
function attached (CPU and Port A).
341S12(X) Debugger Manual

HC(S)12(X) Full Chip Simulation Connection
FCS Tutorials
Figure 10.25 Target CPU Window

Optional:

• Place the cursor on the pins to see a description of their functions.

• Enlarge the Target CPU window to see different on-chip modules.

Bean Selector Window
The Bean Selector window offers the developer a list of beans to add to the project. Some
of the beans may not be usable with some versions of the CodeWarrior IDE. The Standard
and Professional Editions offer a wider range of hardware and software beans than the
Special Edition.

• Select Bean Categories > CPU internal peripherals > Communication >
AsynchroSerial.
342 S12(X) Debugger Manual

HC(S)12(X) Full Chip Simulation Connection
FCS Tutorials
Figure 10.26 Bean Selector Window - Selection of AsynchroSerial Bean

Project Panel Window
The Project Panel window shows and keeps track of the beans that have been created for
this application. This Panel is a tab of the Project Manager window. A click on the [+]
next to a bean shows a list of methods and/or events related to the bean. A green
checkmark indicates whether the named methods or event is selected and a red cross
indicates that code has not been generated.

Figure 10.27 Project Window - Processor Expert Tab

The Beans folder shows the previously created bean with the name AS1:AsynchroSerial.
343S12(X) Debugger Manual

HC(S)12(X) Full Chip Simulation Connection
FCS Tutorials
Bean Inspector AS1:AsynchroSerial Window
In this window you can modify the behavior of the bean to your needs. Use the Properties
tab to make general settings. Use the Methods and Events tabs to modify software
drivers.

1. Select the Properties tab

2. Enter a proper baud rate.

To run on real hardware, check your board manual for the right value. To run on FCS
only, enter 9600.

Figure 10.28 Bean Inspector Window

Generation of Driver Code
Next, generate the code for the I/O drivers and the files for the user code.

• Select the Make icon in the Project Manager window (or the menu bar Project >
Make or [F7]).

Processor Expert shows several messages. One message indicates that we have started
the code generation. The second message shows the progress with the information
processed and the code generated. Another window shows compiling and linking
progress.
344 S12(X) Debugger Manual

HC(S)12(X) Full Chip Simulation Connection
FCS Tutorials
Verification of Files Created
We can verify the folders created by Processor Expert.

User Modules
A file called MyGuessTheNumber.C is the placeholder for the main procedure and any
other procedure desired by the user. You can also place these other procedures in
additional files.

Generated Code
The .C files for the code associated with the beans are added to the project. This includes
initialization, input, output and the declarations necessary for the use of the functions.

Entering User Code
1. Open the user module MyGuessTheNumber.C

2. Insert the following code before the main routine:

#include <stdlib.h>
void PutChar(unsigned char c) {
 while (AS1_SendChar(c) == ERR_TXFULL) {
 // could wait a bit here
 }
}
void PutString(const char* str) {
 while (str[0] != '\0') {
 PutChar(str[0]);
 str++;
 }
}

void GuessTheNumber(void) {
 int ran = rand() / (RAND_MAX / 9);
 AS1_Init();

 PutString("Guess a Number between 0 and 9\n");
 PutString("Number: ");
 for (;;) {
 unsigned char c;
 if (AS1_RecvChar(&c) == ERR_OK) {
 PutChar(c); PutChar(' ');
 if(c < '0' || c > '9') {
 PutString("not a number, try again\n");
 } else if(c == ran + '0') {
 PutString("\nCongratulation! You have found the number!");
345S12(X) Debugger Manual

HC(S)12(X) Full Chip Simulation Connection
FCS Tutorials
 PutString("\nGuess a new number\n");
 ran = rand() / (RAND_MAX / 9);
 } else if(c > ran + '0') {
 PutString("lower\n");
 } else {
 PutString("greater\n");
 }
 PutString("Number: ");
 } else {
 // could wait a bit here
 }
 } // for
}

3. Call the function GuessTheNumber in the main routine.

void main(void) {
 /*** Processor Expert internal initialization. DON'T REMOVE THIS
CODE! ***/
 PE_low_level_init();
 /*** End of Processor Expert internal initialization. ***/

 /*Write your code here*/
 GuessTheNumber();

 /*** Processor Expert end of main routine. DON'T MODIFY THIS CODE!
***/
 for(;;);
 /*** Processor Expert end of main routine. DON'T WRITE CODE BELOW!
***/
} /*** End of main routine. DO NOT MODIFY THIS TEXT! ***/

Run the Application
The application is now finished and we can launch it. Make sure you have chosen the FCS
connection.

1. Select the Debug icon in the Project Manager window (or the menu bar Project >
Debug or [F5]).

2. Select Component > Open in the debugger and open the Terminal component.

3. Select the Save icon in debugger (or the menu bar File > Save Configuration) to save
the window layout.

4. Select the Debug icon in debugger (or the menu bar Run > Start/Continue or [F5]).
346 S12(X) Debugger Manual

HC(S)12(X) Full Chip Simulation Connection
FCS Tutorials
Figure 10.29 Debugger Main Window - Final Application

PWM Channel 0
We are going to create, step by step, the demo run in the executive tutorial. The application
makes use of the Pulse Width Accumulator (PWM). With the final application you will be
able to change the period and duty time of the PWM and see the changes displayed in a
chart.

Environment Setup
• The tutorial uses Processor Expert. You can get a free Processor Expert license

(Special Edition) from www.codewarrior.com.

Creating the Project
1. Launch the CodeWarrior IDE.

2. In the CodeWarrior menu, Select File > New Project.

3. Select HCS12 > HCS12D Family > MC9S12DP256B derivative in HC(S)12X
Microcontrollers New Project window.

4. Select Full Chip Simulation connection and click Next to proceed.

5. Select C for the language and enter a project name like MyPWMChannel0.

6. Change the directory if you want (Location > Set) and click Next.

7. Add existing files to the project if required and click Next.

8. Select Processor Expert radio button from the rapid application developement option
and click Next.

9. Select ANSI startup code, Banked memory model, and None for floating point
support and click Next.

10.Select No for PCLint support and click Finish.

The IDE creates a new project with the Processor Expert available. Several windows
will be visible:
347S12(X) Debugger Manual

HC(S)12(X) Full Chip Simulation Connection
FCS Tutorials
Target CPU Window
The Target CPU window in the center shows a footprint of the processor selected for the
development. In the device, we see the different on-chip modules such as CPU, Timer, and
ADC. Modules with an icon attached to them are modules used by the application. The
pins that are used to connect external functions are indicated by a line and an icon, symbol
of the function attached (CPU and Port A).

Optional:

• Place the cursor of the mouse on the pins to see a description of their functions.

• Enlarge the Target CPU window and you will see different on-chip modules.

Creating PWM Bean
• Select Bean Categories > CPU internal peripherals > Timer > PWM

Project Panel Window
The Project Panel window shows and keeps track of the beans that have been created for
this application. This Panel is a tab of the Project Manager window. A click on the [+]
next to a bean shows a list of methods and/or events related to the bean. A green
checkmark indicates if the named methods or event is selected and a red cross indicates
that code has not been generated.

Locate the previously created bean, with the name PWM8:PWM, under Beans.

Bean Inspector PWM8.PWM
In this window you can modify the behavior of the bean to your needs. Modify general
settings in the Properties tab. Modify software drivers under the Methods tab and the
Events tab.

1. Select Properties tab

2. Select Period and enter 100 ms

3. Select Starting pulse width and enter 10 ms

Generate Driver Code
Now we will generate the code for the I/O drivers and the files for the user code.

• Select the Make icon in the Project Manager window (or the menu bar Project >
Make or [F7]).

Processor Expert displays several messages. One message indicates that we have started
the code generation. The second message shows the progress with the information
348 S12(X) Debugger Manual

HC(S)12(X) Full Chip Simulation Connection
FCS Tutorials
processed and the code generated. Another window shows compiling and linking
progress.

Verification of Files Created
We can verify the folders created by Processor Expert.

User Modules
A file MyPWMChannel0.C is the placeholder for the main procedure and any other
procedure desired by the user. These other procedures can be placed in additional files.

Generated Code
The .C files for the code is associated with the beans added to the project. This includes
initialization, input, output and the declarations necessary for the use of the functions.

Entering User Code
• Open the user module MyPWMChannel0.C

• Replace the main routine with the following code:

volatile static byte pwmChannel[1];
volatile static unsigned int pwmRatio= 6939;
void main(void) {
 /*** Processor Expert internal initialization. DON'T REMOVE THIS
CODE! ***/
 PE_low_level_init();
 /*** End of Processor Expert internal initialization. ***/

 /*Write your code here*/
 for(;;) {
 pwmChannel[0]= PTP_PTP0;
 void)PWM8_SetRatio16(pwmRatio);
 }

 /*** Processor Expert end of main routine. DON'T MODIFY THIS CODE!
***/
 for(;;);
 /*** Processor Expert end of main routine. DON'T WRITE CODE BELOW!
***/
} /*** End of main routine. DO NOT MODIFY THIS TEXT! ***/
349S12(X) Debugger Manual

HC(S)12(X) Full Chip Simulation Connection
FCS Tutorials
Run the Application
The application is now finished and we can launch it. Make sure you have chosen the FCS
connection.

1. Select the Debug icon in the Project Manager window (or the menu bar Project >
Debug or [F5]).

2. Select Component > Open in the debugger and open the VisualizationTool
component.

VisualizationTool Properties
In the following paragraphs we create a visualization for our project. Make all changes in
the VisualizationTool window. Make sure that you are in the Edit mode (switch with
Right mouse click > Edit Mode or [Ctrl-E]).

1. Right mouse click > Properties

2. For Refresh Mode select CPU Cycles

3. For Cycle Refresh Count select 10000

Chart Properties
Now add a chart, in which we can see the changing value of the channel in a graphic.

1. Right mouse click > Add New Instrument > Chart

2. Double click on the Chart to see the Chart Properties

3. Select Expression for Kind of Port

4. Select pwmChannel[0] for Port to Display

5. Select 2 for High Display Value

6. Select Target Periodical for Type of Unit

7. Select 1000 for Unit Size

8. Select 1000 for Numbers of Units

Leave all others on default.

Period Bar Properties
With the bar we can change the period value of the PWM channel 0.

1. Right mouse click > Add New Instrument > Bar

2. Double click on the Bar to see the Bar Properties.

3. Select Variable for Kind of Port
350 S12(X) Debugger Manual

HC(S)12(X) Full Chip Simulation Connection
FCS Tutorials
4. Select _PWMPER01.Overlap_STR.PWMPER0STR.Byte for Port to Display

Leave all others on default.

You might add labels with Right mouse click > Add New Instrument > Static Text.

Duty Time Bar Properties
Now add a bar to change the duty time.

1. Right mouse click > Add New Instrument > Bar

2. Double click on the Bar to see the Bar Properties.

3. Select Variable for Kind of Port

4. Select pwmRatio for Port to Display

5. Select 65535 for High Display Value

Leave all others on default.

Run the Application
Now let’s leave the Edit mode and run the final application. First we save the window
layout.

1. Right mouse click > Edit Mode (or [Ctrl-E])

2. Select the Save icon in debugger (or the menu bar File > Save Configuration) to save
the window layout.

3. Select the Debug icon in debugger (or the menu bar Run > Start/Continue or [F5]).
351S12(X) Debugger Manual

HC(S)12(X) Full Chip Simulation Connection
FCS Tutorials
Figure 10.30 Debugger Main WIndow - Final Application
352 S12(X) Debugger Manual

11
P&E Multilink/Cyclone Pro
Connection

This section contains information to assist you with the P&E Multilink/Cyclone Pro
connection.

P&E Multilink/Cyclone Pro Technical
Considerations

P&E Microcomputer Systems supplies many of the debug cables that can be used to
connect the 8/16-bit debugger (and the CodeWarrior IDE) to the HCS12 hardware. When
the debugger runs the P&E Multilink/Cyclone Pro connection, it communicates and
debugs CPU12 (HC12), HCS12, HCS12X and XGATE core-based hardware connected
through the P&E USB BDM Multilink, P&E Cyclone Pro (via USB, Serial and TCP/IP
ports).

NOTE All recent P&E hardware interfaces, such as the P&E USB BDM Multilink and
Cyclone Pro, are fast enough to debug devices with a bus speed of up to
40Mhz.

To use the P&E USB BDM Multilink, the drivers from P&E must be installed on the host
computer.

NOTE The P&E Multilink/Cyclone Pro connection also works with Freescale
development boards with an integrated debug circuit based on Open Source
BDM.

Connection Menu
Setting the P&E Multilink/Cyclone Pro connection changes the connection menu entry in
the debugger main toolbar to HC12MultilinkCyclonePro.
353S12(X) Debugger Manual

P&E Multilink/Cyclone Pro Connection
Connection Menu
HC12MultilinkCyclonePro Menu Options
Figure 11.1 shows MultilinkCyclonePro menu options and Table 11.1 describes menu
entry use.

Figure 11.1 MultilinkCyclonePro Menu Options

Table 11.1 MultilinkCyclonePro Menu Description

Menu Entry Description

Load Displays Load Executable File Dialog Box (see Load Executable File
Window).

Reset Resets project hardware and software.

Setup... Displays P&E Multilink/Cyclone Pro Setup dialog box (see Setup
Menu Option).

Communication
...

Displays P&E HC(S)12 Connection Manager dialog box (see
Communication/Connect Menu Option).

Set Derivative Displays Set Derivative dialog box, which allows you to choose target
MCU for P&E Multilink/Cyclone Pro connection (see Figure 11.2).
354 S12(X) Debugger Manual

P&E Multilink/Cyclone Pro Connection
Connection Menu
Command Files Displays Connection Command Files window. Each tab allows
access to a different set of connection command files:

.\cmd\P&E_Multilink_CyclonePro_startup.cmd

.\cmd\P&E_Multilink_CyclonePro_reset.cmd

.\cmd\P&E_Multilink_CyclonePro_preload.cmd

.\cmd\P&E_Multilink_CyclonePro_postload.cmd

.\cmd\P&E_Multilink_CyclonePro_vppon.cmd

.\cmd\P&E_Multilink_CyclonePro_vppoff.cmd

.\cmd\P&E_Multilink_CyclonePro_erase_unsecure_hcs1
2.cmd

Unsecure Runs project’s Unsecure command file script. This script mass erases
target device, then programs target device security byte to an
unsecure state to enable BDM communication.

Debugging
Memory Map

Displays Debugging Memory Map dialog box for target MCU (see
Debugging Memory Map).

Trigger Module
Settings

Displays Trigger Module Settings dialog box (see On-Chip DBG
Module for S12, S12S, S12G, S12P, S12X Platforms).

Bus Trace Displays a Trace component window (see On-Chip DBG Module for
S12, S12S, S12G, S12P, S12X Platforms).

Flash Displays Non-Volatile Memory Control dialog box (see Flash
Programming).

Select Core Use to synchronize debugger windows to a specific core when
several cores are available.
Appears only when several cores are available for debugging.

Help Displays P&E Multilink/Cyclone Pro User Manual section.

Table 11.1 MultilinkCyclonePro Menu Description (continued)

Menu Entry Description
355S12(X) Debugger Manual

P&E Multilink/Cyclone Pro Connection
Connection Menu
Figure 11.2 Set Derivative Dialog Box

Setup Menu Option
The Communication/Connect menu option displays the P&E Multilink/Cyclone Pro Setup
dialog box. This dialog box contains the Communication tab and the Debug Options tab.

Figure 11.3 Communication Tab
356 S12(X) Debugger Manual

P&E Multilink/Cyclone Pro Connection
Connection Menu
Figure 11.4 Debug Options tab

Communication/Connect Menu Option
The Communication/Connect menu option displays the P&E HC(S)12 Connection
Manager dialog box.

Table 11.2 P&E Multilink/Cyclone Pro Setup Description

Checkbox Description

Show Protocol Checked: enables a debug protocol displayed in the
Command window.
Enable this option only when requested by the Freescale
Support team to resolve debugger issues.

Disable maskable ISRs
when stepping

Checked: Automatically sets I bit in device core CCR and
disables maskable interrupts.
Debugger automatically calculates final I flag value
according to stepped instruction.
357S12(X) Debugger Manual

P&E Multilink/Cyclone Pro Connection
Connection Menu
Figure 11.5 P&E HC(S)12 Connection Manager dialog box

NOTE The Connection Manager dialog box will only show after attempting to
automatically contact to the target using the default connection settings.
Connection settings can be changed during Hi-wave by going to
MultilinkCyclonePro -> Communications, however, the debug session must be
restarted to see the changes.
358 S12(X) Debugger Manual

P&E Multilink/Cyclone Pro Connection
Connection Menu
Figure 11.6 P&E HC(S)12 Connection Manager Advanced Options dialog box
359S12(X) Debugger Manual

P&E Multilink/Cyclone Pro Connection
Connection Menu
Table 11.3 P&E HC(S)12 Connection manager Description

Element Description

Interface listbox Selects the P&E hardware interface that is
used to connect to the target.

Port listbox After the interface is chosen, this specifies
which port should be used. The available
selections are dependent on the selected
interface.

Add LPT Port button This button guides the user through the
series of steps needed to add a LPT port to
the Connection Manager. This is necessary if
additional LPT ports are added through the
use of expansion cards, such as PCI.

Refresh List button This button attempts to detect all P&E
hardware devices specified by the Interface
selection. This is necessary if these devices
are reset or need to be plugged in after the
Connection Manager has been shown.

Advanced button Opens HC(S)12 Advanced Options dialog
box which allows the user to modify the
following settings:

• set CLKSW=0 bit in BDM control
register;

• resynchronize from hardware
reset.

Set CLKSW bit in BDM control
register (MC9S12 only) checkbox in
P&E HC(S)12 Connection Manager
Advanced Options dialog box

Checked: uses BDM status register CLKSW
bit to set bus clock. May be required for first
BDM module revisions when:

• using BDM constant clock source
(CLKSW=0),

• with PLL engaged (PLLSEL=1),
and

• PLL multiplier greater than or
equal to 2

Under these conditions, set CLKSW=1
before engaging PLL or BDM may lose
communication with host system.
Default: Cleared; BDM clock runs at EXTAL/
2.
360 S12(X) Debugger Manual

P&E Multilink/Cyclone Pro Connection
Connection Menu
Resynchronize from hardware reset
(COP, etc.) checkbox in P&E HC(S)12
Connection Manager Advanced Options
dialog box

Checked: Forces debugger to review and
resynchronize BDM communication and
control, if BDM communication is still active.
If BDM mode is disabled, debugger inquires
whether an internal core reset has occurred,
and if so, reactivates BDM mode for
debugging purposes.
Rebuilds the S12X-series program flow.
Default: Clear; option disabled.

BDM Communications Speed The BDM Communication Speed defines the
frequency at which the P&E hardware
interface communicates with the target
microprocessor.

• Autodetect communications
speed
This is the recommended setting
for the first time that a connection
is made to the target
microprocessor. The appropriate
BDM communication speed is
automatically calculated.

• Use IO_DELAY_CNT
Once a successful connection is
made using the “Autodetect
communications speed” setting,
the IO_DELAY_CNT (which stores
the appropriate information about
the BDM communication speed) is
saved into this field for all future
sessions. This setting reduces the
amount of time needed to connect
to the microprocessor, since the
correct BDM communication
speed is known.

• OSBDM connection
OSBDM automatically detects
communication speed with the
target, thus IO_DELAY_CNT
settings are disabled for this
hardware interface

MCU Internal Bus Frequency (For
programming)

These settings are currently unused.

Element Description
361S12(X) Debugger Manual

P&E Multilink/Cyclone Pro Connection
Connection Menu
Reset Options • Delay after Reset
The target microprocessor is reset
during the initial startup sequence
in order to establish
communications. In some cases,
the rise delay of the Reset signal is
considerable. This setting allows
the user to specify an amount of
time to wait for the Reset signal to
rise to logic high levels before
trying to communicate with the
target microprocessor.

Cyclone Pro Power Control The P&E Cyclone Pro, if used, can directly
provide power to the target microprocessor,
eliminating the need for a separate external
power supply. Please note that the
appropriate jumper settings must first be
configured on the Cyclone Pro. Refer to the
user manual for more details.

• Provide power to target
This setting must be checked if the
Cyclone Pro should provide power
to the target microprocessor

• Power off target upon software
exit
If checked, the Cyclone Pro will
stop providing power to the target
microprocessor when the software
is closed.

• Regulator Output Voltage
Specifies the voltage generated by
the Cyclone Pro internal regulator.
The available options are 2V, 3V,
and 5V.

• Power Down Delay
Specifies the power down delay in
milliseconds

• Power Up Delay
Specifies the power up delay in
milliseconds

Connect (Reset) button Connects to the target microprocessor by
resetting the device and entering
background mode.

Element Description
362 S12(X) Debugger Manual

P&E Multilink/Cyclone Pro Connection
Connection Menu
TIP When debugging with several cables and debuggers: The debugger registers
the serial numbers of USB cables automatically registered in each project when
you press Connect in the Connection Manager dialog. The next debug session
opens the cable matching the registered serial number. This feature is not available
with Serial, LPT/parallel and TCP/IP connections.

Hotsync button Connects to the target microprocessor
without resetting the device. If the device is
running, it will still be running after this
connection is made. Hotsync command will
not work when a Cyclone Pro is used to
power up the target. A Cyclone Pro will
always attempt to power cycle the device
upon connection.

Abort button Cancels the connection.

Element Description
363S12(X) Debugger Manual

P&E Multilink/Cyclone Pro Connection
Connection Menu
364 S12(X) Debugger Manual

12
OSBDM Connection

This section contains information to assist with use of the Open Source BDM (OSBDM)
hardware with Codewarrior.

OSBDM Technical Considerations
Freescale supplies certain development boards with an integrated debug circuit based on
Open Source BDM. This allows the development board to be debugged from the PC via
the USB bus without requiring external debug hardware, such as the Cyclone Pro or USB
Multilink. The development board also derives its power from the USB Bus.

The Open Source BDM circuit design (OSBDM-JM60) is an open source, community-
driven design. It has been published on Freescale's website, and full documentation can be
found in the Community Forums.

CodeWarrior Integration
Integration with CodeWarrior is handled via the "P&E Multilink/Cyclone Pro"
connection. P&E has integrated the Open Source BDM support into the same connection
that supports both the USB Multilink and the Cyclone Pro. Refer to the P&E Multilink/
Cyclone Pro Connection chapter of this manual for more details on this connection. All of
the dialogs which affect operation of these hardware interfaces function in the same
manner when using OSBDM (albeit at a lower data rate).

Minimum Firmware Version
The integration with Codewarrior via the "P&E Multilink/Cyclone Pro" will require a
minimum OSBDM firmware version of at least Build 27. If the OSBDM hardware doesn't
have a sufficient firmware version, the software will pop up an error dialog notifying the
user that the firmware needs to be upgraded. Future revisions of Codewarrior will update
the firmware automatically.

For this release, if you receive this error, go to http://www.pemicro.com/osbdm and
download the OSBDM Firmware Update Utility.
365S12(X) Debugger Manual

http://www.pemicro.com/osbdm
http://www.pemicro.com/osbdm

OSBDM Connection
Support and Licensing
Support and Licensing
Open Source BDM is not supported by Freescale; it is open source. Any bugs,
enhancements, or support questions should be addressed through the Open Source BDM
forum. Open Source BDM has been thoroughly tested, but there is no guarantee of error-
free operation. All the source files are available to anyone under the GNU LESSER
GENERAL PUBLIC LICENSE. For more information on this license, refer to the
COPYING_LGPL.txt file located in the root directory of the OSBDM-JM60 package,
which may be downloaded from the Freescale website. Open Source BDM is a derivative
project of the TBDML project.
366 S12(X) Debugger Manual

13
SofTec HCS12 Connection

This section contains information to assist you with the SofTec HCS12 connection.

SofTec HCS12 Technical Considerations
SMH Technologies (earlier known as SofTec Microsystems) supplies the SofTec HCS12
in-circuit debugger/programmer units which can be used with the 8/16-bit debugger (and
the CodeWarrior IDE) to work with the HCS12 hardware. When the debugger uses the
SofTec HCS12 connection, it communicates and debugs HCS12, HCS12X and XGATE
core-based hardware through the SofTec in-circuit debugger/programmer units:

• SMH Technologies HCS12 ISP Debuggers/Programmers (inDART Series)

• Starter Kits (AK/SK/PK/ZK and newer Series).

Refer to the inDART®-HCS12 In-Circuit Debugger/Programmer for Freescale HCS12
Family Flash Devices User’s Manual from SMH Technologies for communication
hardware requirements and SMH Technologies product installation.

Connection Menu
Setting the SofTec HCS12 connection changes the connection menu entry in the debugger
main toolbar to inDART-HCS12.

inDART-HCS12 Menu Entries
Figure 13.1 shows the inDART-HCS12 menu entries and Table 13.1 describes their use.
367S12(X) Debugger Manual

SofTec HCS12 Connection
Connection Menu
Figure 13.1 inDART-HCS12 Menu Entries

Table 13.1 inDART-HCS12 Menu Entry Descriptions

Menu Entry Description

Load Displays Load Executable File dialog box (see Load Executable File
Window).

Reset Resets project hardware and software.

Setup Displays SofTec HCS12 Setup dialog box.

Communication Displays Communication Settings dialog box (Figure 13.3) allows you
to fine-tune critical parameters by choosing BDM clock source: either
system bus frequency or alternate frequency dependent on target.
Access from MCU Configuration Settings dialog box also.
368 S12(X) Debugger Manual

SofTec HCS12 Connection
Connection Menu
MCU Configuration Dialog Box
Figure 13.2 shows the MCU Configuration dialog box.

Command Files Displays Connection Command Files window. Each tab allows
access to a different set of connection command files:

\cmd\SofTec_HCS12_startup.cmd

\cmd\SofTec_HCS12_reset.cmd

\cmd\SofTec_HCS12_preload.cmd

\cmd\SofTec_HCS12_postload.cmd

\cmd\SofTec_HCS12_vppon.cmd

\cmd\SofTec_HCS12_vppoff.cmd

Debugging
Memory Map

Displays Debugging Memory Map Dialog Box for target MCU (see
Debugging Memory Map).

Trigger Module
Settings

Displays Trigger Module Settings dialog box (see On-Chip DBG
Module for S12, S12S, S12G, S12P, S12X Platforms).

Bus Trace Displays a Trace component window (see On-Chip DBG Module for
S12, S12S, S12G, S12P, S12X Platforms).

Flash Displays Non-Volatile Memory Control dialog box (see Flash
Programming).

MCU
Configuration

Displays MCU Configuration dialog box (Figure 13.2). See MCU
Configuration Dialog Box.

About Displays About dialog box, which provides information about
inDART_HCS12.dll release and version.

Select Core Use to synchronize debugger windows with a specific core.
Appears only when several cores are available for debugging.

Table 13.1 inDART-HCS12 Menu Entry Descriptions (continued)

Menu Entry Description
369S12(X) Debugger Manual

SofTec HCS12 Connection
Connection Menu
Figure 13.2 MCU Configuration Dialog Box

Use the Hardware Model list menu to select another type of debug interface.

Use the Device Code list menu to select another HCS12 derivative.

If your hardware supports stopping the application while running, the IRQ vector requires
an additional interrupt service routine.

See the inDART®-HCS12 In-Circuit Debugger/Programmer for Freescale HC12 Family
Flash Devices User’s Manual from SofTec for more details

Communication Settings Dialog Box
Clicking the Communication Settings button in the MCU Configuration dialog box
displays the Communication Settings dialog box (Figure 13.3). Using this dialog box, you
can fine-tune critical parameters for proper operation with the target microcontroller by
choosing the BDM clock source: either the system bus frequency or an alternate frequency
dependent on the target.
370 S12(X) Debugger Manual

SofTec HCS12 Connection
Connection Menu
Figure 13.3 Communication Settings Dialog Box
371S12(X) Debugger Manual

SofTec HCS12 Connection
Connection Menu
372 S12(X) Debugger Manual

14
HCS12 Serial Monitor
Connection

This section provides information about debugging with the CodeWarrior IDE and the
HCS12 Serial Monitor connection.

Serial Monitor Technical Considerations
When the debugger runs the HCS12 Serial Monitor connection, it can communicate and
debug hardware running the HCS12 Serial Monitor in full compliance with the Freescale
Application Note AN2548 specifications, and AN2548SW1 and AN2548SW2 software.
Refer to this Application Note for communication hardware requirements.

CodeWarrior IDE and Serial Monitor
Connection

You can access the HCS12 Serial Monitor connection in two different ways when using
Codewarrior IDE. You either:

• Use the Stationary Wizard at the start of the project to set the connection, or

• Set the connection from within an existing project.

These paths are explained in the Debugger Interface chapter of this manual.

HCS12 Serial Monitor Interface
Follow these steps to use the HCS12 Serial Monitor connection:

1. Run the CodeWarrior IDE with the shortcut created in the program group.

2. Create a project (see the Debugger Interface chapter of this manual).

3. Choose Project > Make and Project > Debug to start the debugger.

Debugger Main window opens.
373S12(X) Debugger Manual

HCS12 Serial Monitor Connection
HCS12 Serial Monitor Interface
Figure 14.1 Debugger Main Window - Component Menu

4. In the debugger main window, choose Component > Set Connection to select another
connection.

Figure 14.2 Set Connection Dialog Box - HCS12 Serial Monitor Selection

5. Select HC12 as Processor, then HCS12 Serial Monitor as connection in the Set
Connection dialog box.

6. Click the OK button.

The Monitor Setup dialog box appears.

7. In the Monitor Setup dialog box Monitor Communication tab, choose the correct Host
serial communication port if necessary.
374 S12(X) Debugger Manual

HCS12 Serial Monitor Connection
HCS12 Serial Monitor Interface
Figure 14.3 Monitor Setup Window - Monitor Communication Tab

8. Click the OK button.

The HCS12 Serial Monitor connection reads the device silicon ID and opens the
Derivative Selection dialog box. The device silicon ID can match several derivatives.

9. Select the derivative that matches your hardware in the Derivative Selection dialog
box.

If debugger is aware about PARTID returned by the connected derivative then you can
filter derivative list by PARTID.

Figure 14.4 Set Derivative Dialog Box

If debugger has no information about PARTID returned by the connected derivative
then CPU specific derivative list is used.
375S12(X) Debugger Manual

HCS12 Serial Monitor Connection
HCS12 Serial Monitor Interface
Figure 14.5 Set Directive Dialog Box

10. Click the OK button.

The Monitor Setup dialog box opens again.

11. Click on the Vector Table Mirroring tab.

NOTE We recommend that you use the Vector Table Mirroring feature. Otherwise,
you cannot program vectors as captured or protect them from erasure or
overwriting by the HCS12 Serial Monitor.

Figure 14.6 Monitor Setup Dialog Box - Vector Table Mirroring Tab

12. To enable this feature, check the Enable Vector Table Mirroring checkbox.
376 S12(X) Debugger Manual

HCS12 Serial Monitor Connection
HCS12 Serial Monitor Interface
Figure 14.7 Monitor Setup Dialog Box - Vector Table Mirroring Tab

13. Click Auto Detect to make the debugger search for the vector table address and
vectors reserved by the HCS12 Serial Monitor.

14. Once automatic detection succeeds, click OK to start debugging.

MONITOR-HCS12 Menu Options
Once you set the HCS12 Serial Monitor connection, MONITOR-HCS12 appears in the
Debugger menu, as shown below.

Figure 14.8 MONITOR-HCS12 Menu Options

Table 14.1 MONITOR-HCS12 Menu Options

Menu Entry Description

Load Displays Load Executable File dialog box (see Load Executable File
Window).

Reset Resets connection hardware and software.

Setup Displays Setup dialog box.
377S12(X) Debugger Manual

HCS12 Serial Monitor Connection
HCS12 Serial Monitor Interface
Connect Displays Monitor Setup dialog box, containing Monitor
Communication tab and Load Options tab.

• In Monitor Communication tab (Figure 14.9), set or modify
current serial communication from HOST Serial
Communication Port list box.

Check Show Monitor TX/RX to report all low-level
communication frames between host computer and HCS12
Serial Monitor in Command Line window.

• In Load Options tab (Figure 14.10), use checkbox to
enable or disable automatic erase of Flash memory on
loading.

Command Files Opens Connection Command Files dialog box. Each tab allows
access to a different set of connection command files:

\cmd\HCS12_Serial_Monitor_startup.cmd

\cmd\HCS12_Serial_Monitor_reset.cmd

\cmd\HCS12_Serial_Monitor_preload.cmd

\cmd\HCS12_Serial_Monitor_postload.cmd

Debugging
Memory Map

Opens Debugging Memory Map dialog box for target MCU (see
Debugging Memory Map).

Trigger Module
Settings

Opens Trigger Module Settings dialog (see On-Chip DBG Module for
S12, S12S, S12G, S12P, S12X Platforms).

Bus Trace Opens Trace component window within the main window (see On-
Chip DBG Module for S12, S12S, S12G, S12P, S12X Platforms).

Table 14.1 MONITOR-HCS12 Menu Options (continued)

Menu Entry Description
378 S12(X) Debugger Manual

HCS12 Serial Monitor Connection
HCS12 Serial Monitor Interface
Figure 14.9 Monitor Setup Dialog Box - Monitor Communication Tab

Figure 14.10 Monitor Setup Dialog Box - Load Options Tab
379S12(X) Debugger Manual

HCS12 Serial Monitor Connection
HCS12 Serial Monitor Interface
380 S12(X) Debugger Manual

15
Abatron BDI Connection

This section guides you through the Abatron BDI connection.

Abatron BDI Technical Considerations
The ABATRON AG company supplies many of the debug cables used to connect the
8/16-bit debugger (and the CodeWarrior IDE) to HCS12 hardware.

When the debugger runs the Abatron BDI connection, it can communicate and debug
CPU12 (HC12), HCS12, HCS12X and XGATE core-based hardware connected through
Abatron BDI, BDI-S, BDI-HS and BDI1000 debug interfaces.

Abatron BDI Highlights
The Abatron BDI Connection currently supports the Background Debug Interfaces (BDI)
designed by ABATRON AG, including the BDI-HS on CPU12 and HCS12, and the
BDI1000 on the CPU12, HCS12 and HCS12X cores.

Abatron BDI Requirements
Ensure that your hardware target board incorporates a Background Debug Mode (BDM)
port for CPU background interfacing with the BDI interface and the debugger. Check the
technical specifications provided by the ABATRON User Manuals and Freescale.

Communicating with the BDI interface requires one free serial communication port of
your computer. You may need to set it up even if you use Ethernet communication instead
of an RS-232 serial communication.
381S12(X) Debugger Manual

Abatron BDI Connection
Abatron BDI Connection Introduction
Abatron BDI Connection Introduction
Use the Abatron BDI Connection to load different connections which implement the
interface with target systems. This section describes the specific features of the Abatron
BDI Connection.

With this interface, you can download an executable program from the debugger
environment to an external target system based on a Freescale MCU for execution. You
also have the feedback of the real target system behavior to the debugger.

The debugger supervises and monitors the target system MCU (i.e. controls program
execution). You can read and write in internal/external memory (even while the
application is running), single-step/run/stop the application, and set breakpoints and
watchpoints in the code.

Interfacing Abatron BDI and Your System

NOTE BDI Structure, Configuration, Connection to the Host, Connection to the
Target, Configuration, and Working Modes are described in ABATRON User
Manuals.

The BDI interface connects to the host computer either by a serial communication link or
by an Ethernet connection. You can use any available communication port of your host
system. The communication protocol between the BDI and your target system is handled
by the BDI Target driver, which loads automatically with the Abatron BDI Target
Component. You can adapt your target system to the BDI interface.

The BDI-to-target system communication uses a single-wire serial connection. You must
equip the target system with a BDM connector/port (see the BDI User Manual from
ABATRON).

• Make sure that your hardware target board has a Background Debug Mode (BDM)
port for background interfacing with the BDI interface and the debugger. Check the
technical specifications provided by ABATRON User Manuals and Freescale.

• Make sure your computer has one free serial communication port to communicate
with the BDI interface. You may need to set it up even if you use Ethernet
communication instead of an RS-232 serial communication medium.
382 S12(X) Debugger Manual

Abatron BDI Connection
BDI Interface Software Setup
BDI Interface Software Setup
The Abatron BDI connection is delivered during installation and contains all required
files, demo projects to use the Abatron BDI debugger, and some BDI setup (init list) files.
Install the drivers delivered with the BDI interface to make sure you are using the latest
drivers. These files are delivered on a disk from ABATRON.

Set up the target MCU through the BDI interface, according to your hardware
configuration. Copy all files from the ABATRON disk to a new directory on your
computer.

ABATRON provides an .EXE configuration application and a set of configuration files
for specific evaluation boards and processors. These files contain microprocessor/
microcontroller initialization data, vectors, chip selects for internal/external ROMs/
RAMs, running modes, etc. They also contain information bound to the MCU and MCU
version used, and information bound to the MCU environment on the board (RAM, ROM,
PIA, ACIA, etc.). Each of these files is very specific.

Running the ABATRON Configuration Tool
You can run the configuration program (e.g. B10C12.EXE for CPU12 processor with
BDI1000, or BDIHSHCI.EXE for CPU16/CPU32 with BDI-HS) within the debugger is
you browse for it using Abatron BDI > Configure BDI Box or specify the tool path in the
Abatron BDI > Setup dialog box. Otherwise, run the configuration tool directly from the
File Manager or Windows Explorer.

Example with B10C12.EXE Configuration Tool

NOTE Refer to the ABATRON User Manual for further details about the BDI interface
and BDI setup.
383S12(X) Debugger Manual

Abatron BDI Connection
BDI Interface Software Setup
Figure 15.1 BDI1000 Setup for CPU12 Dialog Box

Firmware Loading
In the dialog box shown in Figure 15.1, select Setup > Firmware to open the firmware
dialog.

Figure 15.2 BDI Update/Setup Dialog Box
384 S12(X) Debugger Manual

Abatron BDI Connection
BDI Interface Software Setup
In the Update/Setup dialog box, set the communication port and the baud rate according to
your installation and click the Connect button. If the connection passes, the current BDI
firmware/logic appears. If the dialog box shows that the Current firmware or logic is
unknown, load new firmware by clicking the Update button.

To use Ethernet communication between your computer and the BDI interface, set the IP
address reserved for the BDI, then click the Transmit button. Quit the dialog by clicking
the Ok button.

Initialization List (Startup Init List) Loading
Select File > Open to load a configuration file (e.g. HC912DA128.BDI).

Figure 15.3 File Menu

Figure 15.4 Setup Menu

Select Setup > Init List to see and edit (if necessary) the content of this configuration file.

This displays the Startup Init List/configuration file in the Startup Init List dialog box.
You can edit, add, or remove memory write instructions in this dialog box to configure
your MCU and MCU environment.
385S12(X) Debugger Manual

Abatron BDI Connection
BDI Interface Software Setup
Figure 15.5 Startup Init List Dialog Box

Quit this dialog box by clicking OK and save the settings if necessary.

Communication with the Debugger Setup
Select Setup > Communication to open the Communication Setup dialog box.

Figure 15.6 Communication Setup Dialog Box

In this dialog box, set the communication for using the BDI with the debugger. Make sure
these settings are identical to debugger communication settings made in the
Communication Setup dialog box (see Figure 15.6). Click the Test button to check the
setup, then click OK to quit this dialog. Save the settings if necessary.

BDI Working Mode and Setup/List Transmission
Select Setup > Mode to open the BCI Working Mode dialog box (Figure 15.7). Set the
required parameters and click Transmit to download the configuration to the target board.
386 S12(X) Debugger Manual

Abatron BDI Connection
BDI Interface Software Setup
Figure 15.7 BDI Working Mode Dialog Box

Loading the Abatron BDI Connection
Use the Target=Abatron BDI in the [Environment Variables] section of the
project file to set the target.

The Abatron BDI Connection automatically detects whether the target is connected to
your system. If no target is detected (the target is not connected or is connected to a
different port), the Communication Device Specification Dialog Box appears.

If no target or a different target is set, load the Abatron BDI Connection as described
below.

In the debugger, select Component > Set Target in the component menu.

Figure 15.8 Debugger Component Menu

The Set Connection dialog box appears. Select Abatron BDI Connection in the list of
connections and click OK.

Figure 15.9 Set Connection Dialog Box

After successfully loading the target, the Debugger main window target menu item is
replaced by Abatron BDI.
387S12(X) Debugger Manual

Abatron BDI Connection
BDI Interface Software Setup
Figure 15.10 Abatron BDI Menu

You can change the communication parameters (baud rate and port) by selecting Abatron
BDI > Communication.

If you cannot establish communication with the BDI Interface, an error message appears,
followed by the Communication Device Specification dialog box.

Figure 15.11 Communication Device Specification Dialog Box

In this dialog box, you can modify the device specification (e.g. Communication Port and
baud rate). These settings are saved in the current project and are used again in future
sessions.
388 S12(X) Debugger Manual

Abatron BDI Connection
Abatron BDI Connection Menu Entries
Abatron BDI Connection Menu Entries
After loading the Abatron BDI Connection, the Target menu item is replaced by Abatron
BDI.

Figure 15.12 Debugger Abatron BDI Menu

If the target connection fails, Connect replaces the entry Communication in the Abatron
BDI menu.

Table 15.1 describes the Abatron BDI menu entries:

Table 15.1 Abatron BDI Menu Entries

Menu Entry Description

Load Loads the application to debug, i.e. an .ABS file. See Load
Executable File Window.

Reset Executes the Reset Command File and resets the hardware target.
The BDI interface automatically processes the initialization list
(startup init list) stored in the interface.

Communication
(or Connect)

Displays the Communication Device Specification Dialog Box. If the
connection to the target has failed, Connect appears instead of
Communication.

Select
Derivative

Displays the Set Derivative dialog box, and allows you to choose the
target MCU for the Abatron BDI connection.

Command Files Displays the Target Interface Command Files Window.
389S12(X) Debugger Manual

Abatron BDI Connection
Abatron BDI Connection Menu Entries
Unsecure
Option

Runs the project’s Unsecure command file script. The Unsecure
script mass erases the target device, then programs the target
device security byte to “unsecure” state to enable BDM
communication.
Available only when debugger Flash Programmer is enabled. See
Setup Dialog Box.

Debugging
Memory Map

Displays Debugging Memory Map dialog box for target MCU. See
Debugging Memory Map.

Trigger Module
Settings

Displays Trigger Module Settings dialog box. See On-Chip DBG
Module for S12, S12S, S12G, S12P, S12X Platforms.

 Bus Trace
Option

Displays a Trace component window. See On-Chip DBG Module for
S12, S12S, S12G, S12P, S12X Platforms.

Flash Displays Non-Volatile Memory Control Dialog Box. See Flash
Programming.
Available only when Flash Programmer is enabled. See Setup
Dialog Box.

Setup Opens the Setup Dialog Box. Use to set the link to the ABATRON
configuration tool, set the download mode, and set the Continue on
illegal break (banked hardware breakpoint) option (only available for
HC12/CPU12 derivatives).

Configure BDI
Box

Opens the configuration tool. If no application tool path is currently
set (see Setup Dialog Box), the Select BDI Box Configuration Tool
dialog box opens to create a link to the configuration tool application.
Save the link in the Setup dialog box.

Select Core Use to synchronize the debugger windows with a specific core when
several cores are available.
Available only when several cores can be debugged.

Help Opens the Abatron BDI Connection Help File.

Table 15.1 Abatron BDI Menu Entries (continued)

Menu Entry Description
390 S12(X) Debugger Manual

Abatron BDI Connection
Abatron BDI Connection Dialog Boxes
Abatron BDI Connection Dialog Boxes
This section describes the dialog boxes specific to the Abatron BDI Connection. Those
dialogs are:

• Communication Device Specification Dialog Box

• Setup Dialog Box

Communication Device Specification
Dialog Box
The Communication Device Specification dialog box appears automatically if the Abatron
BDI Connection fails to establish the communication with the BDI interface. You can also
open this dialog box using Abatron BDI > Communication or Abatron BDI > Connect.

Figure 15.13 Communication Device Specification Edit Box

If you open the dialog using Abatron BDI > Communication, but the connection attempt
was successful, you cannot modify the Communication Device edit box. Only the Show
Protocol check box can be modified.

If the connection to the BDI box failed, and the dialog box opens automatically (or you
use Abatron BDI > Connect), you can modify the Communication Device
Specification edit box.

The Communication Device specification edit box contains the communication settings to
connect to the BDI box. The syntax of the initialization string is:

• COMn baudrate

– n is the COM port number, such as 1, 2, or 3

– baudrate is 9600, 19200, 38400, 57600, or 115200, according to the
ABATRON configuration application setup (e.g. COM1 57600).
391S12(X) Debugger Manual

Abatron BDI Connection
Abatron BDI Connection Dialog Boxes
For communication via an Ethernet and bdiNet, use the following initialization string
syntax:

• NETWORK ip_address port

– ip_address is the IP address of the BDI box or bdiNet in the form
xxx.xxx.xxx.xxx

– port is the bdiNet port, usually "1" for BDI1000 and BDI2000 (e.g., NETWORK
151.120.25.101)

The Show Protocol check box allows you to switch on/off the displays of the messages
sent between the debugger and the BDI interface. If you check the Show Protocol box, the
Command Line window reports all commands and responses sent and received.

NOTE The Show Protocol checkbox is a useful debugging feature if a communication
problem exists. The settings in the Communication Device Specification edit
box are stored for a later debugging session in the [Abatron BDI] section
of the project file.

In Connection Mode section you can select Normal or Hot plug-in (non intrusive) mode.
In Hot plug-in mode debugger does not reset the target if target is running.

Setup Dialog Box
Open the Setup dialog box using Abatron BDI > Setup.

Figure 15.14 Setup Dialog Box
392 S12(X) Debugger Manual

Abatron BDI Connection
Terminal Emulation
The BDI Box Configuration Tool Path edit box is set up with the path and application
name of the configuration tool from ABATRON. Select Abatron BDI > Configure BDI
Box to automatically browse for the application tool. Otherwise, click the Browse button
to look for the tool. An example of the edit box contents is C:\tmp\B10c12.exe.

In the Download Mode and Data Transfer Verification section, you can set different
options to transfer data from the computer to the BDI box. The default setting is Verify
only first byte of block. Choose a different option to improve transfer speed or security. By
default, data compression is enabled for asynchronous communication channels. With
older computers, download speed may be faster without data compression.

HC12/CPU12 derivatives only: Use the Continue on illegal break (banked hardware
breakpoint) check box to overcome the 2-byte address size on-chip break module, which
does not handle PPAGE. Internally, the target halts at the hardware breakpoint (in Flash
memory), compares that breakpoint with the breakpoint you set, then relaunches if not
(bank) matching.

NOTE This feature is available as an option. Setting this option prevents code
execution break handling and illegal code execution detection. Use this option
carefully.

The Use the debugger eeprom and flash programmer check box allows you to activate the
debugger internal Flash Programmer engine and GUI instead of the Abatron on-board
non-volatile memory programmer (the Abatron on-board NVM programmer is the default,
except for HCS12X-core devices).

Terminal Emulation
The Abatron BDI Connection supports terminal emulation for CPU12(HC12), HCS12
and HCS12X cores. This allows the target application to write into the debugger Terminal
component. Also, you can direct the characters typed on the host’s keyboard to the target
application. To use terminal emulation, open the Terminal component in the debugger by
choosing Component > Open > Terminal.

To simulate the terminal I/O, a 4-byte work space is needed. Configure the work space
address with the setup program from ABATRON.

For more information, see the Terminal section in the ABATRON User Manual and check
the termbgnd.c source file for communication primitives on the BDI installation disk
from ABATRON. Refer to Terminal Component.

Example
The following structure is located in unpaged data memory on the target:

0x00 RX - Flag (Byte)
393S12(X) Debugger Manual

Abatron BDI Connection
Terminal Emulation
0x01 RX - Char (Byte)

0x02-0x03 TX - String Pointer (Word)

The address of this structure is defined during BDI box setup. The TermData structure
address (0x0800) must match with the software setup of the BDI, and exactly match the
Terminal Address in the BDI Working Mode dialog of the ABATRON tool. Refer to the
BDI Interface Software Setup section.

While the target is running, the BDI periodically checks to make sure TX - String
Pointer is not zero. The BDI writes characters received from the host to RX - Char,
and sets RX - Flag.

The following is a possible target implementation:

Listing 15.1 CPU12 Target Implementation

typedef struct {
unsigned char rxFlag;
unsigned char rxChar;
char* txBuffer;

} TermDataT;

#define TermData (*((TermDataT*)(0x0800)))

static char txBuffer[2];

char GetChar(void)
{

char rxChar;
while (TermData.rxFlag == 0); /* wait for input */
rxChar = TermData.rxChar;
TermData.rxFlag = 0;
return rxChar;

}
void PutChar(char ch)
{

txBuffer[0] = ch;
txBuffer[1] = 0;
TermData.txBuffer = txBuffer;
while (TermData.txBuffer != 0); /*wait for output buffer empty*/

}
void PutString(char *str)
{

TermData.txBuffer = str;
while (TermData.txBuffer != 0); /*wait for output buffer empty*/

}

394 S12(X) Debugger Manual

16
TBDML Connection

This section contains information to assist you with the TBDML connection.

TBDML Technical Considerations
The 8/16-bit debugger (and the CodeWarrior IDE) may connect to HCS12 hardware using
the TBDML cable. When the debugger runs the TBDML connection, it communicates
and debugs CPU12 (HC12), HCS12, HCS12X and XGATE core-based hardware
through the Turbo BDM Light debug cable.

You can retrieve the cable design schematics and cable driver from the Freescale forum,
as the cable interface is open source technology. Search for Turbo BDM light or TBDML
in a web browser.

The CodeWarrior IDE is compliant with the TBDML firmware and does not require any
cable driver installation.

NOTE The TBDML connects to the PC via a USB port.

Connection Menu
Once you set the TBDML connection, the Connection menu entry in the debugger main
toolbar changes to TBDML HCS12.

TBDML HCS12 Menu Entries
The following figure shows the TBDML HCS12 menu. Table 16.1 describes the menu
entries.
395S12(X) Debugger Manual

TBDML Connection
Connection Menu
Figure 16.1 TBDML HCS12 Menu Options

Table 16.1 TBDML HCS12 Menu Entries

Menu Entry Description

Load Option Displays the Load Executable File dialog box. See Load Executable
File Window.

Reset Option Resets the project hardware and software.

Setup Displays the TBDML Setup dialog box: select appropriate TBDML
cable for current debug session.

When debugging with several cables and debuggers: Cable
number is relative to connection order to PC’s USB hub. At each new
debug session, check which device the project addresses, as there is
no way to ensure addressing the same cable with the same project.

Select
Derivative

Displays Set Derivative dialog box. Allows you to choose target MCU
for TBDML connection.
396 S12(X) Debugger Manual

TBDML Connection
Connection Menu
Command Files Displays Connection Command Files window. Each tab allows
access to a different set of connection command files:

\cmd\TBDML_startup.cmd
\cmd\TBDML_reset.cmd
\cmd\TBDML_preload.cmd
\cmd\TBDML_postload.cmd
\cmd\TBDML_vppon.cmd
\cmd\TBDML_vppoff.cmd
\cmd\TBDML_erase_unsecure_hcs12.cmd

Unsecure Runs the Unsecure command file script of the project. The Unsecure
script mass erases target device, and programs target device
security byte to an unsecure state, to enable BDM communication.

Debugging
Memory Map

Displays Debugging Memory Map dialog box for target MCU. See
Debugging Memory Map.

Trigger Module
Settings

Displays Trigger Module Settings dialog box. See On-Chip DBG
Module for S12, S12S, S12G, S12P, S12X Platforms.

Bus Trace Displays a Trace component window. See On-Chip DBG Module for
S12, S12S, S12G, S12P, S12X Platforms.

Flash Displays Non-Volatile Memory Control dialog box. See Flash
Programming.

Reset To
Normal Mode

Resets target device to normal mode. Debugger continues running
as target device resets and runs from reset vector in normal mode.
Application stopping and debugging remain available.

Show Status Displays Turbo BDM Light Status dialog box; displays revision
versions of drivers and firmware, BDM status register value, and
chosen target crystal (Figure 16.2).

Set Speed Displays Set Target Speed dialog box; use to specify target crystal to
synchronize TBDML cable BDM communication with silicon. Crystal/
BDM frequency ratio can be tuned when not matching with default
value (2).

Table 16.1 TBDML HCS12 Menu Entries (continued)

Menu Entry Description
397S12(X) Debugger Manual

TBDML Connection
Connection Menu
Figure 16.2 Turbo BDM Light Status Box

Select HC12
MCU

Displays HC12 Derivative Selection box; enables you to debug
legacy HC12 (CPU12) devices that cannot be identified with any on-
chip device ID (PARTID registers). Selecting HCS12(X) Autodetect
returns debugger to automatic identification of device ID (PARTID)
mode (default debugger setup).

Select Core Synchronizes debugger windows with a specific core when several
cores are available.
Available only when several cores are available for debugging.

Table 16.1 TBDML HCS12 Menu Entries (continued)

Menu Entry Description
398 S12(X) Debugger Manual

Book III - HC(S)12(X)
Debugger Common
Features

Book III Contents
Each section of the Debugger manual includes information to help you become more
familiar with the Debugger, to use all its functions and help you understand how to use the
environment.

Book III: HC(S)12(X) Debug Connections - Common Features

• Chapter 17 - On-Chip DBG Module for S12, S12S, S12G, S12P, S12X Platforms

• Chapter 18 - Debugging Memory Map

• Chapter 19 - Flash Programming

• Chapter 20 - Unsecure HCS12 Derivatives

• Chapter 21 - On-Chip Hardware Breakpoint Module
399S12(X) Debugger Manual

Book III Contents
400 S12(X) Debugger Manual

17
On-Chip DBG Module for
S12, S12S, S12G, S12P,
S12X Platforms

The HCS12 derivatives featuring an on-chip DBG module require a graphical user
interface to set up this module and take full advantage of this feature. This chapter
describes the DBG module features and user interface. The description is provided in
generic way with highlighted specifics for particular families.

Several HCS12 debugger connections, such as the P&E Multilink/Cyclone Pro, Abatron
BDI, HCS12 Serial Monitor and SofTec inDART-HCS12, provide a complete graphical
user interface through a trigger setup dialog box combined with context-sensitive menus.
These interfaces are available in Source, Assembly, Data, and Memory component
windows to enable you to set the on-chip DBG module and triggers.

This DBG module support is available according to the user-selected derivative features.

DBG Features
The on-chip DBG module provides the user with the following features:

• Regular hardware breakpoints and watchpoints

• Predefined, preset Instruction triggers, Memory Access triggers, or Capture triggers,
a wide set of complex hardware breakpoints and watchpoints and data bus recording

• Expert Triggers, as powerful as predefined preset triggers1

• Code program flow rebuild from DBG data capture within the Trace window
component

• Real-time program code profiling and coverage within the Profiler and Coverage
window components

1.S12 platform only
401S12(X) Debugger Manual

On-Chip DBG Module for S12, S12S, S12G, S12P, S12X Platforms
Specific Connection Menu Options
Specific Connection Menu Options
The menu displays two additional entries as soon as the DBG module acknowledges the
debugger target processor: Trigger Module Settings and Bus Trace. Figure 17.1 shows
an example with the SofTec (inDART-HCS12) connection.

Figure 17.1 Connection Menu - Added DBG Options

Choose Trigger Module Settings to open the Trigger Module Settings Window.

Choose Bus Trace to open the Trigger Module Settings Window.

Context Menu Entries
This section describes the functions available from the Source, Assembly, Data, and
Memory windows.

Source and Assembly Windows
Source and Assembly windows have menu entries to set or delete triggers, a Trigger
Settings entry to set the DBG module triggers, and a Trigger Module Usage entry to set
402 S12(X) Debugger Manual

On-Chip DBG Module for S12, S12S, S12G, S12P, S12X Platforms
Context Menu Entries
the DBG module functionality globally. Figure 17.2 shows the context menu available in
the Source and Assembly windows.

Figure 17.2 Source Context Menu - Added Options, S12 Platform
403S12(X) Debugger Manual

On-Chip DBG Module for S12, S12S, S12G, S12P, S12X Platforms
Context Menu Entries
Figure 17.3 Source Context Menu - Added Options, S12X Platform

You can set a trigger instead of setting a breakpoint. Setting Trigger A, Trigger B1 in
various combinations and with various conditions increases programming and debugging
flexibility (see DBG Module Mode Setup).

Set TriggerAddress sets a trigger at the selected source location/address (Figure 17.4).

1.The number of available triggers depends on the device: A,B on S12 platform; A,B,C
on S12S/P; A,B,C,D on S12X.
404 S12(X) Debugger Manual

On-Chip DBG Module for S12, S12S, S12G, S12P, S12X Platforms
Context Menu Entries
Figure 17.4 Set Trigger Address B Option, S12

The trigger appears in the Source window and at the corresponding address in the
Assembly window, just like a breakpoint icon. To be distinguishable from breakpoints,
trigger A is marked with a red A icon and trigger B with a red B icon (Figure 17.5). 1

Figure 17.5 Triggers Set in Source and Assembly Windows

Once you set a trigger, you can delete it by opening any context-sensitive menu that
contains the Delete Trigger Address options.

1.A,B on S12 platform; A,B,C on S12S/P; A,B,C,D on S12X.
405S12(X) Debugger Manual

On-Chip DBG Module for S12, S12S, S12G, S12P, S12X Platforms
Context Menu Entries
Storing Triggers as Markpoints
The debugger stores triggers as special Trigger A and Trigger B1 markpoints. You can
view markpoints by choosing Show Markpoints in the menu. The markpoint names are
reserved by the debugger. When you set the trigger from the Source or Assembly window,
the debugger automatically selects the Instruction markpoint type.

Selecting Show Markpoints from the Source window context menu opens the
Controlpoints Configuration window with its Markpoints tab displayed (Figure 17.6).

Figure 17.6 Controlpoints Configuration Window - Markpoints Tab

Use the Save and Restore on load option to save the application with the DBG module
setup and trigger positions. This option is also available with breakpoints and watchpoints.

1.A,B on S12 platform; A,B,C on S12S/P; A,B,C,D on S12X.
406 S12(X) Debugger Manual

On-Chip DBG Module for S12, S12S, S12G, S12P, S12X Platforms
Context Menu Entries
Trigger Editing
Use the Triggers Address Settings area (Figure 17.7) of the Trigger Settings tab when
specifying trigger addresses, or match or mismatch values. You can also use the context-
sensitive menus to set trigger addresses or types.

Figure 17.7 Triggers Address Settings Dialog Box

Pressing a Modify Trigger button opens a trigger editor dialog box called Browse for
Trigger (see Figure 17.8).

Figure 17.8 Browse for Trigger A Dialog Box

Table 17.1 describes the options available in the Browse for Trigger dialog box.
407S12(X) Debugger Manual

On-Chip DBG Module for S12, S12S, S12G, S12P, S12X Platforms
Context Menu Entries
NOTE Pressing OK in this dialog box does NOT update the trigger database. You
must press the Modify Trigger button in the Trigger Module Settings window
before closing the dialog box to update the trigger database.

Use the panel on the left to find a trigger address in the debugger symbol database. Select
a variable to copy the variable address into the Address edit box. Select a function to copy
the entry point of the function into the Address edit box. Select regular markpoints from
the markpoint list to copy the address of the markpoint into the Address edit box.

Table 17.1 Browse for Trigger A Options

Option Description

Address Contains initial and final trigger address value. Set by typing directly in
edit box.

Type Use to select or change trigger type. Use Instruction for Instruction
triggers. Use Read, Write and R/W Access for Memory Access and
Capture triggers.

Modify Trigger Modifies and records trigger in trigger database (see Storing Triggers
as Markpoints).

Delete Trigger Removes trigger from trigger database (see Storing Triggers as
Markpoints). Trigger address is undefined.

 Show
Location

Shows trigger location (as program code location or program data) in
Source, Data, Assembly and Memory windows.
408 S12(X) Debugger Manual

On-Chip DBG Module for S12, S12S, S12G, S12P, S12X Platforms
Context Menu Entries
Figure 17.9 Finding Trigger Address in Editor Dialog Box

Expert Triggers in Source and Assembly
Windows1

NOTE Expert Triggers are available for S12 devices only

Expert Mode offers a different set of triggers and trigger options. To completely separate
Expert mode from Automatic mode, the debugger provides a unique set of Expert triggers.
Expert triggers are independent of normal regular triggers.

As shown in Figure 17.10, Expert triggers appear in Source and Assembly windows with a
small additional e character, and different colors in the Memory component. When you set
the trigger from the Source or Assembly window, the debugger automatically selects the
markpoint type INSTRUCTION.

NOTE Setting Expert mode grays out preset Instruction, Memory Access, or Capture
trigger designs. Setting automatic mode or a predefined preset trigger grays out
the Expert mode trigger designs.2

1.S12 platform only.
2.S12 platform only.
409S12(X) Debugger Manual

On-Chip DBG Module for S12, S12S, S12G, S12P, S12X Platforms
Context Menu Entries
Figure 17.10 Expert Triggers in Source, Assembly, Memory and Data Windows

Data and Memory Windows
From the Data and Memory windows context menus, you can set or delete Memory
Access Triggers A, B1, set the DBG module triggers settings, and globally set the DBG
module functionality.

Figure 17.11 Data Window Context Menu - Delete Trigger A Option, S12

1.A,B on S12 platform; A,B,C on S12S/P; A,B,C,D on S12X.
410 S12(X) Debugger Manual

On-Chip DBG Module for S12, S12S, S12G, S12P, S12X Platforms
Context Menu Entries
You can set or delete a trigger in the Data window. The on-chip DBG module provides
combinations of trigger conditions, and according to the number of triggers defined1, you
can choose a different type of trigger (see DBG Module Mode Setup).

To set a trigger, select a location, choose one of the Set Trigger Address options and
select the kind of access (Read, Write, Read/Write). Setting the trigger from the Data or
Memory window automatically selects the corresponding READACCESS,
WRITEACCESS or READWRITEACCESS markpoint type.

The trigger appears in the Data window and at the corresponding address in the Memory
window. To distinguish triggers from watchpoints, trigger A appears with a dotted red
vertical line and trigger B with a dotted blue vertical line (Figure 17.13).

Figure 17.12 Data Window Context Menu - Set Trigger A Option, S12X

1.A,B on S12 platform; A,B,C on S12S/P; A,B,C,D on S12X.
411S12(X) Debugger Manual

On-Chip DBG Module for S12, S12S, S12G, S12P, S12X Platforms
Context Menu Entries
Figure 17.13 Triggers Set in Data and Memory Windows

Expert Triggers in Data and Memory Windows1

NOTE Expert Triggers are available for S12 devices only.

Expert Mode offers a different set of triggers and trigger options. To completely separate
Expert mode from Automatic mode, the debugger provides a unique set of Expert triggers.
Expert triggers are independent of normal regular triggers.

In the Data and Memory windows, context-sensitive menu entries for Expert Triggers
contain a Set DBGCA entry and a Set DBGCB entry. Expert Mode requires a thorough
knowledge of the DBG module, register usage, and debugging. For more details on Expert
mode and Expert triggers, see Expert Triggers Tab.

1.S12 platform only
412 S12(X) Debugger Manual

On-Chip DBG Module for S12, S12S, S12G, S12P, S12X Platforms
Context Menu Entries
Figure 17.14 Source Window Context Menu - Expert Trigger Options, S12

NOTE Setting Expert mode grays out preset Instruction, Memory Access, or Capture
trigger designs. Setting automatic mode or a predefined preset trigger grays out
the Expert mode trigger designs.

The Markpoints tab of the Controlpoints Configuration window stores expert triggers as
DBGCA and DBGCB markpoints. These markpoint names are therefore reserved by the
debugger.

Use the Save and Restore on load option to automatically save the application with the
current DBG module setup and trigger positions.

Trigger Settings1
You can use the Trigger Settings option of a context menu to set all kinds of triggers
without opening the Trigger Module Settings Window. However, the amounts and
combinations of trigger types are dynamic, depending on how many triggers are defined,
which triggers are defined, and the trigger type (Instruction, Read Access, Read/Write

1.S12 platform only
413S12(X) Debugger Manual

On-Chip DBG Module for S12, S12S, S12G, S12P, S12X Platforms
Context Menu Entries
Access, Write Access). The menu displays only those trigger conditions and combinations
that are currently available.

You can also directly edit the DBG Module Options.

Figure 17.15 Triggers Setting Menu Option - Extended Menu, S12

Trigger Module Usage
Use this menu entry to set the DBG module functionality globally, without opening the
Trigger Module Settings window (Figure 17.16).
414 S12(X) Debugger Manual

On-Chip DBG Module for S12, S12S, S12G, S12P, S12X Platforms
Context Menu Entries
Figure 17.16 Source Window Extended Menu, S12

Figure 17.17 Source Window Extended Menu, S12X
415S12(X) Debugger Manual

On-Chip DBG Module for S12, S12S, S12G, S12P, S12X Platforms
DBG Support Status Bar Item
DBG Support Status Bar Item
A specific DBG support debugger status bar item appears as soon as the debugger target
processor features the DBG module. Clicking on this item opens the Trigger Module
Settings window.

Figure 17.18 Status Bar Item

The status bar displays the current DBG module mode setup (as shown above) or the
current preset Instruction triggers, Memory Access triggers or Capture triggers in use.

Figure 17.19 Status Bar Item

Trigger Module Settings Window
You can open this window from context-sensitive menus in the Source, Data, Memory and
Assembly component windows, from the Connection menu, or by clicking on a Status Bar
item.You can fully control the on-chip DBG module from this window.

• S12 DBG Module Tabs

• S12G, S12P, S12S DBG Module Tabs

• S12X DBG Module Tabs

S12 DBG Module Tabs
It consists of:

• Trigger Settings Tab

• Expert Triggers Tab

Trigger Settings Tab
Use the Triggers Settings tab to set the trigger mode and trigger address (if this option is
available in the selected mode).
416 S12(X) Debugger Manual

On-Chip DBG Module for S12, S12S, S12G, S12P, S12X Platforms
Trigger Module Settings Window
Figure 17.20 Trigger Module Settings Window - Trigger Settings Tab, S12

DBG Module Mode Setup
The on-chip DBG module provides some exclusive debugging features. Four modes are
available:

• Automatic

• Expert

• Profiling and Coverage

• Disabled

Four types of triggers are available:

• Memory Access Triggers

• Instruction Triggers

• Capture Triggers

• Expert Triggers

All modes and triggers are available through the Trigger Settings tab. Open the top list
menu to display all available modes, triggers, and trigger conditions (Figure 17.21). Table
17.2 describes the modes and trigger settings.
417S12(X) Debugger Manual

On-Chip DBG Module for S12, S12S, S12G, S12P, S12X Platforms
Trigger Module Settings Window
NOTE Encountering any Memory Access or Instruction triggers causes the Trace
Component window to switch to Instructions Display mode and display the
program flow rebuild (see Trigger Module Settings Window and Instructions
Display for more information).

NOTE Encountering any Capture trigger causes the Trace Component window to
switch to Recorded Data Display mode and display the captured byte data (see
Trigger Module Settings Window and Recorded Data Display for more
information).

NOTE Expert Mode is described in Expert Triggers Tab.

Figure 17.21 Trigger Settings Tab Listbox, S12
418 S12(X) Debugger Manual

On-Chip DBG Module for S12, S12S, S12G, S12P, S12X Platforms
Trigger Module Settings Window
Table 17.2 Trigger Modes

Mode Description

Automatic Mode
(Default)

Set up three regular hardware breakpoints or one watchpoint, or set
up triggers selected from list or menu.

Set trigger conditions and addresses from Source, Assembly,
Memory or Data components using Set Trigger A or Set Trigger B
menu entry, or within this dialog.

DBG module records executed change of flows. Since no triggers
are set in automatic mode, the debugger stops on the typical
breakpoints/watchpoints or by user request.

Expert Mode Enables the Expert Triggers tab (see Expert Triggers Tab).

Profiling and
Coverage Mode

Sets DBG module to code execution profiling and code execution
coverage. Open Profiler and/or Coverage components to display
results.

Uses a periodic real-time fetch from debugger program counter to
DBG module. Not all program counters are represented with each
fetch. Improve accuracy and precision by using a longer run time
and test period.

Use software breakpoints; triggers and DBG-based control points
have no effect. User must request the debugger to stop.

Disabled Mode Requires advanced knowledge of on-chip DBG module. Use to set
hardware breakpoints, watchpoints, and triggers.

Requires user to handle trigger comparator addresses and DBG
control registers through Memory component or using command line
commands, without a dedicated GUI to access DBG module
register. Use selected flags within DBG control registers to enable or
arm DBG module.

On halt, debugger automatically protects FIFO content from
unexpected reads, analyzes FIFO content, and disarms DBG
module (can be disabled by user). Stopping an application does not
reset DBG module. Debugger does not set DBG module.
419S12(X) Debugger Manual

On-Chip DBG Module for S12, S12S, S12G, S12P, S12X Platforms
Trigger Module Settings Window
Table 17.3 Trigger Types

Type Description

Memory Access at
Address A

Set trigger on a program instruction read or write at memory
location labeled Address A.

Memory Access at
Address A or Address B

Set trigger on a program instruction read or write at memory
location labeled Address A or Address B.

Memory Access Inside
Address A - Address B
Range

Set trigger on a program instruction read or write that occurs
within Address A to Address B memory range.

Memory Access at
Address A then
Memory Access at
Address B

Set trigger on a program instruction sequence that first reads
or writes at Address A memory location, then reads or writes
at Address B memory location.

Memory Access at
Address A and Value
on Data Bus Match

Set trigger on a program instruction read or write of a specific
matching byte value at Address A memory location.

Uses trigger B address as match value rather than address
location. Select this trigger type without setting match value
and an error message prompts for match value.

Replaces standard trigger editing dialog box with Triggers
Address Settings dialog box (see Figure 17.7). Match Value
edit boxes replace Trigger Editing dialog.

Memory Access at
Address A and Value
on Data Bus Mismatch

Set trigger on a program instruction read or write of a non-
matching byte value at Address A memory location.

Uses trigger B address as mismatch value rather than
address location. Select this trigger type without setting the
mismatch value and an error message prompts for value.

Replaces standard trigger editing dialog box with Triggers
Address Settings dialog box (see Figure 17.7). Match Value
edit boxes replace Trigger Editing dialog.

Instruction at Address A
Is Executed

Set a trigger on a program instruction execution (program
counter) occurring at Address A.

Instruction at Address A
or Address B Is
Executed

Set a trigger on a program instruction execution (program
counter) occurring at either Address A or Address B.

Instruction Execution
Inside Address A -
Address B Range

Set a trigger on a program instruction execution (program
counter) occurring within Address A to Address B range.
420 S12(X) Debugger Manual

On-Chip DBG Module for S12, S12S, S12G, S12P, S12X Platforms
Trigger Module Settings Window
Instruction Execution
Outside Address A -
Address B Range

Set a trigger on a program instruction execution (program
counter) occurring outside Address A to Address B range.

With the HCS12 Serial Monitor via GDI connection,
monitor code may interfere with this trigger type. Debugger
may fail for executed code not belonging to user application.

Instructions at Address
A then at Address B
Were Executed

Set a trigger on a program instruction execution (program
counter) occurring first at Address A, then Address B.

Instruction at Address A
and Value on Data Bus
Match

Set a trigger on a program instruction execution at Address A
with an instruction opcode that matches a specific byte value
at Address A memory location.

Uses trigger B address as match value rather than an
address location. Select this trigger type without setting
match value and an error message prompts for match value.

Replaces standard trigger editing dialog box with Triggers
Address Settings dialog box (see Figure 17.7). Match Value
edit boxes replace Trigger Editing dialog.

Instruction at Address A
and Value on Data Bus
Mismatch

Set a trigger on a program instruction execution of a non-
matching byte value at Address A memory location.

Uses trigger B address as mismatch value rather than an
address location. Select this trigger type without setting
match value, and an error message prompts for match value.

Replaces standard trigger editing dialog box with Triggers
Address Settings dialog box (see Figure 17.7). Match Value
edit boxes replace Trigger Editing dialog.

Capture Read/Write
Values at Address B

Use to capture data used in a read or write access to address
location specified by trigger B. Typically a data or memory
address rather than program code address (program
counter).

Capture Read/Write
Values at Address B
After Access at Address
A

Use to capture data used in a read or write access to address
location specified by trigger A and trigger B. Typically a
data or memory address rather than program code address
(program counter). Capture of values at Address B begins
only after accessing Address A.

Table 17.3 Trigger Types (continued)

Type Description
421S12(X) Debugger Manual

On-Chip DBG Module for S12, S12S, S12G, S12P, S12X Platforms
Trigger Module Settings Window
DBG Module Options
The DBG module includes options to record and change the program flow when using
instruction and memory access triggers. The following options are available:

• Record continuously and halt on trigger hit

• Record continuously and DO NOT halt on trigger hit

• Start recording after trigger hit and halt when the FIFO is full

• Start recording after trigger hit and DO NOT halt when the FIFO is full

When using Capture triggers, the following data recording options are available:

• Halt when the FIFO is full

• Do not halt when the FIFO is full

Recording Program Code Change of Flow and Data Recording Options describe these
options.

Recording Program Code Change of Flow

Use the recording options with Instruction and Memory Access triggers. Use the Trigger
Module Settings window’s Trigger Settings tab list box (Figure 17.22) to control the
recording options described in Table 17.4:

Figure 17.22 Change of Flow Recording Control
422 S12(X) Debugger Manual

On-Chip DBG Module for S12, S12S, S12G, S12P, S12X Platforms
Trigger Module Settings Window
Data Recording Options

Use the data recording options with Capture triggers. Select these options from the list box
in the Trigger Settings tab of the Trigger Module Settings window (Figure 17.23). Table
17.5 shows the available data recording options.

Table 17.4 Recording Options in Trigger Settings Tab

Option Description

Record continuously and
halt on trigger hit

Begins recording program flow information immediately
after run. Halts processor/debugger when trigger condition
match occurs.

Record continuously and
DO NOT halt on trigger hit

Begins recording program flow information immediately
after run. Does not halt the processor/debugger when
trigger condition match occurs

Start recording after
trigger hit and halt when
the FIFO is full

Begins recording program flow information when trigger
condition match occurs and halts processor/debugger
when capture buffer is full.

Start recording after
trigger hit and DO NOT
halt when the FIFO is full

Begins recording program flow information when trigger
condition match occurs. Does not halt processor/
debugger.
423S12(X) Debugger Manual

On-Chip DBG Module for S12, S12S, S12G, S12P, S12X Platforms
Trigger Module Settings Window
Figure 17.23 Data Recording Control

Display Information
A large gray box provides dynamic information about the current triggers and selected
options.

As context-sensitive menus only display triggers matching the number and type of
currently set triggers, the debugger checks the current trigger settings against the trigger
mode. If one or more triggers do not match the trigger mode selection, a warning icon and
message appears on the bottom of the dialog.

The display field in Figure 17.24 shows that the Memory Write Access type does not
match the Instruction trigger type selected in the list.

Table 17.5 Data Recording Options for Capture Triggers

Option Description

Halt when the FIFO is
full

Continuously records data accesses and halts processor/
debugger when capture buffer is full.

Do not halt when the
FIFO is full

Continuously records data accesses but does not halt
processor/debugger when the capture buffer is full.
424 S12(X) Debugger Manual

On-Chip DBG Module for S12, S12S, S12G, S12P, S12X Platforms
Trigger Module Settings Window
Figure 17.24 Trigger Settings Tab Information Display, S12

Expert Triggers Tab
The Expert triggers tab gives you access to most of the on-chip DBG module registers.
You can set trigger types directly from the DBGT - Debugger Trigger Register list
menu.

Using Expert Mode and Expert triggers requires thorough knowledge and understanding
of the on-chip DBG module, registers, and flags. Use this mode to synchronize code
program flow rebuild and data recording and display the results in Trigger Module
Settings Window.

To set Expert triggers, use the Trigger Module Settings window ExpertTriggers tab.
Select Expert mode in the list menu (Figure 17.25) to enable the Expert Triggers tab
(Figure 17.26).

Figure 17.25 Trigger Settings Tab - Expert Mode Information
425S12(X) Debugger Manual

On-Chip DBG Module for S12, S12S, S12G, S12P, S12X Platforms
Trigger Module Settings Window
Figure 17.26 Trigger Module Settings Window - Expert Triggers Tab

Use Set DBGCA or Set DBGCB to set the triggers comparator addresses from the
Source, Assembly, Memory and Data component windows. The debugger sets the DBG
module. DBG module enabling and arming depend on selected flags set within the DBG
register control registers (through the Expert triggers tab). In this mode, the debugger
writes all settings to the hardware right before the application runs. The debugger resets
the DBG module when the application stops.

NOTE Refer to the core reference manual for detailed information on specific
registers.

S12G, S12P, S12S DBG Module Tabs
The user can modify or control all of the available options using the Trigger Module
settings window, with its three tabs, Trigger Settings, Sequencer and General Settings.
426 S12(X) Debugger Manual

On-Chip DBG Module for S12, S12S, S12G, S12P, S12X Platforms
Trigger Module Settings Window
Figure 17.27 Trigger Settings Tab Listbox

Switch DBG modes by displaying the list menu, as shown above, and selecting any one of
the three modes. With some modes, some of the Trigger Settings tab options are not
available.

Use the sub-tabs of the Trigger Settings tab of this window, with their text fields, radio
buttons and check boxes, to set up the individual triggers.

Trigger Settings Tab
Use the Triggers Settings tab to set the trigger mode and trigger address (if this option is
available in the selected mode).

DBG Module Mode Setup
Three modes are available:

• Automatic

• Disabled
427S12(X) Debugger Manual

On-Chip DBG Module for S12, S12S, S12G, S12P, S12X Platforms
Trigger Module Settings Window
• User triggers

Trace Setup Control
Use the options made available in the Trace list menu of the Trigger Settings tab to set up
DBG trace in the Trace component window.

Table 17.6 Trigger Modes

Mode Description

Automatic Mode
(Default)

Use DBG Module to set up three hardware breakpoints or two
hardware breakpoints and one watchpoint.

Set triggers by selecting from the list or from a context-sensitive
menu. Automatic mode is the default selection when no triggers are
currently set.

Set trigger condition and trigger addresses from debugger Source,
Assembly, Memory and Data components using Set Trigger A or Set
Trigger B context-sensitive menu entry, or from Trigger Settings
dialog.

DBG module records executed change of flows. Since no triggers
are currently set, stopping the debugger requires a user request, a
breakpoint, or watchpoint.

Triggers
Disabled Mode

User makes trigger settings manually. Debugger analyzes DBG
module before and after the run to build up Status and Trace
information, but does not set up DBG module before running.

Requires advanced knowledge of on-chip DBG module. Use to set
hardware breakpoints, watchpoints, and triggers. User must handle
trigger comparator addresses and DBG control registers through
Memory component or by using command line commands, without a
dedicated GUI to access DBG module register. Use selected flags
within DBG control registers to enable or arm DBG module. By
default, when debugger halts it automatically protects FIFO content
from unexpected reads, analyzes FIFO content, and disarms DBG
module (user can disable this function). Stopping an application
does not reset DBG module, nor does debugger set DBG module.

User Triggers
Mode

User must define trigger type. Provides a 4-Stage Sequencer for
trace buffer control. List menu provides predefined sequences. User
can define their own sequences. In this mode:

• Debugger does not set triggers as watchpoints or
breakpoints automatically

• User can define three triggers and their conditions

• User can use the Sequencer to decide how to stop the
debugger.
428 S12(X) Debugger Manual

On-Chip DBG Module for S12, S12S, S12G, S12P, S12X Platforms
Trigger Module Settings Window
Figure 17.28 Trigger Settings Tab - Trace Drop List

The list options allow you to enable or disable tracing.

Table 17.7 Trigger Settings Tab - Trace Drop List

Option Description

Trace disabled Disable trace

Trace HCS12X only Trace the HCS12X core only

Trace XGATE only Trace the XGATE core only

Trace both cores Trace both the cores
429S12(X) Debugger Manual

On-Chip DBG Module for S12, S12S, S12G, S12P, S12X Platforms
Trigger Module Settings Window
Figure 17.29 Trigger Align

Using the this list it is possible to align the trigger with the end or the beginning of a
tracing session.

Table 17.8 Trigger Align

Options Description

Record continuously Starts recording program flow information
immediately after run. Halts the processor/
debugger when capture buffer is full.

Start recording on condition Starts recording program flow information on
trigger condition match. Halts the processor/
debugger when capture buffer is full.

Record before and after
condition

Starts recording program flow information on
trigger condition match. Does not halt the
processor/debugger on trigger condition
match; halts when capture buffer is full.
430 S12(X) Debugger Manual

On-Chip DBG Module for S12, S12S, S12G, S12P, S12X Platforms
Trigger Module Settings Window
Figure 17.30 Data Recording Control

Table 17.9 Data Recording Options

Option Description

FIFO normal
mode

Change of flow (COF) program counter (PC) addresses are stored,
debugger rebuilds program flow.

FIFO LOOP1
mode

Loop1 Mode, similarly to Normal Mode also stores only COF
address information to the trace buffer, it however allows the
filtering out of redundant information.

Loop1 Mode only inhibits consecutive duplicate source address
entries that would typically be stored in most tight looping
constructs. It does not inhibit repeated entries of destination
addresses or vector addresses, since repeated entries of these
would most likely indicate a bug in the user’s code that the DBG
module is designed to help find.

The debugger rebuilds program flow.
431S12(X) Debugger Manual

On-Chip DBG Module for S12, S12S, S12G, S12P, S12X Platforms
Trigger Module Settings Window
Sequencer Tab
You can choose or change the DBG sequence in the Sequencer tab of the Trigger Module
Settings window. The sequencer tab reflects transitions that occur when you select a
predefined sequencer mode.

Figure 17.31 Trigger Module Settings Window - Sequencer Tab

FIFO DETAIL
mode

In Detail Mode, address and data for all memory and register
accesses is stored

Pure PC mode Default recording mode when available. Debugger decodes pure
PCs recorded by module. Does not perform program flow rebuild.

In Compressed Pure PC Mode1, the PC addresses of all executed
opcodes are stored. A compressed storage format is used to
increase the effective depth of the trace buffer.

1. S12G, S12P platform

Table 17.9 Data Recording Options

Option Description
432 S12(X) Debugger Manual

On-Chip DBG Module for S12, S12S, S12G, S12P, S12X Platforms
Trigger Module Settings Window
You can modify the transitions in the Sequence tab only when the DBG is in User
Sequencer setup mode.

S12X DBG Module Tabs

Trigger Settings Tab
Use the Triggers Settings tab to set the trigger mode and trigger address (if this option is
available in the selected mode).

DBG Module Mode Setup
The on-chip DBG module provides some exclusive debugging features. Three modes are
available:

• Automatic

• Disabled

• User triggers

All three modes offer:

• Code rebuilding from Change of Flow, in the Trace component window,

• Breakpoint, watchpoint and trigger setting for either the HCS12X core or the
XGATE core.
433S12(X) Debugger Manual

On-Chip DBG Module for S12, S12S, S12G, S12P, S12X Platforms
Trigger Module Settings Window
Figure 17.32 Trigger Settings Tab Listbox

Trigger Types
This section describes the types of triggers and how to use them. Three types of triggers
are available:

• Memory Access Triggers

• Instruction Triggers

• Capture Triggers

All triggers are available in Automatic and User Triggers modes. Select either of these
modes to enable access to trigger options. Table 17.2 describes the trigger settings.

NOTE Encountering any Memory Access or Instruction triggers causes the Trace
Component window to switch to Instructions Display mode and display the
program flow rebuild (see Trace Component Window and Instructions Display
for more information).
434 S12(X) Debugger Manual

On-Chip DBG Module for S12, S12S, S12G, S12P, S12X Platforms
Trigger Module Settings Window
NOTE Encountering any Capture trigger causes the Trace Component window to
switch to Recorded Data Display mode and display the captured byte data (see
Trace Component Window and Recorded Data Display for more information).

Table 17.10 Trigger Modes

Mode Description

Automatic Mode
(Default)

Use DBG Module to set up four hardware breakpoints or two
hardware breakpoints and one watchpoint. User can see and set
HCS12X trace.

Setting a trigger automatically switches to User Triggers mode.

Set triggers by selecting from the list or from a context-sensitive
menu. Automatic mode is the default selection when no triggers are
currently set.

Set trigger condition and trigger addresses from debugger Source,
Assembly, Memory and Data components using Set Trigger A or Set
Trigger B context-sensitive menu entry, or from Trigger Settings
dialog.

DBG module records executed change of flows. Since no triggers
are currently set, stopping the debugger requires a user request, a
breakpoint, or watchpoint.
435S12(X) Debugger Manual

On-Chip DBG Module for S12, S12S, S12G, S12P, S12X Platforms
Trigger Module Settings Window
Triggers
Disabled Mode

User makes trigger settings manually. Debugger analyzes DBG
module before and after the run to build up Status and Trace
information, but does not set up DBG module before running.

Requires advanced knowledge of on-chip DBG module. Use to set
hardware breakpoints, watchpoints, and triggers. User must handle
trigger comparator addresses and DBG control registers through
Memory component or by using command line commands, without a
dedicated GUI to access DBG module register. Use selected flags
within DBG control registers to enable or arm DBG module. By
default, when debugger halts it automatically protects FIFO content
from unexpected reads, analyzes FIFO content, and disarms DBG
module (user can disable this function). Stopping an application
does not reset DBG module, nor does debugger set DBG module.

User Triggers
Mode

User must define trigger type. Provides a 4-Stage Sequencer for
trace buffer control. List menu provides predefined sequences. User
can define their own sequences. In this mode:

• Debugger does not set triggers as watchpoints or
breakpoints automatically

• User can define four triggers and their conditions

• User can use the Sequencer to decide how to stop the
debugger.

Table 17.11 Memory Access Triggers Available

Mode Description

Memory Access at
Address A

Use to set a trigger on a program instruction read or write at
memory location labeled Address A.

Memory Access at
Address A or Address B

Use to set a trigger on a program instruction read or write at
memory location labeled Address A or Address B.

Memory Access Inside
Address A - Address B
Range

Use to set a trigger on a program instruction read or write
that occurs within Address A to Address B memory range.

Memory Access at
Address A then Memory
Access at Address B

Use to set a trigger on a program instruction sequence that
first reads or writes at Address A memory location, then
reads or writes at the Address B memory location.

Table 17.10 Trigger Modes (continued)

Mode Description
436 S12(X) Debugger Manual

On-Chip DBG Module for S12, S12S, S12G, S12P, S12X Platforms
Trigger Module Settings Window
Memory Access at
Address A and Value on
Data Bus Match

Use to set a trigger on a program instruction read or write of
a specific matching byte value at Address A memory
location.

Uses trigger B address as a match value rather than an
address location. If you select this trigger type using a
context menu without setting the match value, an error
message prompts for the match value.

Replaces the standard trigger editing dialog box with
Triggers Address Settings dialog box (see Figure 17.7).
Match Value edit boxes replace Trigger Editing dialog.

Memory Access at
Address A and Value on
Data Bus Mismatch

Use to set a trigger on a program instruction read or write of
a non-matching byte value at Address A memory location.

Uses trigger B address as a mismatch value rather than
an address location. If you select this trigger type using a
context menu without setting the match value, an error
message prompts for the match value.

Replaces the standard trigger editing dialog box with
Triggers Address Settings dialog box (see Figure 17.7).
Match Value edit boxes replace Trigger Editing dialog.

Instruction at Address A
Is Executed

Use to set a trigger on a program instruction execution
(program counter) occurring at Address A.

Instruction at Address A
or Address B Is Executed

Use to set a trigger on a program instruction execution
(program counter) occurring at either Address A or B.

Instruction Execution
Inside Address A -
Address B Range

Use to set a trigger on program instruction execution
(program counter) occurring within Address A to Address B
range.

Instruction Execution
Outside Address A -
Address B Range

Use to set a trigger on a program instruction execution
(program counter) occurring outside Address A to Address
B range.

Instructions at Address A
then at Address B Were
Executed

Use to set a trigger on program instruction execution
(program counter) occurring first at Address A, then
Address B.

Table 17.11 Memory Access Triggers Available (continued)

Mode Description
437S12(X) Debugger Manual

On-Chip DBG Module for S12, S12S, S12G, S12P, S12X Platforms
Trigger Module Settings Window
On-Chip DBG Control Options
The user can modify or control all of the available options using the Trigger Module
settings window, with its three tabs, Trigger Settings, Sequencer and General Settings.

Instruction at Address A
and Value on Data Bus
Match

Use to set a trigger on a program instruction execution at
Address A with an instruction opcode that matches a
specific byte value at the Address A memory location.

Uses trigger B address as a match value rather than an
address location. If you select this trigger type using a
context menu without setting the match value, an error
message prompts for match value.

Replaces the standard trigger editing dialog box with the
Triggers Address Settings dialog box (see Figure 17.7).
Match Value edit boxes replace Trigger Editing dialog.

Instruction at Address A
and Value on Data Bus
Mismatch

Use to set a trigger on a program instruction execution of a
non-matching byte value at Address A memory location.

Uses trigger B address as a mismatch value rather than
an address location. If you select this trigger type using a
context menu without setting the match value, an error
message prompts for the match value.

Replaces standard trigger editing dialog box with Triggers
Address Settings dialog box (see Figure 17.7). Match
Value edit boxes replace Trigger Editing dialog.

Capture Read/Write
Values at Address B

Use to capture data used in a read or write access to
address location specified by trigger B. Typically a data or
memory address rather than program code address
(program counter).

Capture Read/Write
Values at Address B After
Access at Address A

Use to capture data used in a read or write access to
address location specified by trigger A and trigger B.
Typically a data or memory address rather than program
code address (program counter). Capture of values at
Address B begins only after accessing Address A.

Table 17.11 Memory Access Triggers Available (continued)

Mode Description
438 S12(X) Debugger Manual

On-Chip DBG Module for S12, S12S, S12G, S12P, S12X Platforms
Trigger Module Settings Window
Figure 17.33 Trigger Module Settings Window - Trigger Settings Tab

Switch DBG modes by displaying the list menu, as shown above, and selecting any one of
the three modes. With some modes, some of the Trigger Settings tab options are not
available.

Use the four sub-tabs of the Trigger Settings tab of this window, with their text fields,
radio buttons and check boxes, to set up the individual triggers.

Trace Setup Control
Use the options made available in the Trace list menu of the Trigger Settings tab to set up
DBG trace in the Trace component window. Configure DBG Trace to record HCS12X
only, XGATE only, or both cores.
439S12(X) Debugger Manual

On-Chip DBG Module for S12, S12S, S12G, S12P, S12X Platforms
Trigger Module Settings Window
Figure 17.34 Trigger Settings Tab - Trace Drop List

The list options allow you to:

• Disable trace

• Trace the HCS12X core only

• Trace the XGATE core only

• Trace both cores.

Program Code Change of Flow Recording
The program code change of flow options are available for Instruction and Memory
Access triggers and controlled through the Trigger Module Settings window Trigger
Settings list menu.
440 S12(X) Debugger Manual

On-Chip DBG Module for S12, S12S, S12G, S12P, S12X Platforms
Trigger Module Settings Window
Figure 17.35 Change of Flow Recording Control

Recording can start either when the sequencer final state is reached and then stop, stop
when the sequencer final state is reached, or provide trace information both before and
after the final state is reached. Table 17.12 describes the available recording options.

Data Recording Control
The data recording options are available for Capture triggers only. Select these options
from the list box in the Trigger Settings tab.

Table 17.12 Recording Options

Option Description

Record
continuously

Starts recording program flow information immediately after run.
Halts the processor/debugger when capture buffer is full.

Start recording on
condition

Starts recording program flow information on trigger condition
match. Halts the processor/debugger when capture buffer is full.

Record before and
after condition

Starts recording program flow information on trigger condition
match. Does not halt the processor/debugger on trigger condition
match; halts when capture buffer is full.
441S12(X) Debugger Manual

On-Chip DBG Module for S12, S12S, S12G, S12P, S12X Platforms
Trigger Module Settings Window
Figure 17.36 Data Recording Control

FIFO Normal and LOOP1 modes record the change of flow (allowing program rebuild),
while DETAIL mode only records data accesses. In Pure PC mode the debugger decodes
pure PCs only. Table 17.13 describes the available data recording options.

Table 17.13 Data Recording Options

Option Description

FIFO normal
mode

Continuously records data accesses. Halts the processor/
debugger when capture buffer is full.

FIFO LOOP1
mode

Continuously records data accesses. Does not halt the processor/
debugger when capture buffer is full.

 FIFO DETAIL
mode

Continuously records data access details. Halts the processor/
debugger when capture buffer is full.

Pure PC mode Default recording mode when available. Debugger decodes pure
PCs recorded by module. Does not perform program flow rebuild.
442 S12(X) Debugger Manual

On-Chip DBG Module for S12, S12S, S12G, S12P, S12X Platforms
Trigger Module Settings Window
Trigger Sequence Control
Select the Trigger Sequence control options from the list box in the Trigger Settings tab of
the Trigger Module Settings window shown below. You can also choose or change the
DBG sequence in the Sequencer tab of the Trigger Module Settings window. Version 3
and later devices incorporate an extended trigger sequencer, with preset sequences
providing more complex trigger combinations.

Figure 17.37 Trigger Sequence Control

Display Information
A large gray box provides dynamic information about the current triggers and selected
options.

As context-sensitive menus only display triggers matching the number and type of
currently set triggers, the debugger checks the current trigger settings against the trigger
mode. If one or more triggers do not match the trigger mode selection, a warning icon and
message appears on the bottom of the dialog.

The display field in Figure 17.38 shows that the Memory Write Access type does not
match the Instruction trigger type selected in the list.
443S12(X) Debugger Manual

On-Chip DBG Module for S12, S12S, S12G, S12P, S12X Platforms
Trigger Module Settings Window
Figure 17.38 Trigger Settings Tab Information
444 S12(X) Debugger Manual

On-Chip DBG Module for S12, S12S, S12G, S12P, S12X Platforms
Trigger Module Settings Window
Sequencer Tab
You can choose or change the DBG sequence in the Sequencer tab of the Trigger Module
Settings window. The sequencer tab reflects transitions that occur when you select a
predefined sequencer mode.

Figure 17.39 Trigger Module Settings Window - Sequencer Tab

You can modify the transitions in the Sequence tab only when the DBG is in User
Sequencer setup mode.

General Settings Tab
The settings in the General Settings tab indicate the default settings of the DBG user
interface (see Figure 17.40). Usually there is no need to change these settings. However, in
some cases, you may wish to disable some automated background processes. The
following checkboxes are available in this tab:

• Automatically analyze the FIFO content

• Disarm automatically the module when the debugger stops

• Protect DBG FIFO content from unexpected reads

• When starting, automatically step if a trigger is set at PC address (otherwise: warn)
445S12(X) Debugger Manual

On-Chip DBG Module for S12, S12S, S12G, S12P, S12X Platforms
Trigger Module Settings Window
Table 17.14 describes these options. Refer to Trigger Module Settings Window for
additional information.

Figure 17.40 Trigger Module Settings Window - General Settings Tab

Table 17.14 On-Chip Debug Module Setup Options

Option Description

Automatically
analyze the FIFO
content

When debugger halts with Trace component window open,
debugger analyzes DBG module results and displays them in
Trace window. If Trace window is closed, DBG user interface
performs no result analysis except trigger flags reported in status
bar. Clear to limit analysis to reporting trigger flags in status bar,
even when Trace window is open.

Disarm
automatically the
module when the
debugger stops

Target processor halt due to user break (not trigger) leaves on-
chip DGB module armed. Check to disarm on-chip DGB module
on halt to retrieve data from DBG FIFO. If clear, DBG FIFO/buffer
information cannot be retrieved until module is disarmed.
446 S12(X) Debugger Manual

On-Chip DBG Module for S12, S12S, S12G, S12P, S12X Platforms
Trace Component Window
Figure 17.41 Trigger Escape Dialog Box

Trace Component Window
Use the Trace component to display the internal database in the Trace window. Set up the
context-sensitive menu from the connection (or the GDI DLL) using the component.

All debugger connections, including the DBG user interface, are synchronized with the
Trace component.

It is not necessary to open the Trace component window to use the DBG user interface
triggers. However, several triggers collect code program flow information or access data
information. Open the Trace window from specific connection menus, from context
menus, and from the DBG Support Status bar. Save this window in the debugger layout by
pressing the debugger Save icon.

NOTE The debugger may run faster with the Trace component window closed,
because this allows the debugger to discard the code program flow rebuild.

The Trace component window displays either instructions or recorded data, depending on
the type of triggers activating the window.

Protect DBG FIFO
content from
unexpected reads

Debugger retrieves FIFO data from DBGFH-DBGFL registers,
performing several reads to retrieve entire buffer. When debugger
halts, it may also read target processor memory at same location,
reading the first FIFO data buffer and shifting the buffer, and
corrupting user interface FIFO data. Enabling this option protects
FIFO content from debugger reads.

When starting,
automatically step
if a trigger is set at
PC address
(otherwise: warn)

After encountering trigger, debugger must clear current trigger
match condition and avoid being locked by trigger. Instruction
triggers require a single step to escape. Check this option to step
out of trigger automatically. When clear, a dialog box appears to
validate stepping (see Figure 17.41).

Table 17.14 On-Chip Debug Module Setup Options

Option Description
447S12(X) Debugger Manual

On-Chip DBG Module for S12, S12S, S12G, S12P, S12X Platforms
Trace Component Window
Instructions Display
Using Instruction triggers and Memory Access triggers automatically activates this
display mode. It is also the default display in Automatic mode. In this mode, the Trace
component window displays four columns:

• Frame: This column shows a number representing an information item stored in the
Trace component database.

• Address: This column shows the instruction program counter.

• Instruction: This column shows the code program flow instruction disassembly.

• FIFO Analyze remark: This column shows debugger information

– DBG FIFO data means that the on-chip DBG module recorded this data

– Traced means an item or instruction obtained by debugger or user single step or
assembly step.

– Program flow rebuild gap means that the debugger was unable to completely
track the code program flow between two frames.

Figure 17.42 Trace Window - Context Menu Options

Selecting Show Location in the Trace window context-sensitive menu displays the frame
matching source and assembly code in the Source and Assembly windows.
448 S12(X) Debugger Manual

On-Chip DBG Module for S12, S12S, S12G, S12P, S12X Platforms
Trace Component Window
Graphical Display
Activate this display mode by selecting Graphical in the Trace window context-sensitive
menu. It provides a graphical representation of the same information.

Figure 17.43 Trace Window - Graphical Display

Textual Display
Activate this display mode by selecting Textual in the Trace window context-sensitive
menu, when using Instruction or Memory Access triggers. When using this mode, the
DBG module does not record read or write accesses while program change of flow
information is recorded. Textual display mode simply expands instruction assembly code
in the Trace window.
449S12(X) Debugger Manual

On-Chip DBG Module for S12, S12S, S12G, S12P, S12X Platforms
Trace Component Window
Figure 17.44 Trace Window - Textual Display

Column Display and Moving
Select Items in the Trace window context-sensitive menu to open a configuration dialog
to set up the columns to view in each display mode. You can open the Displaying mode
list to make column display modifications in Textual, Instructions or Graphical mode. Use
the right arrow to move items to the Displayed Items list, and the left arrow to hide the
item. Moving the item Up in the list moves it to the left in the Trace component window.
Select More for more options. Select OK to save your changes.
450 S12(X) Debugger Manual

On-Chip DBG Module for S12, S12S, S12G, S12P, S12X Platforms
Trace Component Window
Figure 17.45 Items Configuration Dialog Box

Dumping Frames to File
Selecting Dump in the Trace window contest-sensitive menu opens a dialog that allows
you to specify the number of Trace component frames to save, and the name of the text
file to which to save the frames.

Figure 17.46 Dump Trace Frames Dialog Box

Go to Frame
Selecting Go to Frame in the Trace window context-sensitive menu opens a Search
Frame dialog to allow you to look for a specific frame in the Trace window.
451S12(X) Debugger Manual

On-Chip DBG Module for S12, S12S, S12G, S12P, S12X Platforms
Trace Component Window
Clearing Frames
Selecting Clear in the Trace window context-sensitive menu flushes the frames in the
Trace window. It also flushes the database in the background.

DBG Module FIFO/Buffer Display
This menu entry toggles between Display DBG FIFO data and Display program flow.
Selecting Display DBG FIFO data in the Trace window contest-sensitive menu displays
data information retrieved from the on-chip DGB module FIFO/buffer. Selecting Display
program flow in the Trace window context-sensitive menu reverts the display back to the
code program flow. The following columns appear in the Display DBG FIFO data
window:

• FIFO Depth: This is a number representing the depth in the DBG/FIFO of the word
data value. The first frame (Depth 1) is the oldest value.

• DBG FIFO Data: This is the word value retrieved from the DBG FIFO/buffer from
DBGFH and DBGFL DBG on-chip module registers.

Figure 17.47 Trace Window - FIFO Display

Recorded Data Display
Using Capture triggers automatically activates this display mode. The following columns
appear in the Recorded Data Display window:

• FIFO Depth: A number representing the depth in the DBG/FIFO of the byte data
value. The first frame (Depth 1) is the oldest value.

• Data value: The byte value retrieved from the DBG FIFO/buffer from the DBGFL
DBG on-chip module register.
452 S12(X) Debugger Manual

On-Chip DBG Module for S12, S12S, S12G, S12P, S12X Platforms
Demonstration Mode Limitations
Figure 17.48 Trace Window - Recorded Data Display

Demonstration Mode Limitations
• During code program reconstruction, the Trace window displays a limited number of

frames.

• Real-time code Profiling and code Coverage are disabled.

• Preset/Predefined Instruction, Memory Access or Capture Triggers are not available.
Only Expert triggers can be set.
453S12(X) Debugger Manual

On-Chip DBG Module for S12, S12S, S12G, S12P, S12X Platforms
Demonstration Mode Limitations
454 S12(X) Debugger Manual

18
Debugging Memory Map

The Debugging Memory Map (DMM) is a software manager for all debugger accesses to
device or chip memory and also for memory data caching.

The DMM provides a global approach for all different CPU families and cores, each
family having its own method for memory access and its own on-chip memory layout and
memory address range priorities.

The DMM gets all memory read and write calls from the debugger, and also uses the low-
level function read/write primitives to call third-party cable drivers required for devices
such as BDM pods and Monitors.

The debugger provides the DMM with core-specific read/write access methods, called
Types, and core specific priority rules, called Priority, within the DMM GUI.

The DMM GUI allows you to change the memory access method at any time.

Debugging Memory Map GUI
The graphical user interface (GUI) is flexible and easy to use, and displays live
diagnostics within the dialog. At any time, you can revert to the default (factory) setup.
Most of the time, you do not need to edit or change settings within the GUI.

Open the DMM GUI by choosing the Debugging Memory Map option in the connection
menu in the debugger main window. This opens the DMM Window.
455S12(X) Debugger Manual

Debugging Memory Map
Debugging Memory Map GUI
Figure 18.1 Debugging Memory Map Window

The DMM GUI shows a list of memory address ranges, called Modules in this manual,
defined to access device memory.

• The Type column displays the memory type for a given range, corresponding to the
memory address range in the Range column.

• The Range column gives the memory address range.

• The Active column indicates whether the defined range is active, or mapped, by the
DMM. If No, the DMM considers the range undefined.

NOTE The DMM considers all undefined memory ranges as inaccessible or
unimplemented. The debugger displays some dashes (--) in the Memory
window in that case. The DMM NEVER attempts to read or write
unimplemented memory.

• The Comment column contains information about the defined memory address
range.

The scrollable Information window gives a general diagnostic of the DMM. This
diagnostic has less information then the edit mode diagnostic.

Clicking the New button opens the Debugging Memory Map dialog box to create a new
memory address range.
456 S12(X) Debugger Manual

Debugging Memory Map
Debugging Memory Map GUI
Clicking the Modify/Details button opens the Debugging Memory Map dialog of the
selected memory address range to modify it. More memory range information appears in
the dialog, and an enhanced diagnostic is also displayed.

Clicking the Delete button leads to memory range removal, after a warning dialog.

Cliking the Revert to default button removes (after a warning dialog) the current setup
(usually saved in the current project) and retrieves the default (factory) setup from an
internal database.

Enabling the Memory Module and
Changing the Memory Range
Figure 18.2 shows the DMM Memory Map dialog box.

Figure 18.2 Debugging Memory Map Dialog Box

The Enable memory module option checkbox maps the module/memory range in the
debugger. Unchecking this option makes the module completely transparent for the DMM
and the debugger.

The Start edit box contains the first address of a memory range and the End edit box
contains the last address of a memory range.

Range boundaries are always limited to an overlapped range with a higher priority. For
example, if two bytes are defined in a range which overlaps another range, these two bytes
457S12(X) Debugger Manual

Debugging Memory Map
Debugging Memory Map GUI
are accessed using the type and rules of this 2-byte range. The memory on both sides of
these two bytes is accessed using the type and rules of the overlapped range.

NOTE The Start and End range is a range address for a Type and for a Priority.
Internally, ranges can overlap only if they are of the same type and priority.
The debugger always reads with rules of the range with the highest priority.

Access kind
The Access Kind list menu provides a way to indicate that the memory range is read/write
(R/W), read only, write only or none of these.

• When defined as read only, the range is never written by the debugger.

• When defined as write only, the range is never read by the debugger.

• When defined as none, the range is never read or written by the debugger. This is
internally equivalent as not defining the range in the DMM dialog.

Access Size
When available, the Access Size list menu provides a way to define if the memory range is
accessed as byte (1), short (2) or long (4).

NOTE The memory range must be size aligned. For example, a module defined with
access size 2 must start with an even address and finish on an odd address. A
module defined with access size 4 must start with an address with the least
significant byte in 0, 4, 8, C, and finish with an address with the least
significant byte in 3, 7, B, F.

NOTE A memory range overlapping (in priority) another memory range can only have
the same or a higher access size.

Types
The Type list menu provides all kinds of memory type available for the processor
displayed in the title bar of the dialog. For some connections, the CPU core might be
displayed instead of the processor name.

Types are internal rules to read and write a kind of memory. For example, the HCS12
banked type requires, first, setting a register called PPAGE to read the memory, then
restoring this value as it was before reading. Also this banked type does not physically
458 S12(X) Debugger Manual

Debugging Memory Map
Debugging Memory Map GUI
provide a memory access while running. Memory access while running is possible in
physical memory (RAM, registers).

Figure 18.3 Debugging Memory Map Dialog Box - Type List Menu

NOTE CPU core-specific memory types and Priorities are listed at the end of this
manual section.

Priorities
The Priority list menu provides all of the memory overlap priority available for a type of
processor core. The debugger can have a higher priority (highest debugger) to set up an
upper address range that can overlap an on-chip address range, thus making a debugger
display filter (for a Memory window), for example, when creating a No read access while
running memory address range.

A Flat memory architecture (i.e. without memory blocks moving feature) provides the
following Priority list menu (e.g. HCS12X core):

Figure 18.4 HCS12X Core overlap priorities
459S12(X) Debugger Manual

Debugging Memory Map
CPU Core Priorities and Types
The default is that the CPU sees all memory blocks with the same priority.

Memory Read Caching
The Refresh memory when halting option controls the debugger memory cache. When
this option is checked, internal images/caches of memory data are always deleted and the
data is always retrieved from hardware when required by the debugger. When unchecked
(the default for Non-Volatile Memory areas), the DMM keeps a copy of the data and does
not read/retrieve the data from hardware until next application loading/programming.

NOTE Each declared memory address range in the GUI has its own private code cache
monitored by the DMM.

The DMM CACHINGOFF command can fully disable the caching feature for the entire
DMM (i.e., for all defined memory ranges). The DMM CACHINGON command re-enables
the caching feature.

Access While Running
Use the No memory access while running option to discard debugger access to a
memory range which the debugger can typically access while running. Use this feature to
protect on-chip I/O Register flags from being triggered by debugger memory reads due to
display refreshes.

Remarks
It is possible to create as many memory ranges of any size as desired, down to a single
byte.

Deleting Default/Factory ranges generates warning dialogs. Some settings are required for
the debugger to debug and removing ranges leads to erroneous debugging information.

All GUI settings can be done by debugger commands.

Settings and DMM changes are saved in the current user project. You can always restart
from default by clicking the Revert to Default button.

You can disable automatic DMM range remapping with a debugger command.

The default settings are retrieved from a complete database describing each derivative, or,
in some cases, describing the CPU core (when not necessary to go to derivative level).

CPU Core Priorities and Types
This section describes the various memory priorities and types for the different CPU
cores.
460 S12(X) Debugger Manual

Debugging Memory Map
CPU Core Priorities and Types
HC12 (CPU12) Core
The following priorities and types are specific to the HC12 (CPU12) core:

Priorities
• All derivatives except MC68HC12A4

– Highest (debugger): a high debugger priority that you can use or define for the
debugger; typically to protect a memory area from being read.

– Internal register space: refer to device specifications.

– RAM memory block: refer to device specifications.

– EEPROM memory block: refer to device specifications.

– On-chip Flash-EEPROM: refer to device specifications.

– Remaining external space: refer to device specifications.

– Lowest (debugger): a low debugger priority that you can use or define for the
debugger typically to protect a memory area from being read. This priority is of
poor usage but can still be used for display purposes on chip unimplemented
memory range.

• MC68HC812A4 derivative

– Highest (debugger): a high debugger priority that you can use or define for the
debugger. Typically used to protect a memory area from being read.

– Internal register space: refer to MC68HC812A4 specifications.

– RAM memory block: refer to MC68HC812A4 specifications.

– EEPROM memory block: refer to MC68HC812A4 specifications.

– E space (external): refer to MC68HC812A4 specifications.

– CS space (external): refer to MC68HC812A4 specifications.

– P space (external): refer to MC68HC812A4 specifications.

– D space (external): refer to MC68HC812A4 specifications.

– Remaining external space: refer to MC68HC812A4 specifications.

– Lowest (debugger): a low debugger priority that you can use or define for the
debugger typically to protect a memory area from being read. This priority is of
little value but can still be used for display purposes on chip unimplemented
memory range.
461S12(X) Debugger Manual

Debugging Memory Map
CPU Core Priorities and Types
Types
• All derivatives:

– Read protected: legacy, replaced by physical memory type, with “Write Only”
access kind.

– Write protected: legacy, replaced by physical memory type, with “Read Only”
access kind.

– R/W protected: legacy, replaced by physical memory type, with “None” access
kind.

– Physical: this sets the memory range as physical, (i.e. with linear 16-bit address
bus access) as performed by the CPU when reading and writing the on-chip
memory.

• Additional Types for MC68HC812A4 Derivatives:

– Extra banked: this type handles the EPAGE register when accessing the Extra
page banked data, typically data in $400-$7FF window.

– Banked: this type handles the PPAGE register when accessing the Program page
banked data, typically program code in $8000-$BFFF address range window.

– Data banked: this type handles the DPAGE register when accessing the Data
page banked data, typically variables in $7000-$7FFF address range window.

• Additional Types for MC68HC912xx128 Derivatives:

– Banked: this type handles the PPAGE register when accessing the Program page
banked data, typically program code in on-chip Flash in $8000-$BFFF address
range window.

HCS12 Core
The HCS12 core provides memory block moving, with overlap priorities. These overlap
rules are handled by the DMM, and rules handle the Memory Expansion Registers (MER),
i.e., INITRM, INITRG, INITEE.

On each debugger halt, the MER Registers are read, and if necessary, the DMM offsets
internal range addresses.

NOTE The debugger does not poll the MER registers while running. Also the
debugger performs remapping only on factory-defined memory range, not on
user-defined memory ranges.

Execute the DMM HCS12MERHANDLINGOFF command to disable the MER Registers
tracking. Execute the DMM HCS12MERHANDLINGON command to re-engage this feature.
462 S12(X) Debugger Manual

Debugging Memory Map
CPU Core Priorities and Types
NOTE Factory/default setup protects the HCS12 DBG12 FIFO Registers to reserve
DBG12 FIFO Reading for the debugger DBG interface. Removing this
protection causes incorrect program flow rebuild.

Priorities
• Highest (debugger): a high debugger priority that can be used by the user or defined

for the debugger typically to protect a memory area from being read.

• Internal register space: refer to device specifications.

• RAM memory block: refer to device specifications.

• EEPROM memory block: refer to device specifications.

• On-chip Flash-EEPROM: refer to device specifications.

• Remaining external space: refer to device specifications.

• Lowest (debugger): a low debugger priority that can be used by the user or defined
for the debugger typically to protect a memory area from being read. This priority is
of poor usage but can still be used for display purposes on chip unimplemented
memory range.

Types
• Read protected: legacy, replaced by physical memory type, with “Write Only”

access kind.

• Write protected: legacy, replaced by physical memory type, with “Read Only”
access kind.

• R/W protected: legacy, replaced by physical memory type, with “None” access
kind.

• Physical: this sets the memory range as physical, i.e. with linear 16-bit address bus
access as performed by the CPU when reading and writing the on-chip memory.

• Banked: this type handles the PPAGE register when accessing the Program page
banked data, typically program code in on-chip Flash in $8000-$BFFF address range
window.

• Registers: This type cares if the I/O Registers block and Memory Expansion
Registers change, including I/O Registers block moving.
463S12(X) Debugger Manual

Debugging Memory Map
CPU Core Priorities and Types
HCS12X Core
These priorities and types are specific to the HCS12X core.

Priorities
• Highest (debugger): a high debugger priority that can be used by the user or defined

for the debugger typically to protect a memory area from being read.

• Default (device): default CPU visibility of the entire device/memory with a same
priority, as no memory range can be moved to overlap another memory range.

• Lowest (debugger): a low debugger priority that can be used by the user or defined
for the debugger typically to protect a memory area from being read. This priority is
of poor usage but can still be used for display purposes on chip unimplemented
memory range.

Types
• Read protected: legacy, replaced by physical memory type, with “Write Only”

access kind.

• Write protected: legacy, replaced by physical memory type, with “Read Only”
access kind.

• R/W protected: legacy, replaced by physical memory type, with “None” access
kind.

• Physical: this sets the memory range as physical, i.e. with linear 16-bit address bus
access as performed by the CPU when reading and writing the on-chip memory.

• Banked: this type handles the PPAGE register when accessing the Program page
banked data, typically program code in on-chip Flash in $8000-$BFFF address range
window.

• RAM banked: this type covers accessing $1000-$1FFF RAM data window (the user
application accesses via RPAGE) in global address space. Important: All accesses
are cast by the DMM to global memory which should therefore be defined for the
matching range.

• EEP banked or D-flash banked: these types cover accessing $800-$BFF EEPROM
or D-flash data window (the user application accesses via EPAGE) in global address
space. Important: All accesses are cast by the DMM to global memory which should
therefore be defined for the matching range.

• Global: this type covers accessing of the global memory space via BDM GPAGE
register (Global address space). The Memory window with Address Space set to
Global displays the global space memory of the device.
464 S12(X) Debugger Manual

Debugging Memory Map
DMM Commands
• xgate: this type covers accessing of the XGATE memory space as the XGATE core
would see it. The Memory window with Address Space set to XGATE displays the
XGATE space memory of the device. When existing, the Flash/RAM XGATE
memory split is internally evaluated by the DMM.

NOTE Factory/default setup protects the HCS12X DBG12X FIFO Registers to
reserve the DBG12X FIFO reading for the debugger DBG interface. Removing
this protection leads to incorrect program flow rebuild.

Except physical and protected access types, all types are routed to Global memory when
reading from the device. However, for Non-Volatile Memory programming reasons, EEP
banked and banked types are routed to logical paged when writing to the device.

DMM Commands
All DMM GUI settings can be done by debugger command line commands.

Debugging Memory Map Manager
Command Set
The commands provide the possibility to fully script the debugging device memory
mapping. However, the usage of these commands should be limited to special debugging
purposes, as the default mapping is typically sufficient, and a script setup being complex
and possibly leading to debugger disfunctions.

List of Commands
DMM

DMM ADD <parameters>

DMM DEL <module handle>

DMM SAVE <mcuid>

DMM DELETEALLMODULES

DMM RELEASECACHES

DMM CACHINGON|CACHINGOFF

DMM WRITEREADBACKON|WRITEREADBACKOFF

DMM HCS12MERHANDLINGON|HCS12MERHANDLINGOFF

DMM OPENGUI [mcuid]
465S12(X) Debugger Manual

Debugging Memory Map
DMM Commands
DMM SETAHEADREADSIZE <front size when halted> <back size
when halted> <front size when running> <back size when
running>

For detailed descriptions of the available DMM commands, see DMM Commands.
466 S12(X) Debugger Manual

19
Flash Programming

Writing to Flash modules, EEPROMs, or other non-volatile memory modules requires
special algorithms. Before you write to Flash devices, you must erase them. Many Flash
devices need initialization to become accessible; some devices may need write protection
removed.

This chapter explains The Non-Volatile Memory Control (NVMC) utility, an extension
component that lets you control the on-chip Flash devices for all Debugger connections.

The NVMC utility is very flexible. This flexibility comes from a generic Debugger
component, which calls a graphical user interface, then loads an MCU-specific module.
The module provides the appropriate information (such as structure, access algorithms,
and location) for that MCU.

The NVMC utility lists all non-volatile memory devices, indicating their structure, state,
and location. You can change the state (enabled/disabled, blank, programmed, protected/
unprotected) and program data into the modules.

Automated Application Programming
The debugger can program an application without making use of the NVMC dialog/GUI,
which remains useful for specific operations only. Currently, CodeWarrior projects
created with the wizard may be programmed or flashed immediately. The debugger
displays a warning dialog to get user acceptance before mass erasing then programming
the application.

Use the Flash-specific command (FLASH NOUNSECURE) to incorporate device security
byte programming in user code.

Figure 19.1 Flash Programming Loader Warning Dialog Box
467S12(X) Debugger Manual

Flash Programming
Automated Application Programming
Select the OK button to launch background Flash commands to arm programming, load/
program an application file, then disarm programming.

Check the Do not display checkbox to remove the Warning message for the current
project (saved in project under the project variable: AEFWarningDialog=FALSE).

Setup
The Open and Load Code (Executable File) dialog box opens when you choose the Load
menu entry in the debugger main window’s connection menu.

Figure 19.2 Open and Load Code Options Dialog Box

Checking this checkbox engages the automated device mass erasing and application
programming into non-volatile memory, i.e., Flash and/or EEPROM.

To set this option permanently, use the Load tab in the debugger Preferences window
(File > Configuration).

Figure 19.3 Preferences Window - Load Tab

Advanced Options: Erase Prevention
Clicking the Advanced button in the Load tab of the debugger Preferences window opens
the NVM Programming Selection list box.
468 S12(X) Debugger Manual

Flash Programming
Automated Application Programming
Figure 19.4 NVM Programming Selection List Box

The list box lists all the Non-Volatile Memory modules registered by the debugger for the
current selected processor device.

Clicking once on a line selects an item (highlighted in blue) and clicking the line again
deselects it.

Erasing is skipped for all selected modules. If all modules are selected, the debugger
simply programs the application without erasing non-volatile memory on the device.

CAUTION The debugger ignores pre-programmed modules and the user is
responsible for reprogramming limitations, risks and impossibility.
However, the debugger displays a warning message when a programmed
(i.e. not blank) “not automatically erased” module is going to be written.
You can disable the displayed warning message.

TIP When available on-chip, EEPROM type modules are by default not selected for
automatic erasing.

The NVM Programming Selection list box does not give many details about the listed
blocks. Type the Flash command in the Command window to display more information,
or open the Non-Volatile Memory Control dialog box.

The NVM Programming Selection list box is closely associated with the Flash
AEFSKIPERASING command of the debugger.

TIP When using this feature, make sure to also select modules that cover/include all
other modules listed, modules usually called PAGED, EEP_PAGED,
ALL_PPAGES, ALL_EPAGES, ALL_xxx, etc.
469S12(X) Debugger Manual

Flash Programming
NVMC Graphical User Interface
NVMC Graphical User Interface
The NVMC utility is integrated into the Debugger, as an extension of certain debugger
connections. If the NVMC utility is available, your connection menu includes a Flash
selection, as shown below.

Figure 19.5 SDI Connection Menu Options

Modules and Module States
If an on-chip module consists of several independent blocks, the NVMC dialog box might
list all of these blocks. Typically the NVMC groups all non-volatile on-chip blocks under
one single listed module, separates relevant and important non-volatile memory blocks
(like mirrored non-banked memory range), and provides individual/selective modules for
the individual modules.

NOTE See Hardware Considerations for more information about the Flash modules of
your CPU derivative.

Table 19.1 describes module states which may appear in the NVMC dialog box list.

Table 19.1 NVMC Module States

State Description

Enabled Currently active on the chip. It is possible to read (as a ROM) or
program an enabled module.

Disabled Currently inactive, so programming and reading are not possible.
Normally, you enable or disable a module by setting/clearing a flag in a
special register. Some modules cannot be disabled.

Blank Empty of code. You can program its full address range. Each blank byte
contains the value 0xFF or 0x00, depending on hardware.

Programmed Partially programmed (not all bytes contain 0xFF or 0x00). You must
keep track of the areas still available for programming, if any.
470 S12(X) Debugger Manual

Flash Programming
NVMC Graphical User Interface
To select a module or other list item, left click the module. To deselect a module, click the
<Ctrl> key and left click. For multiple selections or deselections, use the Shift key.

NVMC Dialog Box
The NVMC dialog box lists all the Flash or EEPROM modules of a CPU derivative.
Depending on the derivative, there may be one or multiple on-chip Flash modules.

NOTE The dialog box does not have a Select or Deselect button, as you merely click
on a module in the list to select it. Selecting and deselecting are not automatic
from the command line. Before you use the command line to perform any
operation on a module, you must use the SELECT command to select the
module.

Figure 19.6 Non Volatile Memory Control Dialog Box

Protected Partially protected from erasure or programming. Normally, you protect
a module by setting/clearing a flag in a special register. Some modules
can never be protected.

Unprotected Can be erased and programmed.

Table 19.1 NVMC Module States

State Description
471S12(X) Debugger Manual

Flash Programming
NVMC Graphical User Interface
For each block, the dialog box has a line composed of the following fields:

• Name — the module name.

• Start — the module start address.

• End — the module end address.

• State — the modules states, such as disabled, enabled, blank, programmed,
protected, unprotected.

 Possible state combinations are:

• Bad Device (the interface could not detect a correct device)

• Disabled (one or all modules are disabled)

• [Enabled] / <Blank | Programmed> / [Unprotected | Protected]

The NVMC dialog box displays only meaningful states. For example, it displays Enabled
only if it is possible to disable a module. It displays Unprotected only if it is possible to
protect a module.

The Configuration group identifies the current .FPP parameter file. This group also
includes the Auto select according to MCUID checkbox; the Configuration: FPP File
Loading section explains this option.

The second checkbox of the Configuration group is Save and restore workspace
content. If this checkbox is clear, Flash programming applications overwrite any data in
RAM. To save the current RAM data, check this box. Saving RAM data slows down the
NVMC; checking this checkbox is equivalent to entering the SAVECONTEXT and
LOADCONTEXT commands.

Flash Module Handling
Flash parameter files (which have the extension .FPP) contain MCU-specific parameters,
as well as programs to handle internal Flash modules. See Configuration: FPP File
Loading for additional information about .FPP files. The .FPP files also include code-
applet descriptions of Flash operations.

You also may use the Command Line component to handle Flash operations. The NVMC
Commands explains the corresponding commands.

The NVMC dialog box has buttons for commands you can apply to each block. These
buttons are dynamic: active if the operation is possible for at least one selected item,
disabled if the operation is not possible. Table 19.2 describes these buttons.
472 S12(X) Debugger Manual

Flash Programming
NVMC Graphical User Interface
MCU Speed Information
The displayed MCU speed is the device bus speed/clock sensed by the Flash Programmer,
the same value as the one returned by the FLASH command.

CAUTION A non-relevant displayed speed is symptomatic of a Flash Programmer
diagnostic problem. In that case, close the dialog, check the hardware and
reset the connection.

Configuration: FPP File Loading
When the dialog box is open, the NVMC utility loads the .FPP configuration file
according to this algorithm:

Table 19.2 NVMC Dialog Box Buttons

Button Name Associated Action

Select All/
Unselect All

Selects all modules in list box. When clicked, button changes to
Unselect All. Click to deselect all current selections.

Enable/Disable Enables all selected modules currently disabled. Disable disables
all selected modules currently enabled. Ability to enable or disable
Flash module depends on MCU features and context.

Protect/Unprotect Protects all selected modules currently unprotected. Unprotect
unprotects all selected modules currently protected. Ability to
protect or unprotect a Flash module depends on MCU features and
context.

For some MCUs, protection is possible only for Boot section and
boot routines, not entire module. See Hardware Considerations.

Erase Removes programming from all selected Flash modules by
assigning the value 0xFF or 0x00 to each byte. Changes module
status to Blank. If all selected modules are already blank, Erase is
disabled.

Load Arms all selected modules, executes a LOAD command, then
disarms modules. Click Load without selecting any Flash modules
to make the NVMC utility select and load all modules.

Click on a module to select or use Select All/Unselect All buttons
to adjust selection. Selecting and unselecting are not automatic
from the command line. Before using command line to perform any
operation, use SELECT command to select module. See FLASH.
473S12(X) Debugger Manual

Flash Programming
NVMC Graphical User Interface
1. The utility reads the NV_PARAMETER_FILE entry from the connection-specific
section of the project.ini file. [Freescale ESL] is a connection-specific
section.

 Example:

[Freescale ESL]

NV_PARAMETER_FILE=C:\MYINSTALL\PROG\FPP\mcu03C4.fpp

2. If the utility retrieves a valid .FPP file name, it loads the file.

3. If the utility cannot find a valid .FPP file name, it displays an appropriate error
message.

4. If the utility does not find an entry, or if it finds an empty entry, the utility
automatically checks the Auto select according to MCUID: checkbox. Then the
utility loads the parameter file from the \FPP subdirectory of the installation,
according to the MCUID.

5. If the utility finds a file that has the wrong format, it displays an appropriate error
message.

6. The utility always displays the MCUID, if the ID is available from the connection.

Another way to load an .FPP parameter file is by clicking the Browse button. This brings
up a standard Open dialog box, which you can use to select the file. When you do so, the
Open dialog box disappears, and the NVMC utility loads the file, automatically clearing
the Auto select according to MCUID: checkbox. In case of any error during loading, the
utility displays an appropriate message.

Figure 19.7 Open Dialog Box

If you check the Auto select according to MCUID: checkbox, the NVMC utility
searches for and loads the corresponding .FPP parameter file.
474 S12(X) Debugger Manual

Flash Programming
NVMC Graphical User Interface
Click the OK button to close the NVMC dialog box. If the Auto select according to
MCUID: checkbox is clear, the NVMC utility saves the name of the selected
configuration file under the NV_PARAMETER_FILE entry of the project.ini file. If
you check this checkbox, the utility does not save the .FPP in the project file.

Click the Cancel button to close the dialog box without saving changes.

Loading an Application in Flash
The Load button and the Load selection of the connection-specific menu function
identically. Using either of these controls brings up the Load Executable File dialog box,
which lets you select the file to be loaded. The Load Executable File dialog box lists the
executable files that relate to blocks selected in the NVMC dialog box.

Figure 19.8 Load Executable File Dialog Box

If a problem occurs during application loading into Flash, the NVMC utility displays an
error message.

Figure 19.9 FLASH Writing Error Message Box
.

475S12(X) Debugger Manual

Flash Programming
Preparing and Loading an Application
This means that you tried to load a program into an unselected section. The NVMC
utility’s selecting/unselecting feature reduces the risk of overwriting, erasing, or
unprotecting valuable data.

Preparing and Loading an Application
To prepare an application and load it into Flash, use either:

• The NVMC dialog box, explained in the NVMC Dialog Box section

• Flash commands within a command file. Connection-Specific Commands explains
these commands.

If necessary, link your application with the appropriate memory model. The example
below shows a .PRM file for an HC12DG128 application. The default ROM is in pages 2
and 4; the application uses the banked memory model. Make sure that your code location
is within a Flash address range.

Listing 19.1 Loading an Application in Flash

LINK my_appli.abs
NAMES my_appli.o ansib.lib start12b.o END
SECTIONS

MY_RAM = READ_WRITE 0x2010 TO 0x23FF;
MY_ROM = READ_ONLY 0xC000 TO 0xFEFF;
PAGE_2 = READ_ONLY 0x28000 TO 0x2BFFF;
PAGE_4 = READ_ONLY 0x48000 TO 0x4BFFF;

PLACEMENT
_PRESTART, STARTUP,
ROM_VAR, STRINGS,
NON_BANKED, COPY INTO MY_ROM;
DEFAULT_RAM INTO MY_RAM;
MyPage, DEFAULT_ROM INTO PAGE_2, PAGE_4;

END
STACKSIZE 0x50
VECTOR ADDRESS 0xFFFE _Startup /*set reset vector IN FLASH on _Startup
*/

Follow the loading command example in Connection-Specific Commands or follow these
instructions:
476 S12(X) Debugger Manual

Flash Programming
Hardware Considerations
1. From the Debugger menu bar, open the connection-specific menu (such as SDI).
Select Flash — the NVMC dialog box appears.

2. If you are sure about the absolute location of your application, you do not need to
select a module. But if you program in a protected area (boot block), make sure that the
matching module is unprotected.

3. Click the Load button — the NVMC utility selects all modules and opens the Load
Executable File dialog box.

4. Select the .ABS file to be loaded into Flash. Loading begins and a progress bar
appears. When loading is finished, the NVMC dialog box displays the new state of the
modules.

5. This completes loading. You can close the NVMC dialog box and run your
application. For some hardware, however, you first must do a connection reset, by
clicking the reset button of the Debugger.

Hardware Considerations
This section consists of hardware-specific information about current .FPP files for HC12
(CPU12) CPU devices and HCS12 and HCS12X CPU devices.

NOTE The Flash Programming release note, in the on-line documentation of your
toolkit installation, contains the latest information about .FPP files.

HC12 (CPU12) CPU Devices
The HC12B32, the HC12D60, and the HC12DG128 CPU devices and Flash module
information appears below.

HC12B32
• fpp file name: mcu03c1.fpp

• Number of Flash modules: 1

– applet code currently not relocatable, loaded at 0x800, using 0x400 bytes.
477S12(X) Debugger Manual

Flash Programming
Hardware Considerations
HC12D60
• fpp file name: mcu03c3.fpp

• number of Flash modules: 2

– Applet code currently not relocatable, loaded at 0x400, using 0x400 bytes.

Table 19.3 HC12B32 Flash Module Details

Module
Name

Module
Number

Remarks

FLASH_
B32

0 32 Kilobytes Flash located in 0x8000-0xFFFF or 0x0000-
0x7FFF (both handled according to MAPROM bit in MISC
register).
Boot sector unprotectable/protectable (2 Kilobytes in range
0xF800-0xFFFF or 0x7800-0x7FFF) (via BOOTP bit in
FEEMCR register and LOCK bit in FEELCK register).
Flash enable/disable via ROMON bit in MISC register.

Table 19.4 HC12D60 Flash Module Details

Module
Name

Module
Number

Remarks

FEE28 0 28 Kilobytes Flash located in 0x1000-0x7FFF or 0x9000-
0xFFFF (both handled, according to MAPROM bit in MISC
register).
Boot sector protection off/on (8 Kilobytes in range 0x6000-
0x7FFF or 0xE000-0xFFFF). Use BOOTP bit in FEE28MCR
register and LOCK bit in FEE28LCK register.
Flash enable/disable using ROMON28 bit in MISC register.

 FEE32 1 32 Kilobytes Flash located in 0x8000-0xFFFF or 0x0000-
0x7FFF (both handled, according to MAPROM bit in MISC
register).
Boot sector protection off/on (8 Kilobytes in range 0xE000-
0xFFFF or 0x6000-0x7FFF) Use BOOTP bit in FEE32MCR
register and LOCK bit in FEE32LCK register.
Flash enable/disable using ROMON32 bit in MISC register.
478 S12(X) Debugger Manual

Flash Programming
Hardware Considerations
HC12DG128
• fpp file name: mcu03c4.fpp

• number of Flash modules: 10

– Applet code currently not relocatable, loaded at 0x2000, using 0x400 bytes.

– All Flash modules enable/disable at same time using ROMON bit in MISC
register.

Table 19.5 HC12DG128 Flash Module Details

Module
Name

Module
Number

Remarks

FLASH_
4000

0 16 Kilobytes unpaged Flash located in 0x4000–0x8000 also
matches 11FEE even page (6), that is, FLASH_PAGE6.

FLASH_
PAGE0

1 16 Kilobytes paged Flash accessed in bank window 0x8000-
0xBFFF, equivalent to 00FEE Flash even page (0).

FLASH_
C000

2 16 Kilobytes unpaged Flash located in 0xC000-0xFFFF also
matches 11FEE odd page (7),that is, FLASH_PAGE7.
Boot sector unprotectable/protectable (8 Kilobytes in range
0xE000-0xFFFF or paged range 0xA000-0xBFFF) (via
BOOTP bit in FEEMCR register and LOCK bit in FEELCK
register).

FLASH_
PAGE1

3 16 Kilobytes paged Flash accessed in bank window 0x8000-
0xBFFF, equivalent to 00FEE Flash odd page (1).
Boot sector unprotectable/protectable (8 Kilobytes in range
0xA000-0xBFFF) (via BOOTP bit in FEEMCR register and
LOCK bit in FEELCK register).

FLASH_
PAGE2

4 16 Kilobytes paged Flash accessed in bank window 0x8000-
0xBFFF, equivalent to 01FEE Flash even page (2).

FLASH_
PAGE3

5 16 Kilobytes paged Flash accessed in bank window 0x8000-
0xBFFF, equivalent to 01FEE Flash odd page (3).
Boot sector unprotectable/protectable (8 Kilobytes in range
0xA000-0xBFFF) (via BOOTP bit in FEEMCR register and
LOCK bit in FEELCK register).

FLASH_
PAGE4

6 16 Kilobytes paged Flash accessed in bank window 0x8000-
0xBFFF, equivalent to 10FEE Flash even page (4).
479S12(X) Debugger Manual

Flash Programming
Hardware Considerations
HCS12 and HCS12X CPU Devices
All protections are fully removed when erasing and programming. The security byte at
$FF0F is always reprogrammed to unsecure when erasing (due to aligned-word
programming, $FF0E-FF0F is programmed to #$FFFE). The debugger asserts aligned
word programming as specified in FTSxxxK and FTXxxxK specifications.

HCS12 and HCS12X device fpp files having been simplified to increase programming
speed, as devices may have up to 1 Megabyte of on-chip Flash. Changing programming
methods for each Program Page (64 PPAGEs on MC9S12XEP100) slows down the
programming.

As a result, only relevant on-chip Flash blocks have their own listed module. The list
below gives an overall availability for all HCS12 and HCS12X devices.

FLASH_
PAGE5

7 16 Kilobytes paged Flash accessed in bank window 0x8000-
0xBFFF, equivalent to 10FEE Flash odd page (7).
Boot sector unprotectable/protectable (8 Kilobytes in range
0xA000-0xBFFF) (via BOOTP bit in FEEMCR register and
LOCK bit in FEELCK register).

FLASH_
PAGE6

8 16 Kilobytes paged Flash accessed in bank window 0x8000-
0xBFFF, equivalent to 11FEE Flash even page (6). Also
equivalent to FLASH_4000 module.

FLASH_
PAGE7

9 16 Kilobytes paged Flash accessed in bank window 0x8000-
0xBFFF, equivalent to 11FEE Flash odd page (7). Also
equivalent to FLASH_C000 module.
Boot sector unprotectable/protectable (8 Kilobytes in range
0xA000-0xBFFF) (via BOOTP bit in FEEMCR register and
LOCK bit in FEELCK register).

Table 19.5 HC12DG128 Flash Module Details (continued)

Module
Name

Module
Number

Remarks
480 S12(X) Debugger Manual

Flash Programming
Hardware Considerations
Table 19.6 HCS12 and HCS12X Module Usage

Module Name Range Comments

FLASH_4000 On-chip Flash in $4000-
$7FFF;
Mirror of PPAGE $3E on
HCS12 devices and $FD
on HCS12X devices

Provided to allow you to design non-
banked code, such as ISR code or
startup code.

FLASH_C000 On-chip Flash in $C000-
$FFFF;
Mirror of PPAGE $3F on
HCS12 devices and $FF
on HCS12X devices.

Provided to allow you to design non-
banked code, such as ISR code or
startup code, and vectors.

ALL_PPAGES
(previously
PAGED)

The entire on-chip Flash
memory.

Erasing this module also erases
FLASH_4000 and FLASH_C000
modules.

FLAT8000_Pxx
or FLASH_8000
(HCS12X) and
EEPROM_800
(HCS12X)

$4000 to $FFFF.
Reset default page (Pxx)
visible in $8000-$BFFF
may vary from one HCS12
device to another, and be
the same as the $3E
PPAGE on HCS12X
devices.

Allows you to design linear source
code to be programmed from
address $4000 to $FFFF.

Use to evaluate a 48-Kilobyte
application across several devices,
although you may not have full
control of current PPAGE. If PPAGE
changes (by program CALL or by
accidentally writing the PPAGE
register), program code stored in
window range $8000-$BFFF does
not execute properly. For this
reason, it is best not to use entire
capacity of Flash.

To ensure backward compatibility,
these modules can be programmed,
but not erased. Erasing is available
but has no effect.

ALL_EPAGES
(previously called
EEP_PAGED)
(HCS12X only)

The entire on-chip Flash
memory.

Erasing this module erases all other
EEPROM modules.
481S12(X) Debugger Manual

Flash Programming
Hardware Considerations
HCS12 EEPROM Relocation
HCS12 devices provide some hidden EEPROM memory that can only be accessed when
changing the Memory Expansion Register called INITEE. This EEPROM is hidden or
visible under the following conditions:

• Fully Hidden EEPROM

– The EEPROM is fully blank checked.

– The FPP file uses INITEE to automatically remap the EEPROM to $2000, on
the condition that the user did not relocate the EEPROM, and changes INITEE.
In that case, the FPP driver accesses the EEPROM at the user-specified location.

• Partially Visible EEPROM in $400-7FF or $400-FFF

– The EEPROM is fully blank checked.

– If the EEPROM is not at the reset location, the EEPROM size and location are
automatically updated.

– The EEPROM size in the NVMC dialog is automatically updated if the RAM
does not overlap the EEPROM module.

EB386 Compliance and RAM Moving
NVMIF2 (format) new FPP drivers can be relocated in RAM. This format for HCS12
devices is based on PIC code runtimes. Therefore, the NVM handling runtime can be
moved in RAM if necessary.

First you must type the FLASH command in a Command window to verify that the FPP
file is NVMIF2.

Execute the FLASH NVMIF2WORKSPACE to relocate the driver workspace in RAM,
according to an eventual user-specified RAM relocation using INITRM, set up with a
debugger WB command. See NVMC Commands.

PFLASH Range is specified by
MODULEREMAP
parameter of .fpp file

Universal module with adjustable
memory range. Operates with any P-
FLASH block.

DFLASH Range is specified by
MODULEREMAP
parameter of .fpp file

Universal module with adjustable
memory range. Operates with D-
FLASH memory.

Table 19.6 HCS12 and HCS12X Module Usage

Module Name Range Comments
482 S12(X) Debugger Manual

Flash Programming
Hardware Considerations
This provides more flexibility for EB386 Example 1 Layout device RAM memory
relocation. However, if the application itself performs the relocation, using FPP relocation
has no effect, as programming is performed with the default location of the RAM.

CAUTION The FPP files/drivers do not support HCS12 on-chip Registers block
moving from default/reset position.

HCS12X Emulated EEPROM
Currently the debugger does not support handling of these memory types.

Legacy Flash Programming Commands in
Preload and Postload Command Files
The legacy Flash commands created by the project wizard to program an application
automatically are given below.

Listing 19.2 In xxxx_Preload.cmd file

// reset the device to get default settings
RESET
// initialize Flash programming process
FLASH
// select the Flash modules
FLASH SELECT
// erase the Flash modules
FLASH ERASE
// arm the Flash for programming
FLASH ARM

Listing 19.3 In xxxx_Postload.cmd file

// The following commands must be enabled to terminate the programming
process with the ICD12

// disarm the Flash modules
FLASH DISARM
// unselect the Flash modules
FLASH UNSELECT
// reset the target board
RESET
483S12(X) Debugger Manual

Flash Programming
Hardware Considerations
TIP You can replace this Legacy implementation by using the Automated Application
Programming feature. Clean or disable both command files, then engage the
Automatically erase and program option in debugger Preferences.

S12G, S12P, S12X, S12XE, S12XS D-Flash
memory
D-Flash memory is fully supported on these platforms. Please refer to TN263 for details
here.

C:\Program Files\Freescale\CWS12v5.1\Help\PDF.
484 S12(X) Debugger Manual

20
Unsecure HCS12
Derivatives

HCS12 derivatives include a security circuitry to prevent unauthorized access to contents
of Flash, EEPROM and RAM memory when background debugging.

The HC12MultilinkCyclonePro Target interface provides an Unsecure function.

The HC12MultilinkCyclonePro > Unsecure menu command (and corresponding
command line command CHIPSECURE UNSECURE) allows the debugger to connect to
the target through the Information Required to Unsecure the Device Dialog Box and to
execute the Unsecure Command File to unsecure the connected derivative.

NOTE Some of the HCS12 derivatives cannot be unsecured while in Special mode
(this is not possible with all MC9S12DP256 derivatives masks). Check the
appropriate user manual for the connected derivative.

Information Required to Unsecure the
Device

To unsecure a device, the debugger needs to know the value of the flash divider register to

correctly mass erase the device and program the security byte. The Information required

to unsecure the device dialog box provides an register value to the Unsecure Command
File script.

Select HC12MultilinkCyclonePro > Unsecure to display the Information Required to
Unsecure the Device dialog box.
485S12(X) Debugger Manual

Unsecure HCS12 Derivatives
Information Required to Unsecure the Device
Figure 20.1 Information Required to Unsecure the Device Dialog Box

The information required for unsecuring the device can differ depending on the device
family, the dialog box will prompt accordingly.

Once you enter the correct clock divider value, click OK to start the unsecure process
executing the Unsecure Command File.

CAUTION If the Unsecure Command File has not been set up in the Target Interface
Command Files dialog, the warning shown in Figure 20.2 appears.

Figure 20.2 Unsecure command file warning

The unsecure process checks the security byte to see if the device is unsecured, according
to a mask and a compare value: if (((value in security byte)& mask) ==
compare value)) then the chip is secured.

NOTE Modify the address of the security register, the mask and the compare value
using the CHIPSECURE SETUP command. Those parameters are then stored
in the project file.
486 S12(X) Debugger Manual

Unsecure HCS12 Derivatives
Unsecure Command File
Unsecure Command File
Set up the Unsecure command file using the HC12MultilinkCycloneProTarget Interface
Command Files dialog. Choose HC12MultilinkCyclonePro > Command Files and click
the Unsecure index tab. The project created with New Project Wizard will have
appropriate unsecure command file configured.

Execute this command file to unsecure a secured HCS12 derivative (using
HC12MultilinkCyclonePro > Unsecure menu entry).

Figure 20.3 Unsecure Command FIle tab

Listing 20.1 is an example of command file to unsecure an HCS12 derivative.

Listing 20.1 Example command file

// HCS12 Core erasing + unsecuring command file:
// These commands mass erase the chip then program the
// security byte to 0xFE (unsecured state).
// Evaluate the clock divider to set
// in ECLKDIV/FCLKDIV registers:
// An average programming clock of 175 kHz is chosen.
// If the oscillator frequency is less than 10 MHz,
// the value to store in ECLKDIV/FCLKDIV is equal to
// " oscillator frequency(kHz) / 175 ".

// If the oscillator frequency is higher than 10 MHz,
// the value to store
// in ECLKDIV/FCLKDIV is equal to
// " oscillator frequency (kHz) / 1400 + 0x40
// (to set PRDIV8 flag)".

// Datasheet proposed values:
487S12(X) Debugger Manual

Unsecure HCS12 Derivatives
Unsecure Command File
//
// oscillator frequency
// ECLKDIV/FCLKDIV value (hexadecimal)
//
// 16 MHz $49
// 8 MHz $27
// 4 MHz $13
// 2 MHz $9
// 1 MHz $4

define CLKDIV 0x49

FLASH MEMUNMAP // do not interact with regular flash programming
monitor

//mass erase flash
wb 0x100 CLKDIV // set FCLKDIV clock divider
wb 0x103 0 // FCFNG select block 0
wb 0x102 0x10 // set the WRALL bit in FTSTMOD
 // to affect all blocks
wb 0x104 0xFF // FPROT all protection disabled
wb 0x105 0x30 // clear PVIOL and ACCERR in FSTAT register
ww 0x108 0xD000 // write to FADDR address register
ww 0x10A 0x0000 // write to FDATA data register
wb 0x106 0x41 // write MASS ERASE command in FCMD register
wb 0x105 0x80 // clear CBEIF in FSTAT register
 //to execute the command
wait 20 // wait for command to complete

//mass erase eeprom
wb 0x110 CLKDIV // set ECLKDV clock divider
wb 0x114 0xFF // EPROT all protection disabled
wb 0x115 0x30 // clear PVIOL and ACCERR in ESTAT register
ww 0x118 0x0400 // write to EADDR eeprom address register
ww 0x11A 0x0000 // write to EDATA eeprom data register
wb 0x116 0x41 // write MASS ERASE command in ECMD register
wb 0x115 0x80 // clear CBEIF in ESTAT register
 // to execute the command
wait 20 // wait for command to complete

reset

//reprogram Security byte to Unsecure state
wb 0x100 CLKDIV // set FCLKDIV clock divider
wb 0x103 0 // FCFNG select block 0
wb 0x104 0xFF // FPROT all protection disabled
wb 0x105 0x30 // clear PVIOL and ACCERR in FSTAT register
ww 0xFF0E 0xFFFE // write security byte to "Unsecured" state
488 S12(X) Debugger Manual

Unsecure HCS12 Derivatives
Unsecure Command File
wb 0x106 0x20 // write MEMORY PROGRAM command
 // in FCMD register
wb 0x105 0x80 // clear CBEIF in FSTAT register
 // to execute the command
wait 20 // wait for command to complete

reset

FLASH MEMMAP // restore regular flash programming monitor
undef CLKDIV // undefine variable
489S12(X) Debugger Manual

Unsecure HCS12 Derivatives
Unsecure Command File
490 S12(X) Debugger Manual

21
On-Chip Hardware
Breakpoint Module

On some HC12 and HCS12 derivatives, you can use an on-chip hardware breakpoint
module to set hardware breakpoints and watchpoint. To invoke this module, you must first
set up the debugger to use the module.

During the first connection, the hardware breakpoints module settings resolve according
to the specified derivative. If you change the derivative later, it is your responsibility to
correctly set up the hardware breakpoint mechanism for the project using the Hardware
Breakpoint Configuration dialog.

Hardware Breakpoint Configuration dialog
 Choose the HC12MultilinkCyclonePro > Set Hardware BP menu command. The
Hardware Breakpoint Configuration dialog Break Module Settings index tab appears, as
shown in Figure 21.1.

Figure 21.1 Hardware Breakpoint Configuration dialog
491S12(X) Debugger Manual

On-Chip Hardware Breakpoint Module
Hardware Breakpoint Configuration dialog
Breakpoint Module Mode
The Mode combo box allows you to select one of three different modes: Disabled,
Automatic (controlled by debugger) and User controlled (see Figure 21.2).

This dialog allows you to set up the hardware breakpoint module of your HC12 or HCS12
derivative.

Figure 21.2 Hardware Breakpoint Configuration Breakpoint Module mode

NOTE This feature is available only if the HC(S)12(X) derivative is connected to the
device via a P&E hardware interface and also has an embedded hardware
breakpoint module. Check your MCU documentation.

Disabled mode
In Disabled mode, it is not possible to set a breakpoint in Flash or in EEPROM. It is also
not possible to set any watchpoint, even if the application is loaded in RAM.

NOTE Some actions, like stepping over or stepping out, use one internal breakpoint
and therefore cannot be used when debugging in non-volatile memory if the
hardware breakpoint module is disabled.
492 S12(X) Debugger Manual

On-Chip Hardware Breakpoint Module
Hardware Breakpoint Configuration dialog
Automatic (controlled by debugger) mode
This is the default mode for the debugger.

If you select the Automatic (controlled by debugger) mode, you have the option to set up
to two breakpoints or one watchpoint in Non-Volatile Memory, as shown in Figure 21.3.

Figure 21.3 Module base address edit box

Table 21.1 describes the available options.

Table 21.1 Description of Settings

Setting Description

Breakpoint
Module kind

Select hardware breakpoint module supported by connected
derivative:

• Select Use 16-Bits Break Module for an HC12 derivative

• Select Use 22-Bits Break Module for an HCS12 derivative.

Breakpoint
Module base
address (hex)

Use to set address of hardware breakpoint module in Module base
address edit box. Base address is typically 0x20 for M68HC912B32,
M68HC912D60 and M68HC912DG128, and 0x28 for HCS12
derivatives.
493S12(X) Debugger Manual

On-Chip Hardware Breakpoint Module
Hardware Breakpoint Configuration dialog
When you finish making these settings, the debugger considers any breakpoint set in Non
Volatile Memory as a Hardware Breakpoint.

If your application is loaded in RAM, breakpoints are software breakpoints. In this case
the Hardware Breakpoint module allows you to debug using breakpoints and one
watchpoint (only one watchpoint is available).

NOTE In Automatic mode, the HC12 or HCS12 hardware breakpoint modules allow
only two breakpoints (or one watchpoint) at a time. If you are debugging your
code in Flash, you cannot set more than two breakpoints or one watchpoint.
Some actions, like stepping over or stepping out, use one internal breakpoint
and therefore reduce the number of available hardware breakpoints to one. The
MC68HC812A4 does not have a Hardware Breakpoint module.

User Controlled mode
This mode allows you to fully set up the breakpoint module according to documentation.

Depending on the breakpoint module kind selected using the Breakpoint Module
Description box in the Break Module Setup index tab, select either the 16-bits Break
Module (User Mode) or 22-bits Break Module (User Mode). The controls are grayed in the
User Mode index tab if the correct Mode and correct breakpoint module kind are not
selected.

16-Bits Break Module (User Mode)
The 16-bits Break Module (User Mode) index tab allows you to set up the hardware
breakpoint module of the connected HC12 derivative when the Breakpoint Module mode
is set to User controlled and the Breakpoint Module Kind is set to use 16-Bits Break
Module.

Continue on
illegal break

Allows you to debug in banked memory model when using 16 bits-
break module. 16-bits break module does not allow you to set a
breakpoint in bank. To address this problem, when the debugger stops
on a hardware breakpoint it compares the address to an internal
breakpoint list. If the low 16-bit portion of the address compares to the
low 16-bit portion of the address of a set breakpoint, the breakpoint is
located in an alternate bank. Debugger automatically restarts target.

Table 21.1 Description of Settings

Setting Description
494 S12(X) Debugger Manual

On-Chip Hardware Breakpoint Module
Hardware Breakpoint Configuration dialog
Figure 21.4 16-bits Break Module (User Mode) index tab

You can modify the following registers:

• BRKCT0: Breakpoint Control Register 0

• BRKCT1: Breakpoint Control Register 1

• BRKA: Breakpoint Address Register

• BRKD: Breakpoint Data Register

For more information about those registers, refer to your MCU reference manual section
Breakpoints of the Background Debug Mode (Development Support part of the manual).

CAUTION When you set a hardware breakpoint or watchpoint in User controlled
mode, the ILLEGAL_BP message appears in the status bar when the
breakpoint or watchpoint is reached.
If the control point set is a breakpoint, you need to perform a single step
before running again, otherwise the target endlessly breaks on the same
address bus access.

22-bits Break Module (User Mode)
The 22-bits Break Module (User Mode) index tab allows you to set up the hardware
breakpoint module of the connected HCS12 derivative when the Breakpoint Module mode
is set to User controlled and the Breakpoint Module Kind is set to use 22-Bits Break
Module.
495S12(X) Debugger Manual

On-Chip Hardware Breakpoint Module
Hardware Breakpoint Configuration dialog
Figure 21.5 22-bits Break Module (User Mode) index tab

You can modify the following registers:

• BKPCT0: Breakpoint Control Register 0

• BKPCT1: Breakpoint Control Register 1

• BKP0: Breakpoint Address Register

• BKP1: Breakpoint Data Register

For more information about these registers, refer to your MCU reference manual.

CAUTION When a hardware breakpoint or watchpoint is set in User controlled
mode, the ILLEGAL_BP message appears in the status bar when the
breakpoint or watchpoint is reached.
If the control point set is a breakpoint, you must perform a single step
before running again, otherwise the target endlessly breaks on the same
address bus access.
496 S12(X) Debugger Manual

Book IV - Commands and
Environment Variables

Book IV Contents
Each section of the Debugger manual includes information to help you become more
familiar with the Debugger, to use all its functions and help you understand how to use the
environment. This book defines the HC12, HCS12 and HC(S)12(X) commands used by
the debugger engine and those specific to individual debugger connections. It also defines
the HC12, HCS12, and HC(S)12(X) environment variables used by the debugger engine
and those specific to individual debugger connections.

This book is divided into the following chapters:

• Chapter 22 - Debugger Engine Commands

• Chapter 23 - Connection-Specific Commands

• Chapter 24 - Debugger Engine Environment Variables

• Chapter 25 - Connection-Specific Environment Variables
497S12(X) Debugger Manual

Book IV Contents
498 S12(X) Debugger Manual

22
Debugger Engine
Commands

Commands Overview
The debugger supports scripting with the use of commands and command files. When you
script the debugger, you can automate repetitive, time-consuming, or complex tasks.

You do not need to use or have knowledge of commands to run the Simulator/Debugger.
However these commands are useful for editing debugger command files, for example,
after a recording session, to generate your own command files, or to set up your
applications and targets.

This section provides a detailed list of all Simulator/Debugger commands. All command
names and component names are case insensitive. The command EBNF syntax is:

component [:component number] <] command

• component is the name of the component named in the component window title,
such as Data or Register.

• component number is the number of the component.

This number does not exist in the component window title if only one component of
this type is open. For example, if you have one Memory component window open,
and you open a second Memory component window, the first window becomes
Memory:1 and the second is Memory:2. The debugger automatically associates a
number with a component when there are several components of the same type open.

Command Example

in>Memory:2 < SMEM 0x8000,8

The < symbol directs a command to a specific component (in this example: Memory:2).
Some commands are valid for several or all components and if you do not direct the
command to a specific component, the command affects all components. Directing the
command to specific components prevents mismatches caused by differing parameter
requirements of different components.
499S12(X) Debugger Manual

Debugger Engine Commands
Commands Overview
Command Syntax
To display the syntax of a command, type the command followed by a question mark.

Syntax Example

in>printf?
PRINTF (<format>, <expression>, <expression>, ...)

Available Command Lists
Commands described on the following pages are sorted into five groups, according to their
specific actions or targets. However, these groups have no relevance in the use of these
commands. It is possible to build powerful programs by combining Kernel commands
with Base commands, common commands and component-specific commands. The
following sections detail all commands in their respective groups.

Kernel Commands
Kernel commands are commands that can be used to build command programs. You can
only use Kernel commands in a debugger command file, since the Command Line
component can only accept one command at a time. Table 22.1 contains all available
Kernel commands.

Table 22.1 List of Kernel Commands

Command, Syntax Short Description

A Affects a value

AT Sets a time delay for command execution

CALL fileName[;C][;NL] Executes a command file

DEFINE symbol [=] expression Defines a user symbol

ELSE Other operation associated with IF command

ELSEIF condition Other conditional operation associated with IF
command

ENDFOCUS Resets the current focus (refer to FOCUS
command)

ENDFOR Exits a FOR loop
500 S12(X) Debugger Manual

Debugger Engine Commands
Commands Overview
ENDIF Exits an IF condition

ENDWHILE Exits a WHILE loop

FOCUS component Sets the focus on a specified component

FOR [variable =]range [“,”
step]

FOR loop instruction

FPRINTF (fileName, format,
parameters)

FPRINTF instruction

GOTO label Unconditional branch to a label in a command
file

GOTOIF condition Label Conditional branch to a label in a command file

ICD12EXEC HELP Output a list and the descriptions of all P&E
available debugger commands to the
Command Window.

IF condition Conditional execution

PAUSETEST Displays a modal message box

PRINTF (“Text:,” value]) PRINT instruction

REPEAT REPEAT loop instruction

RETURN Returns from a CALL command

TESTBOX Displays a message box with a string

UNDEF symbol | * Undefines a user defined symbol

UNTIL condition Condition of a REPEAT loop

WAIT [time] [;s] Command file execution pause

WHILE condition WHILE loop instruction

Table 22.1 List of Kernel Commands (continued)

Command, Syntax Short Description
501S12(X) Debugger Manual

Debugger Engine Commands
Commands Overview
Base Commands
Use Base commands to monitor the Simulator/Debugger target execution. These
commands handle target input/output files, target execution control, direct memory
editing, breakpoint management and CPU register setup. Base commands can be executed
independent of open components. Table 22.2 contains all available Base commands.

Table 22.2 List of Base Commands

Command, Syntax Short Description

BC address|* Deletes a breakpoint (breakpoint clear)

BS address|function
[P|T[state]]

Sets a breakpoint (breakpoint set)

CD [path] Changes the current working directory

CR [fileName][;A] Opens a record file (command records)

DASM [address|range][;OBJ] Disassembles

DB [address|range] Displays memory bytes

DL [address|range] Displays memory bytes as longwords

DW [address|range] Displays memory bytes as words

G [address] Starts execution of the application currently
loaded

GO [address] Starts execution of the application currently
loaded

LF [fileName][;A] Opens a log file

LOG type [=] state {[,]
type [=] state}

Enables or disables logging of a specified
information type

MEM Displays the memory map

MS range list Sets memory bytes

NOCR Closes the record file

NOLF Closes the log file

P [address] Single assembly steps into program

RESTART Restarts the loaded application
502 S12(X) Debugger Manual

Debugger Engine Commands
Commands Overview
Environment Commands
Use Simulator/Debugger environment commands to monitor the debugger environment,
specific component window layouts, and framework applications and targets. Table 22.3
contains all available Environment commands.

t

RD [list|*] Displays the content of registers

RS
register[=]value{,register
[=]value}

Sets a register

S Stops execution of the loaded application

STEPINTO Steps to the next source instruction of loaded
application

STEPOUT Executes program out of a function call

STEPOVER Steps over the next source instruction of the
loaded application

STOP Stops execution of the loaded application

SAVEBP on|off Saves breakpoints

T [address][,count] Traces program instructions at the specified
address

WB range list Writes bytes

WL range list Writes longwords

WW range list Writes words

Table 22.3 List of Environment Commands

Command, Syntax Short Description

ACTIVATE component Activates a component window

AUTOSIZE on|off Autosizes windows in the main window layout

BCKCOLOR color Sets the background color

Table 22.2 List of Base Commands (continued)

Command, Syntax Short Description
503S12(X) Debugger Manual

Debugger Engine Commands
Commands Overview
CLOSE component | * Closes a component

DDEPROTOCOL
ON|OFF|SHOW|HIDE|STATUS

Configures the Debugger/Simulator DDE protocol

FONT ‘fontName’
[size][color]

Sets text font

LOAD applicationName Loads a framework application (code and debug
information)

LOADCODE applicationName Loads the code of a framework application

LOADSYMBOLS
applicationName

Loads debugging information of a framework
application

OPEN component [[x y
width height][;][i|max]]

Opens a Windows component

SET targetName Sets a new target

SLAY fileName Saves the general window layout

Table 22.3 List of Environment Commands (continued)

Command, Syntax Short Description
504 S12(X) Debugger Manual

Debugger Engine Commands
Commands Overview
Component Commands
Use Component commands to monitor component behaviors. Since these commands are
common to more than one component, direct the commands to specific components using
the < character in the command line. Table 22.4 lists all available Component commands.

Component-Specific Commands
Component-specific commands are associated with specific components. Table 22.5
shows all available component-specific commands.

Table 22.4 List of Component Commands

Command, Syntax Short Description

CMDFILE Specify a command file state and full name

COM_START ["<path
to
Hiwave>\HIWAVE.EXE"
]

Creates a new Hiwave

COM_EXE
(<debugger
command>)

Executes command in the created Hiwave Instance.

COM_EXIT
(COM_EXIT)

Destroys the created Hiwave Instance.Q

EXIT Terminate the application

HELP Displays a list of available commands

RESET Resets statistics

SMEM range Shows a memory range

SMOD module Shows module information in the destination component

SPC address Shows the specified address in a component window

SPROC level Shows information associated with the specified procedure

VER Displays version number of components and engine
505S12(X) Debugger Manual

Debugger Engine Commands
Commands Overview
Table 22.5 List of Component-Specific Commands

Command, Syntax Short Description

ADDXPR “expression” Adds a new expression in the data component

ATTRIBUTES list Sets up the display inside a component window

BASE code | module Sets the Profiler base

BD Displays a list of all breakpoints

CF fileName [;C][;NL] Executes a command file

CLOCK frequency Sets the clock speed

COPYMEM <Source addr
range> dest-addr

Copies memory

CYCLE on|off Switches cycles and milliseconds in SofTrace
component.

DETAILS assembly|source Sets split view

DUMP Displays data component content

E expression
[;O|D|X|C|B]

Evaluates a given expression

EXECUTE fileName Executes a stimulation file

FILL range value Fills a memory range with a value

FILTER Options [<range>] Selects the output file filter options

FIND “string” [;B] [;MC]
[;WW]

Finds and highlights a pattern

FINDPROC ProcedureName Opens a procedure file

FOLD [*] Folds a source block

FRAMES number Sets the maximum number of frames

GRAPHICS on|off Switches graphic bars on/off

INSPECTOROUTPUT [name
{subname}]

Prints content of Inspector to Command window

INSPECTORUPDATE Updates content of Inspector
506 S12(X) Debugger Manual

Debugger Engine Commands
Commands Overview
Command Syntax Terms
The following lists includes all relevant syntax terms:

• address

– A number matching a memory address. This number must be in ANSI format
(i.e., $ or 0x for hexadecimal value, 0 for octal).

– Example: 255, 0377, 0xFF, $FF

NOTE address can also be an expression if constant address is not
specifically mentioned in the command description. An expression can be
Global variables of application, I/O registers defined in DEFAULT.REG,
definitions in the command line, or numerical constants.

LS [symbol | *][;C|S] Displays the list of symbols

NB [base] Sets the base of arithmetic operations

OUTPUT fileName Redirects the coverage component results

PTRARRAY on|off Switches on /off the pointer as array display

RECORD on|off Switches on/off the frame recorder

SLINE linenumber Shows the desired line number

SAVE range fileName
[offset][;A]

Saves a memory block in S-Record format

SETCOLORS ("Name")
(Background) (Cursor)
(Grid) (Line)
(Text)

Changes the color attributes of the "Name" channel
from the Monitor component

SREC fileName [offset] Loads a memory block in S-Record format

TUPDATE on|off Switches on/off time update for statistics

UNFOLD [*] Unfolds a source block

UPDATERATE rate Sets the data and memory update mode

ZOOM address in|out Zooms in/out a variable

Table 22.5 List of Component-Specific Commands (continued)

Command, Syntax Short Description
507S12(X) Debugger Manual

Debugger Engine Commands
Commands Overview
– Example: DEFINE IO_PORT = 0x210

WB IO_PORT 0xFF

• range

– A composition of two addresses to define a range of memory addresses. Syntax is
shown below:

address...address

or

address, size

where size is an ANSI format numerical constant.

– Example:

0x2F00...0x2FFF

Refers to the memory range starting at 0x2F00 and ending at 0x2FFF (256
bytes).

– Example:

0x2F00,256

Refers to the memory range starting at 0x2F00, which is 256 bytes wide. This
example is equivalent to the previous example.

• fileName

– A DOS file name and path that identifies a file and its location. The command
interpreter does not assume any file name extension. Use backslash (\) or slash (/)
as a directory delimiter.

– The parser is case insensitive. If no path is specified, it looks for (or edits) the file
in the current project directory: that is, when no path is specified, the default
directory is the project directory.

– Example:

d:/demo/myfile.txt

– Example:

layout.hwl

– Example:

d:/work/project.hwc

• component

– The name of a debugger component. Choose Component > Open to display a list
of all debugger components. The parser is case insensitive.

– Example:
508 S12(X) Debugger Manual

Debugger Engine Commands
Commands Overview
Memory

– Example:

SoUrCe
509S12(X) Debugger Manual

Debugger Engine Commands
Debugger Commands
Module Names
Correct module names appear in the Module component window. Make sure that you use
the correct module name for any command you implement:

• If the .abs is in HIWARE format, some debug information is in the object file
(.o), and module names have an .o extension (e.g., fibo.o).

• In ELF format, module name extensions are .c, .cpp or .dbg (.dbg for program
sources in assembler) (e.g., fibo.c), since ELF format assigns all debugging
information in the .abs file and does not use object files.

Debugger Commands
This section describes the commands available when you use the Simulator/Debugger.

A

The A command assigns an expression to an existing variable. The quoted expression
must be used for string and enum expressions.

Usage

A variable = value or A variable = "value"

Components

Debugger engine

Example

in>a counter=8

The variable counter is now equal to 8.

in>A day1 = "monday_8U" (Monday_8U is defined in an
Enum)

The variable day1 is now equal to monday_8U.

in>A value = "3.3"

The variable value is now equal to 3.3
510 S12(X) Debugger Manual

Debugger Engine Commands
Debugger Commands
ACTIVATE

ACTIVATE activates a component window as if you clicked on its title bar. The window
appears in the foreground and the title bar is highlighted. If the window has active icons,
the title bar is activated and appears in the foreground.

Usage

ACTIVATE component

Components

Debugger engine

Example

in>ACTIVATE Memory

Activates the Memory Component and brings the window to the foreground.

ADDXPR

The ADDXPR command adds a new expression in the data component.

Usage

ADDXPR “expression”

where the parameter expression is an expression to add and evaluate in the data
component.

Components

Data component

Example

in>ADDXPR “counter + 10”

This adds the expression counter +10 in the data component.
511S12(X) Debugger Manual

Debugger Engine Commands
Debugger Commands
ATTRIBUTES

This command can affect several components, as described in the next sections. Ensure
that you direct this command properly to prevent unexpected changes.

In the Command Component

This command allows you to set the display and state options of the Command
component window. The CACHESIZE command sets the cache size, in lines, for
the Command Line window. The cache size value is between 10 and 1,000,000.

NOTE Usually this command is not specified interactively by the user. However this
command can be written in a command file or a layout (*.HWL) file to save
and reload component window layouts. An interactive equivalent operation is
typically possible, using Simulator/Debugger menus and operations, drag and
drops, etc., as described in the Equivalent Operations sections of the following
component descriptions.

Usage

ATTRIBUTES list

where list=command{,command})

command=CACHESIZE value

Example

command < ATTRIBUTES 2000

In the Procedure Component

This command allows you to set the display and state options of the Procedure
component window. The VALUES and TYPES commands display or hide the
Values or Types of the parameters.

Usage

ATTRIBUTES list

where list=command{,command})

command=VALUES (ON|OFF)| TYPES (ON|OFF)

Example

Procedure < ATTRIBUTES VALUES ON,TYPES ON
512 S12(X) Debugger Manual

Debugger Engine Commands
Debugger Commands
In the Assembly Component

This command allows you to set the display and state options for the Assembly
component window.

• ADR displays or hides the address of a disassembled instruction.

– ON | OFF switches the address on or off.

– SMEM (show memory range) and SPC (show PC address) scroll the
Assembly component to the corresponding address or range code location
and select/highlight the corresponding assembler lines or range of code.

• CODE displays or hides the machine code of the disassembled instruction.

– ON | OFF switches the machine code on or off.

• ABSADR shows or hides the absolute address of a disassembled instruction, such
as branch to.

– ON | OFF switches the absolute address on or off

• TOPPC scrolls the Assembly component to display the code location given as an
argument on the first line of Assembly component window.

• SYMB displays or hides the symbolic names of objects.

– ON | OFF switches the symbolic display on or off.

Usage

ATTRIBUTES list

where list=command{,command}

command= ADR (ON|OFF) | SMEM range | SPC address |
CODE(ON|OFF) | ABSADR (ON|OFF) | TOPPC address | SYMB
(ON|OFF)

NOTE Also refer to SMEM and SPC descriptions for more details about these
commands. The SPC command is similar to the TOPPC command but also
highlights the code and does not scroll to the top of the component window.

Equivalent Operations

• ATTRIBUTES ADR ~ Select Assembly > Display Adr

• ATTRIBUTES SMEM ~ Select a range in Memory component window and drag
it to the Assembly component window.

• ATTRIBUTES SPC ~ Drag a register to the Assembly component window.

• ATTRIBUTES CODE ~ Select menu Assembly > Display Code

• ATTRIBUTES SYMB ~ Select menu Assembly > Display Symbolic
513S12(X) Debugger Manual

Debugger Engine Commands
Debugger Commands
Example

Assembly < ATTRIBUTES ADR ON,SYMB ON,CODE ON, SMEM
0x800,16

This displays addresses, hexadecimal codes, and symbolic names in the Assembly
component window, and highlights assembly instructions at addresses 0x800,16.

In the Register Component

The ATTRIBUTES command allows you to set the display and state options of the
Register component window.

• FORMAT sets the display format of register values.

• VSCROLLPOS sets the current absolute position of the vertical scroll box (the
vposition value is in lines: each register and bitfield have the same height,
which is the height of a line). vposition is the absolute vertical scroll position.
The value 0 represents the first position at the top.

• HSCROLLPOS sets the position of the horizontal scroll box (the hposition value
is in columns: a column is about a tenth of the greatest register or bitfield
width). hposition is the absolute horizontal scroll position. The value 0
represents the first position on the left.

• The parameters vposition and hposition can be constant expressions or symbols
defined with the DEFINE command.

• The COMPLEMENT command sets the display complement format of register
values:

– one sets the first complement (each bit is reversed),

– none deselects the first complement.

– An error message is displayed if:

the parameter is a negative value

the scroll box is not visible

If the given scroll position is bigger than the maximum scroll position, the current
absolute position of the scroll box is set to the maximum scroll position.

Equivalent Operations

• ATTRIBUTES FORMAT ~ Select menu Register > Options

• ATTRIBUTES VSCROLLPOS ~ Scroll vertically in the Register component
window.

• ATTRIBUTES HSCROLLPOS ~ Scroll horizontally in the Register component
window.

• ATTRIBUTES COMPLEMENT ~ Select menu Register > Options
514 S12(X) Debugger Manual

Debugger Engine Commands
Debugger Commands
Usage

ATTRIBUTES list

where list=command{,command})

command= FORMAT (hex|bin|dec|udec|oct) | VSCROLLPOS
vposition | HSCROLLPOS hposition | COMPLEMENT (none|one)

where vposition=expression and hposition=expression

Example

in>Register < ATTRIBUTES FORMAT BIN

Contents of registers appear in binary format in the Register component window.

in>Register < ATTRIBUTES VSCROLLPOS 3

Scrolls three positions down. The third line of registers appears on the top of the
register component.

in>Register < ATTRIBUTES VSCROLLPOS 0

Returns to the default display. The first line of registers appears on the top of the
register component.

in>DEFINE vpos = 5

in>Register < ATTRIBUTES HSCROLLPOS vpos

Scrolls five positions right. The second column of registers appears on the left of
the register component.

in>Register < ATTRIBUTES HSCROLLPOS 0

Returns to the default display. The first column of registers appears on the left of
the register component.

in>Register < ATTRIBUTES COMPLEMENT One

Sets the first complement display option. All registers appear in reverse bit.

In the Source Component

The ATTRIBUTES command allows you to set the display and state options of the
Source component window.

• SMEM (show memory range) and SPC (show PC address) load the
corresponding module’s source text, scroll to the corresponding text range
location or text address location and highlight the corresponding statements.

• SMOD (show module) loads the corresponding module’s source text. If the
module is not found, a message appears in the Component Windows Object
Information Bar.
515S12(X) Debugger Manual

Debugger Engine Commands
Debugger Commands
• SPROC (show procedure) loads the corresponding module’s source text, scrolls
to the corresponding procedure and highlights the statement in the procedure
chain.

• numberAssociatedToProcedure is the level of the procedure in the
procedure chain.

• MARKS (ON or OFF) displays or hides the marks.

NOTE Also refer to SMEM SPC, SPROC and SMOD command descriptions for more
detail about these commands.

Equivalent Operations

• ATTRIBUTES SPC ~ Drag and drop from Register component to Source
component.

• ATTRIBUTES SMEM ~ Drag and drop from Memory component to Source
component.

• ATTRIBUTES SMOD ~ Drag and drop from Module component to Source
component.

• ATTRIBUTES SPROC ~ Drag and drop from Procedure component to Source
component.

• ATTRIBUTES MARKS ~ Select menu Source > Marks.

Usage

ATTRIBUTES list

where list=command{,command}

command= SPC address | SMEM range | SMOD module (without
extension) | SPROC numberAssociatedToProcedure | MARKS
(ON|OFF)

Example

in>Source < ATTRIBUTES MARKS ON

Marks are visible in the Source component window.

In the Data Component

The ATTRIBUTES command allows you to set the display and state options of the
Data component window.

• FORMAT selects the format for the list of variables. The format is one of the
following:

– binary
516 S12(X) Debugger Manual

Debugger Engine Commands
Debugger Commands
– octal

– hexadecimal

– signed decimal

– unsigned decimal

– symbolic

• MODE selects the display mode of variables.

– Automatic mode (default), updates variables when the target stops.
Variables from the currently executed module or procedure appear in the
data component.

– In Locked and Frozen mode, the same variables from a specific
module always appear in the data component.

– In Locked mode, values from variables displayed in the data component
update when the target stops.

– In Frozen mode, values from variables displayed in the data component do
not update when the target stops.

– In Periodical mode, variables update at regular time intervals while the
target runs. The default update rate is 1 second, but you can modify this rate
up to 100 ms using the associated dialog box or UPDATERATE.

• UPDATERATE sets the variables update rate (see also UPDATERATE
command).

• SPROC (show procedure) and SMOD (show module) display local or global
variables of the corresponding procedure or module.

• SCOPE selects and displays global, local, or user-defined variables.

• COMPLEMENT sets the display complement format of Data values: one sets the
first complement (each bit is reversed), none deselects the first complement.

• NAMEWIDTH sets the length of the variable name displayed in the window.

NOTE Refer to SPROC, UPDATERATE and SMOD command descriptions for more
detail about these commands.

Usage

ATTRIBUTES list

where list=command{,command})

command=FORMAT(bin|oct|hex|signed|unsigned|symb)| SCOPE
(global|local|user|external) | MODE
(automatic|periodical| locked|frozen) | SPROC level |
SMOD module | UPDATERATE rate | COMPLEMENT(none|one)|
517S12(X) Debugger Manual

Debugger Engine Commands
Debugger Commands
NAMEWIDTH width

Equivalent Operations

• ATTRIBUTES FORMAT ~ Select menu Data > Format

• ATTRIBUTES MODE ~ Select menu Data > Mode

• ATTRIBUTES SCOPE ~ Select menu Data > Scope

• ATTRIBUTES SPROC ~ Drag and drop from Procedure component to Data
component.

• ATTRIBUTES SMOD ~ Drag and drop from Module component to Data
component.

• ATTRIBUTES UPDATERATE ~ Select menu Data > Mode > Periodical

• ATTRIBUTES COMPLEMENT ~ Select menu Data > Format

• ATTRIBUTES NAMEWIDTH ~ Select menu Data > Options > Name Width

Example

Data:1 < ATTRIBUTES MODE FROZEN

In Data:1 (global variables), variables update is frozen mode. Variables do not
refreshed when the application is running.

In the Memory Component

The ATTRIBUTES command allows you to set the display and state options of the
Memory component window.

• WORD selects the word size of the memory dump window. The word size
number can be 1 (for “byte” format), 2 (for word format - 2 bytes) or 4 (for
long format - 4 bytes).

• ADR ON or OFF displays or hides the address in front of the memory dump lines.

• ASC ON or OFF displays or hides the ASCII dump at the end of the memory
dump lines.

• ADDRESS scrolls the corresponding memory dump window and displays the
corresponding memory address lines (memory WORD is not selected).

• SPC (show pc), SMEM (show memory), and SMOD (show module) scroll the
Memory component to display the code location given as an argument, and
select the corresponding memory area (SPC selects an address, SMEM selects a
range of memory and SMOD selects the module name where the global variable
is in the window).

• FORMAT selects the format for the list of variables. The format is one of the
following: binary, octal, hexadecimal, signed decimal, unsigned decimal or
symbolic.
518 S12(X) Debugger Manual

Debugger Engine Commands
Debugger Commands
• COMPLEMENT sets the display complement format of memory values: one sets
the first complement (each bit is reversed), none deselects the first
complement.

• MODE selects the display mode of memory words.

– In Automatic mode (default), memory words update when the target
stops. Memory words from the currently executed module or procedure
appear in the Memory component.

– In Frozen mode, value from memory words displayed in the Memory
component do not updated when the target stops.

– In Periodical mode, memory words update at regular time intervals
while the target runs. The default update rate is 1 second, but it can be
modified by steps of up to 100 ms using the associated dialog box or
UPDATERATE command.

• UPDATERATE sets the variables update rate (see also UPDATERATE
command).

NOTE Also refer to SMEM, SPC and SMOD command descriptions for more detail
about these commands.

Equivalent Operations

• ATTRIBUTES FORMAT ~ Select menu Memory > Format

• ATTRIBUTES WORD ~ Select menu Memory > Word Size

• ATTRIBUTES ADR ~ Select menu Memory > Display > Address

• ATTRIBUTES ASC ~ Select menu Memory > Display > ASCII

• ATTRIBUTES ADDRESS ~ Select menu Memory > Address

• ATTRIBUTES COMPLEMENT ~ Select menu Memory > Format

• ATTRIBUTES SMEM ~ Drag and drop from Data component (variable) to
Memory component.

• ATTRIBUTES SMOD ~ Drag and drop from Source component to Memory
component.

• ATTRIBUTES MODE ~ Select menu Memory > Mode

• ATTRIBUTES UPDATERATE ~ Select menu Memory > Mode > Periodical

Usage

ATTRIBUTES list

where list=command{,command})

command=FORMAT(bin|oct|hex|signed|unsigned) | WORD
519S12(X) Debugger Manual

Debugger Engine Commands
Debugger Commands
number | ADR (ON|OFF) | ASC (ON|OFF) | ADDRESS address |
SPC address | SMEM range | SMOD module | MODE
(automatic|periodical| frozen) | UPDATERATE rate |
COMENT (NONE|ONE)

Example

Memory < ATTRIBUTES ASC OFF, ADR OFF

This removes the ASCII dump and addresses from the Memory component
window.

In the Inspector Component

The ATTRIBUTES command allows you to set the display and state of the
Inspector component window.

Usage

ATTRIBUTES list

where list=command{,command})

command= COLUMNWIDTH columnname columnfield columnsize |

EXPAND [name {subname}] deep |

COLLAPSE name {subname}|

SELECT name {subname} |

SPLIT pos |

MAXELEM (ON | OFF) [number] |

FORMAT (Hex|Int)

• COLUMNWIDTH sets the width of one column entry on the right pane of the
Inspector Window. The first parameter (columnname) specifies which
column. The following column names currently exist:

– Names – simple name list

– Interrupts – interrupt list

– SymbolTableFunction – function in the Symbol Table

– ObjectPoolObject – Object in Object Pool without additional information

– Events – event list

– Components – component list

– SymbolTableVariable – variable or differentiation in the Symbol Table

– ObjectPoolIOBase – Object in Object Pool with additional information

– SymbolTableModules – non-IOBase-derived Object in the Object Pool
520 S12(X) Debugger Manual

Debugger Engine Commands
Debugger Commands
The column field is the name of the specific field, also displayed in the
Inspector Window.

The following commands set the width of the function names to 100:

inspect < ATTRIBUTES COLUMNWIDTH SymbolTableModules
Name 100

NOTE Due to the inspect < redirection, only the Inspector handles this command.

• EXPAND computes and displays all subitems of a specified item up to a given
depth. Specify an item by stating the complete path, starting at one of the root
items like “Symbol Table” or “Object Pool”. Names with spaces must
be surrounded by quotes. To expand all subitems of TargetObject in the Object
Pool up to four levels, use the following command:

inspect < ATTRIBUTES EXPAND “Object Pool” TargetObject
4

NOTE Because the name Object Pool contains a space, it must be surrounded by
quotes.

NOTE The symbol table, stack, or other items may have recursive information, so the
information tree may grow with the depth. Specifying large expand values may
use a large amount of memory.

• COLLAPSE folds one item. You must specify the item name. The following
command folds TargetObject:

inspect < ATTRIBUTES COLLAPSE “Object Pool”
TargetObject

• SELECT shows the information of the specified item on the right pane. The
following command shows all Objects attached to TargetObject:

inspect < ATTRIBUTES SELECT “Object Pool” TargetObject

• SPLIT sets the position of the split line between the left and right pane. The
value must be between 0 and 100. A value of 0 shows only the right pane; a
value of 100 shows only the left pane. Any value between 0 and 100 makes a
relative split. The following command makes both panes the same size:

inspect < ATTRIBUTES SPLIT 50

• MAXELEM sets the number of subitems to display. After the following
command, the Inspector prompts for 1000 subitems:

inspect < ATTRIBUTES MAXELEM ON 1000
521S12(X) Debugger Manual

Debugger Engine Commands
Debugger Commands
• FORMAT specifies whether to display integral values, such as addresses, as
hexadecimal or decimal. The following command specifies hexadecimal
display:

inspect < ATTRIBUTES FORMAT Hex

Equivalent Operations

• ATTRIBUTES COLUMNWIDTH ~ Modify column width with the mouse.

• ATTRIBUTES EXPAND ~ Expand any item with the mouse.

• ATTRIBUTES COLLAPSE ~ Collapse the specified item with the mouse.

• ATTRIBUTES SELECT ~ Click on the specified item to select it.

• ATTRIBUTES SPLIT ~ Move the split line between the panes with the mouse.

• ATTRIBUTES MAXELEM ~ Select max. Elements from the context menu.

In the MCURegisters Component

The ATTRIBUTES command allows you to set the display and state options of the
MCURegisters component window.

Usage

ATTRIBUTES list

where list=command{,command})

command=FORMAT(bin|hex|oct|dec|udec)|

EXPAND name|

COLLAPSE name|

MODE (automatic|periodical) |

UPDATERATE rate

The FORMAT command selects the format for all the registers. The format can be
binary, hexadecimal, octal, signed decimal, unsigned decimal

The EXPAND command unfolds the node with given name in tree view.

The COLLAPSE command folds the node with given name in tree view.

NOTE Refer to EXPAND and COLLAPSE command descriptions for more detail
about these commands.

The MODE command selects the display mode of variables.

• In Automatic mode (default), registers are updated when the target is
stopped.
522 S12(X) Debugger Manual

Debugger Engine Commands
Debugger Commands
• In Periodical mode, registers are updated at regular time intervals when
the target is running. The default update rate is 1 second, but it can be modified
by steps of up to 100 ms using the associated dialog box or the UPDATERATE
command.

The UPDATERATE command sets the registers update rate (see also
UPDATERATE command).

Equivalent Operations

• ATTRIBUTES FORMAT ~ Select menu MCURegisters > Format

• ATTRIBUTES MODE ~ Select menu MCURegisters > Mode

• ATTRIBUTES EXPAND ~ Select menu MCURegisters >Tree > Expand

• ATTRIBUTES COLLAPSE ~ Select menu MCURegisters >Tree> Collapse

• ATTRIBUTES UPDATERATE ~ Select menu MCURegisters > Mode >
Periodical

Example

MCURegisters < ATTRIBUTES MODE PERIODICAL

In MCURegisters the registers update is set in periodical mode. Registers are
updated at regular time.

AT

The AT command temporarily suspends a command file from executing until after a
specified delay in milliseconds. The delay is measured from the time the command file
starts. In the event that command files are chained (one calling another), the delay is
measured from the time the first command file starts.

NOTE This command can only be executed from a command file. The time specified
is relative to the start of command file execution.

Usage

AT time

where time=expression and expression is interpreted in milliseconds.

Components

Debugger engine
523S12(X) Debugger Manual

Debugger Engine Commands
Debugger Commands
Example

AT 10 OPEN Command

This command (in command file) opens the Command Line component 10 ms
after the command file begins executing.

AUTOSIZE

AUTOSIZE enables/disables windows autosizing. When on, the size of component
windows are automatically adapted to the Simulator/Debugger main window when it is
resized.

Usage

AUTOSIZE on|off

Components
Debugger engine

Example
in>AUTOSIZE off

Windows autosizing is disabled.

BASE

In the Profiler component, the BASE command sets the profiler base to code (total code)
or module (each module code).

Usage

BASE code|module

Components

Profiler component

Example

in>BASE code
524 S12(X) Debugger Manual

Debugger Engine Commands
Debugger Commands
BC

BC clears a breakpoint at the specified address. Specifying * clears all breakpoints.

You can also point to the breakpoint in the Assembly or Source component window, right
click and choose Delete Breakpoint in the context menu, or open the ControlPoints
Window, select the breakpoint from the list and click Delete.

NOTE Correct module names appear in the Module component window. Make sure
that you use the correct module name in your command: if the .abs is in
HIWARE format, some debug information is in the object file (.o), and
module names have an .o extension (e.g., fibo.o). In ELF format, module
name extensions are .c, .cpp or .dbg (.dbg for program sources in
assembler) (e.g., fibo.c), since all debugging information is contained in the
.abs file and object files are not used. Adapt the following examples with
your .abs application file format.

Usage

BC address|*

address is the address of the breakpoint to be deleted. Specify this address in
ANSI C or standard Assembler format. You can also replace address by an
expression as shown in the example below.

Specifying * deletes all breakpoints.

Components

Debugger engine

Example 1

in>BC 0x8000

This command deletes the breakpoint set at the address 0x8000. The breakpoint
symbol is removed in the source and assembly window. The breakpoint is removed
from the breakpoint list.

Example 2

in>BC &FIBO.C:Fibonacci

In this example, an expression replaces the address. FIBO.C is the module
name and Fibonacci is the function from which the breakpoint is cleared.
525S12(X) Debugger Manual

Debugger Engine Commands
Debugger Commands
BCKCOLOR

BCKCOLOR sets the background color.

The background color defined with the BCKCOLOR command is valid for all component
windows. Using the same color for the font and background makes text in the component
windows invisible. Avoid using colors that have a specific meaning in the command line
window. These colors are:

• Red: used to display error messages.

• Blue: used to echo commands.

• Green: used to display asynchronous events.

NOTE Using WHITE as a parameter sets all component windows to their default
background colors.

Usage

BCKCOLOR color

Where color can be one of the following: BLACK, GREY, LIGHTGREY,
WHITE, RED, YELLOW, BLUE, CYAN, GREEN, PURPLE,
LIGHTRED, LIGHTYELLOW, LIGHTBLUE, LIGHTCYAN,
LIGHTGREEN, LIGHTPURPLE

Components

Debugger engine

Example

in>BCKCOLOR LIGHTCYAN

This sets the background color of all currently open component windows to
Lightcyan. To return to the original display, enter BCKCOLOR WHITE.
526 S12(X) Debugger Manual

Debugger Engine Commands
Debugger Commands
BD

In the Command Line component, the BD command displays the list of all breakpoints
currently set with addresses and types (temporary, permanent).

Usage

BD

Components

Debugger engine

Example

in>BD

Fibonacci 0x805c T

Fibonacci 0x8072 P

Fibonacci 0x8074 T

main 0x8099 T

This sets one permanent and two temporary breakpoints in the function Fibonacci,
and one temporary breakpoint in the main function.

NOTE From the list, it is not possible to know if a breakpoint is disabled or not.

BS

BS sets a temporary (T) or a permanent (P) breakpoint at the specified address. If P or T is
unspecified, the default is a permanent (P) breakpoint.

Equivalent Operation

Point at a statement in the Assembly or Source component window, right click and
choose Set Breakpoint in the context menu, or open the Controlpoints
Configuration Window and choose Show Breakpoint, then select the breakpoint
and set its properties.

NOTE The Module component window displays the correct module names. Make
sure that the module name in your command is correct:
If .abs is in HIWARE format, some debug information is in the object file
527S12(X) Debugger Manual

Debugger Engine Commands
Debugger Commands
(.o), and module names have the .o extension. In ELF format, module name
extensions are .c, .cpp or .dbg (.dbg for program sources in assembler),
since the .abs file contains all debugging information and object files are not
used. Adapt the following examples with .abs application file format.

Usage

BS address| function [{mark}]

[P|T[state]][;cond=”condition”[state]]

[;cmd=”command”[state]][;cur=current[inter=interval]]

[;cdSz=codeSize[srSz=sourceSize]]

address is the address where the breakpoint is to be set. Specify this address in
ANSI C format. You can replace address with an expression as shown in the
example below.

function is the name of the function in which to set the breakpoint.

mark (displayed mark in Source component window) is the mark number where
the breakpoint is to be set. When mark is:

• > 0: the position is relative to the beginning of the function.

• = 0: the position is the entry point of the function (default value).

• < 0: the position is relative to the end of the function.

P specifies the breakpoint as a permanent breakpoint.

T specifies the breakpoint as a temporary breakpoint. A temporary breakpoint is
deleted once it is reached.

State is E or D where E indicates enabled, and D indicates disabled. If state is
unspecified, default state is E.

condition is an expression matching the Condition field in the Controlpoints
Configuration window for a conditional breakpoint.

command is any Debugger command (at this level, the commands G, GO and
STOP are not allowed). It matches the Command field in the Controlpoints
Configuration window for associated commands. For the Command function, the
states are E (enabled) or C (continue).

current is an expression matching the Current field (Counter) in the
Controlpoints Configuration window, for counting breakpoints.

interval is an expression matching the Interval field (Counter) in the
Controlpoints Configuration window, for counting breakpoints.

codeSize is an expression, usually a constant number, to specify (for security)
the code size of a function where a breakpoint is set. If the size specified does not
528 S12(X) Debugger Manual

Debugger Engine Commands
Debugger Commands
match the size of the function currently loaded in the .ABS file, the breakpoint is
set but disabled.

sourceSize is an expression, usually a constant number, to specify (for
security) the source (text) size of a function where a breakpoint is set. If the size
specified does not match the size of the function in the source file, the breakpoint is
set but disabled.

Components

Debugger engine

Example

in>BS 0x8000 T

This sets a temporary breakpoint at the address 0x8000.

in>BS $8000

This sets a permanent breakpoint at the address 0x8000.

BS &FIBO.C:Fibonacci

In this example, an expression replaces the address. FIBO.C is the module name
and Fibonacci is the function where the breakpoint is set.

in>BS &main + 22 P E ; cdSz = 66 srSz = 134

This sets a breakpoint at the address of the main procedure + 22, where the code
size of the main procedure is 66 bytes and its source size is 134 characters.

in>BS Fibo.c:main{3}

This sets a breakpoint at the 3rd mark of the procedure main, where main is a
function of the FIBO.C module.

in>BS &counter + 5; cond ="fib1>fib2";cmd="bckcolor red"

This sets a breakpoint at the address of the variable counter + 5, where the
condition is fib1 > fib2 and the command is bckcolor red.

in>BS &Fibo.c:Fibonacci+13

This sets a breakpoint at the address of the Fibonacci procedure + 13, where
Fibonacci is a function of the FIBO.C module.
529S12(X) Debugger Manual

Debugger Engine Commands
Debugger Commands
CALL

Executes a command in the specified command file.

NOTE If path is unspecified, the destination directory is the current project directory.

Usage

CALL FileName [;C][;NL]

Components

Debugger engine

Example

in>cf \util\config.cmd

Loads the config command file.

CD

The CD command changes the current working directory to the directory specified in the
path. Entering the command with no parameter displays the current directory.

The directory specified in the CD command must be a valid directory and accessible from
the PC. When specifying a relative path in the CD command, make sure the path is relative
to the project directory.

NOTE When path is unspecified, the default directory is the project directory. Using
the CD command can affect all commands that refer to files with unspecified
paths.

Usage

CD [path]

path: The pathname of a directory that becomes the current working directory
(case insensitive).

Components

Debugger engine
530 S12(X) Debugger Manual

Debugger Engine Commands
Debugger Commands
Example

in>cd..

C:\Freescale\demo

in>cd

C:\Freescale\demo

in>cd /Freescale/prog

C:\Freescale\prog

The new project directory is C:\Freescale\prog

CF

The CF command reads the commands in the specified command file, which are then
executed by the command interpreter. The command file contains ASCII text commands.
Command files can be nested. By default, after executing the commands from a nested
command file, the command interpreter resumes execution of remaining commands in the
calling file. Any error halts execution of CF file commands. Entering the command with
no parameter displays the Open File dialog. The CALL command is equivalent to the CF
command.

NOTE If path is unspecified, the destination directory is the current project directory.

Usage

CF fileName [;C][;NL]

Where fileName is a file (and path) containing Simulator/Debugger commands.

;C: Specifies chaining the command file. This option is meaningful in a nested
command file only.

• When you use the ;C option in the calling file, the command interpreter quits
the calling file and executes the called file. The commands following the CF
... ;C command never execute.

• When you omit the ;C option, calling file execution resumes after the
execution of the commands in the called file.

;NL: This option prevents the commands in the called file from being logged in the
Command Line window even if the CMDFILE type is set to ON (see LOG). This
option does not log the commands to a log file opened with an LF command.
531S12(X) Debugger Manual

Debugger Engine Commands
Debugger Commands
Components

Debugger engine

Examples

in>CF commands.txt

Executes the COMMANDS.TXT file containing debugger commands like those
described in this chapter.

Example without “;C” Option

If a command1.txt file contains:

bckcolor green

cf command2.txt

bckcolor white

and a command2.txt file contains:

bckcolor red

Execution:

in>cf command1.txt

executing command1.txt

!bckcolor green

!cf command2.txt

executing command2.txt

1!bckcolor red

1!

1!

done command2.txt

!bckcolor white

!

done command1.txt
532 S12(X) Debugger Manual

Debugger Engine Commands
Debugger Commands
Example with “;C” Option

If a command1.txt file contains:

bckcolor green

cf command2.txt ;C

bckcolor white

and a command2.txt file contains:

bckcolor red

Execution:

in>cf command1.txt

executing command1.txt

!bckcolor green

!cf command2.txt ;C

executing command2.txt

1!bckcolor red

1!

1!

done command2.txt

done command1.txt

CLOCK

In the SoftTrace component, the CLOCK command sets the clock speed.

Usage

CLOCK frequency

Where frequency is a decimal number, which is the CPU frequency in Hertz.

Components

SoftTrace component
533S12(X) Debugger Manual

Debugger Engine Commands
Debugger Commands
Example

in>CLOCK 4000000

CLOSE

Use the CLOSE command to close a component.

Component names are: Assembly, Command, Coverage, Data, Inspect, Memory, Module,
Procedure, Profiler, Recorder, Register, Source, Stimulation.

Usage

CLOSE component | *

where * means all components.

Components

Debugger engine

Example

in>CLOSE Memory

This closes (unloads) the Memory component window.

COLLAPSE

In the MCURegisters component, the COLLAPSE command is used to fold node in the
register tree view.

Usage

COLLAPSE name

where name is the name of a node in the register tree view. If the name belongs to
the register item, then item's parent node is folded. If the name belongs to group of
registers, then module or board item, item's own node is folded. If the name is
empty then all nodes are folded.

Components

MCURegisters component
534 S12(X) Debugger Manual

Debugger Engine Commands
Debugger Commands
Example

MCURegisters < collapse mc9s08dv60

This command folds the root node in the register tree view. This node contains the
name of the board so all the module items are folded.

COM_START

Description

Creates a new Hiwave Instance. Only one new Hiwave Instance can be created in each
ComMaster component.

Syntax

in> COM_START ["<path to Hiwave>\HIWAVE.EXE"]

If parameter is omitted, the Hiwave instance registered as a COM server is created.

To register Hiwave as a COM server, start it with the key -RegServer

Examples

in> COM_START "C:\Freescale\prog\hiwave.exe"

in> ComMaster:2< COM_START

COM interface analog (in Perl)

In Perl:

system ("C:\\Freescale\\prog\\hiwave.exe -RegServer");

$g_hwInst = Win32::OLE->new("Metrowerks.Hiwave");

COM_EXE

Description

Executes a debugger command within the created Hiwave instance.

Syntax

COM_EXE "<debugger command>"
535S12(X) Debugger Manual

Debugger Engine Commands
Debugger Commands
Examples

in> COM_EXE "open data"

in> ComMaster:2< COM_EXE "bs main"

main 0x410 P

COM interface analog (in Perl)

$g_hwInst->ExecuteCmd ("open data");

$result = $g_hwInst->ExecuteCmdRes ("bs main");

$erCode= Win32::OLE->LastError();

COM_EXIT

Description

Finishes debug session and destroys the previously created Hiwave Instance

Syntax

COM_EXIT

Examples

in> COM_EXIT

in> ComMaster:2< COM_EXIT

COM interface analog (in Perl)

$g_hwInst->ExecuteCmd ("exit");

COPYMEM

Use the COPYMEM command to copy a memory range to a destination range defined by
the beginning address. This command works on defined memory only. The debugger
compares the source range and destination range to ensure they do not overlap.

Usage

COPYMEM <Source address range> dest-address
536 S12(X) Debugger Manual

Debugger Engine Commands
Debugger Commands
Components

Memory

Example

in>copymem 0x3FC2A0..0x3FC2B0 0x3FC300

This copies the memory located in the range 0x3FC2A0 to 0X3FC2B0 to the
memory at 0x3FC300 to 0x3FC310. This Memory range appears in red in the
Memory Component.

CMDFILE

The CMDFILE command allows you to define all target-specific commands in a command
file.

Usage

CMDFILE <Command File Kind> ON|OFF ["<Command File Full
Name>"]

Components

Simulator/target engine

Example

in>cmdfile postload on "c:\temp\myposloadfile.cmd"

This executes the myposloadfile command file after loading the absolute file.

CR

The CR command instructs the debugger to write records of commands to an external file.
Writing continues until a close record file (NOCR) command executes.

NOTE Drag and drop actions are also translated into commands in the record file.

NOTE If path is unspecified, the destination directory is the current project directory.
537S12(X) Debugger Manual

Debugger Engine Commands
Debugger Commands
Usage

CR [fileName][;A]

fileName specifies the name of the record file. Use the CR command without
this parameter to open a standard Open File dialog.

;A opens a file fileName in append mode, and appends new records at the end
of an existing record file. Omitting this option when fileName is an existing file
clears the file before writing new records.

Components

Debugger engine

Example

in>cr /Freescale/demo/myrecord.txt ;A

This opens the myrecord.txt file in Append mode for a recording session.

CYCLE

In the SoftTrace component, the CYCLE command displays or hides cycles. When cycle
is off, milliseconds (ms) are displayed.

Usage

CYCLE on|off

Components

Softtrace component.

Example

in>CYCLE on

DASM

The DASM command displays the assembler code lines of an application, starting at the
address given in the parameter. Without the parameter, the DASM command displays the
assembler code following the last address of the previous display.

Stop this command by pressing the Esc key.
538 S12(X) Debugger Manual

Debugger Engine Commands
Debugger Commands
Equivalent Operation

Right click in the Assembly component window, select Address and enter the
address to start disassembly in the Show PC dialog.

Usage

DASM [address|range][;OBJ]

address: A constant expression representing the address at which
disassembly begins.

range: An address range constant that specifies addresses to be disassembled.
When you omit range, a maximum of sixteen instructions are disassembled.

When you omit address and range, disassembly begins at the address of the
instruction that follows the last instruction that was disassembled by the most
recent DASM command. If this is the first DASM command of a session,
disassembly begins at the current address in the program counter.

;OBJ: Displays assembler code in hexadecimal.

Components

Debugger engine
539S12(X) Debugger Manual

Debugger Engine Commands
Debugger Commands
Example

in>dasm 0xf04b

00F04B LDHX #0x0450

00F04E TXS

00F04F CLRH

00F050 CLRX

00F051 STX 0x80

00F053 INC 0x80

00F055 LDX 0x80

00F057 JSR 0xF000

00F05A STX 0x82

00F05C STA 0x81

00F05E LDA #0x17

00F060 CMP 0x80

00F062 BEQ *-20 /abs = F050

00F064 BRA *-19 /abs = F053

00F066 DECX

00F067 DECX

NOTE Depending on the target, the above code may vary.

Disassembled instructions appear in the Command Line component window.
Therefore, you must open the Command Line component before executing this
command to see the dumped code.

DB

The DB command displays the hexadecimal and ASCII values of the bytes in a specified
range of memory. The command displays one or more lines, depending on the address or
range specified. Each line shows the address of the first byte displayed in the line,
followed by the number of specified hexadecimal byte values. The corresponding ASCII
characters, separated by spaces, follow the hexadecimal byte values. Between the eighth
and ninth values, a hyphen (-) replaces the space as the separator. Each non-displayable
character is represented by a period (.).

Cancel this command by clicking the Esc key.
540 S12(X) Debugger Manual

Debugger Engine Commands
Debugger Commands
Usage

DB [address|range]

When you omit address and range, the first longword displayed is taken from
the address following the last longword displayed by the previous DB, DW, or DL
command, or from address 0x0000 (for the first DB, DW, or DL command of a
session).

Components

Debugger engine

Examples

in>DB 0x8000..0x800F

8000: FE 80 45 FD 80 43 27 10-35 ED 31 EC 31 69 70 83
þ_Eý_C'.5í1ì1ipƒ

This displays memory bytes in the Command Line component window, with
matching ASCII characters. Open the Command Line component before executing
this command to see the dumped code.

in>DB &TCR

0012: 5A Z

This displays the byte that is at the address of the TCR I/O register. The
DEFAULT.REG file contains the I/O register definitions.

DDEPROTOCOL

Use the DDEPROTOCOL command to configure the Debugger/Simulator dynamic data
exchange (DDE) protocol.

By default the DDE protocol is activated and not displayed in the command line
component.

Usage

DDEPROTOCOL ON|OFF|SHOW|HIDE|STATUS

Where:

• ON enables the DDE communication protocol

• OFF disables the DDE communication protocol

• SHOW displays DDE protocol information in the command line component

• HIDE hides DDE protocol information in the command line component
541S12(X) Debugger Manual

Debugger Engine Commands
Debugger Commands
• STATUS tells you whether the DDE protocol is active (on or off) and if display
is active (Show or Hide)

Components

Debugger engine

Example

in>DDEPROTOCOL ON

in>DDEPROTOCOL SHOW

in>DDEPROTOCOL STATUS

DDEPROTOCOL ON - DISPLAYING ON

This example activates and displays the DDE protocol, and gives the status in the
command line component.

NOTE For more information on Debugger/Simulator DDE implementation, refer to
Debugger DDE Capabilities.

DEFINE

The DEFINE command creates a symbol and associates the value of an expression with it.
Arithmetic expressions are evaluated when the command is interpreted. Use the symbol to
represent the expression until the symbol is redefined, or until the UNDEF command
undefine the symbol. A symbol is a maximum of 31 characters long. In a command line,
all symbol occurrences (after the command name) are substituted by their values before
processing starts. A symbol cannot represent a command name. Note that a symbol
definition precedes (and hence conceals) a program variable with the same name.

Defined symbols remain valid when a new application is loaded. You can overwrite an
application variable or I/O register with a DEFINE command.

NOTE Use this command to assign meaningful names to expressions, for used in other
commands. This increases the command file readability and avoids re-
evaluation of complex expressions.

Usage

DEFINE symbol [=] expression
542 S12(X) Debugger Manual

Debugger Engine Commands
Debugger Commands
Components

Debugger engine

Example

in>DEFINE addr $1000

in>DEFINE limit = addr + 15

These commands first define addr as a constant equivalent to $1000, and then
define limit with the value ($1000 + 15).

You can redefine a symbol defined in the loaded application by using the DEFINE
command on the command line. The symbol defined in the application is not
accessible until an UNDEF on that symbol name is detected in the command file.

Example

In this example, we define a symbol named testCase in the test application.

/* Loads application test.abs */

LOAD test.abs

/* Display value of testCase. */

DB testCase

/* Redefine symbol testCase. */

DEFINE testCase = $800

/*Display value stored at address $800.*/

DB testCase

/* Redefine symbol testCase. */

UNDEF testCase

/* Display value of testCase. */

DB testCase

NOTE Also refer to examples given for the command UNDEF.

DETAILS

The DETAILS command opens a profiler split view in the Source or Assembly
component.
543S12(X) Debugger Manual

Debugger Engine Commands
Debugger Commands
Usage

DETAILS assembly|source

Components

Profiler component

Example

in>DETAILS source

DL

The DL command displays the hexadecimal values of the longwords in a specified range
of memory. The command displays one or more lines, depending on the address or range
specified. Each line shows the address of the first longword displayed in the line, followed
by the number of specified hexadecimal longword values.

When you specify a size in the range, this size represents the number of longwords to
display in the command line window.

Stop this command by pressing the Esc key.

NOTE Open the Command Line component before executing this command to see the
dumped code.

Usage

DL [address|range]

Omitting range displays the first longword taken from the address following the
last longword displayed by the most recent DB, DW, or DL command, or from
address 0x0000 (for the first DB, DW, DL command of a session).

Components

Debugger engine

Example

in>DL 0x8000..0x8007

8000: FE8045FD 80432710
544 S12(X) Debugger Manual

Debugger Engine Commands
Debugger Commands
Displays the content of the memory range starting at 0x8000 and ending at 0x8007
as longword (4-byte) values.

in>DL 0x8000,2

8000: FE8045FD 80432710

Displays the content of two longwords starting at 0x8000 as longword (4-byte)
values.

Memory longwords appear in the Command Line component window.

DUMP

The DUMP command writes names of all visible items in the Data component and
MCURegisters component to the command line component. In MCURegisters
component if the visible item is a register item its name and value are written.

Usage

DUMP

Components

Data and MCURegisters component

Example 1

in> Data:1 < DUMP

Example 2

in> MCURegisters < DUMP

DW

The DW command displays the hexadecimal values of the words in a specified range of
memory. The command displays one or more lines, depending on the address or range
specified. Each line shows the address of the first word displayed in the line, followed by
the number of specified hexadecimal word values.

When you specify a size in the range, this size represents the number of words to display
in the command line window.

Stop this command by pressing the Esc key.
545S12(X) Debugger Manual

Debugger Engine Commands
Debugger Commands
NOTE Open the Command Line component before executing this command to see the
dumped code.

Usage

DW [address | range]

When address is an address constant expression, this command displays the
address of the first word.

When you omit address and range, this command displays the first word taken
from the address following the last word displayed by the most recent DB, DW, or
DL command, or from address 0x0000 (for the first DB, DW, or DL command of
a session).

Components

Debugger engine

Example

in>DW 0x8000,4

8000: FE80 45FD 8043 2710

Displays the content of four words starting at 0x8000 as word (2-byte) values.

Memory words appear in the Command Line component window.
546 S12(X) Debugger Manual

Debugger Engine Commands
Debugger Commands
E

The E command evaluates an expression and displays the result in the Command Line
component window. When the expression is the only parameter entered (no option
specified) the value of the expression appears in the default number base. The result
appears as a signed number in decimal format and as an unsigned number in all other
formats.

Usage

E expression[;O|D|X|C|B]

where:

;O displays the value of expression as an octal (base 8) number.

;D displays the value of expression as a decimal (base 10) number.

;X displays the value of expression as an hexadecimal (base 16) number.

;C displays the value of expression as an ASCII character. Displays the remainder
resulting from dividing the number by 256. Displays all values in the current font.
Displays control characters (<32) as decimal.

;B displays the value of expression as a binary number.

Components

Debugger engine

Example

in>define a=0x12

in>define b=0x10

in>e a+b

in>=34

This evaluates the addition operation of the two previously defined variables a and
b and displays the result in the Command Line window. You can redirect the
output to a file by using the LF command (see LF and LOG commands).
547S12(X) Debugger Manual

Debugger Engine Commands
Debugger Commands
ELSE

The ELSE keyword is associated with the IF command.

Usage

ELSE

Components

Debugger engine

Example

if CUR_TARGET == 1000 /* Condition */

 set sim

else set bdi /* Other Condition */

ELSEIF

The ELSEIF keyword is associated with the IF command.

Usage

ELSEIF condition

where condition is same as defined in C language.

Components

Debugger engine

Example

if CUR_TARGET == 1000 /* Simulator */

 set sim

elseif CUR_TARGET == 1001 /* BDI */

 set bdi
548 S12(X) Debugger Manual

Debugger Engine Commands
Debugger Commands
ENDFOCUS

The ENDFOCUS command resets the current focus. It is associated with the FOCUS
command. Commands following the ENDFOCUS command are broadcast to all currently
open components. This command is only valid in a command file.

Usage

ENDFOCUS

Components

Debugger engine

Example

FOCUS Assembly

ATTRIBUTES code on

ENDFOCUS

FOCUS Source

ATTRIBUTES marks on

ENDFOCUS

This example first redirects the ATTRIBUTES command to the Assembly
component using the FOCUS Assembly command, and displays the code next to
assembly instructions. Then the ENDFOCUS command releases the Assembly
component and the FOCUS Source command redirects the second ATTRIBUTES
command to the Source component. Marks appear in the Source window.

ENDFOR

The ENDFOR keyword is associated with the FOR command.

Usage

ENDFOR

Components

Debugger engine
549S12(X) Debugger Manual

Debugger Engine Commands
Debugger Commands
Example

for i = 1..5

 define multi5 = 5 * i

endfor

After the ENDFOR instruction, i equals 5.

ENDIF

The ENDIF keyword is associated with the IF command.

Usage

ENDIF

Components

Debugger engine

Example

if (CUR_CPU == 12)

 DW &counter

else

 DB &counter

endif

ENDWHILE

The ENDWHILE keyword is associated with the WHILE command.

Usage

ENDWHILE

Components

Debugger engine
550 S12(X) Debugger Manual

Debugger Engine Commands
Debugger Commands
Example

while i < 5

 define multi5 = 5 * i

 define i = i + 1

endwhile

After the ENDWHILE instruction, i equals 5

EXECUTE

In the Stimulation component, the EXECUTE command executes a file containing
stimulation commands. Refer to the I/O Stimulation documentation.

Usage

EXECUTE fileName

Components

Stimulation component

Example

in>EXECUTE stimu.txt

EXIT

In the Command line component, the EXIT command closes the Debugger application.

Usage

EXIT

Components

Debugger engine

Example

in>EXIT

This closes the Debugger application.
551S12(X) Debugger Manual

Debugger Engine Commands
Debugger Commands
EXPAND

In the MCURegisters component, the EXPAND command is used to unfold node in the
register tree view.

Usage

EXPAND name

where name is the name of a node in the register tree view. If the name belongs to
the register item, then item's parent node is unfolded. If the name belongs to group
of registers, module or board item, then item's own node is unfolded. If the name is
empty then all nodes are unfolded.

Components

MCURegisters component

Example

MCURegisters < expand mc9s08dv60

This command unfolds the root node in the register tree view. This node contains
the name of the board so all the module items are visible.

FILL

In the Memory component, the FILL command fills a corresponding range of Memory
component with the defined value. The value must be a single byte pattern (higher bytes
ignored).

Usage

FILL range value

The syntax for range is: LowAddress..HighAddress

Components

Memory component

Equivalent Operation

The File Memory dialog is available from the Memory context menu and by
selecting the Fill or Memory > Fill menu entry.
552 S12(X) Debugger Manual

Debugger Engine Commands
Debugger Commands
Example

in>FILL 0x8000..0x8008 0xFF

This fills the memory range 0x8000..0x8008 with the value 0xFF.

FILTER

In the Memory component, with the FILTER command, you select what you want to
display. You can also specify a range to be logged in your file.

Usage

FILTER Options [<range>]

Options = modules|functions|lines

modules: displays modules only

functions: displays modules and functions

lines: displays modules, functions, and code lines.

Range: a number between 0 and 100.

Components

Coverage component

Example

in>coverage < FILTER functions 25..75

FIND

In the Source component, use the FIND command to search for a specified pattern in the
source file currently loaded, and highlights the pattern if found. Search forward (default),
backward (;B), match case sensitive (;MC) or match whole word sensitive (;WW). The
operation begins at the currently highlighted statement or from the beginning of the file (if
nothing is highlighted). If the item is found, the Source window scrolls to the position of
the item and the highlights the item in grey.

Equivalent Operation

You can select Source > Find, or open the Source context menu and select Find to
open the Find dialog.
553S12(X) Debugger Manual

Debugger Engine Commands
Debugger Commands
Usage

FIND “string” [;B] [;MC] [;WW]

Where string is the pattern to match. You must enclose string in quotes. See
the example below.

;B searches backwards, default is forwards.

;MC matches case sensitive.

;WW matches on the whole word.

Components

Source component

Example

in>FIND “this” ;B ;WW

Searches for the “this” string (considered as a whole word) in the Source
component window, and performs the search backward.

FINDPROC

If a valid procedure name is given as parameter, the source file where the procedure is
defined opens in the Source Component, displays the procedure’s definition and
highlights the procedure’s title.

Equivalent Operation

You can select Source > Find Procedure or open the Source context menu and
select Find Procedure to open the Find Procedure dialog.

Usage

FINDPROC procedureName

Components

Source component

Example

in>findproc Fibonacci

Displays the Fibonacci procedure and highlights the title.
554 S12(X) Debugger Manual

Debugger Engine Commands
Debugger Commands
FOCUS

The FOCUS command sets the given component (component) as the destination for all
subsequent commands up to the next ENDFOCUS command. Hence, the FOCUS
command releases the user from repeatedly specifying the same command redirection,
especially in the case where command files are edited manually. This command is only
valid in a command file.

NOTE It is not possible to visually see that a component is “FOCUSed”. However,
you can use the ACTIVATE command to activate a component window.

Usage

FOCUS component

Components

Debugger engine

Example

FOCUS Assembly

ATTRIBUTES code on

ENDFOCUS

FOCUS Source

ATTRIBUTES marks on

ENDFOCUS

This example first redirects the ATTRIBUTES command to the Assembly
component using the FOCUS Assembly command, and displays the code next to
assembly instructions. Then the ENDFOCUS command releases the Assembly
component and the FOCUS Source command redirects the second ATTRIBUTES
command to the Source component. Marks appear in the Source window.

FOLD

In the Source component, the FOLD command hides the source text at the program block
level. Folded program text appears as if the program block is empty. When you unfold the
folded block, the hidden program text reappears. All text is folded once or (*) completely,
until there are no more folded parts.
555S12(X) Debugger Manual

Debugger Engine Commands
Debugger Commands
Usage

FOLD [*]

Where * means fold completely, otherwise fold only one level.

Components

Source component

Example

in>FOLD *

FONT

FONT sets the font type, size and color.

Equivalent Operation

The Font dialog is available by selecting the Component > Fonts menu entry.

Usage

FONT ‘FontName’ [size][color]

Components

Debugger engine

Example

FONT ‘Arial’ 8 BLUE

The font type is Arial, 8 points, and blue.

FOR

The FOR loop allows you to execute all commands up to the trailing ENDFOR a
predefined number of times. The bounds of the range and the optional steps are evaluated
at the beginning. Optionally, you may specify a variable (either a symbol or a program
variable), which is assigned to all values of the range that are met during execution of the
for loop. If you use a variable, you must define it with a DEFINE command before
executing the FOR command.
556 S12(X) Debugger Manual

Debugger Engine Commands
Debugger Commands
Assignment happens immediately before comparing the iteration value with the upper
bound. The variable is only a copy of the internal iteration value, therefore modifications
on the variable have no impact on the number of iterations.

Stop this command by pressing the Esc key.

Usage

FOR[variable =]range [“,” step]

Where variable is the name of a defined variable.

range: This is an address range constant that specifies addresses to be
disassembled.

step: constant number matching the step increment of the loop.

Components

Debugger engine

Example

DEFINE loop = 0

FOR loop = 1..6,1

T

ENDFOR

This performs the T (Trace) command six times.

FPRINTF

FPRINTF is a standard ANSI-C command, that writes a formatted output string to a file.

Usage

FPRINTF (<filename>, <&format>, <expression>,
<expression>)

Components

Debugger engine

Example

fprintf (test.txt,"%s %2d","The value of the counter
is:",counter)
557S12(X) Debugger Manual

Debugger Engine Commands
Debugger Commands
The content of the file test.txt is: The value of the counter is: 25

FRAMES

In the SoftTrace component, the FRAMES command sets the maximum number of frame
records.

Usage

FRAMES number

Where number is a decimal number equal to the maximum number of recorded
frames. This number must not exceed 1000000.

Components

SoftTrace component

Example

FRAMES 10000

G

The G command starts code execution in the emulated system at the current address in the
program counter or at the specified address. You can specify the entry point of your
program, skipping execution of the previous code.

Usage

G [address]

When no address is entered, the address in the program counter is not altered
and execution begins at the address in the program counter.

Alias

GO

Components

Debugger engine

Example

G 0x8000
558 S12(X) Debugger Manual

Debugger Engine Commands
Debugger Commands
Program execution starts at 0x8000. RUNNING appears in the status bar. The
application runs until a breakpoint is reached or you stop the execution.

GO

The GO command starts code execution in the emulated system at the current address in
the program counter or at the specified address. You can therefore specify the entry point
of your program, skipping execution of previous code.

Usage

GO [address]

When no address is entered, the address in the program counter is not altered
and execution begins at the address in the program counter.

Alias

G

Components

Debugger engine

Example

in>GO 0x8000

Program execution starts at address 0x8000. RUNNING appears in the status bar.
The application runs until a breakpoint is reached or you stop execution.

GOTO

The GOTO command diverts execution of the command file to the command line that
follows the Label. You must define the Label in the current command file. The GOTO
command fails if the Label is not found. A label can only be followed on the same line by
a comment.

Usage

GOTO Label

Components

Debugger engine
559S12(X) Debugger Manual

Debugger Engine Commands
Debugger Commands
Example

GOTO MyLabel

...

...

MyLabel: // comments

When the instruction GOTO MyLabel is reached, the program pointer jumps to
MyLabel and follows program execution from this position.

GOTOIF

The GOTOIF command diverts execution of the command file to the command line that
follows the label if the condition is true. Otherwise, the command is ignored. The
GOTOIF command fails if the condition is true and the label is not found.

Usage

GOTOIF condition Label

where condition is same as defined in “C” language.

Components

Debugger engine

Example

DEFINE jump = 0

...

DEFINE jump = jump + 1

...

GOTOIF jump == 10 MyLabel

T

...

MyLabel: // comments

The program pointer jumps to MyLabel only if jump equals 10. Otherwise, the
next instruction (T (Trace) command) executes.
560 S12(X) Debugger Manual

Debugger Engine Commands
Debugger Commands
GRAPHICS

In the Profiler component, GRAPHICS switches the percentages display in the graph bar
on/off.

Usage

GRAPHICS on|off

Components

Profiler component

Example

in>GRAPHICS off

HELP

In the Command line component, the HELP command displays all available commands.

Subcommands from the ATTRIBUTES command are not listed.

Component-specific commands for closed components are not listed.

Usage

HELP

Components

Debugger engine

Example

in>HELP

HI-WAVE Engine:

 VER

 LF

 NOLF

 CR

 NOCR

561S12(X) Debugger Manual

Debugger Engine Commands
Debugger Commands
ICD12EXEC HELP

The ICD12EXEC HELP command outputs a list and descriptions of all P&E available
debugger commands to the Command Window.

Usage

icd12exec help

Components

Debugger engine

Example

in>icd12exec help

IF

The conditional commands (IF, ELSEIF, ELSE and ENDIF) allow you to execute
different sections depending on the result of the corresponding condition. You may next
the conditional commands. Conditions of the IF and ELSEIF commands, respectively,
guard all commands up to the next ELSEIF, ELSE or ENDIF command on the same
nesting level. The ELSE command guards all commands up to the next ENDIF command
on the same nesting level. Any occurrence of a subcommand not in sequence of “IF,
zero or more ELSEIF, zero or one ELSE, ENDIF” is an error.

Usage

IF condition

Where condition is same as defined in C language.

Components

Debugger engine
562 S12(X) Debugger Manual

Debugger Engine Commands
Debugger Commands
Example

DEFINE jump = 0

...

DEFINE jump = jump + 1

...

IF jump == 10

 T

 DEFINE jump = 0

ELSEIF jump == 100

 DEFINE jump = 1

ELSE

 DEFINE jump = 2

ENDIF

Evaluates the jump = = 10 condition and, depending on the test result, executes
the T Trace instruction, or evaluates the ELSEIF jump = = 100 test.

INSPECTOROUTPUT

The Inspector dumps the content of the specified item and all computed sub-items to the
command window. Uncomputed sub-items are not printed. To compute all information,
use the ATTRIBUTES EXPAND command.

Usage

INSPECTOROUTPUT [name {subname}]

The name specifies any of the root items. The subname specifies a recursive path
to sub-items.

If a name contains a space, you must surround the name with quotes (" ").

Components

Inspector component
563S12(X) Debugger Manual

Debugger Engine Commands
Debugger Commands
Example

in>loadio swap

in>Inspect<ATTRIBUTES EXPAND 3

in>INSPECTOROUTPUT “Object Pool” Swap

 Swap

 * Name Value Address Init...

 - IO_Reg_1 0x0 0x1000 0x0 ...

 - IO_Reg_2 0x0 0x1001 0x0 ...

INSPECTORUPDATE

The Inspector displays various information. Some types of information update
automatically. To make sure that displayed values correspond to the current situation, the
INSPECTORUPDATE command updates all information.

Usage

INSPECTORUPDATE

Components

Inspector component

Example

in>INSPECTORUPDATE

LF

The LF command initiates logging of commands and responses to an external file or
device. While logging remains in effect, any line that is appended to the command
window is also written to the log file.

Logging continues until a close log file (NOLF) command executes. When you use the LF
command with no filename, the Open File Dialog appears to allow you to specify a
filename.

Use the logging option (LOG) command to specify information to be logged.

If you specify a path in the file name, this path must be a valid path. When you specify a
relative path, ensure that the path is relative to the project directory.
564 S12(X) Debugger Manual

Debugger Engine Commands
Debugger Commands
Usage

LF [fileName][;A]

fileName is a DOS filename that identifies the file or device where the log is
written. The command interpreter does not assume a filename extension.

;A opens the file in append mode, so that LF appends logged lines at the end of an
existing log file.

If you omit the ;A option and fileName is an existing file, LF clears the file
before logging begins.

Components

Debugger engine

Example

in>lf /mcuez/demo/logfile.txt ;A

Opens the logfile.txt file as a Log File in “append” mode.

NOTE If the path is unspecified, the destination directory is the current project
directory.

LOAD

The LOAD command loads a framework application (.abs file) for a debugging session.
When no application name is specified, the LoadObjectFile dialog opens.

If no target is installed, the following error message appears:

Error: no target is installed

If no target is connected, the following error message appears:

Error: no target is connected

Usage

LOAD[applicationName]

or

LOAD[applicationName] [CODEONLY|SYMBOLSONLY]
[NOPROGRESSBAR] [NOBPT] [NOXPR] [NOPRELOADCMD]
[NOPOSTLOADCMD] [VERIFYFIRST|VERIFYALL|VERIFYONLY]
[AUTOERASEANDFLASH] [NORUNAFTERLOAD|RUNANDSTOPAFTERLOAD
= functionName|RUNAFTERLOAD] [DELAY] [ADD_SYMBOLS]
565S12(X) Debugger Manual

Debugger Engine Commands
Debugger Commands
Where:

• applicationName is the name of the application to load

• CODEONLY and SYMBOLSONLY loads only the code or symbols

• NOPROGRESSBAR loads the application without progress bar

• NOBPT loads the application without loading breakpoints file (with BPT
extension)

• NOXPR loads the application without playing Expression file (with XPR
extension)

• NOPRELOADCMD loads the application without playing PRELOAD file

• NOPOSTLOADCMD loads the application without playing POSTLOAD file

• DELAY loads the application and waits one second

• VERIFYFIRST matches the First bytes only code verification option.

• VERIFYALL matches the All bytes code verification option.

• VERIFYONLY matches the Read back only code verification option.

• RUNAFTERLOAD runs application after loading

• RUNANDSTOPAFTERLOAD runs application after loading and set temporary
breakpoint at the specified function

• functionName is the name of the function to set temporary breakpoint at

• NORUNAFTERLOAD doesn't run application after loading (default)

• ADD_SYMBOLS appends the symbol information to the existing symbol table
instead of replacing it

NOTE By default, the LOAD command is code+symbols with no verification.

NOTE If you use the ADD_SYMBOLS parameter, the debugger plays PRELOAD and
POSTLOAD files for the first loaded application only.

Components

Debugger engine

Example

LOAD FIBO.ABS

Loads the FIBO.ABS application.

NOTE If no path is specified, the destination directory is the current project directory.
566 S12(X) Debugger Manual

Debugger Engine Commands
Debugger Commands
LOADCODE

This command loads code into the target system. Use this command when no debugging is
needed. If no target is installed, the following error message appears:

Error: no target is installed

If no target is connected, the following error message appears:

Error: no target is connected

Usage

LOADCODE [applicationName]

Components

Debugger engine

Example

LOADCODE FIBO.ABS

Loads FIBO.ABS application code.

NOTE If no path is specified, the destination directory is the current project directory.

LOADSYMBOLS

This command is similar to the LOAD command but only loads debugging information
into the debugger. Use this command if the code is already loaded into the target system or
programmed into a non-volatile memory device.

If no target is installed, the following error message appears:

Error: no target is installed

If no target is connected, the following error message appears:

Error: no target is connected

Usage

LOADSYMBOLS [applicationName]
567S12(X) Debugger Manual

Debugger Engine Commands
Debugger Commands
Components

Debugger engine

Example

LOADSYMBOLS FIBO.ABS

Loads debugging information of the FIBO.ABS application. If no path is
specified, the destination directory is the current project directory.

LOG

The LOG command enables or disables information logging in the Command Line
component window (and to logfile, when opened with an LF command). If LOG is not
used, all types are ON by default i.e. all information is logged in the Command Line
component and log file.

NOTE - about RESPONSES: Responses are results of commands. For example, for
the DB command, the displayed memory dump is the response of the
command. Protocol messages are not responses.
- about ERRORS: Errors appear in red in Command Line component.
Protocol messages are not errors.
- about NOTICES: Notices appear in green in the Command Line.

Usage

LOG type [=] state {[,] type [=] state}

Where type is one of the following types:

CMDLINE: Commands entered on the command line.

CMDFILE: Commands read from a file.

RESPONSES: Command output response.

ERRORS: Error messages.

NOTICES: Asynchronous event notices, such as breakpoints.

Where state is on or off.

state is the new state of type:

When ON, enables logging of the type.

When OFF, disables logging of the type.
568 S12(X) Debugger Manual

Debugger Engine Commands
Debugger Commands
Components

Debugger engine

Example

LOG ERRORS = OFF, CMDLINE = on

Does not record error messages in the Log File. Records commands entered in the
Command Line component window.

Logging of IF, FOR, WHILE and REPEAT

When commands executed from a command file are logged, all executed
commands that are in a IF block are logged. That is, a command file executed with
the CF or CALL command without the NL option and with CMDFILE flag of the
LOG command set to TRUE. All commands in a block that are not executed
because the corresponding condition is false are also logged but preceded with “-”.

Example 1

Executing the following command file:

define truth = 1

IF truth

 bckcolor blue

 at 2000 bckcolor white

else

 bckcolor yellow

 at 1000 bckcolor white

ENDIF

Generates the following log file:

!define truth = 1

!IF truth

! bckcolor blue

! at 2000 bckcolor white

!else

!- bckcolor yellow

!- at 1000 bckcolor white

!ENDIF
569S12(X) Debugger Manual

Debugger Engine Commands
Debugger Commands
When commands executed from a command file are logged, all executed
commands that are in the FOR loop are logged the number of times they have been
executed. That is, a command file executed with the CF or CALL command
without the NL option and with the CMDFILE flag of the LOG command set to
TRUE.

Example 2

Executing the following file:

define i = 1

FOR i = 1..3

 ls

ENDFOR

Generates the following log file:

!define i = 1

!FOR i = 1..3

! ls

i 0x1 (1)

!ENDFOR

! ls

i 0x2 (2)

!ENDFOR

! ls

i 0x3 (3)

!ENDFOR

When commands executed from a command file are logged, all executed
commands that are in the WHILE loop are logged as many times as they are
executed. That is, a command file executed with the CF or CALL command
without the NL option and with the CMDFILE flag of the LOG command set to
TRUE.
570 S12(X) Debugger Manual

Debugger Engine Commands
Debugger Commands
Example 3

Executing the following file:

define i = 1

WHILE i < 3

 define i = i + 1

ls

ENDWHILE

Generates the following log file:

!define i = 1

!WHILE i < 3

! define i = i + 1

! ls

i 0x2 (2)

!ENDWHILE

! define i = i + 1

! ls

i 0x3 (3)

!ENDWHILE

When commands executed from a command file are logged, all executed
commands that are in the REPEAT loop are logged as many times as they are
executed. That is, a command file executed with the CF or CALL command
without the NL option and with the CMDFILE flag of the LOG command set to
TRUE.

Example 4

Executing the following file:

define i = 1

REPEAT

 define i = i + 1

ls

UNTIL i == 4
571S12(X) Debugger Manual

Debugger Engine Commands
Debugger Commands
Generates the following log file:

repeat

until condition

!define i = 1

!REPEAT

! define i = i + 1

! ls

i 0x2 (2)

!UNTIL i == 4

! define i = i + 1

! ls

i 0x3 (3)

!UNTIL i == 4

! define i = i + 1

! ls

i 0x4 (4)

!UNTIL i == 4

LS

In the Command Line window, the LS command lists the values of symbols defined in the
symbol table and by the user. There is no limit to the number of symbols that can be listed.
Memory size determines the symbol table size. Use the DEFINE command to define
symbols, and the UNDEF command to delete symbols.

The LS command lists symbols split into two parts: Applications Symbols and User
Symbols.

Usage

LS [symbol | *][;C|S]

Where symbol is a restricted regular expression that specifies the symbol whose
values are to be listed.

* specifies to list all symbols.

;C specifies to list symbols in canonical format, which consists of a DEFINE
command for each symbol.
572 S12(X) Debugger Manual

Debugger Engine Commands
Debugger Commands
;S specifies to list symbol table statistics following the list of symbols.

Components

Debugger engine

Example

in>ls

User Symbols:

j 0x2 (2)

Application Symbols:

counter 0x80 (128)

fiboCount 0x81 (129)

j 0x83 (131)

n 0x84 (132)

fib1 0x85 (133)

fib2 0x87 (135)

fibo 0x89 (137)

Fibonacci 0xF000 (61440)

Entry 0xF041 (61505)

Performing LS on a single symbol (e.g., in > ls counter) that is an
application variable as well as a user symbol, displays the application variable.

Example with j being an application symbol as well as a user symbol:

in>ls j

Application Symbol:

j 0x83 (131)

MEM

The MEM command displays a representation of the current system memory map and
lower and upper boundaries of the internal module that contains the MCU registers.

Usage

MEM
573S12(X) Debugger Manual

Debugger Engine Commands
Debugger Commands
Components

Debugger engine

Example

in>mem

Type Addresses Comment

IO 0.. 3F PRU or TOP TOP board resource or
the PRU

NONE 40.. 4F NONE

RAM 50.. 64F RAM

NONE 650.. 7FF NONE

EEPROM 800.. A7F EEPROM

NONE A80..3DFF NONE

ROM 3E00..FDFF ROM

IO FE00..FE1F PRU or TOP TOP board resource or
the PRU

NONE FE20..FFDB NONE

ROM FFDC..FFFE ROM

COP FFFF..FFFF special ram for cop

RT MEM 0.. 3FF (enabled)

MS

The MS command sets a specified block of memory to a specified list of byte values.
Specifying a range that is wider than the list of byte values repeats the list of byte values
as many times as necessary to fill the memory block.

When the range is not an integer multiple of the length of list, the last copy of the
list is truncated appropriately. This command is identical to the write bytes (WB)
command.

Usage

MS range list
574 S12(X) Debugger Manual

Debugger Engine Commands
Debugger Commands
range: an address range constant that defines the block of memory to be set to the
values of the bytes in the list.

list: a list of byte values to be stored in the block of memory.

Components

Debugger engine

Example

in>MS 0x1000..0x100F 0xFF

Fills the memory range between addresses 0x1000 and 0x100F with the 0xFF
value.

NB

The NB command changes or displays the default number base for the constant values in
expressions. The initial default number base is 10 (decimal). Use NB to change to base 16
(hexadecimal), base 8 (octal), base 2 (binary), or reset to base 10. Always specify the base
as a decimal constant.

Independent of the default base number, the ANSI C standard notation for constant is
supported inside an expression. That means that independent of the current number base
you can specify hexadecimal or octal constants using the standard ANSI C notation shown
in Table 22.6.

Usage

NB [base]

Where base is the new number base (2, 8, 10 or 16).

Components

Debugger engine

Table 22.6 ANSI C Constant Notation

Notation Meaning

0x---- Hexadecimal constant

0---- Octal constant
575S12(X) Debugger Manual

Debugger Engine Commands
Debugger Commands
Table Example

0x2F00, /* Hexadecimal Constant */

043, /* Octal Constant */

255 /* Decimal Constant */

In the same way, the debugger supports the Assembler notation for constant. That
means that independent of the current number base you can specify hexadecimal,
octal or binary constants using the Assembler prefixes shown in Table 22.7.

Table Example

$2F00, /* Hexadecimal Constant */

@43, /* Octal Constant */

%10011 /* Binary Constant */

When the default number base is 16, constants starting with a letter A, B, C, D, E
or F must be prefixed either by 0x or by $, as shown in Table 22.8. Otherwise, the
command line interpreter cannot detect if you are specifying a number or a symbol.

Table Example

in>NB 16

The number base is hexadecimal.

Table 22.7 Assembler Notation for Constant

Notation Meaning

$---- Hexadecimal constant

@---- Octal constant

%---- Binary constant

Table 22.8 Base is 16: Constants Starting with Letter A, B, C, D, E or F

Notation Meaning

5AFD Hexadecimal constant $5AFD

AFD Hexadecimal constant $AFD
576 S12(X) Debugger Manual

Debugger Engine Commands
Debugger Commands
NOCR

The NOCR command closes the current record file. Open the record file with the CR
command.

Usage

NOCR

Components

Debugger engine

Example

in>NOCR

Closes the current record file.

NOLF

The NOLF command closes the current Log File. Open the log file with the LF command.

Usage

NOLF

Components

Debugger engine

Example

in>NOLF

Closes the current Log File.

OPEN

Use the OPEN command to open a window component.

Usage

OPEN "component" [x y width height][;I | ;MAX]
577S12(X) Debugger Manual

Debugger Engine Commands
Debugger Commands
where:

• component is the component name with an optional path

• x is the X-axis of the upper left corner of the window component

• y is the Y-axis of the upper left corner of the window component

• width is the width of the window component

• height the height of the window component

Specify I to activate the icons in the component window; specify MAX to maximize
the component window.

Component names are: Assembly, Command, Coverage, Data, Inspect, Memory,
Module, Procedure, Profiler, Recorder, Register, Source, Stimulation.

Components
Debugger engine

Example
in>OPEN Terminal 0 78 60 22

Opens the Terminal component and window at the specified positions and with
specified width and height.

OUTPUT

With OUTPUT, you can redirect the Coverage component results to an output file
indicated by the file name and his path.

Usage

OUTPUT FileName

Where FileName is file name (path + name).

Components
Coverage component

Example
in>coverage < OUTPUT c:\Freescale\myfile.txt

Redirects the Coverage output results to the file myfile.txt from the directory
C:\Freescale.
578 S12(X) Debugger Manual

Debugger Engine Commands
Debugger Commands
P

The P command executes a CPU instruction, either at a specified address or at the current
instruction indicated by the program counter. This command traces through subroutine
calls, software interrupts, and operations involving the following instructions (two are
target specific):

• Branch to SubRoutine (BSR)

• Long Branch to Subroutine (LBSR)

• Jump to Subroutine (JSR)

• Software Interrupt (SWI)

• Repeat Multiply and Accumulate (RMAC)

For Example if the current instruction is a BSR instruction, the subroutine executes, and
execution stops at the first instruction after the BSR instruction. For instructions that are
not in the above list, the P and T commands are equivalent.

When the instruction specified in the P command executes, the software displays the
content of the CPU registers, the instruction bytes at the new value of the program counter
and a mnemonic disassembly of that instruction.

Usage

P [address]

address: an address constant expression, the address at which execution begins.

If you omit address, execution begins with the instruction indicated by the
current value of the program counter.

Components

Debugger engine

Example

in>p

A=0x0 HX=0x450 SR=0x70 PC=0xF04E SP=0xFF

00F04E 94 TXS

STEPPED

Contents of registers are displayed and the current instruction is disassembled.
579S12(X) Debugger Manual

Debugger Engine Commands
Debugger Commands
PAUSETEST

Displays a modal message box shown in Figure 22.1 for testing purpose.

Figure 22.1 Test Pause Message Box

Usage

PAUSETEST

Components

Debugger engine

Example

in> pausetest

PRINTF

The PRINTF is the standard ANSI C command: Prints formatted output to the standard
output stream.

Usage

PRINTF (“[Text]%format specification” , value)

Components

Debugger engine

Example

in>PRINTF("The value of the counter is: %d", counter)

The output is: The value of the counter is: 2
580 S12(X) Debugger Manual

Debugger Engine Commands
Debugger Commands
PTRARRAY

Use the PTRARRAY command to display a pointer as an array.

Usage

PTRARRY on|off [nb]

Where:

• on displays pointers as arrays.

• off displays pointers as usual (*pointer).

• nb is the number of elements to display in the array when unfolding a pointer
displayed as array.

Components

Data component

Example

in>Ptrarray on 5

Display content of pointers as array of five items.

RD

The RD command displays the content of specified registers. The register display includes
both the name and hexadecimal representation. If the specified register is not a CPU
register, then the debugger looks for an I/O register in a register file called
MCUIxxxx.REG (where xxxx is a number related to the MCU).

NOTE This command is processor/derivative specific. Banked registers are not
displayed unless the processor supports banking.

Usage

RD { <list> | CPU | * }

where list is a list of registers to be displayed. Separate registers to be displayed
by a space. Specifying RD CPU displays all CPU registers. This command displays
an error message of No CPU loaded if no CPU is found.
581S12(X) Debugger Manual

Debugger Engine Commands
Debugger Commands
When you specify *, the RD command lists the content of the currently loaded
register file. If no register file is loaded, the RD command displays a No
register file loaded error message.

Specifying the RD command with no parameter processes the previous RD
command again. The first RD command of a session displays all CPU registers.

If you omit list, the RD command uses the list and any other parameters from
the previous RD command.

Components

Debugger engine

Example 1

in>rd a hx

A=0x14

HX=0x2

Example 2

in>rd cpu

A=0x0 HX=0x450 SR=0x70 PC=0xF04E SP=0xFF

RECORD

In the SoftTrace component, the RECORD command switches frame recording on or
off while the target is running.

Usage

RECORD on|off

Components

SoftTrace component

Example

in>RECORD on
582 S12(X) Debugger Manual

Debugger Engine Commands
Debugger Commands
REPEAT

Use the REPEAT command to execute a sequence of commands until a specified condition
is true. You may nest the REPEAT command.

Click the Esc key to stop this command.

Usage

REPEAT

Components

Debugger engine

Example

DEFINE var = 0

...

REPEAT

 DEFINE var = var + 1

 ...

UNTIL var == 2

The REPEAT-UNTIL loop is identical to the ANSI C loop. The operation
DEFINE var = var + 1 is done twice, then var = = 2 and the loop ends.

RESET

In the Profiler and Coverage component, the RESET command resets all recorded
frames (statistics).

In the SoftTrace component, the RESET command resets statistics and recorded frames.

NOTE Make sure that you redirect the RESET command to the correct component.
Since targets have their own RESET command, using RESET without
redirecting it to the correct component resets the target.

Usage

RESET
583S12(X) Debugger Manual

Debugger Engine Commands
Debugger Commands
Components

Profiler and Coverage

Example

in>Profiler < RESET

RESTART

Resets execution to the first line of the current application and executes the application
from this point.

Usage

RESTART

Components

Engine component

Example

in>RESTART

The RESTART command initializes the cycle counter to zero.

RETURN

The RETURN command terminates the current command processing level (returns from a
CALL command). If executed within a command file, control returns to the caller of the
command file (i.e. the first instance that did not chain execution).

Usage

RETURN

Components

Debugger engine
584 S12(X) Debugger Manual

Debugger Engine Commands
Debugger Commands
Example

In file d:\demo\cmd1.txt:

...

CALL d:\demo\cmd2.txt

T

...

 In file d:\demo\cmd2.txt

...

...

RETURN // returns to the caller

The command file cmd1.txt calls a second command file cmd2.txt. You must
use the RETURN instruction to return to the caller file. Then the T Trace instruction
is executed.

RS

The RS command assigns new values to specified registers. Follow the RS mnemonic by
the register name and new value(s).

Use an equal sign (=) to separate the register name from the value to be assigned to the
register; otherwise they must be separated by a space. Set the contents of any number of
registers using a single RS command. If the specified register is not a CPU register, then
the debugger searches for the register as an I/O register in a register file called
MCUIxxxx.REG (where xxxx is a number related to the MCU).

Usage

RS register[=]value{,register[=]value}

register: Specifies the name of a register to change. String register is any
of the CPU register names, or name of a register in the register file.

value: is an integer constant expression (in ANSI format representation).

Components

Debugger engine

Example

in>rs a=0xff hx=0x7fff
585S12(X) Debugger Manual

Debugger Engine Commands
Debugger Commands
S

The S command stops execution of the emulation processor. Use the Go (G) command to
start the emulator.

NOTE The S command ends as soon as the PC is changed.

Usage

S

Alias

STOP

Components

Debugger engine

Example

in>s

STOPPING

HALTED

Current application debugging is stopped/halted.

SAVE

The SAVE command saves a specified block of memory to a specified file in Freescale S-
record format. Reload the memory block later using the load S-record (SREC) command.

NOTE If no path is specified, the destination directory is the current project directory.

Usage

SAVE range fileName [offset][;A]

offset: an optional offset to add or subtract from addresses when writing S-
records. The default offset is 0.
586 S12(X) Debugger Manual

Debugger Engine Commands
Debugger Commands
;A: appends the saved S-records to the end of an existing file. If the file specified
by fileName exists, then omitting this option clears the file before saving the S-
records.

Components

Debugger engine

Example

in>SAVE 0x1000..0x2000 DUMP.SX ;A

Appends the memory range 0x1000..0x2000 to the DUMP.SX file.

SAVEBP

The SAVEBP command saves all currently loaded .ABS file breakpoints into the
matching breakpoints file. The matching file has the name of the loaded .ABS file but
with the .BPT extension (for example, the Fibo.ABS file has a breakpoint file called
FIBO.BPT. This file is generated in the same directory as the .ABS file, when the user
quits the Simulator/Debugger or loads another .ABS file.

Setting on stores all breakpoints defined in the current application into the matching
.BPT file.

Setting off prevents the breakpoints defined in the current application from being stored
in the matching .BPT file.

Use this command only in .BPT files. It is similar to the Save & Restore on load
checkbox in the Controlpoints Configuration Window, which is used to store currently
defined breakpoints (SAVEBP on) when the user quits the Simulator/Debugger or loads
another .ABS file.

NOTE For more information about this syntax, refer to BS command and to the
Control Points chapter.

Usage

SAVEBP on|off

Components

Debugger engine
587S12(X) Debugger Manual

Debugger Engine Commands
Debugger Commands
Example

content of the FIBO.BPT file

savebp on

BS &fibo.c:Fibonacci+19 P E; cond = "fibo > 10" E; cdSz
= 47 srSz = 0

BS &fibo.c:Fibonacci+31 P E; cdSz = 47 srSz = 0

BS &fibo.c:main+12 P E; cdSz = 42 srSz = 0

BS &fibo.c:main+21 P E; cond = "fiboCount==5" E; cmd =
"Assembly < spc 0x800" E; cdSz = 42 srSz = 0

SET

Sets a new current target for the debugger by loading the targetName component.

Usage

SET targetName

where targetName is name without extension of the target to set.

Components

Debugger engine

Example

in>SET Sim

The debugger’s current target is Simulator.

SETCOLORS

Use the SETCOLORS command to change the colors for a specific channel from the
Monitor component.

Usage

SETCOLORS ("Name") (Background) (Cursor) (Grid
) (Line) (Text)

Name is the name of the channel to modify.
588 S12(X) Debugger Manual

Debugger Engine Commands
Debugger Commands
Background is the new color for the channel background (the format is
0x00bbggrr).

Cursor is the new color for the channel cursor (the format is 0x00bbggrr).

Grid is the new color for the channel grid (the format is 0x00bbggrr).

Line is the new color for the channel lines (the format is 0x00bbggrr).

Text is the new color for the channel text (the format is 0x00bbggrr).

Components

Monitor component

Example

in>SETCOLORS "Leds.Port_Register bit 0" 0x00123456
0x00234567 0x00345678 0x00456789 0x00567891

This changes the color attributes from the channel Leds.Port_Register bit 0
to these new values.

SLAY

Use the SLAY command to save the layout of all window components in the main
application window to a specified file.

NOTE Layout files usually have a.HWL extension. However, you can specify any file
extension.

NOTE If no path is specified, the destination directory is the current project directory.

Usage

SLAY fileName

Components

Debugger engine

Example

in>slay /hiwave/demo/mylayout.hwl

This saves the current debugger layout to mylayout.hwl file in the /hiwave/
demo directory.
589S12(X) Debugger Manual

Debugger Engine Commands
Debugger Commands
SLINE

The SLINE command makes a line of the source file visible. If the line is not currently
visible, the source scrolls so that it appears on the first line. If the line is currently in a
folded part, it is unfolded so that it becomes visible.

NOTE Use a line number between 1 and the number of lines in the source file, or an
error message appears.

Usage

SLINE line number

Components

Source component

Example

in>sline 15

SMEM

In the Source component, the SMEM command loads the corresponding module’s source
text, scrolls to the corresponding text location (the code address) and highlights the
statements that correspond to this code address range.

In the Assembly component, the SMEM command scrolls the Assembly component,
shows the location (the assembler address) and select/highlights the memory lines of the
address range given as the parameter.

In the Memory component, the SMEM command scrolls the memory dump component,
shows the locations (the memory address) of the address range given as the parameter.

Usage

SMEM range

Components

Source, Assembly and Memory components
590 S12(X) Debugger Manual

Debugger Engine Commands
Debugger Commands
Example

in>Memory < SMEM 0x8000,8

This scrolls the Memory component window and highlights the specified memory
addresses.

SMOD

In the Source component, the SMOD command loads/displays the corresponding
module’s source text. If the module is not found, a message is displayed in Command Line
window.

In the Data component, the SMOD command loads the corresponding module’s global
variables.

In the Memory component, the SMOD command scrolls the memory dump component
and highlights the first global variable of the module.

NOTE The Module component window displays the correct module names. Make
sure that you use the correct module name in your command. If the.abs is in
HIWARE format, some debug information is in the object file (.o), and
module names have an .o extension (e.g., fibo.o). In ELF format, module
name extensions are .c, .cpp or .dbg (.dbg or program sources in
assembler) (e.g., fibo.c), since the .abs file contains all debugging
information and object files are not used. Adapt the following examples with
your .abs application file format.

Usage

SMOD module

Where module is the name of a module taking part of the application. Do not
include the path name in the module name. You must specify the module extension
(i.e. .DBG for assembly sources or .C for C sources, etc.).

The debugger searches for the module name in the directories associated with the
GENPATH environment variable, and displays an error message:

• If the module specified does not take part of the current application loaded.

• If no application is loaded.

Components

Data, Memory and source components
591S12(X) Debugger Manual

Debugger Engine Commands
Debugger Commands
Example

in>Data:1 < SMOD fibo.c

Displays global variables found in the fibo.c module in the Data:1 component
window.

SPC

In the Source component, the SPC command loads the corresponding module’s source
text, scrolls to the corresponding text location (the code address) and highlights the
statement that corresponds to this code address.

In the Assembler component, the SPC command scrolls the Assembly component, shows
the location (the assembler address) and select/highlights the assembler instruction of the
address given as parameter.

In the Memory component, the SPC command scrolls the memory dump component, and
shows the location (the memory address) of the address given as parameter.

Usage

SPC address

Components

Assembler, Memory and Source component

Example

in>Assembly < SPC 0x8000

This scrolls the Assembly component window to the address 0x8000 and
highlights the associated instruction.

SPROC

In the Data component, the SPROC command shows local variables of the corresponding
procedure stack level.

In the Source component, the SPROC command loads the corresponding module’s source
text, scrolls to the corresponding procedure and highlights the statement of this procedure
in the procedure chain.

level = 0 is the current procedure level. level = 1 is the caller stack level and so
on.
592 S12(X) Debugger Manual

Debugger Engine Commands
Debugger Commands
NOTE This command is relevant when debugging C source code.

NOTE Giving a procedure level greater than 0 as parameter to the SPROC command
selects the statement corresponding to the call of the lower procedure.

Usage

SPROC level

Components

Data and Source components

Example

in>Source < SPROC 1

This command displays the source code associated with the caller function in the
Source component window.

SREC

The SREC command initiates the loading of Freescale S-Records from a specified file.

NOTE If the path is unspecified, the destination directory is the current project
directory.

Usage

SREC fileName [offset]

offset: is a signed value added to the load addresses in the file when loading the
file contents.

Components

Debugger engine

Example

in>SREC DUMP.SX

Loads the DUMP.SX file into memory.
593S12(X) Debugger Manual

Debugger Engine Commands
Debugger Commands
STEPINTO

The STEPINTO command single-steps through instructions in the program, and enters
each function call that is encountered.

NOTE This command works while the application is paused in break mode (program
is waiting for user input after completing a debugging command).

Usage

STEPINTO

Components

Debugger engine

Example

in>STEPINTO

STEP INTO

TRACED

TRACED in the status line indicates that the application is stopped by an assembly
step function.

STEPOUT

The STEPOUT command executes the remaining lines of a function in which the current
execution point lies. The next statement displayed is the statement following the
procedure call. All of the code is executed between the current and final execution points.
Using this command, you can quickly finish executing the current function after
determining that a bug is not present in the function.

NOTE This command works while the application is paused in break mode (program
is waiting for user input after completing a debugging command).

Usage

STEPOUT
594 S12(X) Debugger Manual

Debugger Engine Commands
Debugger Commands
Components

Debugger engine

Example

in>STEPOUT

STEP OUT

STARTED

RUNNING

STOPPED

STOPPED in the status line indicates that the application is stopped by a step-out
function.

STEPOVER

The STEPOVER command executes the procedure as a unit, and then steps to the next
statement in the current procedure. Therefore, the next statement displayed is the next
statement in the current procedure regardless of whether the current statement is a call to
another procedure.

NOTE This command works while the application is paused in break mode (program
is waiting for user input after completing a debugging command).

Usage

STEPOVER

Components

Debugger engine

Example

in>STEPOVER

STEP OVER

STARTED

RUNNING

STOPPED

STEPPED OVER (or STOPPED) in the status line indicates that the application is
stopped by a step over function.
595S12(X) Debugger Manual

Debugger Engine Commands
Debugger Commands
STOP

The STOP command stops execution of the emulation processor. Use the Go (G)
command to start the emulator.

NOTE The STOP command ends as soon as the PC changes.

Usage

STOP

Alias

S

Components

Debugger engine

Example

in>STOP

STOPPING

HALTED

Current application debugging is stopped.

T

The T command executes one or more instructions at a specified address, or at the current
address (the address in the program counter). The T command traces into subroutine calls
and software interrupts. For example, if the current instruction is a Branch to Subroutine
instruction (BSR), the T command traces the BSR, and execution stops at the first
instruction of the subroutine. After executing the last (or only) instruction, the T command
displays the contents of the CPU registers, the instruction bytes at the new address in the
program counter and a mnemonic disassembly of the current instruction.

Stop this command by typing the Esc key.

Usage

T [address][,count]
596 S12(X) Debugger Manual

Debugger Engine Commands
Debugger Commands
address: is an address constant expression, the address where execution begins.
If you omit address, the instruction pointed to by the current value of the
program counter is the first instruction traced.

count: is an integer constant expression, in the decimal integral interval [1,
65535], that specifies the number of instructions to be traced. If you omit
count, only one instruction is traced.

Components

Debugger engine.

Example

in>T 0xF030

TRACED

A=0x0 HX=0x7F02 SR=0x62 PC=0xF032 SP=0x44D

00F032 B787 STA 0x87

Displays contents of registers and disassembles the current instruction.

TESTBOX

Displays a modal message box, shown in Figure 22.2, with a given string.

Figure 22.2 Test Box Message Box

Usage

TESTBOX "<String>"

Components

Debugger engine
597S12(X) Debugger Manual

Debugger Engine Commands
Debugger Commands
Example

in>TESTBOX "Step 1: init all vars"

TUPDATE

Switches the time update feature on or off.

Usage

TUPDATE on|off

Components

Profiler and Coverage components

Example

in>TUPDATE on

UNDEF

Removes a symbol definition from the symbol table. This command does not undefine the
symbols defined in the loaded application.

Program variables whose names were redefined using the UNDEF command are visible
again. Undefining an undefined symbol is not considered an error.

Usage

UNDEF symbol | *

Specifying the * argument undefines all symbols previously defined using the
DEFINE command.

Components

Debugger engine

Example

DEFINE test = 1

...

UNDEF test
598 S12(X) Debugger Manual

Debugger Engine Commands
Debugger Commands
When the test variable is no longer needed in a command program, you can
undefine it and remove it from the list of symbols. After UNDEF test, the test
variable must be redefined before you can use it.

NOTE See also examples of the DEFINE command.

Examples

You can change the value of an existing symbol by reapplying the DEFINE
command, which replaces and loses the previous value. It is not put on a stack.
Then when you apply UNDEF to the symbol, it no longer exists, even if the value of
the symbol has been replaced several times:

in>DEFINE apple 0

in>LS

apple 0x0 (0) // apple is equal to 0

in>DEFINE apple = apple + 1

in>LS

apple 0x1 (1) // apple is equal to 1

in>DEFINE apple = apple + 1

in>LS

apple 0x2 (2) // apple is equal to 2

in>UNDEF apple

in>LS

 // apple no longer exists

In the next example, we assume that the FIBO.ABS sample is loaded. At the
beginning, no user symbol is defined:

in>UNDEF *

in>LS

User Symbols: // there is no user symbol

Application Symbols: // symbols of the loaded
599S12(X) Debugger Manual

Debugger Engine Commands
Debugger Commands
application

fiboCount 0x800 (2048)

counter 0x802 (2050)

_startupData 0x84D (2125)

Fibonacci 0x867 (2151)

main 0x896 (2198)

Init 0x810 (2064)

_Startup 0x83D (2109)

in>DEFINE counter = 1

in>LS

User Symbols: // there is one user symbol: counter

counter 0x1 (1)

Application Symbols: // symbols of the loaded application

fiboCount 0x800 (2048)

counter 0x802 (2050)

_startupData 0x84D (2125)

Fibonacci 0x867 (2151)

main 0x896 (2198)

Init 0x810 (2064)

_Startup 0x83D (2109)

in>undef counter

in>LS

User Symbols: // there is no user symbol

Application Symbols: // symbols of the loaded application

fiboCount 0x800 (2048)

counter 0x802 (2050)

_startupData 0x84D (2125)

Fibonacci 0x867 (2151)

main 0x896 (2198)

Init 0x810 (2064)

_Startup 0x83D (2109)
600 S12(X) Debugger Manual

Debugger Engine Commands
Debugger Commands
UNFOLD

In the Source component, use the UNFOLD command to display the contents of folded
source text blocks; for example, source text that has been collapsed at program block
level. All text unfolds once or (*) completely, until no more folded parts are found.

Usage

UNFOLD [*]

Where * means unfolding completely, otherwise unfolding only one level.

Components

Source component

Example

in>UNFOLD *

UNTIL

The UNTIL keyword is associated with the REPEAT command.

Usage

UNTIL condition

Where condition is defined as a C-language definition.

Components

Debugger engine

Example

repeat

 open assembly

 wait 20

 define i = i + 1

until i==3

At the end of the loop, i equals 3.
601S12(X) Debugger Manual

Debugger Engine Commands
Debugger Commands
UPDATERATE

In the Data component, Memory component and MCURegisters component use the
UPDATERATE command to set the data refresh update rate. This command has an effect
only if the Data, Memory or MCURegisters component to which it applies is set in
Periodical Mode.

Usage

UPDATERATE rate

where rate is a constant number matching a quantity of time in tenths of a
second, between 1 and 600 tenths of second (0.1 to 60 seconds).

Components

Data, Memory and MCURegisters component

Example

in>Memory < updaterate 30

This commands sets the Memory component updaterate to 3 seconds.

VER

The VER command displays the version number of the Debugger engine and components
currently loaded in the Command line window.

Usage

VER

Components

Debugger engine
602 S12(X) Debugger Manual

Debugger Engine Commands
Debugger Commands
Example
in>ver

HI-WAVE 6.0.27

HI-WAVE Engine 6.0.49

Source 6.0.20

Assembly 6.0.14

Procedure 6.0.10

Register 6.0.14

Memory 6.0.19

Data 6.0.27

Data 6.0.27

Simulator Target 6.0.17

Command Line 6.0.16

Displays Debugger engine and components versions in the Command Line
component window.

WAIT

The WAIT command pauses command file execution for a time in tenths of second or
pauses until the target halts when the option ;s is set.

Specifying no parameter pauses command file execution for 50 tenths of a second (5
seconds).

Specifying time only halts execution of the command file for the specified time.

Specifying ;s only halts execution of the command file until the target halts. If the target
is already halted, command file execution is not halted.

When you specify both time and ;s:

• If the target is running, command file execution halts for the specified time only
if the target is not halted. If the target is halted during the specified period of
time (while command file execution is pending), the command file ignores the
time delay and runs.

• If the target is halted, command file execution does not halt (command file
ignores the time delay).

NOTE The Wait instruction ends as soon as the PC changes.
603S12(X) Debugger Manual

Debugger Engine Commands
Debugger Commands
Usage

WAIT [time] [;s]

Components

Debugger engine

Example

WAIT 100

T

...

Pauses for 10 seconds before executing the T Trace instruction.
604 S12(X) Debugger Manual

Debugger Engine Commands
Debugger Commands
WB

The WB command sets a specified block of memory to a specified list of byte values. When
the range is wider than the list of byte values, the list of byte values repeats as many times
as necessary to fill the memory block. When the range is not an integer, a multiple of the
length of the list and the last copy of the list is truncated accordingly. This command is
identical to the memory set (MS) command.

Usage

WB range list

range: an address range constant that defines the block of memory equal to the
values of the bytes in the list.

list: a list of byte values to store in the block of memory.

Alias

MS

Components

Debugger engine

Example

in>WB 0x0205..0x0220 0xFF

This command fills up the memory range 0x0205..0x0220 with the 0xFF byte
value.

WHILE

The WHILE command allows you to execute a sequence of commands as long as a certain
condition is true. You may nest the WHILE command.

Stop this command by pressing the Esc key.

Usage

WHILE condition

Where condition is defined as in C-language definition.
605S12(X) Debugger Manual

Debugger Engine Commands
Debugger Commands
Components

Debugger engine

Example

DEFINE jump = 0

...

WHILE jump < 20

 DEFINE jump = jump + 1

ENDWHILE

T

...

While jump < 100, the jump variable increments by the instruction DEFINE
jump = jump + 1. Then the loop ends and the T Trace instruction executes.

WL

The WL command sets a specified block of memory to a specified list of longword values.
When the range is wider than the list of longword values, the list of longword values
repeats as many times as necessary to fill the memory block. When the range is not an
integer or a multiple of the length of the list, the last copy of the list is truncated
accordingly.

When you specify a size in the range, this size represents the number of longwords to
modify.

Usage

WL range list

range: an address range constant that defines the block of memory to set to the
longword values in the list.

list: a list of longword values to store in the block of memory.

Components

Debugger engine

Example

in>WL 0x2000 0x0FFFFF0F
606 S12(X) Debugger Manual

Debugger Engine Commands
Debugger Commands
This command fills up memory starting at address 0x2000 with the
0x0FFFFF0F longword value, and modifies the addresses 0x2000 to 0x2003.

in>WL 0x2000, 2 0x0FFFFF0F

This command fills up the memory area 0x2000 to 0x2007 with the longword
value 0x0FFFFF0F.

WW

The WW command sets a specified block of memory to a specified list of word values.
When the range is wider than the list of word values, the list of word values repeats as
many time as necessary to fill the memory block. When the range is not an integer or a
multiple of length of the list, the last copy of the list is truncated accordingly.

Usage

WW range list

range: an address range constant that defines the block of memory to set to the
word values in the list.

list: a list of word values to store in the block of memory.

Components

Debugger engine

Example

in>WW 0x2000..0x200F 0xAF00

This command fills up the memory range 0x2000..0x200F with the 0xAF00
word value.

ZOOM

In the Data component, use the ZOOM command to display the member fields of
structures by ‘diving’ into the structure. This is in contrast to the UNFOLD
command, where member fields are not expanded in place. The display of the
member fields replaces the previous view. Use ZOOM out to return to the nesting
level indicated by the given identifier.

NOTE You do not need addresses to zoom out. Simply type ZOOM out.
607S12(X) Debugger Manual

Debugger Engine Commands
Debugger Commands
NOTE This command is relevant when debugging C source code.

Usage

ZOOM address in|out

Where address is the address of the structure or pointer variable to zoom in or
zoom out, respectively.

Components

Data component

Example

in>ZOOM 0x1FE0 in

Zooms in the variable structure located at address 0x1FE0.

in>zoom &_startupData

Zooms in the _startupData structure (&_startupData is the address of the
_startupData structure).

Signal Commands
Use the following commands to specify files and file parameters in the Signal component.

SETSIGNALFILE Command

SETSIGNALFILE specifies the signal file to use.

Syntax

SETSIGNALFILE <value (0-15)> <"file name">

Remarks

The SETSIGNALFILE X command creates a virtual SignalGeneratorX
module having a SignalPin.

The file name can include the path of the file. If you specify no path, the Signal
component first searches in the current project folder, then in the
prog\FCSsignals folder of the debugger installation path.
608 S12(X) Debugger Manual

Debugger Engine Commands
Debugger Commands
Example

Create three generators:

setsignalfile 0 "sinus_11bit_0_5v_1Hz.txt"

setsignalfile 1 "saw_11bit_0_5v_1Hz.txt"

setsignalfile 2 "square_1_5v_1Hz.txt"

Then create virtual pin connections with the Pinconn Commands CONNECT
command:

connect "SignalGenerator0.SignalPin","Atd0.PAD0"

connect "SignalGenerator1.SignalPin","Atd0.PAD1"

connect "SignalGenerator2.SignalPin","Atd0.PAD2"

TIP You can place commands to create signal generators in a command file such as a
Postload command file.

CLOSESIGNALFILE Command

CLOSESIGNALFILE closes the current signal file and generator.

Syntax

CLOSESIGNALFILE <value (0-15)>

Example

CLOSESIGNALFILE 1

Remarks

A message box displays the line error in case of signal file scripting error.

The Signal component is compatible with cycle time duration modification (bus
speed change via PLL) and True Time feature, and automatically reprograms level
duration (when duration in seconds is provided or no duration information is
provided).

Currently, all header parameters are mandatory, also EOF, in the same order as
described in EBNF above, without spacing between words.
609S12(X) Debugger Manual

Debugger Engine Commands
Debugger Commands
Pinconn Commands

CONNECT

Connects output pin to input.

Syntax

CONNECT "<OutputPin>", "<InputPin>"

Example

CONNECT "Pim.PORTHPin0", "Pim.PORTPPin3"

DISCONNECT

Removes connection between pins.

Syntax

DISCONNECT "<OutputPin>", "<InputPin>"

Example

DISCONNECT "Pim.PORTHPin0", "Pim.PORTPPin3"

CONNECT_STATE

Displays the list of active connections.

Syntax

CONNECT_STATE

NOTE There is no limitation of connections.

NOTE The Inspect component provides this list of simulated pins for a derivative
FCS, under the Object Pool key.
610 S12(X) Debugger Manual

Debugger Engine Commands
Debugger Commands
Command Line Options
This section lists the DOS command line options.

NOTE Options are not case sensitive.

-T=<time>: Test mode

The debugger terminates after a specified time (in seconds). The default value is 300
seconds.

Example

c:\Freescale\prog\hiwave.exe -T=10

The above example instructs the debugger to terminate after 10 seconds.

-Target=<targetname>

This option sets the specified connection.

Example

C:\Freescale\prog\hiwave.exe
c:\Freescale\demo\hc12\sim\fibo.abs -w -Target=sim

The command in the above example starts the debugger and loads fibo.abs file.

-W: Wait mode

Debugger waits even when an <exeName> is specified.

-w(W) command line option for HIWAVE indicates that, in case executable file is
specified in command line string, it would be loaded on target but not started. Without -w
option HIWAVE loads executable on target and run it.

C:\Program Files\Freescale\CodeWarrior for
Microcontrollers V6.x\Prog\hiwave.exe c:\Program
Files\Freescale\CodeWarrior for Microcontrollers
V6.x\demo\hc12\sim\fibo.abs -w -Target=sim

The command in the above example starts the debugger and loads fibo.abs file.
611S12(X) Debugger Manual

Debugger Engine Commands
Debugger Commands
-Instance=%currentTargetName

This option defines a build instance name. The debugger uses the defined build instance.

Example

c:\Freescale\prog\hiwave.exe -
Instance=%currentTargetName

Starting the debugger again brings the existing instance of the debugger to the
foreground.

-Prod= <fileName>

This option specifies the startup project directory and/or project file.

Example

c:\Freescale\prog\hiwave.exe -
Prod=c:\demoproject\test.pjt

-Nodefaults

Instructs the debugger not to load the default layout (see section 4 of the Project file
Activation).

Example

c:\Freescale\prog\hiwave.exe -nodefaults

-Cmd = <Command>

This option specifies a command to be executed at startup:

-cmd = '"' {characters}.

Example

c:\Freescale\prog\hiwave.exe -cmd="open recorder"
612 S12(X) Debugger Manual

Debugger Engine Commands
Debugger Commands
-C <cmdFile>

This option specifies a command file to be executed at startup.

Example

c:\Freescale\prog\hiwave.exe -c
c:\temp\mycommandfile.txt

-ENVpath: "-Env" <Environment Variable> "=" <Variable Setting>

This option sets an environment variable. You may use this environment variable to
overwrite system environment variables.

Example

c:\Freescale\prog\hiwave.exe -EnvOBJPATH=c:\sources\obj
613S12(X) Debugger Manual

Debugger Engine Commands
Debugger Commands
614 S12(X) Debugger Manual

23
Connection-Specific
Commands

This chapter describes the unique connection-specific commands available for the
HC(S)12(X) debugger.

Abatron BDI Connection Commands
This section describes the Abatron BDI Connection-specific commands that are used
when the Abatron BDI Connection is set.

The Abatron BDI Connection-specific commands are:

• BDI

• PROTOCOL

• RESET

Enter these commands in the Abatron BDI Connection Command Files or in the
Command Line component of the debugger.

This section describes each of the commands available for the Abatron BDI Connection.
The commands are listed in alphabetical order. Each is divided into several topics.

Table 23.1 Command Description Parameters

Topic Description

Description Provides a detailed description of the command and how to use it.

Syntax Specifies the syntax of the command.

Example Small example of how to use the command.
615S12(X) Debugger Manual

Connection-Specific Commands
Abatron BDI Connection Commands
BDI

Description

The BDI command executes any ABATRON direct command. See the ABATRON
User Manual for your CPU for complete descriptions of ABATRON direct
commands. Direct commands are commonly used to download to non-volatile
memory areas (see also the Flash Programming section).

Syntax

BDI <ABATRON_direct_command>

where ABATRON_direct_command has the following syntax:

<Object>.<Action> [<parName>=<parameterValue>]...

Example

BDI FLASH.ERASE addr=8000 size=8000 sram=0800

PROTOCOL

Description

Use this command to switch the Show Protocol functionality on or off, and report
all the messages sent to and received from the debugger in the Command Line
window of the debugger.

You can switch the Show Protocol facility on or off using the corresponding
check box in the Communication Device Specification dialog box.

The state of the Show Protocol is stored in the [BDIK] section of the project file
using variable SHOWPROT.

Syntax

PROTOCOL ON|OFF

Example

PROTOCOL ON

NOTE Use Show Protocol to assist when debugging communication problems.
616 S12(X) Debugger Manual

Connection-Specific Commands
NVMC Commands
RESET

Description

Use this command to reset the target board from the Command Line component
of the debugger. This command executes the Reset Command File, and the BDI
interface automatically processes the initialization list (startup init list) stored in
the interface.

Syntax

RESET

Example

RESET

NVMC Commands
Issue the following Flash Commands through the debugger Command component
window, as shown in the figure below.

Figure 23.1 NVMC Commands In Command Window
617S12(X) Debugger Manual

Connection-Specific Commands
NVMC Commands
FLASH

Description

Displays Flash modules, loads the .fpp file, or performs Flash operations. The
FLASH command displays names, locations, and states of all available modules,
provided that a parameter (.fpp) file is already loaded. If no parameter file is
loaded, this command loads either the .fpp file for the current MCUID or the last-
used .fpp file.

Syntax

FLASH [(SELECT|UNSELECT|ERASE|ENABLE|DISABLE|PROTECT|
UNPROTECT|AEFSKIPERASING) [<blockNo>]]

|[ARM|DISARM|SAVECONTEXT|LOADCONTEXT|MEMMAP|MEMUNMAP|RE
LEASE|OVLBACKUP|OVLRESTORE|PROTOCOLON|PROTOCOLOFF|SKIPS
TATUSON|SKIPSTATUSOFF|NOUNSECURE|UNSECURE]

|[NVMFREQUENCY <frequency in Hz>]

|[NVMIF2RELOCATE <address>]

|[NVMIF2WORKSPACE <address> <address>]

|[INIT <fileName> | AUTOID]

Usage

FLASH INIT <fileName>|AUTOID loads the parameter file according to
fileName (you can specify the path). If this command includes AUTOID, the
MCUID determines the parameter file (provided autocheck is checked in the
NVMC dialog box).

FLASH RELEASE releases the current .FPP file loaded by the Flash
Programmer, disabling the Flash Programmer address mapping. No non-volatile
memory is handled.

FLASH MEMMAP maps the Flash Programmer address filtering to route the code
for block programming.

FLASH MEMUNMAP unmaps the Flash Programmer address filtering.
Programming is disabled as long as FLASH MEMMAP is not executed.

FLASH ENABLE enables the specified modules. If no modules are specified,
enables all available blocks. This command ignores modules that cannot be
enabled.
618 S12(X) Debugger Manual

Connection-Specific Commands
NVMC Commands
FLASH DISABLE disables the specified modules. If no modules are specified, all
disables all available blocks. This command ignores modules that cannot be
disabled.

FLASH ERASE erases the specified modules. If no modules are specified, erases
all available blocks.

FLASH AEFSKIPERASING specifies non-volatile memory blocks to protect
from mass erasing at application automated programming. Place this command in a
Startup command file. If no modules are specified, no blocks are erased.

NOTE This command is compatible and replicated in the NVM Programming
Selection dialog.

FLASH UNPROTECT unprotects the specified modules. If no modules are
specified, unprotects all available blocks. This command ignores modules that
cannot be unprotected.

FLASH PROTECT protects the specified modules. If no modules are specified,
protects all available blocks. This command ignores modules that cannot be
protected.

FLASH SELECT selects the specified modules for Flash programming. If no
modules are specified, selects all available blocks for Flash programming.

FLASH UNSELECT deselects the specified modules. If no modules are specified,
deselects all available blocks. The deselected state protects against accidental Flash
programming.

FLASH ARM prepares the NMVC utility for loading; as does a normal LOAD
command. The system executes the VPPON.CMD file specified in the Command
Files user interface. This command is required before loading Flash.

FLASH DISARM ends a load process. The system executes the VPPOFF.CMD file
specified in the Command Files user interface.

FLASH SAVECONTEX backs up current SRAM content into a buffer.

FLASH LOADCONTEX restores current buffer content into the MCU SRAM.

FLASH OVLBACKUP backups application code overlap with programming
runtime/algorithm (RAM preset for debugging). Execute this command before the
application/file loading.

FLASH OVLRESTORE restores/installs (writes in RAM) the application code
overlap with programming runtime/algorithm. Execute this command after the last
FLASH command.

FLASH PROTOCOLON displays the Flash Programmer debug protocol.

FLASH PROTOCOLOFF stops displaying the Flash Programmer debug protocol.
619S12(X) Debugger Manual

Connection-Specific Commands
NVMC Commands
FLASH SKIPSTATUSON skips the Flash Programmer device Non-Volatile
Memory blocks diagnostic. Use this command to speed up project application
loading and programming from the IDE debug run. When used, the Flash
Programmer does NOT verify whether blocks are programmed or erased.

FLASH SKIPSTATUSOFF removes the SKIPSTATUSON mode and therefore
diagnostics are performed again.

FLASH NOUNSECURE asserts that the security byte location is not programmed
to set the device to unsecure mode.

WARNING! Unless the user application programs the security byte location to an
unsecured state, then after the next hardware reset, the debugger will be
unable to communicate via BDM with the device, and debugging will
fail.

FLASH UNSECURE asserts that the security byte location is programmed to set
the device to unsecure mode.

CAUTION The user application cannot overwrite the security byte and linked byte
cells (2-byte word programming or 8-byte row programming are usually
required by specifications).

FLASH NVMFREQUENCY <frequency in Hz> specifies the non-volatile
memory programming frequency in Hertz, typically the device bus speed after
reset. When used, the Flash Programmer does not try to evaluate this speed and the
debugger gain 2-3 seconds at application loading time. A value of 0 reengages the
speed detection.

FLASH NVMIF2RELOCATE <address> tells the Flash programmer to load
the Flash driver in RAM to a non-default location (default is the start of on-chip
RAM). This provides more flexibility for EB386 Example 1 Layout device RAM
memory relocation. The data to program buffer follows the same address
translation. This command is a Legacy command; FLASH NVMIF2WORKSPACE
is more user friendly and performs a secured relocation. A value of 0 resets the
location.

FLASH NVMIF2WORKSPACE <address> <address> tells the Flash
programmer to load the Flash driver in RAM to a non-default location (default is at
the start of on-chip RAM). The command also resizes the workspace, by passing a
range as a parameter. The command is more powerful than FLASH
NVMIF2RELOCATE, although you must set up the range correctly to match the
targeted part. FLASH NVMIF2RELOCATE 0 resets any setup made with the
FLASH NVMIF2WORKSPACE or FLASH NVMIF2RELOCATE commands.
Ideally, execute this command from a Startup.cmd file. For example:

FLASH NVMIF2WORKSPACE 0x3800 0x3FFF
620 S12(X) Debugger Manual

Connection-Specific Commands
NVMC Commands
The command implies that on-chip RAM is available at relocation position and
range before loading any Flash driver. This command provides more flexibility for
EB386 Example 1 Layout device RAM memory relocation.

[<blockNo>]

Description

blockNo is a list of Flash block or module numbers.

Syntax

blockNo = {number["-"number][","]}

Examples

FLASH ERASE 2,7

This erases memory blocks 2 and 7.

FLASH ERASE 2,4-6 8

This erases memory blocks 2, 4, 5, 6, and 8.

FLASH ERASE

This erases all available memory blocks.

While Flash modules are armed, execution of user code is not possible. If you enter
a command such as run or step, a message box prompts you to disarm the modules
or cancel the command. If you click the OK button, the system disarms all Flash
modules, then executes your command. If you click the CANCEL button, the
system cancels the command and leaves the Flash modules armed.

Listing 23.1 Flash Programming Example from Command Line in Component Window

in>Flash

FLASH parameters loaded for M68HC912DG128 from
J:\HC12_EA\PROG\FPP\mcu03C4.fpp

MCU clock speed: 8025000
Module Name Address Range Status
FLASH_4000 4000 - 7FFF Enabled/Blank - Unselected
FLASH_PAGE0 8000 - BFFF Enabled/Blank - Unselected
FLASH_C000 C000 - FFFF Enabled/Blank/Protected - Unselected
FLASH_PAGE1 18000 - 1BFFF Enabled/Blank/Protected - Unselected
FLASH_PAGE2 28000 - 2BFFF Enabled/Blank - Unselected
621S12(X) Debugger Manual

Connection-Specific Commands
NVMC Commands
FLASH_PAGE3 38000 - 3BFFF Enabled/Blank/Protected - Unselected
FLASH_PAGE4 48000 - 4BFFF Enabled/Blank - Unselected
FLASH_PAGE5 58000 - 5BFFF Enabled/Blank/Protected - Unselected
FLASH_PAGE6 68000 - 6BFFF Enabled/Blank - Unselected
FLASH_PAGE7 78000 - 7BFFF Enabled/Blank/Protected - Unselected
HALTED

As used in Listing 23.1, the FLASH command loads the applet that corresponds to
the CPU derivative (MCUID) and displays the state of all modules.

To program an application into module number 7 (FLASH_PAGE5), you must
unprotect the module, as in Listing 23.2.

Listing 23.2 Unprotect Module

in>Flash unprotect 7

MCU clock speed: 8025000
Module Name Address Range Status
FLASH_4000 4000 - 7FFF Enabled/Blank - Unselected
FLASH_PAGE0 8000 - BFFF Enabled/Blank - Unselected
FLASH_C000 C000 - FFFF Enabled/Blank/Protected - Unselected
FLASH_PAGE1 18000 - 1BFFF Enabled/Blank/Protected - Unselected
FLASH_PAGE2 28000 - 2BFFF Enabled/Blank - Unselected
FLASH_PAGE3 38000 - 3BFFF Enabled/Blank/Protected - Unselected
FLASH_PAGE4 48000 - 4BFFF Enabled/Blank - Unselected
FLASH_PAGE5 58000 - 5BFFF Enabled/Blank/Unprotected - Unselected
FLASH_PAGE6 68000 - 6BFFF Enabled/Blank - Unselected
FLASH_PAGE7 78000 - 7BFFF Enabled/Blank/Protected - Unselected

The updated display resulting from this code shows that FLASH_PAGE5 is
unprotected. To select FLASH_PAGE5 for programming, enter:

in>Flash select 7

To arm for programming:

in>Flash arm

Now load your application:

in>load a:\my_page5.sx

RUNNING

To stop loading and disarm:

in>Flash disarm

FLASH disarmed.

Halted
622 S12(X) Debugger Manual

Connection-Specific Commands
NVMC Commands
Use the FLASH command to display the final state of the modules (Listing 23.3).

Listing 23.3 Display Module Final State

in>Flash
MCU clock speed: 8025000
Module Name Address Range Status
FLASH_4000 4000 - 7FFF Enabled/Blank - Unselected
FLASH_PAGE0 8000 - BFFF Enabled/Blank - Unselected
FLASH_C000 C000 - FFFF Enabled/Blank/Protected - Unselected
FLASH_PAGE1 18000 - 1BFFF Enabled/Blank/Protected - Unselected
FLASH_PAGE2 28000 - 2BFFF Enabled/Blank - Unselected
FLASH_PAGE3 38000 - 3BFFF Enabled/Blank/Protected - Unselected
FLASH_PAGE4 48000 - 4BFFF Enabled/Blank - Unselected
FLASH_PAGE5 58000 - 5BFFF Enabled/Programmed/Unprotected - Selected
FLASH_PAGE6 68000 - 6BFFF Enabled/Blank - Unselected
FLASH_PAGE7 78000 - 7BFFF Enabled/Blank/Protected - Unselected
HALTED

The FLASH_PAGE5 module is programmed. Now, protect and unselect the
module (Listing 23.4).

Listing 23.4 Protect and Unselect Module

in>Flash protect 7

MCU clock speed: 8025000
Module Name Address Range Status
FLASH_4000 4000 - 7FFF Enabled/Blank - Unselected
FLASH_PAGE0 8000 - BFFF Enabled/Blank - Unselected
FLASH_C000 C000 - FFFF Enabled/Blank/Protected - Unselected
FLASH_PAGE1 18000 - 1BFFF Enabled/Blank/Protected - Unselected
FLASH_PAGE2 28000 - 2BFFF Enabled/Blank - Unselected
FLASH_PAGE3 38000 - 3BFFF Enabled/Blank/Protected - Unselected
FLASH_PAGE4 48000 - 4BFFF Enabled/Blank - Unselected
FLASH_PAGE5 58000 - 5BFFF Enabled/Programmed/Protected - Selected
FLASH_PAGE6 68000 - 6BFFF Enabled/Blank - Unselected
FLASH_PAGE7 78000 - 7BFFF Enabled/Blank/Protected - Unselected

in>Flash unselect 7
623S12(X) Debugger Manual

Connection-Specific Commands
DMM Commands
DMM Commands
You can make all DMM GUI settings using debugger command line commands within the
Command component window or from a command file.

Debugging Memory Map Manager
Commands
The following list of commands allows you to fully script the debugging device memory
mapping. It is recommended to limit the use of these commands to special debugging
purposes, as the default mapping is typically sufficient, and script setups can be complex
and may lead to debugger errors.

NOTE The Debugging Memory Map Manager and associated command set are
available with hardware connections only.

List of Commands
DMM

DMM ADD <parameters>

DMM DEL <module handle>

DMM SAVE <mcuid>

DMM DELETEALLMODULES

DMM RELEASECACHES

DMM CACHINGON|CACHINGOFF

DMM WRITEREADBACKON|WRITEREADBACKOFF

DMM HCS12MERHANDLINGON|HCS12MERHANDLINGOFF

DMM OPENGUI [mcuid]

DMM SETAHEADREADSIZE <front size when halted> <back size
when halted> <front size when running> <back size when
running>
624 S12(X) Debugger Manual

Connection-Specific Commands
DMM Commands
DMM

Description

Displays the current DMM Memory Types, Overlap Priorities and memory ranges in the
Command window.

Syntax

DMM

DMM ADD

Description

Inserts a new memory range in the DMM, as if added via the DMM dialog/user interface.

Syntax

DMM ADD <comment> <address> <size> <handle> <type> <cache
locking> <priority> <mapping> <access while running>
<access kind> <access size>

Arguments

<comment>: a string for Comment field; use "£" for " " (space).

<address>: the start address of the memory range

<size>: the size of the memory range

<handle>: a long value allowing the DMM to handle the memory range
(duplicated handled is not allowed).

WARNING! User-defined handles must have a value greater than or equal to 100.

<type>: a value corresponding to a memory type handle, as given/listed in the
DMM command.

<cache locking>: a 0 or 1 value, 0 forces a memory range refresh after each
debugger halt.

<priority>: a value corresponding to an overlap priority handle/value, as
given/listed with the DMM command.

<mapping>: a 0 or 1 value; 1 enables memory range mapping.
625S12(X) Debugger Manual

Connection-Specific Commands
DMM Commands
<access while running>: a 0 or 1 value; 1 enables memory range access
while running.

<access kind>: 0 for R/W; 1 for write only; 2 for read only; 3 for none.

DMM DEL

Description

Deletes one specific DMM memory range module by handle reference.

Syntax

DEL <module handle>

Arguments

<module handle>: a memory range module handle as given/listed with the
DMM command.

DMM SAVE

Description

Saves the DMM current setup in current project.ini file, under
DMM_MCUIDxxxx_MODULEn=... keys.

Syntax

DMM SAVE <mcuid>

Arguments

<mcuid>: a part/device MCUID value in range $0-$FFFF.

DMM DELETEALLMODULES

Description

Removes all current DMM memory range modules. Use to start a scripted DMM setup.
626 S12(X) Debugger Manual

Connection-Specific Commands
DMM Commands
Syntax

DMM DELETEALLMODULES

DMM RELEASECACHES

Description

Flushes all currently cached data once for each memory range module, even if cache
locking is active (i.e. no refresh on halting is active).

Syntax

DMM RELEASECACHES

DMM CACHINGON

Description

Engages data caching (default DMM setup). Refresh on halting is inactive for memory
range modules defined with this option.

Syntax

DMM CACHINGON

DMM CACHINGOFF

Description

Disables data caching. The debugger flushes all caches even for memory range modules
defined without this option. Each time the debugger halts, the memory data for all memory
range modules is retrieved from the target hardware.

Syntax

DMM CACHINGOFF
627S12(X) Debugger Manual

Connection-Specific Commands
DMM Commands
DMM WRITEREADBACKON

Description

Upgrades only the cached data in the matching memory location when the debugger writes
data to a memory location. For example, if the debugger performs a WB 0x80 0x01
command, the debugger reads back only the byte at address 0x80 and upgrades its internal
cache. This is the default behavior of the debugger.

Syntax

DMM WRITEREADBACKON

DMM WRITEREADBACKOFF

Description

Clears the cached data of the entire DMM range, including this location, when the
debugger writes data to a memory location. For example, if the debugger performs a WB
0x80 0x01 command, the debugger reads back the entire block of memory around the
location. You can use this legacy implementation to perform a live update on IO registers
belonging to the same IO module, although a Memory window Refresh operation is more
relevant and keeps the default debugger setup.

Syntax

DMM WRITEREADBACKOFF

DMM HCS12MERHANDLINGON

Description

Enables the handling of Memory Expansion Registers (MER) for HCS12 devices, i.e.,
INITRM, INITRG and INITEE. The DMM automatically remaps memory range module
addresses according to the real value of these registers when halting.
628 S12(X) Debugger Manual

Connection-Specific Commands
DMM Commands
NOTE The debugger does not poll the MER registers while running. The debugger
performs remapping only on factory-defined memory range modules, not user-
defined memory range modules.

Syntax

DMM HCS12MERHANDLINGON

DMM HCS12MERHANDLINGOFF

Description

Completely disables DMM HCS12MERHANDLINGON.

Syntax

DMM HCS12MERHANDLINGOFF

DMM OPENGUI

Description

Opens the DMM Graphical User Interface.

Syntax

DMM OPENGUI [mcuid]

Arguments

<mcuid>: (optional) a part/device MCUID value in range $0-$FFFF.

DMM SETAHEADREADSIZE

Description

Provides special debugger memory cache tuning in case of slow connection with
hardware.
629S12(X) Debugger Manual

Connection-Specific Commands
Full Chip Simulator Commands
Syntax

DMM SEATAHEADREADSIZE <front size when halted> <back size
when halted> <front size when running> <back size when
running>

Arguments

<front size when halted>: amount of bytes to read ahead of exact start
of read block address, when the hardware is halted.

<back size when halted>: amount of bytes to read after the exact block of
read addresses, when the hardware is halted.

<front size when running>: amount of bytes to read ahead of exact start
of read block address, when the hardware is running.

<back size when running>: amount of bytes to read after the exact block
of read addresses, when the hardware is running.

Full Chip Simulator Commands
Use simulator environment commands to monitor the debugger environment, specific
component window layouts, and framework applications and targets. Table 23.2 contains
all available Environment commands.

t

Component-specific commands are associated with specific components supported by the
Full Chip Simulator. Table 23.3 contains all available Component Specific commands.

Table 23.2 Full Chip Simulator Commands

Command, Syntax Short Description

SETCPU ProcessorName Sets a new CPU simulator

RESETCYCLES Resets Simulator CPU cycles counter

RESETMEM Resets all configured memory to undefined

RESETRAM Resets RAM to undefined

RESETSTAT Resets the statistical data

SHOWCYCLES Returns executed Simulator CPU cycles
630 S12(X) Debugger Manual

Connection-Specific Commands
Full Chip Simulator Commands
Table 23.3 List of Component-Specific Commands

Command, Syntax Short Description

ADCPORT (address | ident)
(address | ident) (address |
ident)

Sets the ports addresses used by the
ADC_DAC component.

ADCPORT (<Name>) Creates a new channel <Name> for the
Monitor component.

CPORT (address | ident)
(address | ident) (address |
ident) (address | ident)
(address | ident)

Sets the five port addresses and the
control port address of the IO_Ports
component

DELCHANNEL (<Name>) Deletes a specific channel for the Monitor
component.

ITPORT (address | ident)
(address | ident)

Sets the line and column port addresses of
the IT_Keyboard component

ITVECT (address | ident) Sets the interrupt vector port address of
the IT_Keyboard component.

KPORT (address | ident)
(address | ident)

Sets the line and column port addresses of
the Keyboard component

LCDPORT (address | ident)
(address | ident)

Sets the data port and the control port
address of the LCD component

LINKADDR (address | ident)
(address | ident) (address |
ident)(address | ident)
(address | ident)

Sets the components internal port
addresses used with the IO_Ports as
memory buffers

PBPORT (address | ident) Sets the port address of the Push_Buttons
component

PORT address Sets the LED components port address

REGBASE <Address><;R> Sets or resets the base I/O address.

SEGPORT (address | ident)
(address | ident)

Sets the display selection port and the
segment selection port addresses of the 7-
Segments display component.
631S12(X) Debugger Manual

Connection-Specific Commands
Full Chip Simulator Commands
ADCPORT

Use the ADCPORT command to set the port addresses used by the ADC_DAC component.

Syntax

ADCPORT (address | ident) (address | ident)
(address | ident)

Arguments

Address: locates the port address value of the component. The default format is
hexadecimal (many formats are allowed).

Ident: a known identifier. Its content defines the port address.

Components

ADC_DAC component.

Example

in>ADCPORT 0x100 0x200 0x300

Defines the ports of the ADC_DAC component at the addresses 0x100, 0x200 and
0x300.

ADDCHANNEL

Use the ADDCHANNEL command to create a new channel for the Monitor component.

Syntax

ADDCHANNEL (<Name>)

SETCONTROL (<Name>)
(Ticks) (Pixels)

Changes the number of ticks and
pixels for the <Name> channel from the
Monitor component

WPORT (address | ident)
(address | ident

Sets the ports addresses of the Wagon
component

Table 23.3 List of Component-Specific Commands (continued)

Command, Syntax Short Description
632 S12(X) Debugger Manual

Connection-Specific Commands
Full Chip Simulator Commands
Arguments

<Name>: the name for the new channel.

Components

Monitor component.

Example

in>ADDCHANNEL "Leds.Port_Register bit 0"

Creates a new channel, Leds.Port_Register bit 0, in the Monitor
component.

CPORT

Use the CPORT command to set the five coupler-port addresses and the control port
address of the coupler component.

Syntax

CPORT (address | ident) (address | ident) (address
| ident)

Arguments

Address: locates the port address value of the component. The default format is
hexadecimal (many formats are allowed).

Ident: a known identifier. Its content defines the port address.

Components

Programmable Parallel Couplers component.

Example

in>CPORT 0x100 0x200 0x300

This defines the ports of the programmable parallel couplers at addresses 0x100,
0x200 and 0x300.

DELCHANNEL

Use the DELCHANNEL command to delete a specific channel for the Monitor component.
633S12(X) Debugger Manual

Connection-Specific Commands
Full Chip Simulator Commands
Syntax

DELCHANNEL (<Name>)

Arguments

Name: the name of the channel to delete.

Components

Monitor component.

Example

in>DELCHANNEL "Leds.Port_Register bit 0"

Deletes the channel Leds.Port_Register bit 0 in the Monitor component.

ITPORT

Use the ITPORT command to set the line and column port addresses of the IT_Keyboard
component.

Syntax

ITPORT (address | ident) (address | ident) (address
| ident)

Arguments

Address: locates the port address value of the component. The default format is
hexadecimal (various formats are allowed).

Ident: a known identifier. Its content defines the port address.

Components

IT_Keyboard component.

Example

in>ITPORT 0x100 0x200 0x300

Ports of the IT_Keyboard are now defined at addresses 0x100, 0x200 and 0x300.
634 S12(X) Debugger Manual

Connection-Specific Commands
Full Chip Simulator Commands
ITVECT

Use the ITVECT command to set the interrupt vector port address of the IT_Keyboard
component.

Syntax

ITVECT (address | ident)

Arguments

Address: locates the port address value of the component. The default format is
hexadecimal (various formats are allowed).

Ident: a known identifier. Its content defines the port address.

Components

IT_Keyboard component.

Example

in>ITVECT 0x400

Defines the interrupt vector port address of the IT_Keyboard at address 0x400.

KPORT

Use the KPORT command to set the line and column ports addresses of the Keyboard
component.

Syntax

KPORT (address | ident) (address | ident) (address
| ident)

Arguments

Address: locates the port address value of the component. The default format is
hexadecimal (many formats are allowed).

Ident: a known identifier. Its content defines the port address.

Components

Keyboard component.
635S12(X) Debugger Manual

Connection-Specific Commands
Full Chip Simulator Commands
Example

in>KPORT 0x100 0x200 0x300

Defines the ports of the Keyboard at addresses 0x100, 0x200 and 0x300.

LCDPORT

Description

Use the LCDPORT command to set the data port and the control port address of the LCD
component.

Syntax

LCDPORT (address | ident) (address | ident) (address
| ident)

Arguments

Address: locates the port address value of the component. The default format is
hexadecimal (many formats are allowed).

Ident: a known identifier. Its contents define the port address.

Components

LCD component.

Example

in>LCDPORT 0x100 0x200

Defines the ports of the LCD at addresses 0x100, 0x200 and 0x300.

LINKADDR

Use the LINKADDR command to set the components internal ports addresses used with
the Programmable Couplers as memory buffers.

Syntax

LINKADDR (address | ident) (address | ident) (address
| ident)
636 S12(X) Debugger Manual

Connection-Specific Commands
Full Chip Simulator Commands
Arguments

Address: locates the port address value of the component. The default format is
hexadecimal (many formats are allowed).

Ident: a known identifier. Its content defines the port address.

Components

Couplers, Keyboard, 7-segments display,

Example

in>LINKADDR 0x100 0x200 0x300 0x400 0x500

All components working with the Programmable Couplers have

• PortA set to 0x100

• PortB set to 0x200

• PortC set to 0x300

• PortD set to 0x400

• PortE set to 0x500

PBPORT

Use the PBPORT command to set the port address of the Push_Buttons component.

Syntax

PBPORT (address | ident)

Arguments

Address: locates the port address value of the component. The default format is
hexadecimal (various formats are allowed).

Ident: a known identifier. Its content defines the port address.

Components

Push_Buttons component.

Example

in>PBPORT 0x100 0x200

Defines the ports of the Push_Buttons at addresses 0x100 and 0x200.
637S12(X) Debugger Manual

Connection-Specific Commands
Full Chip Simulator Commands
PORT

In the LED components, the PORT command sets the port LED location.

Syntax

PORT address

Components

LED component.

Example

in> PORT 0x210

REGBASE

This command allows you to change the base address of the I/O registers or to set (Reset)
this address to 0.

Syntax

Regbase <Address><;R>

Arguments

Address: an address to define the base address of the I/O registers,

R : sets this address to 0 (Reset).

Components

Debugger engine.

Example

in>regbase 0x500

0x 500 is now the base address of the I/O registers.
638 S12(X) Debugger Manual

Connection-Specific Commands
Full Chip Simulator Commands
RESETCYCLES

This command sets the Simulator CPU cycles counter to the user-defined value. If not
specified, the value is 0. The Debugger status and Register component displays the cycles
counter. This command does not affect the context.

Syntax

RESETCYCLES <Value>

Arguments

Value: the desired cycles. This command affects only the internal cycle counter
from the Simulator/Debugger.

Components

Debugger engine.

Example

in>SHOWCYCLES

133801

in>RESETCYCLES

in>SHOWCYCLES

0

in>RESETCYCLES 5500

in>SHOWCYCLES

5500

The SHOWCYCLES command in the Command Line component displays the
number of CPU cycles executed since the start of the simulation.

RESETMEM

Marks the given range of memory (RAM + ROM) as uninitialized (undefined).

Syntax

RESETMEM range
639S12(X) Debugger Manual

Connection-Specific Commands
Full Chip Simulator Commands
Components

Simulator component.

Example

in>RESETMEM

This initializes all configured memory to undefined.

in>RESETMEM 0x100...0x110

This resets the memory located between 0x100 and 0x110 (if configured) to
undefined.

in>RESETMEM 0x003F

This resets the memory location 0x003F (if configured) to undefined.

NOTE In the Auto on Access memory configuration the full memory is defined as
RAM, so RESETMEM has the same effect as RESETRAM.

RESETRAM

This command marks all RAM as uninitialized (undefined).

NOTE In the memory configuration Auto on Access, the full memory is defined as
RAM, so RESETMEM has the same effect as RESETRAM.

Syntax

RESETRAM

Components

Simulator component.

Example

in>RESETRAM

After the RESETRAM command, the content of RAM is undefined.
640 S12(X) Debugger Manual

Connection-Specific Commands
Full Chip Simulator Commands
RESETSTAT

This command resets the statistics (read and write counters) to zero

Syntax

RESETSTAT

Components

Simulator component.

Example

in>RESETSTAT

The RESETSTAT command initializes all counters to zero.

SEGPORT

Use the SEGPORT command to set the display selection port and segment selection port
addresses of the 7-Segments display component.

Syntax

SEGPORT display selection port (address | ident)
segment selection (address | ident)

Arguments

Address: locates the port address value of the component. The default format is
hexadecimal (many formats are allowed).

Ident: a known identifier. Its content defines the port address.

Components

7-Segments display

Example

in>SEGPORT 0x100 0x200

The ports of the 7-Segments display are now defined at addresses 0x100 and
0x200.
641S12(X) Debugger Manual

Connection-Specific Commands
Full Chip Simulator Commands
SETCONTROL

Use the SETCONTROL command to modify the number of ticks and pixels for a Monitor
component specific channel. This changes the horizontal scale of this channel.

Syntax

SETCONTROL (<Name>) (<Ticks>) (<Pixels>)

Arguments

<Name>: the name of the channel to modify.

<Ticks>: the new number of ticks for this channel.

<Pixels>: the new number of pixels for this channel.

Components

Monitor component.

Example

in>SETCONTROL "Leds.Port_Register bit 0" 100 1

This defines the horizontal scale from the channel Leds.Port_Register bit 0
with the value 100 for the Ticks value and 1 for pixels value.

SETCPU

Loads CPU awareness for the debugger.

Syntax

SETCPU ProcessorName

Arguments

ProcessorName: a supported processor (HC08, HC11, HC12, HC16, M68K,
XA, and PPC).

Components

Simulator component.
642 S12(X) Debugger Manual

Connection-Specific Commands
Full Chip Simulator Commands
Example

in>SETCPU HC12

Loads the HC12.sim simulator

SHOWCYCLES

The SHOWCYCLES command returns the number of CPU cycles already done since the
beginning of the simulation in the Command Line component (performs RESETCYCLES
internally), or since the last RESETCYCLES command. Also displays the number of
cycles executed in the status bar (CPU cycles counter).

Syntax

SHOWCYCLES

Components

Debugger engine.

Example

in>SHOWCYCLES

133801

in>RESETCYCLES

in>SHOWCYCLES

0

This command displays the number of CPU cycles executed since the last
RESETCYCLES command in the Command Line component.

WPORT

Use the WPORT command to set the port addresses of the Wagon component.

Syntax

WPORT (address | ident) (address | ident)
643S12(X) Debugger Manual

Connection-Specific Commands
Full Chip Simulation Connection Commands
Arguments

Address: locates the port address value of the component (various formats are
allowed), the default format is hexadecimal.

Ident: a known identifier. Its content defines the port address.

Components

Wagon

Example

in>WPORT 0x100 0x200

Ports of the Wagon are now defined at addresses 0x100 and 0x200.

Full Chip Simulation Connection
Commands

This section describes the Full Chip Simulation connection-specific commands that are
used when the Full Chip Simulation (FCS) connection is set.

The Full Chip Simulation connection-specific commands are:

• ADCx_SETPAD

• BGND_CYCLES

• HALT_ON_TRAP

• HCS12_SUPPORT

• MESSAGE_HIDE_ID

• MESSAGE_HIDE_RESET

• MESSAGE_SHOW_ID

• PSMODE

• SELECTCORE

• STACK_AREA_CHECK

• STACK_POINTER_INFO

• WARNING_SETUP

Enter these commands in any command files that will be executed by the debugger or in
the Command Line component of the debugger.
644 S12(X) Debugger Manual

Connection-Specific Commands
Full Chip Simulation Connection Commands
ADCx_SETPAD

Description

Sets PAD pin to a given voltage in floating point format, on ADC module x

Sets the value of an input channel of an Analog-to-Digital Converter to the
specified voltage. The module name is an integral part of the command name. The
voltage is given as a float constant value in volts.

The allowed range is from 0.0 to 5.12 Volts.

Syntax

<moduleName>_SETPAD <channel> <voltage>

Example

ADC1_SETPAD 4 2.5

This sets the input of channel 4 of the ADC1 module to 2.5 volts.

ATD2_SETPAD 2 1.5

This sets the input of channel 2 of the ATD2 module to 1.5 volts

BGND_CYCLES

Description

This command allows you to adapt the simulator's clock cycles for the BGND
instruction, by specifying the number of cycles it takes to execute a BGND
instruction. The default value is five CPU cycles.

Syntax

BGND_CYCLES <number>

Example

BGND_CYCLES 10

A BGND instruction now takes 10 CPU cycles to execute.
645S12(X) Debugger Manual

Connection-Specific Commands
Full Chip Simulation Connection Commands
HALT_ON_TRAP

Description

Stops on call to exception handler.

This command allows you to specify the address of an interrupt handler (start
address of an ISR) using either the ISR name or an expression. During simulation
of the exception processing, this address is compared with the fetched vector. If
they match, the simulation stops instead of calling the exception handler.

Syntax

HALT_ON_TRAP (OFF | <interrupt_function> | <expression>)

Example

Source code of exception handler:

interrupt MyISR(void) {

 ...

}

Command:

HALT_ON_TRAP MyISR

Instead of calling the function MyISR because of an exception, the simulator stops.

HCS12_SUPPORT

Description

Enables HCS12-specific core emulation modes.

NOTE Typically, use this command only to override automatic debugger settings
done when selecting the derivative (by GUI or project wizard). The
HCS12X_MAP4000 option may still be relevant, as it is not covered by wizard
project setup, and is not automatically preset (always set by default to FLASH).

Syntax

HCS12_SUPPORT (? | ON | OFF | HC12 | HCS12 | HCS12X |
HCS12XE | STATUS) [HCS12X_FLASH=<num>]
646 S12(X) Debugger Manual

Connection-Specific Commands
Full Chip Simulation Connection Commands
[XGATE_RAM=<num>] [HCS12X_MAP4000=(FLASH | RAM |
EXTERNAL)]

Arguments

OFF : HC12 simulator is in legacy CPU12 mode.

ON or HCS12 : HC12 simulator is in HCS12 core mode.

HCS12X : enables the HCS12X family instruction set

HCS12XE : enables the instruction set of the HCS12XE family (superset of
HCS12X).

STATUS : returns the current state of emulation.

XGATE_FLASH= : sets the size of the device Flash.

XGATE_RAM= : sets the size of the XGATE RAM.

HCS12X_MAP4000= : Supports alternative mapping of memory range
0x4000...0x7FFF and defines the mapping of the memory range 0x4000 to
0x7FFF to one of these memory types:

• FLASH : maps non-banked FLASH (default)

• RAM : maps non-banked RAM

• EXTERNAL : maps external space.

NOTE The HCS12X_MAP4000 option is designed for the HCS12XE family, for the
MMCCTL1 register, ROMHM and RAMHM flags.

CAUTION Match the setup of the debugger with the HCS12X_MAP4000 option
with the HC12 Compiler Code Generation Define mapping for
memory space 0x4000..0x7FFF option in the compiler options
settings dialog (i.e., -MapRAM, -MapFlash, or -MapExternal
command line options).

Example

in>HCS12_SUPPORT HCS12XE HCS12X_MAP4000=RAM

in>HCS12_SUPPORT status

HC12 simulator is currently in HCS12XE mode

HCS12X_FLASH size is 0x80000

XGATE_RAM size is 0x8000

0x4000..0x7FFF maps to RAM
647S12(X) Debugger Manual

Connection-Specific Commands
Full Chip Simulation Connection Commands
MESSAGE_HIDE_ID

Description

Hides a message with a specific ID.

Components

Debugger engine.

Syntax

MESSAGE_HIDE_ID <message number(ID)>

Example

in>MESSAGE_HIDE_ID 1

in>warning_setup status

WARNING_SETUP STATUS: CLMSG

Hidden message ID: 1

MESSAGE_HIDE_RESET

Description

Resets all hidden messages to display them again.

Components

Debugger engine.

Syntax

MESSAGE_HIDE_RESET

Example

in>MESSAGE_HIDE_RESET

All previously hidden messages are displayed again now.
648 S12(X) Debugger Manual

Connection-Specific Commands
Full Chip Simulation Connection Commands
MESSAGE_SHOW_ID

Description

Shows a message with specific ID.

Components

Debugger engine.

Syntax

MESSAGE_SHOW_ID <message number(ID)>

Example

in>MESSAGE_SHOW_ID 1

PSMODE

Description

This command changes the power save mode.

Syntax

PSMODE (STOP | WAIT | WAKEUP)

Arguments

STOP : places the CPU in its lowest power consumption mode; halts all internal
CPU processing.

WAIT : places the CPU in low power consumption; halts all internal CPU
processing, except the internal clock, the programmable timer, SPI and SCI remain
active (for more detail see the appropriate microcontroller manual). This option
consumes more power than the STOP option.

WAKEUP : turns off the low power consumption mode; the processor resumes
normal processing.

Example

in>PSMODE STOP /* The processor is completely stopped */

in>PSMODE WAKEUP /* The processor is out of power save
649S12(X) Debugger Manual

Connection-Specific Commands
Full Chip Simulation Connection Commands
mode */

SELECTCORE

Description

Select CPU12 or XGATE as a current core.

This is the same as selecting HCS12X FCS > Select Core menu item.

NOTE Only for HCS12X and HCS12XE derivatives.

Syntax

 SELECTCORE (? | CPU12 | XGATE)

Example

in>SELECTCORE XGATE

Selects XGATE as a current core.

STACK_AREA_CHECK

Description

Controls special checks if SP remains in the stack area.

Syntax

STACK_AREA_CHECK (? | AUTO | OFF | ON low..high | STATUS)

Arguments

? : displays the help

AUTO : enables stack checking. Reads the range information from the ELF file.
This option works only if an ELF file is actually loaded. It does not work with a
HIWARE format object file or with an SRECORD. An area specified with ON
overrules the area set by the AUTO setting.

OFF : disables the stack checking (default). This command only has an effect after
enabling it with the ON or AUTO command.
650 S12(X) Debugger Manual

Connection-Specific Commands
Full Chip Simulation Connection Commands
ON <low..high range> : enables stack checking and sets the low and high
range. If the SP goes out of the low..high range area, the simulation stops
with a stack overflow status.

STATUS : prints a message which tells whether stack checking is currently
enabled, and if so which area is used.

Example

STACK_AREA_CHECK ON 0x1234..0x1245

STACK_POINTER_INFO

Description

Prints minimum and maximum value of the SP register.

Syntax

STACK_POINTER_INFO (? | RESET | INFO)

Arguments

? : displays the help

RESET : resets the collection stack pointer values. Future INFO calls only report
the SP area from now on.

INFO : prints the area the SP was pointing to since the last RESET.

Example

STACK_POINTER_INFO RESET

WARNING_SETUP

Description

The WARNING_SETUP command sets the level of debugger warning to inform
you about the usage of an unsimulated register.

Components

Debugger Engine
651S12(X) Debugger Manual

Connection-Specific Commands
Full Chip Simulation Connection Commands
Syntax

WARNING_SETUP <HALT|CLMSG|MSGBOX|NONE|STATUS>

Arguments

TIP For HALT, CLMSG and MSGBOX options, executing the command more than once
toggles the setup.

STATUS: Displays the current warning setup status.

HALT: FCS stops/halts the debugger when a warning message occurs.

CLMSG: Displays warning messages in the Command window.

MSGBOX: A message box pops up on warning. Clicking Cancel stops the FCS. Clicking
OK resumes the FCS.

NONE: Clears all warning messages.

Example

in>warning_setup status

WARNING_SETUP STATUS: CLMSG

Example

in>warning_setup none

in>warning_setup halt

in>warning_setup status

WARNING_SETUP STATUS: HALT

Example

in>warning_setup none

in>warning_setup clmsg

in>warning_setup status

WARNING_SETUP STATUS: CLMSG

Example

in>warning_setup none

in>warning_setup msgbox

in>warning_setup status

WARNING_SETUP STATUS: MSGBOX
652 S12(X) Debugger Manual

Connection-Specific Commands
On-Chip Hardware Breakpoint Module Commands
Figure 23.2 FCS Warning Message Box

Example

in>warning_setup none

in>warning_setup status

WARNING_SETUP STATUS: No warning messages

NOTE With HALT, CLMSG and MSGBOX options, executing the command several
times toggles the setup on and off.

On-Chip Hardware Breakpoint Module
Commands

The following sections describe the Hardware Breakpoint Settings Command Line
command used by the Target Interface. This command is:

• HWBPM

You can enter this command in the Target Interface associated command files or in the
Command Line component of the debugger.

HWBPM

Description

The command HWBPM allows you to set up the debugger to work with the on-chip
hardware breakpoints dialog.

• Use HWBPM with no parameters to get the current breakpoints settings.

• Use HWBPM MODE to specify which module to use, and debugger response
when using the on-chip hardware breakpoint module and the on-chip module
653S12(X) Debugger Manual

Connection-Specific Commands
On-Chip Hardware Breakpoint Module Commands
address. This command has the same effect as the Break Modules Settings index
tab in the Hardware Breakpoint Configuration dialog.

• The HWBPM SET16BITS command has the same effect as the 16-bits Break
Module (User Mode) index tab in the Hardware Breakpoint Configuration
dialog. Parameters set using are only relevant when the User controlled mode is
active and the 16-bits break module is used.

• The HWBPM SET22BITS command has the same effect as using the 22-bits
Break Module (User Mode) index tab in the Hardware Breakpoint Configuration
dialog. Parameters set using this command are only relevant when the User
controlled mode is active and the 22-bits break module is used.

NOTE The hardware breakpoints settings are stored in the ["targetName"]
section of the PROJECT file using variable HWBPMn.

When using the 22-bits module, use the HWBPM REMAP_22BITS commands to perform
page remapping, and to set breakpoints in non-banked memory areas when using this on-
chip break module. When selecting a derivative, the debugger uses this command to set up
the corresponding remapping needed for the specified derivative.

• Use HWBPM REMAP_22BITS DISPLAY to display all the currently set
remapping for the selected derivative.

• Use HWBPM REMAP_22BITS RANGE to specify that the prefix <mask> must
be used to set a hardware breakpoint in range <start address> <end
address>

• Use HWBPM REMAP_22BITS MCUID_DEFAULT to retrieve the derivative
default setting (in case it has been modified using HWBPM REMAP_22BITS
RANGE or HWBPM REMAP_22BITS DELETE)

• Use HWBPM REMAP_22BITS DELETE <range number> to delete a
specific range. Display the range number using HWBPM REMAP22BITS
DISPLAY.

NOTE The remapping range is stored in the ["targetName"] section of the
PROJECT file using variable HWBPD_MCUIDnnn_BKPT_REMAPn.

Syntax

HWBPM

HWBPM MODE <MODE> BPM16BITS|BPM22BITS <module adr.>
654 S12(X) Debugger Manual

Connection-Specific Commands
On-Chip Hardware Breakpoint Module Commands
[SKIP_OFF|SKIP_ON]

with MODE = DISABLED|AUTOMATIC|USER

HWBPM SET16BITS <BRKCT0 value> <BRKCT1 value> <BRKA value>
<BRKD value>

HWBPM SET22BITS <BKPCT0 value> <BKPCT1 value> <BKP0 value>
<BKP1 value>

HWBPM REMAP_22BITS RANGE <start address> <end address> <mask>

HWBPM REMAP_22BITS DISPLAY

HWBPM REMAP_22BITS MCUID_DEFAULT

HWBPM REMAP_22BITS DELETE <range number>

Example

Retrieve the Hardware Breakpoints mechanism settings by typing HWBPM without
any parameters in the Command Line component:

in>HWBPM

Hardware Breakpoints Module Settings:

Module kind: 22BITS

Module mode: Automatic

Module address: 0x28

Skip illegal BP (16bits only): off

HWBPM 16 bits: BRKCT0: 0x0 BRKCT1: 0x0 BRKA: 0x0 BRKD:
0x0

HWBPM 22 bits: BKPCT0: 0x0 BKPCT1: 0x0 BKP0: 0x0 BKP1:
0x0
655S12(X) Debugger Manual

Connection-Specific Commands
On-Chip Hardware Breakpoint Module Commands
Modify the current Module mode to User controlled and the on-chip hardware
breakpoint module to 16-bits (relevant only if present on the hardware):

in>HWBPM MODE USER BPM16BITS 0x20 SKIP_OFF

in>HWBPM

Hardware Breakpoints Module Settings:

Module kind: 16BITS

Module mode: User Defined

Module address: 0x20

Skip illegal BP (16bits only): off

HWBPM 16 bits: BRKCT0: 0x0 BRKCT1: 0x0 BRKA: 0x0 BRKD:
0x0

HWBPM 22 bits: BKPCT0: 0x0 BKPCT1: 0x0 BKP0: 0x0 BKP1:
0x0

Enter values in the on-chip breakpoint module registers:

in>HWBPM SET16BITS 0xa4 0x0 0xc004 0x0

in>HWBPM

Hardware Breakpoints Module Settings:

Module kind: 16BITS

Module mode: User Defined

Module address: 0x20

Skip illegal BP (16bits only): off

HWBPM 16 bits: BRKCT0: 0xa4 BRKCT1: 0x0 BRKA: 0xc004
BRKD: 0x0

HWBPM 22 bits: BKPCT0: 0x0 BKPCT1: 0x0 BKP0: 0x0 BKP1:
0x0

Display the currently set remapping:

in>HWBPM REMAP_22BITS DISPLAY

HWBPM Remappings for 0x3CA:

Range0: 0x4000..0x7FFF mask: 0x3e

Range1: 0xC000..0xFFFF mask: 0x3f
656 S12(X) Debugger Manual

Connection-Specific Commands
Unsecure Commands
Add a new remapping:

in>HWBPM REMAP_22BITS RANGE 0x8000 0xbfff 0x47

in>HWBPM REMAP_22BITS DISPLAY

HWBPM Remappings for 0x3CA:

Range0: 0x4000..0x7FFF mask: 0x3e

Range1: 0xC000..0xFFFF mask: 0x3f

Range2: 0x8000..0xBFFF mask: 0x47

Delete a remapping:

in>HWBPM REMAP_22BITS DELETE 1

in>HWBPM REMAP_22BITS DISPLAY

HWBPM Remappings for 0x3CA:

Range0: 0x4000..0x7FFF mask: 0x3e

Range1: 0x8000..0xBFFF mask: 0x47

Retrieve the default remapping for the currently set derivative:

in>HWBPM REMAP_22BITS MCUID_DEFAULT

in>HWBPM REMAP_22BITS DISPLAY

HWBPM Remappings for 0x3CA:

Range0: 0x4000..0x7FFF mask: 0x3e

Range1: 0xC000..0xFFFF mask: 0x3f

Unsecure Commands
The following sections describe the HCS12 Unsecure Command Line command used by
the Target Interface. This command is:

• CHIPSECURE

Enter this command in the Target Interface associated command files or in the Command
Line component of the debugger.
657S12(X) Debugger Manual

Connection-Specific Commands
XGATE-Specific Hardware Connection Commands
CHIPSECURE

Description

The CHIPSECURE SETUP command allows you to set up the debugger unsecure
mechanism.

The CHIPSECURE UNSECURE command allows you to unsecure the connected
derivative. This is the same as selecting HC12MultilinkCyclonePro > Unsecure and
using the same settings.

Using CHIPSECURE UNSECURE executes the Unsecure command file and performs the
secured derivative check process. To find out if the derivative is unsecured, the debugger
reads <addr. reg to check>, masks it with <mask> and compares it to <compare value>.

Arguments

<addr. reg to check> : address of the security register (0xFF0F default)

<mask> : comparison mask for the security register (0x03 default)

<compare value> : comparison value for the security register (0x02 default)

Syntax

CHIPSECURE UNSECURE

CHIPSECURE SETUP <addr. reg to check> <mask> <compare
value>

Example

The following command sets up the CHIPSECURE for most HCS12 derivatives:

in>CHIPSECURE SETUP 0xFF0F 0x3 0x2

in>

XGATE-Specific Hardware Connection
Commands

This section describes a set of commands that are used when debugging with a hardware
connection (i.e. not for Simulation) on a device with an XGATE core.

The specific commands are:

• HCS12X_MAP4000
658 S12(X) Debugger Manual

Connection-Specific Commands
XGATE-Specific Hardware Connection Commands
• SELECTCORE

• STEPBOTHCORES

• XDBG*

• XGATECODERANGE

• XGATECODERANGESRESET

Enter these commands in any command files to be executed by the debugger or in the
debugger Command Line component.

HCS12X_MAP4000

Description

Use this command to indicate to the debugger, for the S12X series, where the
$4000-$7FFF memory range is mapped. By default, it is mapped to FLASH.

NOTE Place this command in a Startup command file.

Maps the S12X $4000-$7FFF range to RAM, FLASH or EXTERNAL memory.

Syntax

HCS12X_MAP4000 FLASH|RAM|EXTERNAL

Example

in>HCS12X_MAP4000 RAM

$4000-$7FFF memory range mapped to RAM.

NOTE The HCS12X_MAP4000 command is designed for the HCS12XE family, for
the MMCCTL1 register, and the ROMHM and RAMHM flags.

CAUTION Match the setup of the debugger with the HCS12X_MAP4000 option
with the HC12 Compiler Code Generation Define mapping for
memory space 0x4000..0x7FFF option in the compiler options
settings dialog (i.e., -MapRAM, -MapFlash, or -MapExternal
command line options).
659S12(X) Debugger Manual

Connection-Specific Commands
XGATE-Specific Hardware Connection Commands
SELECTCORE

Description

Select CPU12 or XGATE as a current core

This is the same as selecting Select Core menu item in target specific menu.

Syntax

SELECTCORE (? | CPU12 | XGATE)

Example

in>SELECTCORE XGATE

Selects XGATE as a current core.

STEPBOTHCORES

Description

Single steps XGATE and HCS12X core at the same time. Disabled by default.

WARNING! This is a simulation and does not match with any real-time instruction
cycling.

Syntax

STEPBOTHCORES <ON|OFF>

Example

STEPBOTHCORES ON
660 S12(X) Debugger Manual

Connection-Specific Commands
XGATE-Specific Hardware Connection Commands
XDBG*

Description

XGDBG bit debugger setup when starting and stopping the debugger. XDBG*
commands define how the debugger sets the XGATE core when halting and
starting the main (e.g. HCS12X) core.

Syntax

XGDBGDONTSETONSTOP

XGDBGAUTOONSTOP

XGDBGCLEARONRUN

XGDBGDONTCLEARONRUN

XGDBGAUTOONRUN

Arguments

XGDBGDONTSETONSTOP: Does not set XGDBG bit on stop.

XGDBGAUTOONSTOP: Sets XGDBG bit automatically on stop if XGFRZ bit is set
(default mode).

XGDBGCLEARONRUN: Clears XGDBG bit on run.

XGDBGDONTCLEARONRUN: Does not clear XGDBG bit on run.

XGDBGAUTOONRUN: Clears XGDBG bit automatically on run if XGFRZ bit is set
(default mode).

Example

XGDBGDONTSETONSTOP

XGATECODERANGE

Description

Defines the XGATE code memory area in RAM. If using this command you must
properly insert breakpoints in XGATE code.
661S12(X) Debugger Manual

Connection-Specific Commands
Other Hardware Connection Commands
TIP You can extend address values with quotes to specify address spaces: 'L for
logical, 'X for XGATE and 'G for global.

Syntax

XGATECODERANGE <first address> <last address>

Example

XGATECODERANGE 0x800'X 0xFFFF'X

XGATECODERANGESRESET

Description

Removes all XGATE code memory ranges inserted with the XGATECODERANGE
command.

Syntax

XGATECODERANGESRESET

Example

XGATECODERANGESRESET

Other Hardware Connection Commands
This section describes the other hardware connection commands (i.e. not for Simulation)
that might be provided for a connection.

HWBREAKONLY

Description

Forces the debugger to use only hardware breakpoints without attempting to try to
use BGND software breakpoint patching.
662 S12(X) Debugger Manual

Connection-Specific Commands
Other Hardware Connection Commands
TIP Use this command when implementing and debugging flash programming
algorithms executed from Flash. This avoids the Flash access error flag caused by
a BGND instruction write attempt in the array.

Syntax

HWBREAKONLY OFF | ON | STATE

TIP For some connections, this command might be associated to a GUI checkbox in
the connection setup dialog.

Example

HWBREAKONLY ON

ISRDISABLEDSTEP

Description

This command forces the debugger to disable maskable interrupts while stepping
by setting the CCR I bit each time some assembly or single steps occur. The
debugger cares about setting back the flag to its initial state, based on the results of
the stepped instruction (that might also affect the I flag).

NOTE The debugger corrects the I flag stacking, according to the initial flag value.

TIP For some connections, this command might be associated to a GUI checkbox in
the connection setup dialog.

Syntax

ISRDISABLEDSTEP OFF|ON|STATE

Example

ISRDISABLEDSTEP ON
663S12(X) Debugger Manual

Connection-Specific Commands
Other Hardware Connection Commands
664 S12(X) Debugger Manual

Connection-Specific Commands
Other Hardware Connection Commands
665S12(X) Debugger Manual

Connection-Specific Commands
Other Hardware Connection Commands
666 S12(X) Debugger Manual

24
Debugger Engine
Environment Variables

This chapter describes the environment variables that the Debugger uses. Other tools, such
as the Linker, also use some of these environment variables. For more information about
other tools, see their respective manuals.

Debugger Environment
Use environment variables to set the various debugger parameters. The syntax is always
the same:

Parameter = KeyName "=" ParamDef.

NOTE Do not use blanks in the definition of an environment variable.

For example:

GENPATH=C:\INSTALL\LIB;D:\PROJECTS\TESTS;/usr/local/lib;/
home/me/my_project

You can define the debugger parameters in several ways:

• Use system environment variables supported by your operating system.

• Put the definitions in a file called DEFAULT.ENV in the default directory.

NOTE The maximum length of environment variable entries in the DEFAULT.ENV/
.hidefaults is 4096 characters.

• Put definitions in a file given by the value of the system environment variable
ENVIRONMENT.

NOTE Set the default directory using the DEFAULTDIR system environment variable
(see DEFAULTDIR: Default Current Directory).

When looking for an environment variable, all programs first search the system
environment, then the DEFAULT.ENV file, and finally the global environment file given
by ENVIRONMENT. If no definition can be found, the debugger assumes a default value.
667S12(X) Debugger Manual

Debugger Engine Environment Variables
Debugger Environment
NOTE Ensure that no spaces exist at the end of environment variables.

The Current Directory
The most important environment for all tools is the current directory. The current
directory is the base search directory where the tool begins to search for files (for example,
the DEFAULT.ENV/.hidefaults file). Normally, the operating system or the
launching program determines the current directory of a tool. For MS Windows-based
operating systems, the current directory definition is more complex.

• If you launch the tool using a File Manager/Explorer, the current directory is the
location of the executable launched.

• If you launch the tool using an Icon on the Desktop, the current directory is the one
specified and associated with the Icon.

• If you launch the tool by dragging a file on the icon of the executable under Windows
NT® 4.0 operating system or Windows 2000® operating system, the desktop is the
current directory.

• If you launch the tool from another tool with its own current directory specified (for
example, WinEdit), the current directory is the one specified by the launching tool.

• For the Debugger tools, the current directory is the directory containing the local
project file. Changing the current project file also changes the current directory, if the
other project file is in a different directory. Note that browsing for a C file does not
change the current directory.

To overwrite this behavior, use the DEFAULTDIR environment variable (see
DEFAULTDIR: Default Current Directory).

Global Initialization File (MCUTOOLS.INI - PC
Only)
All tools may store global data in MCUTOOLS.INI. The tool first searches for this file in
the directory of the tool itself (path of executable). If no MCUTOOLS.INI file exists in
this directory, the tool looks for the file in the MS Windows installation directory (for
example, C:\WINDOWS).

Example

C:\WINDOWS\MCUTOOLS.INI
D:\INSTALL\PROG\MCUTOOLS.INI
668 S12(X) Debugger Manual

Debugger Engine Environment Variables
Local Configuration File (usually project.ini)
If you start a tool in the D:\INSTALL\PROG\DIRECTORY, the tool uses the project file
located in the same directory as the tool (D:\INSTALL\PROG\MCUTOOLS.INI).

If you start the tool outside the D:\INSTALL\PROG directory, the tool uses the project
file located in the Windows directory (C:\WINDOWS\MCUTOOLS.INI).

NOTE For more information about MCUTOOLS.INI entries, see the compiler
manual.

Local Configuration File (usually project.ini)

The debugger does not change the read-only default.env file. The configuration file
contains and stores all configuration properties. Different applications can use the same
configuration file.

The shell only uses the configuration file, named project.ini, located in the current
directory. It is suggested that you use this name for the Debugger configuration file. The
debugger can use the editor configuration written and maintained by the shell only when
the shell and the compiler use the same file. Apart from this, the Debugger can use any file
name for the project file. The configuration file has the same format as Windows .ini
files. The Debugger stores its own entries with the same section name as in the global
mcutools.ini file.

The current directory is always the directory containing the configuration file. If you load
a configuration file from a different directory, then the current directory also changes.
Changing the current directory reloads the default.env file. Loading or storing a
configuration file reloads the options in the environment variable COMPOPTIONS and
adds these options to the project options. Beware of this behavior when different
default.env files exist in different directories, as they may contain incompatible
options in COMPOPTIONS.

Loading a project using the first default.env adds its COMPOPTIONS to the
configuration file. If you store this configuration in a different directory, where a
default.env file exists with incompatible options, the Debugger attempts to add the
options to the default.env file and marks the inconsistency. Then a message box
appears to inform the user that the default.env options were not added. In such a
situation you can either remove the option from the configuration file with the option
settings dialog or remove the option from default.env with the shell or a text editor,
depending on which options you wish to use in the future.

Load the configuration at startup using one of three ways:

• use the command line option prod

• the project.ini file in the current directory

• or Open Project entry from the file menu.
669S12(X) Debugger Manual

Debugger Engine Environment Variables
Local Configuration File (usually project.ini)
If you use the prod option, then the current directory is the directory containing the
project file. Specifying a directory with prod loads the project.ini file in this
directory.

Default Layout Configuration (PROJECT.INI)
The PROJECT.INI file located in the project directory defines the default layout
activated when starting the Debugger, as shown in Listing 24.1. The [DEFAULTS]
section contains all default layout-related parameters.

Listing 24.1 Example Content of PROJECT.INI

[HI-WAVE]
Window0=Source 0 0 60 30
Window1=Assembly 60 0 40 30
Window2=Procedure 0 30 50 15
Window3=Terminal 0 45 50 15
Window4=Register 50 30 50 30
Window5=Memory 50 60 50 30
Window6=Data 0 60 50 15
Window7=Data 0 75 50 15
Target=Sim

Target: Specifies the target used when starting the Debugger (loads the file <target>
with a .tgt extension), for example, Target=Sim for HC(S)12(X) Freescale Full Chip
Simulator, or Target=Motosil, Target=Bdi.

Window<n>: Specifies coordinates of the windows that must be open when the Debugger
is started. The syntax for a window is:

Window<n>=<component> <XPos> <YPos> <width> <height>

where n is the index of the window. This index increments for each window and
determines the sequence in which windows open. This index determines which windows
appear on top when windows overlap. Values for the index must be in the range 0–99.

component specifies the type of component to open, for example, Source or Assembly.

XPos specifies the X coordinate of the top left corner of the component (in percentage
relative to the width of the main application client window).

YPos specifies the Y coordinate of the top left corner of the component (in percentage
relative to the height of the main application client window).

width specifies the width of the component (in percentage relative to the width of the
main application client window).

height specifies the height of the component (in percentage relative to the height of the
main application client window).
670 S12(X) Debugger Manual

Debugger Engine Environment Variables
Local Configuration File (usually project.ini)
Example

Window5=Memory 50 60 50 30

Window number 5 is a Memory component, its starting position is: 50% from the main
window width, 60% from the main window height. Its width is 50% from the main
window width and its height is 30% from the main window height.

Other Parameters
You can load a previously saved layout from a file by inserting the following line in your
PROJECT.INI file:

Layout=<LayoutName>

Where LayoutName is the name of the file describing the layout to be loaded, for
example, Layout=lay1.hwl

NOTE You can specify the layout path if the layout is not in the project directory.

NOTE If you define Layout in PROJECT.INI, the Layout parameter overwrites
any Window<n> definition, describing the default windows layout.

You can load a previously saved project from a file by inserting the following line in your
PROJECT.INI file:

Project=<ProjectName>

where ProjectName is the name of the file describing the project to be loaded, for
example, Project=Proj1.hwc

NOTE You can specify the project path if the project is not in the project directory.
Use this option for compatibility with the old .hwp format
(Project=oldProject.hwp). The file opens as a new project file.

See File Menu for more information about Projects.

NOTE If you define both Layout and Project in PROJECT.INI, the Project
parameter overwrites the Layout parameter, which also contains layout
information.

MainFrame=<nbr.>,<nbr.>,<nbr.>,<nbr.>,<nbr.>,<nbr.>,<nbr.>,
<nbr.>,<nbr.>,<nbr.>

Use this variable to save and load the Debugger main window states: positions, size,
maximized, minimized, icons used when open, etc. This entry is used for internal purposes
only.
671S12(X) Debugger Manual

Debugger Engine Environment Variables
Local Configuration File (usually project.ini)
You can specify the toolbar, status bar, heading line, title bar and small border in the
default section:

• Show or hide the toolbar using the following parameters and syntax:

Toolbar = (0 | 1)

Specify 1 to show the toolbar, otherwise it is hidden.

• Show or hide the status bar using the following parameters and syntax:

Statusbar = (0 | 1)

Specify 1 to show the status bar, otherwise it is hidden.

• Show or hide the title bars using the following parameters and syntax:

Hidetitle = (0 | 1)

Specify 1 to hide the title bars, otherwise they show.

• Show or hide the heading lines using the following parameters and syntax:

Hideheadlines = (0 | 1)

Specify 1 to hide the heading lines. otherwise they show.

• Reduce the border using the following parameters and syntax:

Smallborder = (0 | 1)

Specify 1 for thin borders, otherwise they appear normal.

The environment variable BPTFILE authorizes the creation of breakpoint files; they may
be enabled or disabled. All breakpoints of the currently loaded .abs file are saved in a
breakpoints file. BPTFILE may be ON (default) or OFF. When ON, breakpoint files are
created. When OFF, breakpoint files are not created.

BPTFILE =(On | Off)

NOTE Target specific environment variables can also be defined in the
PROJECT.INI file. Refer to the specific target manual for details.

ini File Activation
Activating a project file (PROJECT.INI) initiates the following actions (from first action
to last):

• Closes the old Project file

• Unloads the Target Component

• Adds the environment variable (Path) from the Project file.

Select HI-WAVE section from which to retrieve the value:
672 S12(X) Debugger Manual

Debugger Engine Environment Variables
Local Configuration File (usually project.ini)
• If you can retrieve a Windows0 or Target entry from the [HI-WAVE] section
then, use [HI-WAVE]

• If you can retrieve a Windows0 or Target entry from the [DEFAULTS] section
then use [DEFAULTS]

• Otherwise, use [HI-WAVE]

The debugger loads the environment variables from the default.env file.

If an entry Layout=lll exists, the debugger loads and executes the layout file
lll.hwl.

The debugger sets the target (if entry Target=ttt exists, load target ttt).

If an entry Project=ppp exists, the debugger executes the ppp command file.

The debugger loads the configuration file (*.hwc)
(entry configuration=*.hwc).

Environment Variable Paths
Most environment variables contain path lists indicating where to search for files. A path
list is a list of directory names separated by semicolons following the syntax below:

PathList = DirSpec {";" DirSpec}.

DirSpec = ["*"] DirectoryName.

Example:

GENPATH=C:\INSTALL\LIB;D:\PROJECTS\TESTS;/usr/local/hiwave/
lib;/home/me/my_project

If an asterisk ("*") precedes a directory name, the programs recursively search the
directory tree for a file, not just the given directory. Directories are searched in the order
they appear in the path list.

Example:

GENPATH=.\;*S;O

NOTE Some DOS environment variables (like GENPATH and LIBPATH) are used.

We strongly recommend working with WinEdit and setting the environment by means of a
DEFAULT.ENV file in your project directory. You can set this 'project directory' in
WinEdit's Project Configure menu command. This way, you can have different projects
in different directories, each with its own environment.

NOTE When using WinEdit, do not set the system environment variable
Defaultdir. If you do and this variable does not contain the project
673S12(X) Debugger Manual

Debugger Engine Environment Variables
Local Configuration File (usually project.ini)
directory given in WinEdit’s project configuration, files might not be put
where you expect them.

Line Continuation
Specify an environment variable in an environment file (default.env/
.hidefaults) over multiple lines by using the line continuation character ‘\’:

Example

OPTIONS=\
-W2 \
-Wpd

This is the same as:

OPTIONS=-W2 -Wpd

Be careful when using the line continuation character with paths. For example:

GENPATH=.\
TEXTFILE=.\txt

Results in:

GENPATH=.TEXTFILE=.\txt

To avoid such problems, use a semicolon’;’ at the end of a path, if there is a ‘\’ at the end:

GENPATH=.\;
TEXTFILE=.\txt
674 S12(X) Debugger Manual

Debugger Engine Environment Variables
Search Order for Source Files
Search Order for Source Files
This section describes the search order (from first to last) used by the debugger.

In the Debugger for C Source Files (*.c,
*.cpp)
1. Path coded in the absolute file (.abs)

2. Project file directory (where the .pjt or .ini file is located)

3. Paths defined in the GENPATH environment variable (from left to right)

4. Abs File directory

In the Debugger for Assembly Source
Files (*.dbg)
1. Path coded in the absolute file (.abs)

2. Project file directory (where .pjt or .ini file is located)

3. Paths defined in the GENPATH environment variable (from left to right)

4. Abs File directory

In the Debugger for Object Files
(HILOADER)
1. Path coded in the absolute file (.abs)

2. Abs File directory

3. Project file directory (where .pjt or .ini file is located)

4. Path defined in the OBJPATH environment variable

5. Paths defined in the GENPATH environment variable (from left to right)

Debugger Files
The Debugger comes with several program, application, configuration files and examples.
Table 24.1 lists these files and file extensions.
675S12(X) Debugger Manual

Debugger Engine Environment Variables
Debugger Files
Table 24.1 Debugger Files and File Extensions

File Extension Description

*.ABS Absolute framework application file (e.g., fibo.abs)

*.ASM Assembler specific file (e.g., macrodem.asm)

*.BBL Burner Batch Language file (e.g, fibo.bbl)

*.BPT Debugger Breakpoint file (e.g., fibo.bpt)

*.C *.CPP C and C++ source files

*.CHM Compiled HTML help file

*.CMD Command File Script (e.g., Reset.cmd)

*.CNF Specific CPU configuration file

*.CNT Help Contents File (e.g., cxa.cnt)

*.CPU Central Processor Unit Awareness file

*.DBG Debug listing files (e.g., Fibo.dbg)

DEFAULT.ENV Debugger Default Environment file

*.DLL A .DLL file contains one or more functions compiled, linked, and
stored separately from the processes that use them. The operating
system maps the DLLs into the process's address space when the
process is starting up or while it is running. The process then
executes functions in the DLL. The DLL of the Debugger is provided
for supported library and extended functions.

*.H Header file

HIWAVE.EXE The Debugger for Windows executable program.

*.HWL Debugger Layout file (e.g., default.hwl)

*.HWC Debugger Configuration file (e.g., project.hwc)

*.EXE Other Windows executable program (e.g., LINKER.EXE)

*.FPP CPU-specific Flash Programming Parameters files (e.g.,
mcu0e36.fpp)

*.HLP Application Help file (e.g., Hiwave.hlp)

*.IO I/O simulation file (e.g., sample11.io)
676 S12(X) Debugger Manual

Debugger Engine Environment Variables
Debugger Files
*.ISU Uninstall Application File

*.PJT Debugger configuration Settings File (e.g., Project.pjt)

*.INI Debugger configuration Settings File (e.g., Project.ini)

*.LST Assembler Listing File (e.g., fibo.lst)

*.MCP Freescale CodeWarrior IDE project file

*.MAK Make file (e.g., demo.mak)

*.MAP Mapping file (e.g., macrodem.map)

*.MEM Memory Configuration file (e.g., 000p4v01.mem)

*.MON Firmware loading, file that allows loading a specified target (e.g.,
Firm0508.mon)

*.O Object file code (e.g., Fibo.o)

*.PDF Portable Document Format file

*.PRM Linker parameter file (e.g., fibo.prm)

Project.Ini Debugger Project Initialization File

*.REC Recorder File

*.REG Register Entries files (e.g., mcu081e.reg)

*.SIM CPU Awareness file (e.g., st7.sim)

*.SX S-Record file (e.g., fibo.sx)

*.TXT General Text Information file.

*:TGT Target File for the Debugger (e.g., xtend-g3.tgt)

*.WND Debugger Window Component File (e.g., recorder.wnd)

*.XPR Debugger User Expression file (e.g., Fibo.xpr)

Table 24.1 Debugger Files and File Extensions (continued)

File Extension Description
677S12(X) Debugger Manual

Debugger Engine Environment Variables
Environment Variables
Environment Variables
This section describes each of the environment variables available for the Debugger. The
options are listed in alphabetical order and each is divided into several sections.

ABSPATH: Absolute Path

Tools

SmartLinker, Debugger

Synonym

None

Syntax

ABSPATH=" {<path>}.

Arguments

<path>: Paths separated by semicolons, without spaces.

Description

When you define this environment variable, the SmartLinker stores the absolute files it
produces in the first directory specified. If you do not set ABSPATH, the SmartLinker
stores the generated absolute files in the directory in which the parameter file is located.

Example

ABSPATH=\sources\bin;..\..\headers;\usr\local\bin

DEFAULTDIR: Default Current Directory

Tools

Compiler, Assembler, Linker, Decoder, Librarian, Maker, Burner, Debugger.

Synonym

None.
678 S12(X) Debugger Manual

Debugger Engine Environment Variables
Environment Variables
Syntax

"DEFAULTDIR=" <directory>.

Arguments

<directory>: Directory specified as default current directory.

Default

None.

Description

Use this environment variable to specify the default directory for all tools. All tools
indicated above take the directory specified as their current directory instead of the one
defined by the operating system or launching tool.

NOTE This is an environment variable at the system level (global environment
variable). It CANNOT be specified in a default environment file
(DEFAULT.ENV/.hidefaults).

Example

DEFAULTDIR=C:\INSTALL\PROJECT

See also

The Current Directory

Global Initialization File (MCUTOOLS.INI - PC Only)

ENVIRONMENT=: Environment File Specification

Tools

Compiler, Linker, Decoder, Librarian, Maker, Burner, Debugger.

Synonym

HIENVIRONMENT

Syntax

"ENVIRONMENT=" <file>.
679S12(X) Debugger Manual

Debugger Engine Environment Variables
Environment Variables
Arguments

<file>: file name with path specification, without spaces

Default

None.

Description

You must specify this variable at the system level. Normally the application looks in the
The Current Directory for an environment file named default.env. Use the
ENVIRONMENT variable to specify a different file name.

NOTE This is a system level (global) environment variable. It CANNOT be specified
in a default environment file (DEFAULT.ENV/.hidefaults).

 Example

ENVIRONMENT=\Freescale\prog\global.env

GENPATH: #include “File” Path

Tools

Compiler, Linker, Decoder, Burner, Debugger.

Synonym

HIPATH

Syntax

"GENPATH=" {<path>}.

Arguments

<path>: Paths separated by semicolons, without spaces.

Default

Current directory
680 S12(X) Debugger Manual

Debugger Engine Environment Variables
Environment Variables
Description

If you include a header file with double quotes, the Debugger searches in the current
directory, then in the directories given by GENPATH and finally in the directories given
by LIBRARYPATH (see LIBRARYPATH: ‘include <File>’ Path).

NOTE If a directory specification in this environment variable starts with an asterisk
(*), the debugger searches the whole directory tree recursively. All
subdirectories and their subdirectories are searched. Within one level in the
tree, search order is random.

Example

GENPATH=\sources\include;..\..\headers;

\usr\local\lib

See also

Environment variable LIBPATH

LIBRARYPATH: ‘include <File>’ Path

Tools

Compiler, ELF tools (Burner, Linker, Decoder)

Synonym

LIBPATH

Syntax

"LIBRARYPATH=" {<path>}.

Arguments

<path>: Paths separated by semicolons, without spaces.

Default

Current directory

Description

If you include a header file with double quotes, the Compiler searches in the current
directory, then in the directories given by GENPATH (see GENPATH: #include “File”
681S12(X) Debugger Manual

Debugger Engine Environment Variables
Environment Variables
Path) and finally in directories given by LIBRARYPATH (see LIBRARYPATH: ‘include
<File>’ Path).

NOTE If a directory specification in the environment variable starts with an asterisk
(*), the Compiler searches the whole directory tree, including subdirectories
and their subdirectories, recursively. Within one level in the tree, search order
is random.

Example

LIBRARYPATH=\sources\include;..\..\headers;\usr\local\
lib

See also

Environment variable GENPATH: #include “File” Path

Environment variable USELIBPATH: Using LIBPATH Environment Variable

OBJPATH: Object File Path

Tools

Compiler, Linker, Decoder, Burner, Debugger.

Synonym

None.

Syntax

"OBJPATH=" <path>.

Default

Current directory

Arguments

<path>: Path without spaces.

Description

If a tool looks for an object file (for example, the Linker), it first checks for an object file
specified by this environment variable, then in GENPATH (see GENPATH: #include
“File” Path) and finally in HIPATH.
682 S12(X) Debugger Manual

Debugger Engine Environment Variables
Environment Variables
Example

OBJPATH=\sources\obj

TMP: Temporary directory

Tools

Compiler, Assembler, Linker, Librarian, Debugger.

Synonym

None.

Syntax

"TMP=" <directory>

Arguments

<directory>: Directory to use for temporary files.

Default

None.

Description

If a temporary file must be created, normally you use the ANSI function tmpnam(). This
library function stores the temporary files created in the directory specified by this
environment variable. If the variable is empty or does not exist, the current directory is
used. Check this variable if you get an error message that says “Cannot create temporary
file”.

NOTE This is a system level (global) environment variable. It CANNOT be specified
in a default environment file (DEFAULT.ENV/.hidefaults).

Example

TMP=C:\TEMP

See also

The Current Directory
683S12(X) Debugger Manual

Debugger Engine Environment Variables
Environment Variables
USELIBPATH: Using LIBPATH Environment Variable

Tools

Compiler, Linker, Debugger.

Synonym

None.

Syntax

"USELIBPATH=" ("OFF" | "ON" | "NO" | "YES")

Arguments

"ON", "YES": Uses the LIBRARYPATH environment variable (see
LIBRARYPATH: ‘include <File>’ Path) to look for system header files <*.h>.

"NO", "OFF": Does not use the LIBRARYPATH environment variable.

Default

ON

Description

This environment variable allows flexible use of the LIBRARYPATH environment
variable, because LIBRARYPATH may be used by other software (for example, version
management PVCS).

Example

USELIBPATH=ON

See also

Environment variable LIBRARYPATH: ‘include <File>’ Path
684 S12(X) Debugger Manual

25
Connection-Specific
Environment Variables

Some of the environment variables that can be used in the debugging process are imported
with the connection software and are specific to that connection. This chapter lists and
describes those variables.

Abatron BDI Connection Environment
Variables

This section describes the environment variables used by the Abatron BDI Connection.
The Abatron BDI Connection-specific environment variables are:

• BDICONF

• COMDEV

• COMPRESS

• SHOWPROT

• SKIPILLEGALBREAK

• VERIFY

These variables are stored in the [BDIK] section from the project file.

Listing 25.1 Example of the [BDIK] section from the project file

[BDIK]
CMDFILE0=CMDFILE STARTUP ON "startup.cmd"
CMDFILE1=CMDFILE RESET ON "reset.cmd"
CMDFILE2=CMDFILE PRELOAD ON "preload.cmd"
CMDFILE3=CMDFILE POSTLOAD ON "postload.cmd"
COMDEV=COM1 57600
SHOWPROT=0
BDICONF=C:\tmp\B10c12.exe
SKIPILLEGALBREAK=0
VERIFY=1
COMPRESS=1
685S12(X) Debugger Manual

Connection-Specific Environment Variables
Abatron BDI Connection Environment Variables
The remainder of this section describes each of the variables available for the Abatron BDI
Connection. The variables are listed in alphabetical order and are divided into several
topics.

BDICONF

Description

This variable defines the communication device between the computer and the BDI. It is
set according to the BDI Box Configuration Tool Path edit box of the Setup Dialog Box.
You can set up the BDI Box Configuration Tool Path edit box with the path and
application name of the configuration tool from ABATRON. The application tool is
automatically browsed when selecting the Abatron BDI > Configure BDI Box menu
entry and browsing for the application. Otherwise, click the Browse button to look for the
tool.

Syntax

BDICONF=ConfigurationToolFileNameandPath

Arguments

ConfigurationToolFileNameandPath: the ABATRON configuration
tool file name and path.

Default

No default value exists. The string "Enter here the path to the
ABATRON configuration tool." appears in the edit box.

Example

BDICONF=C:\tmp\B10c12.exe

COMDEV

Description

This variable defines the communication device between the computer and the BDI. It is
set according to the Communication Device edit box of the Communication Device
Specification Dialog Box.
686 S12(X) Debugger Manual

Connection-Specific Environment Variables
Abatron BDI Connection Environment Variables
Syntax

COMDEV=COMn baudrate

where n is the COM port number like 1, 2, 3, etc. and where baudrate is 9600,
19200, 38400, 57600, 115200, according to the setup done in the ABATRON
configuration application.

For the communication via an Ethernet:

COMDEV=NETWORK ip_address port

where ip_address is the IP address of the BDI box or bdiNet in the form
xxx.xxx.xxx.xxx and port is the bdiNet port, usually "1" for BDI1000 and
BDI2000.

Default

The default value is COM1 57600.

Example

COMDEV=COM1 57600

COMPRESS

Description

This variable sets the BDI download mode with data compression. By default, data
compression is enabled for asynchronous communication channels. With older computers,
it is possible that download speed is faster without data compression. It is set according to
the Use Data Compression check box of the Setup Dialog Box.

Syntax

COMPRESS=1|0

Default

The default value is 1.

Example

COMPRESS=1
687S12(X) Debugger Manual

Connection-Specific Environment Variables
Abatron BDI Connection Environment Variables
SHOWPROT

Description

If the Show Protocol is used, all the commands and responses sent and received are
reported in the Command Line component of the debugger.

If the variable is set to 1, Show Protocol is activated.

This variable is set according to the Show Protocol check box of the Communication
Device Specification Dialog Box.

Syntax

SHOWPROT=1|0

Default

The default value is 0.

Example

SHOWPROT=1

NOTE The Show Protocol is a useful debugging feature if there is a communication
problem.

SKIPILLEGALBREAK

Description

This variable is set according to the Continue on illegal break (banked hardware
breakpoint) option check box of the Setup Dialog Box.

The Continue on illegal break (banked hardware breakpoint) option check box is only
available for the HC12/CPU12 derivative. Check this check box to override the 2-byte
address size on-chip break module which does not handle the PPAGE. Note that
internally, the hardware breakpoint halts the target (in Flash memory), compared with the
breakpoint that you set, then relaunched, if not using matching.

Syntax

SKIPPILLEGALBREAK=1|0
688 S12(X) Debugger Manual

Connection-Specific Environment Variables
Abatron BDI Connection Environment Variables
Default

The default value is 0.

Example

SKIPILLEGALBREAK=1

VERIFY

Description

This variable sets the BDI download mode with data verification. By default, use Verify
only first option. If necessary, you can set a different option to improve transfer speed or
security. Set this variable using to the Data Transfer Verification radio buttons of the
Setup Dialog Box.

Syntax

VERIFY=0|1|2|3

with 0 for no verification at all (fastest mode), 1 for first byte verification only, 2
for all data read back verification, and 3 for only verification (no write).

Default

The default value is 1.

Example

VERIFY=1
689S12(X) Debugger Manual

Connection-Specific Environment Variables
Banked Memory Location-Associated Environment Variables
Banked Memory Location-Associated
Environment Variables

The following sections describe the Banked Memory Location environment variables used
by the Abatron BDI connection. These variables are:

BANKWINDOWn

This variable is stored in the ["targetName"] section from the project file.

Listing 25.2 Example of the [BDIK] target section from a project file

[BDIK]
BANKWINDOW0=BANKWINDOW PPAGE ON 0x8000..0xBFFF 0x30 64
BANKWINDOW1=BANKWINDOW DPAGE OFF 0x7000..0x7FFF 0x34 256
BANKWINDOW2=BANKWINDOW EPAGE OFF 0x400..0x7FF 0x36 256

The following sections describe the variable available for this connection.

BANKWINDOWn

Description

The BANKWINDOWn variable specifies a command file definition using BANKWINDOW
Command Line command. Usually three or four of those entries are present in the
project file, depending on the connection.

Those variables are used to store the Banked Memory Location definition (range, address,
number of pages) and status (enable/disable) specified either with the BANKWINDOW
Command Line command or the PPage tab in the Banked Memory Window.

Syntax

BANKWINDOWn=<one BANKWINDOW Command Line command>

Default

All available banked memory area are disabled by default.

The default PPAGE memory banked area is 0x8000 to 0xBFFF, 8 pages allowed,
with PPAGE register at address 0x35.

The default DPAGE memory banked area is 0x7000 to 0x7FFF, 256 pages
allowed, with PPAGE register at address 0x34.
690 S12(X) Debugger Manual

Connection-Specific Environment Variables
Unsecure Environment Variable
The default EPAGE memory banked area is 0x400 to 0x7FF, 256 pages allowed,
with PPAGE register at address 0x36.

The default settings for the VARIOUS page is that the bank window dialog is
displayed automatically when connecting when settings are not done.

Example

BANKWINDOW0=BANKWINDOW PPAGE OFF 0x8000..0xBFFF 0x30 64

BANKWINDOW1=BANKWINDOW DPAGE OFF 0x7000..0x7FFF 0x34 256

BANKWINDOW2=BANKWINDOW EPAGE OFF 0x400..0x7FF 0x36 256

BANKWINDOW3=BANKWINDOW VARIOUS DLGATCONNECT

Unsecure Environment Variable
The following section describes the HC12 Unsecure environment variable used by the
Target Interface. This variable is:

• CHIPSECURE

This variable is stored in the ["targetName"_GDI_SETTINGS] section.

Listing 25.3 Example of [ICD12] target section

[ICD12_GDI_SETTINGS]
CHIPSECURE=CHIPSECURE SETUP 0xFF0F 0x3 0x2

CHIPSECURE

Description

The CHIPSECURE variable specifies the HCS12 Unsecure mechanism setup using a
CHIPSECURE Command Line command.

Syntax

CHIPSECURE=<CHIPSECURE SETUP Command Line command>

Example

CHIPSECURE=CHIPSECURE SETUP 0xFF0F 0x3 0x2
691S12(X) Debugger Manual

Connection-Specific Environment Variables
On-Chip Hardware Breakpoint Module Environment Variables
On-Chip Hardware Breakpoint Module
Environment Variables

This section describes the Hardware Breakpoint Settings environment variables used by
the Target Interface. These variables are:

• HWBPD_MCUIDnnn_BKPT_REMAPn

• HWBPMn

These variables are stored in the ["targetName"_GDI_SETTINGS] section.

Listing 25.4 Example of the [ICD12] target section from a project file

[ICD12_GDI_SETTINGS]
HWBPM0=HWBPM MODE AUTOMATIC BPM16BITS 0x28 SKIP_OFF
HWBPM1=HWBPM SET16BITS 0x0 0x0 0x0 0x0
HWBPM2=HWBPM SET22BITS 0x0 0x0 0x0 0x0
HWBPD_MCUID3C6_BKPT_REMAP0=HWBPM REMAP_22BITS RANGE 0x4000 0x7FFF 0x3E
HWBPD_MCUID3C6_BKPT_REMAP1=HWBPM REMAP_22BITS RANGE 0xC000 0xFFFF 0x3F
HWBPD_MCUID3C7_BKPT_REMAP0=HWBPM REMAP_22BITS RANGE 0x4000 0x7FFF 0x3E
HWBPD_MCUID3C7_BKPT_REMAP1=HWBPM REMAP_22BITS RANGE 0xC000 0xFFFF 0x3F
HWBPD_MCUID3CA_BKPT_REMAP0=HWBPM REMAP_22BITS RANGE 0x4000 0x7FFF 0x3E
HWBPD_MCUID3CA_BKPT_REMAP1=HWBPM REMAP_22BITS RANGE 0xC000 0xFFFF 0x3F

The following sections describe each variable available for the Target Interface. The
variables are listed in alphabetical order.

HWBPD_MCUIDnnn_BKPT_REMAPn

Description

The HWBPD_MCUIDnnn_BKPT_REMAPn variable specifies a command file definition
using HWBPM REMAP22BITS Command Line command.

The variable name depends on the derivative MCU-ID and on the remapping range
number.

Those variables are used to store the current Hardware Breakpoints Module remapping
settings specified with the HWBPM REMAP22BITS Command Line command.

Syntax

HWBPD_MCUIDnnn_BKPT_REMAPn=<one HWBPM REMAP22BITS Command
Line command>
692 S12(X) Debugger Manual

Connection-Specific Environment Variables
On-Chip Hardware Breakpoint Module Environment Variables
Default

Defaults settings are retrieved according to the derivative from a common ini file.

Example

HWBPD_MCUID3C6_BKPT_REMAP0=

HWBPM REMAP_22BITS RANGE 0x4000 0x7FFF 0x3E

HWBPMn

Description

The HWBPMn variable specifies the configuration of the Hardware Breakpoints module
using HWBPM Command Line command. Three entries appear in the project file.

Those variables are used to store the current Hardware Breakpoints Module settings
specified either with the HWBPM Command Line command or through the Hardware
Breakpoint Configuration dialog.

Syntax

HWBPMn=<one HWBPM Command Line command>

Default

Defaults settings are retrieved according to the derivative from a common .ini
file.

Example

HWBPM0=HWBPM MODE AUTOMATIC BPM16BITS 0x28 SKIP_OFF

HWBPM1=HWBPM SET16BITS 0x0 0x0 0x0 0x0

HWBPM2=HWBPM SET22BITS 0x0 0x0 0x0 0x0
693S12(X) Debugger Manual

Connection-Specific Environment Variables
On-Chip Hardware Breakpoint Module Environment Variables
694 S12(X) Debugger Manual

Connection-Specific Environment Variables
On-Chip Hardware Breakpoint Module Environment Variables
695S12(X) Debugger Manual

Connection-Specific Environment Variables
On-Chip Hardware Breakpoint Module Environment Variables
696 S12(X) Debugger Manual

Book V - Debugger Legacy

Book V Contents
Each section of the Debugger manual includes information to help you become more
familiar with the Debugger, to use all its functions and help you understand how to use the
environment.

Book V: HC(S)12(X) Debugger Legacy

This book is divided into the following chapters

• Chapter 26 - HC(S)12 (X) Full-Chip Simulator Components No Longer Supported

• Chapter 27 - Debugger DDE Capabilities
697S12(X) Debugger Manual

Book V Contents
698 S12(X) Debugger Manual

26
HC(S)12 (X) Full-Chip
Simulator Components No
Longer Supported

List of HC(S)12(X) FCS Components No
Longer Supported

The following legacy components are no longer supported and excluded from the product:

• MicroC

• Softtrace

• Segments_display

• Wagon

• Adc_dac

• Push_buttons

• Monitor

• IT_keyboard

• Lcd

• IO_ports

• Phone

• Template

• IO_led

• Led

• WinLift
699S12(X) Debugger Manual

HC(S)12 (X) Full-Chip Simulator Components No Longer Supported
List of HC(S)12(X) FCS Components No Longer Supported
700 S12(X) Debugger Manual

27
Debugger DDE Capabilities

The DDE is a form of interprocess communication that uses shared memory to exchange
data between applications. Applications can use DDE for one-time data transfers and for
ongoing exchanges in applications that send updates to one another as new data becomes
available.

NOTE The DDE capabilities of the Debugger are deprecated. Future versions of
the Debugger will have no DDE capabilities. Use the Component Object
Model (COM) Interface (Debugger COM Capabilities) instead .

DDE Implementation
The Debugger integrates a DDE server and DDE client implementation in the KERNEL.
The DDE application name of the IDF server is HI-WAVE.

The Debugger DDE support allows you to execute almost any command available from
within the debugger (from Command line). There are also special DDE items for more
commonly performed tasks.

This section describes topics and DDE items available to CodeWright clients. In addition
to the required System topic, CurrentBuffer and the names of all CodeWright non-system
buffers (documents) are available as topics.

Driving Debugger through DDE
The DDE implementation in the Debugger allows you to drive it easily by using the DDE
command. To do this, use a program that can send a DDE message (a DDE client
application) like DDECLient.exe from Microsoft®.

The service name of the Debugger DDE Server is HI-WAVE and the Topic name for the
Debugger DDE Server is Command.

The following example is done with DDECLient.exe from Microsoft.

1. Run the Debugger and in the Service field in the DDEClient type: HI-WAVE

2. In the Topic field type Command

3. Push the Connect button of the DDEClient. The following message appears in
DDECLient: Connected to HI-WAVE|Command.
701S12(X) Debugger Manual

Debugger DDE Capabilities
DDE Implementation
4. In the Exec field of DDECLient type a Debugger command, for example, open
recorder, and click the Exec button. The command executes by way of DDE and
you'll see a new recorder component in the Debugger.

NOTE You can disconnect the DDE in the Debugger. You can start the Debugger
without DDE (this is saved in the project file). To view the current state, open a
command line component and type the following command: DDEPROTOCOL
STATUS. The state must be: DDEPROTOCOL ON to ensure the DDE works
properly.
702 S12(X) Debugger Manual

Index

Numerics
16-Bit Modulus Down-Counter 314, 315
16-bits Break Module (User Mode) 494
22-bits Break Module (User Mode) 495

A
A 405, 510
Abatron BDI

Connection windows 391
Highlights 381
Requirements 381
Setup Dialog 392
Terminal Emulation with BDI 393

Abatron BDI menu
Bus Trace 390
Command Files 389
Communication 389, 391
Configure BDI Box 390
Connect 389, 391
Debugging Memory Map 390
Flash 390
Help 390
Load 389
Reset 389
Select Core 390
Select Derivative 389
Set Derivative 389
Setup 390, 392
Trigger Module Settings 390
Unsecure 390

ABATRON Configuration tool 383
About box 45
About menu entry 45
About Option 369
*.abs file 53, 389
ABSPATH 678
ACTIVATE 511
ADCPORT 632
Add New Instrument menu entry 145, 146
ADDCHANNEL 632
Adding expressions 71

Adding files to project
DA-C 255

Address 408
Address menu entry 57, 59, 93, 96
ADDXPR 511
Align menu entry 146
All menu entry 74
All Text Folded At Loading menu entry 124
Analog 148
Analog instrument attributes 153
Analog to Digital Converter (ATD) 288
Analyzing FIFO 448
AND Mask 154
ANSI startup code, selecting 231
Application

Assembly level stepping 237
Embedded 25
Loading 234

Flash 475
RTK example 197
Source level stepping 236
Starting 235
Stepping 236, 237
Stopping 235
Target 25

Application Programming Interface (DAPI) 261
Arrange Icons menu entry 44
ASCII menu entry 96
Assembly component 55, 234, 235
Assembly context menu 58
Assembly menu 57
Assembly Step menu entry 37
Assembly Step Out menu entry 37
Assembly Step Over menu entry 37
AT 523
ATTRIBUTES 512
Attributes

CMD Callback 161
Command 161

Auto configure 275
Auto menu entry 113
Auto on Access 277
703S12(X) Debugger Manual

Auto on Load 277
Auto select according to MCU Id 474
Automatic menu entry 75, 95
Automatic mode 73
Automatically analyze the FIFO content 432,

444, 445, 446
AUTOSIZE 524

B
B 405
Background Color menu entry 42
Background Debug Mode (BDM) 381
Backgroundcolor

Instrument property 148
Menu entry 147

Banked
Hardware breakpoint 393
Memory model 228, 314

BANKWINDOWn 690
Bar instrument 148

Attributes 153
Barcolor 153
Bardirection 153
BASE 524
Base menu entry 107
BC 525
BCKCOLOR 526
BD 527
BDI 616

Abatron setup 383
Communication device specification 391
Configuration 383
Connection menu 389
Connection Windows 391
Device Specification Edit Box 391
Firmware 384
Initialization List 385
Interface 382
Interface setup 383
Menu Entries 389
Setup dialog box 392
Startup Init List 385
Terminal Emulation with BDI 393
Working Mode 386

BDI1000 381
BDICONF 686
BDI-HS 381
BDM connector/port 382
BDM port 381
Bin menu entry 75, 94, 112, 239
Binary

Displaying register content in 241
Format 239

Bit Reverse menu entry 75, 95, 113
Bitmap directory 258
Bitnumber to Display 157, 158
Blank module state 472, 473
BLCD 285
Blocks 470
Bottom menu entry 147
Bounding Box 148
Box configuration 383
Breakpoint 115, 393, 492, 494, 688

Banked hardware 393
Checking condition 167
Command association 175
Conditional 173, 193
Counting 172, 192
Definition 163
Deleting 174
Disabling 119
Enabling, Disabling 58
Hardware 393, 419, 428, 435, 688
Marks 56
Multiple selection 166
Permanent 163
Position 169
Setting, Deleting 58

within DA-C 261
Temporary 119, 163, 170
with Register Condition 173, 174

BRLD 316
BS 527
BSPL 316
BTST 316
Build Extras pane 232, 247
Bus Trace 378, 402
Bus Trace menu entry 273
704 S12(X) Debugger Manual

Bus Trace Option 355, 369, 390, 397
Byte menu entry 94
Byteflight (BF) 285

C
-C option 613
Cache size menu entry 319
CALL 314, 530
Call chain 104
Capture 314

R/W values at Address B after access at
Address A 421, 438

Read/write values at Address B 421, 438
Stimulation 314

Capture/Compare Timer 315
Cascade menu entry 44
CD 530
CF 531
CFORC 315
Clear 452
CLOCK 533
Clock and Reset Generator (CRG) 293
Clock Frequency menu entry 272
Clone Attributes menu entry 146
CLOSE 534
Close I/Os menu entry 272
CMD Callback attributes 161
*.cmd file 63
-Cmd option 612
CMDFILE 537
Code

Coverage 419
Profiling 419
Viewing 244

CodeWarrior Integration 247
COLLAPSE 534
Color if 157
Color if Bit LED attribute 157
COM_EXE 535
COM_EXIT 536
COM_START 535
COMDEV 686
Command 161

Attributes 161

Copy (CTRL+C) 63
Syntax 499

Command file
Executing 63

Command Files
Abatron BDI 389
inDART-HCS12 369
Monitor-HCS12 378
MultilinkCyclonePro 355

Command Files menu entry 40, 272, 274
Command Files option 355, 369, 397
Command Files window 40, 274
Command line

Starting debugger from 211
Command line component 61
Command order 211
Commands 653, 657

Abatron BDI connection 615
Flash 617
NVMC 617

Communication
Abatron BDI 389
Serial 382
Setting speed 217
with application 245

Communication Device Specification dialog 391
Communication option 368
Communication/Connect option 354
COMn 391
Compare 314
Compiler configuration, DA-C 258
Compiler settings

DA-C 258
Compiler.bmp default bitmap 258
COMPLEMENT

DATA Component 517
Memory Component 519
Register Component 514

Component
Assembly 55, 234, 235
Command Line 61
Connection 53
Context menu 46
Coverage 65
705S12(X) Debugger Manual

CPU 53
DA-C 264
DA-C link 68
Data 70, 238
Debugger kernel 53
Framework 26
Global Data 234
Inspect 135
Local Data 234
Main menu 45
Memory 89, 243
Menu 42
Module 102
Object Information bar 46
OSEK RTK Inspector 202
Procedure 103
Profiler 105
Recorder 109
Register 111, 234, 241
Source 114, 234, 235
Stimulation 318
Terminal 245
TestTerm 245
VisualizationTool 143
Window 53

Component files 46
Component windows layout 27
Component-associated menus 45
COMPOPTIONS 669
COMPRESS 687
Compression 393, 687
Conditional

Breakpoints 173
Control points 193

Configuration file 385
Configuration menu entry 30
Configuration Tool 383
Configuration window 31
Configure BDI Box 383, 390
Configure menu entry 272
Configuring

Compiler 258
Debugger 207, 232, 247
Linker 259

Maker 260
Connect 389
Connection

Switching 212, 232
Connection component 53, 54
Connection menu 37

Entries 38
Context information, collecting 196
Context-sensitive menus 46
Continue on illegal break 390, 393, 688
Control Point

Definition 163
Dialogs 163

Control Points menu entry 37
Controlpoints Configuration 406
Copy command 63
Copy menu entry 120, 146
COPYMEM 536
CopyMem menu entry 93
Copyright, displaying 45
Counting breakpoints 172
Coverage

Code 453
Mode 419

Coverage component 65
Coverage menu 66
CPORT 633
CPU

Components 53
Cycles (64 bits) 273
Cycles, number of 29, 111
Registers, inspecting 195

CPU12 381
CR 537
Cross-debugging 25
CTRL + C (copy command) 63
Ctrl+E 145
Ctrl+L 145
Ctrl+P 145, 147
Ctrl+S menu entry 145
Current Directory 668, 678
Customize menu entry 33
Cut menu entry 146
CYCLE 538
706 S12(X) Debugger Manual

D
DA-C

and debugger message exchange 261
Compiler configuration 258
Compiler settings 258
Compiler.bmp 258
Component 264
Configuring 251
Configuring file types 253
Configuring project file 264
Configuring the tools 258
Configuring working directories 252
Database directory 253
Database, building 256
Debugger interface 261
Debugger name 266
Debugger options 267
Default bitmap 258
Error messages 266
IDE 251

Configuring 251
Synchronized debugging 251

IDE and Debugger
Testing synchronization 265

Library path, configuring 254
Link component 68
Link operation 68
Linker configuration 259
Linker settings 260
Maker configuration 260
Maker settings 261
Ndapi.dll 266
New project creation 252
Preprocessor

Header Directories 254
Preinclude file 255

Project file analysis 256
Project file configuration 264
Project overview 257
Project root directory 252
Referential project root directory 252
Requirements 251
Setting and deleting breakpoints 261
Source 254

Synchronized debugging 265
Troubleshooting 266
User help file 253
Working directories 252

DAPI 261
DASM 538
Data 410

Component 70
Compression 393, 687
Value 452
Window 410

Data access
Formulas 201

Data menu 72
Data operation 70
Data window

Global attribute 235
Local attribute 235

Database directory, DA-C 253
Database, building (DA-C) 256
DB 540
DBG 448
DBG FIFO Data 452
DBGCA 412, 413, 426
DBGCB 413, 426
DBGFH 447, 452
DBGFL 447, 452
DBGT 425
DDE

Capabilities 701
HI-WAVE server 701
Implementation 701

DDECLient 702
DDEPROTOCOL 541
Debug Module (DBG) 290
Debugger

Activating services 47
Application 25
Assembly component 55
Automating startup 233
Configuration 207
Configuring 232, 247
Connection components 53
Connections 269
707S12(X) Debugger Manual

Copyright information 45
DDE capabilities 701
DDE support 701
Default Layout Configuration 670
Demo version limitations 26
Drag and drop 48
Driving through DDE 701
Engine 23, 25
Features 25
Interface, DA-C 261
Kernel components 53
Layout 671
Main window components 53
Order of commands 211
Project 671
project.ini 670
Running from a command line 211
Starting 208
Status bar 29
Tool tip 28
Toolbar 28
User interface 47
Using on Windows 2000 208
Version number 45

Debugger Start option
-C 613
-ENVpath 613
-Instance=%currentTargetName 612
-Nodefaults 612
-Target 611
-W 611

Debugger Trigger Register 425
Debugging

Embedded applications 25
Memory Map 355, 369, 390, 397
Memory Map (DMM) 455

Dec menu entry 75, 94, 112, 239
Decimal 239
Decimal format, signed 239
Decimalmode attribute 157
Default Directory, defining 208
DEFAULT.ENV 667, 668, 679, 680, 683
default.mem file 275
DEFAULTDIR 678

DefaultDir environment variable 208
DEFINE 542
DELCHANNEL 633
Delete Breakpoint menu entry 58, 119
Delete Markpoint menu entry 59, 120
Delete Trigger 408
Delete Trigger Address 405
Demo 161
Demo mode 26
Demo version limitations 26

Command component 64
Coverage component 68
DA-C link component 70
Debugger 26
VisualizationTool 161

Derivative
Selection 220
Setting 216

DETAILS 543
Details menu entry 66, 107
Development Assistant for C, using 256
Dialog 471
Dialog box

Display Address 96
Fill Memory 96

Disable Breakpoint menu entry 58, 119
Disabled mode 419, 428, 436
Disabled module state 472
Disabling 473
Disarm automatically the module when the

debugger stops 445, 446
Display

Component information 135
Lines of code 121
Port 149
Port memory width 149
Values (VisualizationTool) 153

Display 0/1 156, 158
Display Absolute Address menu entry 57
Display Address dialog box 96
Display Address menu entry 57
Display Code menu entry 57
Display Headline menu entry 147
Display menu 96
708 S12(X) Debugger Manual

Display menu entry 93, 319
Display Scrollbars menu entry 147
Display Symbolic menu entry 57
Display Version 157
Displayfont 159
DL 544
DMM 455
Do not halt when the FIFO is full 422, 424, 442
Down-Counter 314
Download Mode and Data Transfer

Verification 393
Dragging 48
Driving debugger through DDE 701
DUMP 545
Dump 451
DW 545
Dynamic trigger types 413

E
e character in Source and Assembly windows 409
E keyword 547
Edit Mode menu entry 145, 146, 147
Editing

Expressions 71
Memory 243
Register 242
Variable 240

Editing Registers 83
Editor 71
EEPROM 289
EETS 289
ELSE 548
ELSEIF 548
Embedded application 25
Enable Breakpoint menu entry 58, 119
Enabled module state 472
Enabling Flash 473
End 472
ENDFOCUS 549
ENDFOR 549
ENDIF 550
ENDWHILE 550
Enhanced Capture Timer (ECT) 294, 314
Environment

File 667
Panel 31

Environment variable 678
ABSPATH 678
DEFAULTDIR 678
ENVIRONMENT 667
GENPATH 680, 682
HIENVIRONMENT 679
HIPATH 680, 682
LIBPATH 681, 684
LIBRARYPATH 682
OBJPATH 682
TMP 683
USELIBPATH 684

-ENVpath option 613
EQUAL Mask 154
Erasing Flash 473
Error messages

DA-C 266
Ethernet 381, 382
EXECUTE 551
Execute menu entry 319
EXIT 551
Exit menu entry 31
EXPAND 552
Expert mode 409, 412, 425
Expert triggers 425
Explorer 668
Expression Command file 72

Generating 72
Expression Editor 71
Expressions

Adding 71
Editing 71

External Bus Interface (EBI) 291
Multiplexed 292

F
FE 316
Features

User interface 47
FEE28 478
FEE32 478
fibo.prm file 255
709S12(X) Debugger Manual

Field Description 160, 161
Field Description attribute 161
FIFO 445, 446, 447, 448

Analyze remark 448
Analyzing content 432, 444, 445, 446
Data 452
Depth 452
Detail mode 432, 442
Display data 452
LOOP1 mode 431, 442
Normal mode 431, 442
Protecting content 445, 447

File Manager 668
File menu 30
File types

Configuring DA-C 253
Filename 154
Files

*.abs 53, 389
*.cmd 63
Component 46
default.mem 275
Environment 667
Expression command file 72
fibo.prm 255
*.HWC 30
*.INI 30
init.cmd 234
mcutools.ini 208, 668
OSPARAM.PRM 195
*.PJT 30
postload.cmd 42, 246
preload.cmd 41, 246
project.ini 37, 474, 475, 669
*.rec 110
reset.cmd 246

Executing 41
Setcpu command 275
startup.cmd 246

Executing 41
termbgnd.c 393
*.wnd 46, 53
*.xpr 72

FILL 552

Fill Memory dialog box 96
Fill menu entry 93
FILTER 553
FIND 553
Find 122
Find dialog box 122
Find menu entry 120
Find Procedure 123
Find Procedure dialog box 123
Find Procedure menu entry 120
FINDPROC 554
Firmware 384
Flash

Commands 617
Disabling 473
Enabling 473
Loading 475
Module 471
Module selecting 473
Operations 472
Programming 393
Protecting 473
Select 471
SELECT command 473
Unprotecting 473
Unselect 471
UNSELECT command 473

Flash (FTS) 289
FLASH command 618
Flash option 355, 369, 390, 397
FLASH_4000 479
FLASH_B32 478
FLASH_C000 479
FLASH_PAGE0 479
FLASH_PAGE1 479
FLASH_PAGE2 479
FLASH_PAGE3 479
FLASH_PAGE4 479
FLASH_PAGE5 480
FLASH_PAGE6 480
FLASH_PAGE7 480
Flat step 236
FLEXlm component protection

in demo mode 26
710 S12(X) Debugger Manual

Float menu entry 113
Floating point format 228, 230

Selecting 228, 230
FOCUS 555
FOLD 555
Fold All Text menu entry 124
Fold menu entry 123
Folding mark 118
Folding menu 123
Folding source code 118
Foldings menu entry 120
FONT 556
Fonts menu entry 42
FOR 556, 569
Format

Changing register display 241
Changing variable display 239

Format menu 239
Format menu entry 73, 93
Format mode 160
Format Selected and All Submenu 85
Format Submenu 84
Format submenu 74, 94
FPP Browse 474
FPP directory 474
.FPP file loading 473
FPRINTF 557
FRAMES 558
Frames

Definition 448
Frozen menu entry 76, 95
Frozen mode 73
Full Chip Simulation

Technical Considerations 271
Full Chip Simulation Connection 271
Full Chip Simulation connection, loading 212

G
G 558
GDI 421, 447
GENPATH 680, 682
Global Data component 234
Global menu entry

Menus

Scope submenu 73
Global variable

Displaying 238
Global variable display 73
GO 559
Go to Frame 451
Go to Line dialog box 122
Go to Line menu entry 120, 121
Graphic bar 106

Coverage window 65
Graphical 449
Graphical display 449
GRAPHICS 561
Graphics menu entry 66, 107
Grid Color menu entry 148
Grid Mode menu entry 147
Grid Size menu entry 147
GUI Graphical User Interface 470

H
Halt menu entry 36
Halt when the FIFO is full 422, 424
Hardware Breakpoint 491
Hardware Breakpoint module

Automatic (controlled by debugger mode)
mode 493

Disabled mode 492
User controlled mode 494

Hardware breakpoints 393, 419, 428, 435, 688
Hardware Breakpoints Settings 653
Hardware considerations 477
Hardware design simulation 25
HC(S)12(X)

Debugger connections 269
Flash Programming 467
Full Chip Simulation 271

HC12
Debugging 221
Switching connections 232
Switching to SofTec HCS12 218

HC12B32 477
HC12D60 478
HC12DG128 479
HCS08 Open Source BDM
711S12(X) Debugger Manual

First Steps from within existing project 208
HCS12 401

inDart-HCS12 Connection Menu
Options 367

MCU Configuration dialog box 219
MultilinkCyclonePro Connection Menu

Options 353
Serial Monitor 401, 421
Serial monitor connection 219
Serial monitor considerations 373
Set Connection dialog box 218
SofTec technical considerations 367
Switching to HCS12 serial monitor

connection 219
TBDML HCS12 Connection Menu

Options 395
Technical Considerations 353, 367, 381, 395

HCS12 Unsecure Target commands 657
Height 148
HELP 561
Help 390
Help menu 45
Help Topics menu entry 45
Hex

Component format 242
Hex menu entry 75, 94, 112, 239
Hexadecimal 239

Displaying register content in 241
Hexadecimal format 239
Hide Headline menu entry 33
Hide Tile menu entry 33
.hidefaults 668, 679, 680, 683
HIENVIRONMENT 679
High display value 153, 156, 160
Highlights, Abatron BDI 381
HIPATH 680
Horiz. Text Alignment 159
Horizontal Size menu entry 147
Host serial communication port

choosing 220
How To information 207, 365
How to Load 476
HWBPM 653
HWBPM MODE 653

HWBPM REMAP_22BITS 654
HWBPM REMAP_22BITS DELETE 654
HWBPM REMAP_22BITS DISPLAY 654
HWBPM REMAP_22BITS

MCUID_DEFAULT 654
HWBPM REMAP_22BITS RANGE 654
HWBPM SET16BITS 654
HWBPM SET22BITS 654
.HWC 30
.hwl 671
.hwp 671

I
I/O 393
ICD12EXEC HELP 562
ICLAT 315
IDF server application name 701
IDLE 316
IF 562, 569
ILIE 316
ILT 316
inDART-HCS12 401

About 369
Bus Trace 369
Command Files 369
Communication 368
Debugging Memory Map 369
Flash 369
Load 368
MCU Configuration 369
Reset 368
Select Core 369
Setup 368
Trigger Module Settings 369

Indicator color 156
Indicatorcolor 153
Indicatorlength 153
.INI 30
init.cmd file 234
Initialization List 385
INITRG 313
Input Capture channels 314
Inspect component 135
INSPECTORUPDATE 563, 564
712 S12(X) Debugger Manual

-Instance=%currentTargetName option 612
INSTRUCTION 409
Instruction 413
Instruction at Address A

and value on data bus match 421, 438
and value on data bus mismatch 421, 438
is executed 420, 437
then at Address B executed 421, 437

Instruction at Address A or Address B
is executed 420, 437

Instruction execution
inside Address A - Address B range 420,

437
outside Address A - Address B range 421,

437
Instruction syntax 500
Instructions display 448
Instrument attributes 148
Instruments

Virtual 143
Inter-IC Bus (IIC) 285
Introduction 21
Invalid license, using 26
IPATH 682
is 422, 424
Items 450
ITPORT 634
ITVECT 635

J
J1850 Bus (BLCD) 285

K
Kernel data structures

Describing 198
Inspecting 198

Kernel implementation 195
Kind of Port 148
Knob Color 156
Knob instrument attributes 156
KPORT 635

L
Language support, selecting 224
Large memory model 228
Layout 671

Component windows 27
Layout - Load/Store menu entry 44
LCDPORT 636
Left menu entry 147
LF 564
LIBPATH 684
Library path

Configuring DA-C 254
LIBRARYPATH 681, 682
Limitations

of Demo version 26
Line Continuation 674
LINKADDR 636
Linker configuration, DA-C 259
Linker settings, DA-C 260
List Transmission 386
LOAD 565
Load 389
Load Application menu entry 30
Load I/Os menu entry 272
Load Layout menu entry 145, 146
Load menu entry 38, 272
Load Option 354, 368, 396
LOADCODE 567
Loading an application 234, 389
Loading error 475
Loading problems 475
Loading the BDI Connection 387
LOADSYMBOLS 567
Local Data component 234
Local menu entry 73
Local Variable

Displaying 238
Local variable display 73
Locked menu entry 76
Locked mode 73
LOG 568
LOOPS 316
Low display value 153, 156, 160
LS 572
713S12(X) Debugger Manual

Lword menu entry 94

M
M 316
MainFrame 671
Maker configuration, DA-C 260
Maker settings, DA-C 261
Manual Configuration 277
Markpoint

Definition 163
Deleting 192
Memory 190
Setting source 190
Storing triggers as 406

Marks 153
Marks menu entry 121
Match value 420, 421, 437, 438
MCCNT 315
MCCTL 315
MCU Communication 368
MCU Configuration Option 369
mcu03c1.fpp 477
mcu03c3.fpp 478
mcu03c4.fpp 479
mcuId 474
MCURegisters Component 83
MCURegisters Menu 84
mcutools.ini 208, 668
MEM 573
Memory 410

Banked model 314
Dump 89
Word 89

Memory access
inside Address A - Address B range 420,

436
Memory access at Address A 420, 436

and value on data bus match 420, 437
and value on data bus mismatch 420, 437
or at Address B 420, 436
then memory access at Address B 420, 436

Memory component 89, 243
Memory Configuration Modes 276
Memory Expansion Register 314

Memory menu 93
Memory model, selecting 228
Memory models 314
Memory Write Access 424, 443
MemoryBanker 230
Menus

Assembly 57
Assembly context 58
Associated with components 45
Component 42, 46
Component menu 45
Connection menu 37
Context

Source 119
Split view 67
VisualizationTool 146

Context-sensitive 46
Coverage 66
Data menu 72, 73
Display submenu 96
File menu 30
Folding 123
Format 239
Format selected/all submenu 75
Format submenu 74, 94
Help 45
Memory menu 93
Mode submenu 75, 95
MultilinkCyclone Pro (ICD-12) 215
Profiler 107
Recorder 110
Register 112
Run menu 36
Source 118
View menu 33
VisualizationTool Properties 147
Window 43, 44
Word Size submenu 94

Minimal startup code, selecting 231
Misaligned access 275
Mismatch value 420, 421, 437, 438
Mode menu entry 73, 93
Mode Selected and All Submenu 86
Mode Submenu 86
714 S12(X) Debugger Manual

Mode submenu 75, 95
Modes, update 73
Modify

Accumulator register content 242
Index register content 242
Memory address content 243

Modify Trigger 408
Module

Source 102
Module base address 493
Module component 102
Modules 471
Modulus Down-Counter 315
Monitor Bus Trace 378
Monitor Command Files 378
Monitor Communication 377, 378
Monitor Debugging Memory Map 378
Monitor Load 377
Monitor Reset 377
Monitor Setup 377
MONITOR-HCS12

Bus Trace 378
Command Files 378
Communication 378
Debugging Memory Map 378
Load 377
Reset 377
Setup 377
Trigger Module Settings 378

MS 574
MultilinkCyclone Pro (ICD-12) menu 215
MultilinkCyclonePro

Bus Trace 355
Command Files 355
Communication/Connect 354
Debugging Memory Map 355
Flash 355
Load 354
Reset 354
Set Derivative 354
Trigger Module Settings 355
Unsecure 355

Multiplexed External Bus Interface (MEBI) 292
Multitasking operating system 195

N
Name 472
NB 575
NETWORK 392
New menu entry 30
New Project window 221
NF 316
NOCR 577
-Nodefaults option 612
NOLF 577
NV_PARAMETER_FILE 474

O
Object Information bar 46
OBJPATH 682
Oct menu entry 75, 94, 112, 239
Octal 239
Octal format 239
OP_SetValue 314
OPEN 577
Open Configuration menu entry 30
Open File menu entry 319
Open Memory Block 278
Open menu entry 42
Open Source File menu entry 120
Operating system task context 195
Options

-C 613
-Cmd 612
-ENVpath 613
-Nodefaults 612
Pointer as Array 73
-Prod 612
-Target 611
-W 611

Options - Autosize menu entry 44
Options - Component Menu menu entry 44
Options group 208
Options menu entry 73
OR 316
*.ort file 201
ORTI 201
ORTI file name 201
715S12(X) Debugger Manual

ORTI File names 201
OSBDM 365
OSEK Kernel Awareness 200
OSEK RTK Inspector component 202
OSEK Run Time Interface (ORTI) 201
OSEK Run-Time Interface (ORTI) 201
OSPARAM.PRM 195
Outlinecolor 158
OUTPUT 578
Output Compare channels 314
Output file

Coverage component 66
Output File menu entry 66, 107

P
P 579
P&E Multilink/Cyclone Pro

Loading the connection 214
Panels

Environment 31
Paste menu entry 146
PATH 673
Pause 110
PAUSETEST 580
PBPORT 637
PC Lint support, selecting 231
PE 316
Percentage of executed source code 65
Percentage values 106
Periodic Interrupt Timer (PIT) 297
PERIODICAL 320
Periodical menu entry 75, 95
Periodical mode 73
Permanent breakpoints 163
PF 316
Pins, configuring 314
PIX bits 314
.PJT 30
Play 109
Pointer as Array option 73, 76
PORT 638
Port Integration Module (PIM) 292
Port memory width display 149
Port to Display 149

PORTT 314
PORTTBitx 314
Postload command file 42
postload.cmd file 246

Executing 246
PPAGE 314
PR0 315
PR1 315
PR2 315
Preload command file 41
preload.cmd file 246

Executing 246
PRINTF 580
Procedure activation frames 195
Procedure chain 103
Procedure Chain window 196
Procedure component 103
Processor expert, selecting 226
-Prod option 612
Profiler component 105
Profiler menu 107
Profiling 419, 453
Program counter, setting 120
Program flow rebuild gap 448
Program loading 475
Program markers 163
Programmed module state 472
Project

File analysis, DA-C 256
Overview

DA-C 257
Root directory, DA-C 252
Root directory, referential 252

Project files, default 671
project.ini 474, 475, 669, 670
project.ini file 37
Properties menu entry 145, 146
Protect DBG FIFO content from unexpected

reads 445, 447
Protected module state 472
Protecting Flash 473
PROTOCOL 616
Pseudo-terminal facility, using 245
PSMODE 649
716 S12(X) Debugger Manual

PT 316
PTRARRAY 581
Pulse Width Modulator (PWM) 297
Pure PC mode 432, 442
PVCS 684

R
R/W Access 408
R8 316
RAF 316
RAMs 383
RD 581
RDRF 316
RE 316
Read 408, 411
Read Access 413
Read/Write 411
Read/Write Access 413
READACCESS 411
READWRITEACCESS 411
Real-time embedded application 25
Real-Time Kernel Awareness 195
Real-Time Kernels

Definition 195
.rec file 110
RECORD 582
Record 109
Record before and after condition 441
Record continuously 441

and DO NOT halt on trigger hit 422, 423
and halt on trigger hit 422, 423

Record menu entry 110
Record Time menu entry 110
Recorder component 109
Recorder menu 110
Refresh Mode menu entry 148
REGBASE 638
Register

Changing display format 241
Working with 241

Register assignments
RTK awareness 200

Register Block 313
Register component 111, 234, 241

Register contents, displaying 111
Register menu 112
Register values 174, 183

Using with breakpoints 173
Registration information, displaying 45
Relative Mode 160
Relative value attributes 160
Remove menu entry 146
REPEAT 569, 583
Replay menu entry 110
Requirements 381
RESET 583, 617
Reset command file 41
Reset Mem menu entry 272
Reset menu entry 38, 66, 107, 272, 389
Reset Option 354, 368, 396
Reset RAM menu entry 272
Reset Statistic menu entry 272
reset.cmd file 246

Executing 246
RESETCYCLES 639
RESETMEM 639
RESETRAM 640
RESETSTAT 641
RESTART 584
Restart menu entry 36
RETURN 584
RIE 316
Right menu entry 147
ROMs 383
RS 585
RS-232 serial communication 381
RSRC 316
RTC 314
RTK

Application example 197
Awareness register assignments 200
Interface 196
Procedure Chain window 196

Run menu 36
Run To Cursor menu entry 58, 119
RWU 316
717S12(X) Debugger Manual

S
S 586
S12 platfotm only 413
SAVE 586
Save and Restore on load 406, 413
Save Configuration menu entry 30
Save Layout menu entry 145, 146
Save Memory Block 278
Save Project As menu entry 30
SAVEBP 587
SBK 316
SBR 316
SC0BDH 316
SC0BDL 316
SC0CR1 316
SC0CR2 316
SC0DRH 316
SC0DRL 316
SC0SR1 316
SC0SR2 316
SC1BDH 316
SC1BDL 316
SC1CR1 316
SC1CR2 316
SC1DRH 316
SC1DRL 316
SC1SR1 316
SC1SR2 316
Scalable CAN (MSCAN) 285
SCIInput 315, 317
SCIInputH 315, 317
SCIOutput 317
SCIOutputH 317
Scope menu entry 73
Scope submenu 73
Search

for text in source 122
Search order 675

Assembly source files 675
C source files 675
Object files source files 675

Search Pattern menu entry 93
Search procedure 120
SEGPORT 641

Select Core menu entry 273
Select Core Option 355, 369, 390, 398
Select Derivative option 389, 396
Selected menu entry 74
Selecting 471, 473
Send to Back menu entry 146
Send to Front menu entry 146
Serial Communication Interface (SCI) 285, 315
Serial Monitor 421
Serial Peripheral Interface (SPI) 287
SerialInput 315, 317
SerialOutput 317
SET 588
Set Breakpoint menu entry 58, 119
Set Connection menu entry 42
Set DBGCA 412
Set DBGCB 412
Set Derivative menu entry 272
Set Derivative option 354
Set Markpoint menu entry 59, 120
Set Program Counter menu entry 120
Set Trigger A 419, 428, 435
Set Trigger Address 411
Set Trigger Address B 412
Set Trigger B 419, 428, 435
Set TriggerAddress 404
SETCOLORS 588
SETCONTROL 642
SETCPU 642
Setcpu command file 275
Setup dialog 392
Setup menu entry 146, 390
Setup Option 368, 396
Show Breakpoints menu entry 58, 120
Show Location 408, 448
Show Location menu entry 58, 120
Show Markpoints 406

Menu entry 120
Show Markpoints menu entry 59
Show Protocol 392
SHOWCYCLES 643
SHOWPROT 688
Silicon ID, reading 220
Simulation 25
718 S12(X) Debugger Manual

Hardware design 25
Simulator Menu 272
Single Step instruction 236
Single Step menu entry 36
Size menu entry 147
Size of Port 149
SKIPILLEGALBREAK 688
SLAY 589
SLINE 590
Sloping 157
Small Borders menu entry 33
Small memory model 228
SMEM 590
SMOD 591
SofTec HCS12

Connection 367
Selection 218

Software demonstration 143
Sort menu entry 73
Source code folding 118
Source code unfolding 118
Source component 114, 234, 235
Source context menu 119
Source file, opening dialog 120
Source menu 118
Source modules 102
SPC 592
Split view 65
Split-view context menu 67
SPROC 592
SREC 593
Stack, inspecting 195
Start 110, 472
Start recording 441
Start recording after trigger hit

and DO NOT halt when the FIFO is full 422,
423

and halt when the FIFO is full 422, 423
Start/Continue menu entry 36
Starting an Application 235
Startup 669
Startup code, selecting 231
Startup command file 41
Startup command file, executing 41

Startup Init List 385
startup.cmd file 246

Executing 246
State 472
States 472
Statistics 107
Status bar 29, 416
Status Bar menu entry 33
Status register bits, displaying 111
Step In 235

Assembly instruction 237
Source Instruction 236

Step Out
Function Call 237

Step Out menu entry 36
Step Over

Function call (flat) 236
Step Over menu entry 36
STEPINTO 594
STEPOUT 594
STEPOVER 595
STEPPED in status line 236
Stepping functions

Assembler level 235
Source level 235

Stimulation 314
Stimulation Menu 319
STOP 596
Stopping an Application 235
Switch Color 156
Symbolic menu entry 75, 239
Syntax, watchpoint 179

T
T 596
-T option 611
T8 316
Target application 25
Target commands 615, 653
-Target option 611
Target processor

Choosing 219
Target Settings panel 232, 247
Task description language 196
719S12(X) Debugger Manual

Task descriptor 195
Defining 199

Task state, displaying 196
Task state, inspecting 195
TBDML Connection 395
TBDML HCS12

Bus Trace 397
Command Files 397
Debugging Memory Map 397
Flash 397
Load 396
Reset 396
Reset To Normal Mode 397
Select Core 398
Select Derivative 396
Select HC12 MCU 398
Set Derivative 396
Set Speed 397
Setup 396
Show Status 397
Trigger Module Settings 397
Unsecure 397

TC 316
TCIE 316
TCNT 315
TCRE 314, 315
TCTL1 315
TCTL2 315
TCTL3 315
TCTL4 315
TCx 315
TDRE 316
TE 316
Temporary breakpoints 163, 170
termbgnd.c file 393
Terminal 393

Address 394
Area 393
Component 245
Symbol meanings 197
Work space 393

Terminal Emulation 393
with BDI 393

TESTBOX 597

TestTerm component 245
Text Mode 159
Textcolor 159
Textual display 449
TFLG1 315
TFLG2 315
TIE 316
Tile menu entry 44
Timer 314, 315
Timer Counter Reset Enable (TCRE) 314
Timer Module (TIM) 300
Timer Update menu entry 66, 107
TIOS 315
TMP 683
TMSK1 315
TMSK2 315
TOI 315
Tool tips 28
Toolbar

Customizing 33
Main window 28

Toolbar menu entry 33
ToolTips

Activation 116
Format 116
Mode 116

ToolTips menu entry 121
Top menu entry 146
Top Position is 158
Trace component 447
Trace window 447
Tree Submenu 87
Trigger A 404, 406
Trigger addresses

Editing 407
Trigger B 406, 420, 421, 437, 438
Trigger Module Settings 378, 402
Trigger Module Settings Option 355, 369, 390,

397
Trigger Module Settings Window 402
Troubleshooting DA-C and debugger

connections 266
TUPDATE 598
Type 408
720 S12(X) Debugger Manual

typical 419

U
UDec menu entry 75, 95, 113, 239
UNDEF 598
Undefined trigger address 408
UNFOLD 601
Unfold All Text menu entry 123
Unfold menu entry 123
Unfolding

Mark 118
Source code 118

Unprotected module state 472
Unprotecting 473
Unsecure Command File 487
Unsecure HCS12 derivatives 485
Unselecting 471, 473
Unsigned Decimal 239
Unsigned Decimal format 239
UNTIL 601
Update modes 73
Update Rate Dialog Box 87
UPDATERATE 602
Use External Debugger checkbox 232, 247
Use the debugger eeprom and flash programmer

check box 393
USELIBPATH 684
User help file

DA-C 253
User interface features 47
User menu entry 73

V
VA 607
Value attributes 160

Relative 160
Variable

Changing display format 239
Current scope 70
DefaultDir 208
Display 73
Display format 70
Display mode 70
Displaying Global 238

Displaying Local 238
Displaying local 238
Displaying value 239
Editing value 240
Global values and types 70
Inspecting declared 199
Local values and types 70
Mode 73
Retrieving address 240
Showing location 241
Type 70
Working on 238

Variables 691
Vector table address

Search for 221
Vector table mirroring, using 220
VER 602
VERIFY 689
Version number, displaying 45
Vert. Text Alignment 159
Vertical Size menu entry 147
View menu 33
View splitting 65
Virtual instruments 143
Visualization tools

Defining indicators 153
VisualizationTool

7-Segment Display instrument 157
Analog 152
Bar 153
Bitmap 153
Component 143
Demo version limitations 161
DILSwitch 155
Instrument 148
Knob instrument 156
LED instrument 157
Setup 147
Switch instrument 158
Text instrument 159

VisualizationTool context menu 146
VisualizationTool menu 144
Voltage Regulator (VREG) 290
721S12(X) Debugger Manual

W
-W option 611
WAIT 603
WAKE 316
Watchpoint

Checking condition 179
Command association 185
Conditional 183, 193
Counting 182, 192
Definition 163
Deleting 184
Read 180
Read, Write 164
Read/Write 181
Write 180

Watchpoints in Multi Core projects 185
WB 605
WHILE 569, 605
Width 148
Window component 53
Window menu 43
Window menu description 44
Windows 668
WinEdit 668

Using to start debugger 208
WL 606
*.wnd file 46, 53
WOMS 316
Word menu entry 94
Word size menu entry 93
Word Size submenu 94
WorkDir 208
Working directory, defining 208
Working Mode 386
WorkingDirectory 208
WPORT 643
Write 408, 411
Write Access 414
WRITEACCESS 411
WW 607

X
X-Position 148

*.xpr file 72

Y
Y-Position 148

Z
ZOOM 607
Zoom menu entry 73
722 S12(X) Debugger Manual

	Introduction
	Manual Contents

	Book I - Debugger Engine
	Book I Contents
	Introduction
	Freescale Debugger
	Debugger Application
	Debugger Features
	Demonstration Version Limitations

	Debugger Interface
	Application Programs
	Debugger Main Window
	Debugger Main Window Toolbar
	Debugger Main Window Status Bar
	Main Window Menu Bar
	Component Menu
	Window Menu
	Help Menu

	Component Associated Menus
	Component Main Menu
	Component Windows Object Information Bar
	Component Context Menu

	Features of the User Interface
	Activating Services with Drag and Drop
	Drag and Drop an Object
	Drag and Drop Combinations

	Debugger Components
	Debugger Kernel Components
	CPU Components
	Window Components
	Connection Components
	Loading Component Windows

	General Debugger Components
	Assembly Component
	Command Line Component
	ComMaster Component
	Coverage Component
	DA-C Link Component
	Data Component
	HCS12XAdrMap Component
	MCURegisters Component
	Memory Component
	Module Component
	Procedure Component
	Profiler Component
	Recorder Component
	Register Component
	Source Component
	Terminal Component
	Trace Component

	Visualization Utilities
	Inspect Component
	Visualization Tool Component

	Control Points
	Control Point Configuration
	Breakpoints
	Breakpoints Tab
	Multiple Selections in List Box
	Checking Expressions
	Saving Breakpoints
	Setting Breakpoints

	Watchpoints
	Watchpoints Tab
	Multiple Selections
	Checking Syntax
	Setting Watchpoints
	Watchpoints in Multi Core Projects

	Markpoints
	Markpoints Tab
	Setting Markpoints

	Halting on a Control Point
	Counting Control Point
	Conditional Control Point
	Control Point with Command

	Real-Time Kernel Awareness
	Inspecting Task State
	RTK Interface

	Task Description Language
	Application Example
	Inspecting Kernel Data Structures
	RTK Awareness Register Assignments
	OSEK Kernel Awareness
	OSEK RTI
	ORTI File and Filename
	ORTI Aware Debugging System
	ORTI File Structure
	OSEK RTK Inspector Component

	How To...
	Configuring the Debugger
	For Use from Desktop (Windows 2000)

	Starting the Debugger
	Starting with WinEdit
	Starting from within the IDE
	Debugger Command Line Start

	Switching Connections
	Loading the Full Chip Simulation Connection
	Loading the P&E Multilink/Cyclone Pro Connection
	Switching to SofTec HCS12
	Switching to HCS12 Serial Monitor Connection

	Using the Stationery Wizard to Create a Project
	CodeWarrior IDE Integration
	Debugger Configuration

	Automating Debugger Startup
	Loading an Application
	Starting an Application
	Stopping an Application
	Stepping in the Application
	On Source Level
	Step on Assembly Level

	Working on Variables
	Display Local Variable from a Function
	Display Global Variable from a Module
	Change Format for Variable Value Display
	Modify a Variable Value
	Retrieve the Variable Allocation Address
	Inspect Memory Starting at a Variable Location Address
	Load an Address Register with the Variable Address

	Working on the Register
	Change Format of Register Display
	Modify a Register Content
	Start Memory Dump at Selected Register Address

	Modify Content of Memory Address
	Consulting Assembler Instructions Generated by a Source Statement
	Viewing Code
	Communicating with the Application
	About startup.cmd, reset.cmd, preload.cmd, postload.cmd

	CodeWarrior Integration
	Debugger Configuration

	Debugger COM Capabilities
	COM Implementation
	Driving Debugger through COM

	Synchronized Debugging through DA-C IDE
	Configuring DA-C IDE for Freescale Tool Kit
	Create New Project
	Configure Working Directories
	Configure File Types
	Configure Library Path
	Configure the Tools

	Debugger Interface
	DA-C IDE and Debugger Communication

	Synchronized Debugging
	Troubleshooting

	Book II - HC(S)12(X) Debug Connections
	Book II Contents
	HC(S)12(X) Full Chip Simulation Connection
	Technical Considerations
	Full Chip Simulation Menu
	Memory Configuration
	Clock Frequency Setup
	Bus Trace
	Full Chip Simulation Warnings

	FCS and Silicon On-Chip Peripherals Simulation
	Supported HC(S)12(X) Derivatives
	Communication Modules
	Analog to Digital Converter Module
	Memory Modules
	Miscellaneous Modules
	Port I/O Modules
	Timer Modules
	Legacy HC12 (CPU12) Derivatives Simulation

	FCS Visualization Utilities
	Stimulation Component
	Terminal Component

	True-Time I/O Stimulation
	Stimulation Program Examples
	Stimulation Input File Syntax

	Electrical Signal Generators and Signals Application to Device Pins
	Signal IO Component
	Signal Description File EBNF
	Base Signal Files Provided
	Virtual Wire Connections with the Pinconn IO Component
	Command Set to Apply Signal on ATD Pin

	FCS Tutorials
	Guess the Number
	PWM Channel 0

	P&E Multilink/Cyclone Pro Connection
	P&E Multilink/Cyclone Pro Technical Considerations
	Connection Menu
	HC12MultilinkCyclonePro Menu Options

	OSBDM Connection
	OSBDM Technical Considerations
	CodeWarrior Integration
	Minimum Firmware Version
	Support and Licensing

	SofTec HCS12 Connection
	SofTec HCS12 Technical Considerations
	Connection Menu
	inDART-HCS12 Menu Entries

	HCS12 Serial Monitor Connection
	Serial Monitor Technical Considerations
	CodeWarrior IDE and Serial Monitor Connection
	HCS12 Serial Monitor Interface
	MONITOR-HCS12 Menu Options

	Abatron BDI Connection
	Abatron BDI Technical Considerations
	Abatron BDI Highlights
	Abatron BDI Requirements
	Abatron BDI Connection Introduction
	Interfacing Abatron BDI and Your System
	BDI Interface Software Setup
	Running the ABATRON Configuration Tool
	Loading the Abatron BDI Connection

	Abatron BDI Connection Menu Entries
	Abatron BDI Connection Dialog Boxes
	Communication Device Specification Dialog Box
	Setup Dialog Box

	Terminal Emulation

	TBDML Connection
	TBDML Technical Considerations
	Connection Menu
	TBDML HCS12 Menu Entries

	Book III - HC(S)12(X) Debugger Common Features
	Book III Contents
	On-Chip DBG Module for S12, S12S, S12G, S12P, S12X Platforms
	DBG Features
	Specific Connection Menu Options
	Context Menu Entries
	Source and Assembly Windows
	Storing Triggers as Markpoints
	Data and Memory Windows
	Trigger Settings
	Trigger Module Usage

	DBG Support Status Bar Item
	Trigger Module Settings Window
	S12 DBG Module Tabs
	S12G, S12P, S12S DBG Module Tabs
	S12X DBG Module Tabs
	General Settings Tab

	Trace Component Window
	Instructions Display
	Recorded Data Display

	Demonstration Mode Limitations

	Debugging Memory Map
	Debugging Memory Map GUI
	Enabling the Memory Module and Changing the Memory Range
	Remarks

	CPU Core Priorities and Types
	HC12 (CPU12) Core
	HCS12 Core
	HCS12X Core

	DMM Commands
	Debugging Memory Map Manager Command Set

	Flash Programming
	Automated Application Programming
	Setup
	Advanced Options: Erase Prevention

	NVMC Graphical User Interface
	NVMC Dialog Box
	Flash Module Handling
	MCU Speed Information
	Configuration: FPP File Loading
	Loading an Application in Flash

	Preparing and Loading an Application
	Hardware Considerations
	HC12 (CPU12) CPU Devices
	HCS12 and HCS12X CPU Devices
	HCS12 EEPROM Relocation
	EB386 Compliance and RAM Moving
	HCS12X Emulated EEPROM
	Legacy Flash Programming Commands in Preload and Postload Command Files
	S12G, S12P, S12X, S12XE, S12XS D-Flash memory

	Unsecure HCS12 Derivatives
	Information Required to Unsecure the Device
	Unsecure Command File

	On-Chip Hardware Breakpoint Module
	Hardware Breakpoint Configuration dialog
	Breakpoint Module Mode

	Book IV - Commands and Environment Variables
	Book IV Contents
	Debugger Engine Commands
	Commands Overview
	Available Command Lists
	Command Syntax Terms

	Debugger Commands

	Connection-Specific Commands
	Abatron BDI Connection Commands
	NVMC Commands
	DMM Commands
	Debugging Memory Map Manager Commands

	Full Chip Simulator Commands
	Full Chip Simulation Connection Commands
	On-Chip Hardware Breakpoint Module Commands
	Unsecure Commands
	XGATE-Specific Hardware Connection Commands
	Other Hardware Connection Commands

	Debugger Engine Environment Variables
	Debugger Environment
	The Current Directory
	Global Initialization File (MCUTOOLS.INI - PC Only)

	Local Configuration File (usually project.ini)
	Default Layout Configuration (PROJECT.INI)
	Environment Variable Paths

	Search Order for Source Files
	In the Debugger for C Source Files (*.c, *.cpp)
	In the Debugger for Assembly Source Files (*.dbg)
	In the Debugger for Object Files (HILOADER)

	Debugger Files
	Environment Variables

	Connection-Specific Environment Variables
	Abatron BDI Connection Environment Variables
	Banked Memory Location-Associated Environment Variables
	Unsecure Environment Variable
	On-Chip Hardware Breakpoint Module Environment Variables

	Book V - Debugger Legacy
	Book V Contents
	HC(S)12 (X) Full-Chip Simulator Components No Longer Supported
	List of HC(S)12(X) FCS Components No Longer Supported

	Debugger DDE Capabilities
	DDE Implementation
	Driving Debugger through DDE

	Index

